
Categorical Listing of Propeller Assembly Language:
Elements marked with superscript “s” are also available in Propeller Spin.

Directives
ORG - Adjust compile-time cog address pointer
FIT - Validate that previous instructions/data fits entirely in a cog
RES - Reserve next long(s) for symbol

Configuration
_CLKMODEs - Application-defined clock mode (read-only)
_CLKFREQs - Application-defined clock frequency (read-only)
CLKSETs - Set clock mode and clock frequency
_XINFREQs - Application-defined external clock frequency (read-only)
_STACKs - Application-defined start of stack (read-only)
RCFASTs - _CLKMODE constant to set System Clock to internal fast oscillator
RCSLOWs - _CLKMODE constant to set System Clock to internal slow oscillator
XINPUTs - _CLKMODE constant to set System Clock to external clock/oscillator (XI pin only)
XTAL1s - _CLKMODE constant to set System Clock to external low-speed crystal
XTAL2s - _CLKMODE constant to set System Clock to external medium-speed crystal
XTAL3s - _CLKMODE constant to set System Clock to external high-speed crystal
PLL1Xs - _CLKMODE constant to set System Clock to external frequency times 1
PLL2Xs - _CLKMODE constant to set System Clock to external frequency times 2
PLL4Xs - _CLKMODE constant to set System Clock to external frequency times 4
PLL8Xs - _CLKMODE constant to set System Clock to external frequency times 8
PLL16Xs - _CLKMODE constant to set System Clock to external frequency times 16

Cog Control
COGIDs - Get current cog’s ID (0-7)
COGINITs - Start, or restart, a cog by ID
COGSTOPs - Stop a cog by ID

Process Control
LOCKNEWs - Check out a new semaphore
LOCKRETs - Return a semaphore
LOCKCLRs - Clear a semaphore by ID
LOCKSETs - Set a semaphore by ID
WAITCNTs - Wait for System Counter to reach a value
WAITPEQs - Wait for pin(s) to be equal to value
WAITPNEs - Wait for pin(s) to be not equal to value
WAITVIDs - Wait for video sync and deliver next color/pixel group

Flow Control
IF_ALWAYS - Always
IF_NEVER - Never
IF_E - If equal (Z = 1)
IF_NE - If not equal (Z = 0)
IF_A - If above (!C & !Z = 1)
IF_B - If below (C = 1)
IF_AE - If above or equal (C = 0)
IF_BE - If below or equal (C | Z = 1)
IF_C - If C set

IF_NC - If C clear
IF_Z - If Z set
IF_NZ - If Z clear
IF_C_EQ_Z - If C equal to Z
IF_C_NE_Z - If C not equal to Z
IF_C_AND_Z - If C set and Z set
IF_C_AND_NZ - If C set and Z clear
IF_NC_AND_Z - If C clear and Z set
IF_NC_AND_NZ - If C clear and Z clear
IF_C_OR_Z - If C set or Z set
IF_C_OR_NZ - If C set or Z clear
IF_NC_OR_Z - If C clear or Z set
IF_NC_OR_NZ - If C clear or Z clear
IF_Z_EQ_C - If Z equal to C
IF_Z_NE_C - If Z not equal to C
IF_Z_AND_C - If Z set and C set
IF_Z_AND_NC - If Z set and C clear
IF_NZ_AND_C - If Z clear and C set
IF_NZ_AND_NC - If Z clear and C clear
IF_Z_OR_C - If Z set or C set
IF_Z_OR_NC - If Z set or C clear
IF_NZ_OR_C - If Z clear or C set
IF_NZ_OR_NC - If Z clear or C clear
CALL - Jump to address with intention to return to next instruction
DJNZ - Decrement D and jump to address if not zero
JMP - Jump to address unconditionally
JMPRET - Jump to address with intention to “return” to another address
TJNZ - Test D and jump to address if not zero
TJZ - Test D and jump to address if zero
RET - Return to stored address

Result Control
NR - No result (don’t write result)
WR - Write result
WC - Write C status
WZ - Write Z status

Main Memory Access
RDBYTE - Read main memory byte into D, zero extended
RDWORD - Read main memory word into D, zero extended
RDLONG - Read main memory long into D
WRBYTE - Write byte in D to main memory byte
WRWORD - Write word in D to main memory word
WRLONG - Write long in D to main memory long

Instructions
NOP - No operation, just wait one instruction cycle
ABS - Set D to absolute S
ABSNEG - Set D to negative of absolute S
NEG - Set D to -S
NEGC - Set D to either –S (if C) or S (if !C)

NEGNC - Set D to either S (if C) or -S (if !C)
NEGZ - Set D to either –S (if Z) or S (if !Z)
NEGNZ - Set D to either S (if Z) or -S (if !Z)
MIN - Store lesser of D and S into D (unsigned)
MINS - Store lesser of D and S into D (signed)
MAX - Store greater of D and S into D (unsigned)
MAXS - Store greater of D and S into D (signed)
ADD - Add unsigned S into D
ADDABS - Add absolute S into D
ADDS - Add signed S into D
ADDX - Add unsigned, extended S+C into D
ADDSX - Add signed, extended S+C into D
SUB - Subtract unsigned S from D
SUBABS - Subtract absolute S from D
SUBS - Subtract signed S from D
SUBX - Subtract unsigned, extended S+C from D
SUBSX - Subtract signed, extended S+C from D
SUMC - Sum either –S (if C) or S (if !C) into D
SUMNC - Sum either S (if C) or -S (if !C) into D
SUMZ - Sum either –S (if Z) or S (if !Z) into D
SUMNZ - Sum either S (if Z) or -S (if !Z) into D
MUL - <reserved for future use>
MULS - <reserved for future use>
AND - Bitwise AND S into D
ANDN - Bitwise AND !S into D
OR - Bitwise OR S into D
XOR - Bitwise XOR S into D
ONES - <reserved for future use>
ENC - <reserved for future use>
RCL - Rotate C left into D by S bits
RCR - Rotate C right into D by S bits
REV - Reverse 32 – S[4..0] bottom bits in D and zero extend
ROL - Rotate D left by S bits
ROR - Rotate D right by S bits
SHL - Shift D left by S bits
SHR - Shift D right by S bits
SAR - Shift D arithmetically right by S bits
CMP - Compare unsigned D to S
CMPS - Compare signed D to S
CMPX - Compare unsigned, extended D to S+C
CMPSX - Compare signed, extended D to S+C
CMPSUB - Compare D to S, if D => S then subtract S from D
TEST - Binary AND S with D to affect flags only
MOV - Copy S into D
MOVS - Copy S bits into D’s Source Field (S[8..0] into D[8..0])
MOVD - Copy S bits into D’s Destination Field (S[8..0] into D[17..9])
MOVI - Copy S bits into D’s Instruction Field (S[8..0] into D[31..23])
MUXC - Copy C to bits in D with S as mask
MUXNC - Copy !C to bits in D with S as mask
MUXZ - Copy Z to bits in D with S as mask
MUXNZ - Copy !Z to bits in D with S as mask

HUBOP - Hub operation; template for RDBYTE, CLKSET, etc.

Registers
DIRAs - Direction Register for 32-bit port A
DIRBs - Direction Register for 32-bit port B (reserved for future use)
INAs - Input Register for 32-bit port A (read only)
INBs - Input Register for 32-bit port B (read only) (reserved for future use)
OUTAs - Output Register for 32-bit port A
OUTBs - Output Register for 32-bit port B (reserved for future use)
CNTs - 32-bit System Counter Register (read only)
CTRAs - Counter A Control Register
CTRBs - Counter B Control Register
FRQAs - Counter A Frequency Register
FRQBs - Counter B Frequency Register
PHSAs - Counter A Phase Lock Loop (PLL) Register
PHSBs - Counter B Phase Lock Loop (PLL) Register
VCFGs - Video Configuration Register
VSCLs - Video Scale Register
PARs - Cog Boot Parameter Register (read only)

Constants
TRUEs - Logical True: -1 ($FFFFFFFF)
FALSEs - Logical False: 0 ($00000000)
POSXs - Maximum positive integer: 2,147,483,647 ($7FFFFFFF)
NEGXs - Maximum negative integer: -2,147,483,648 ($80000000)
PIs - Floating point value for PI: ~3.141593 ($40490FDB)

Unary Operators
NOTE: All operators shown are available in both Propeller Assembly and Spin.
|| - Absolute Value
- - Negate value (-X)
! - Bitwise not
^^ - Square root
|< - Decode value (0-31) into single-high-bit long
>| - Encode long into value (0 - 32) as high-bit priority
@ - Address of symbol

Binary Operators
NOTE: All operators shown are available in both Propeller Assembly and Spin.
+ - Add
- - Subtract
* - Multiply and return lower 32-bits (signed)
** - Multiply and return upper 32-bits (signed)
/ - Divide and return quotient (signed)
// - Divide and return remainder (signed)
& - Bitwise AND
| - Bitwise OR
^ - Bitwise XOR
|> - Limit minimum (signed)

<| - Limit maximum (signed)
~> - Shift arithmetic right
<< - Shift left
>> - Shift right
<- - Rotate left
-> - Rotate right
== - Is equal
<> - Is not equal
< - Is less than (signed)
> - Is greater than (signed)
=< - Is equal or less (signed)
=> - Is equal or greater (signed)
>< - Reverse bits
AND - Boolean AND (promotes non-0 to -1)
OR - Boolean OR (promotes non-0 to -1)

