

C3Synapse

SRAM Expansion Board for PropC3 Unit

Programming and User Manual

Version 1.0
07/12/2012

Author: Francesco de Simone (Digimorf)

 (Native Italian, forgive my English )

By André LaMothe (Nurve Network LLC) and
Francesco de Simone (Digimorf)

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 1

Manual Version 1.0
By Francesco de Simone

C3Synapse - User Manual v1.0
Copyright © 2012 Nurve Networks LLC, Digimorf

Author
Francesco de Simone.

All rights reserved. No part of this user manual shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the user of the information contained herein. Although every precaution has
been taken in the preparation of this user manual, the publisher and authors assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein.

Trademarks
All terms mentioned in this user manual those are known to be trademarks or service marks have been appropriately
capitalized. Nurve Networks LLC and Digimorf cannot attest to the accuracy of this information. Use of a term in this user
manual should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this user manual as complete and as accurate as possible, but no warranty or fitness
is implied. The information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor
any responsibility to any person or entity with respect to any loss or damages arising from the information contained in
this user manual.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail
address, logo, person, place, or event is intended or should be inferred.

eBook License
This electronic user manual may be printed for personal use and (1) copy may be made for archival purposes, but may
not be distributed by any means whatsoever, sold, resold, in any form, in whole, or in parts. Additionally, the contents of
the DVD this electronic user manual came on relating to the design, development, imagery, or any and all related subject
matter pertaining to the C3Synapse board are copyrighted as well and may not be distributed in any way whatsoever in
whole or in part. Individual programs are copyrighted by their respective owners and may require separate licensing.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 2

Manual Version 1.0
By Francesco de Simone

Licensing, Terms & Conditions

NURVE NETWORKS LLC, . END-USER LICENSE AGREEMENT FOR C3SYNAPSE HARDWARE, SOFTWARE, EBOOKS, AND USER
MANUALS YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PRODUCT. IT
CONTAINS SOFTWARE, THE USE OF WHICH IS LICENSED BY NURVE NETWORKS LLC, INC., TO ITS CUSTOMERS FOR THEIR
USE ONLY AS SET FORTH BELOW. IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS OF THIS AGREEMENT, DO NOT
USE THE SOFTWARE OR HARDWARE. USING ANY PART OF THE SOFTWARE OR HARDWARE INDICATES THAT YOU ACCEPT
THESE TERMS.

GRANT OF LICENSE: NURVE NETWORKS LLC (the "Licensor") grants to you this personal, limited, non-exclusive, non-
transferable, non-assignable license solely to use in a single copy of the Licensed Works on a single computer for use by a
single concurrent user only and solely provided that you adhere to all of the terms and conditions of this Agreement. The
foregoing is an express limited use license and not an assignment, sale, or other transfer of the Licensed Works or any
Intellectual Property Rights of Licensor.

ASSENT: By opening the files and or packaging containing this software and or hardware, you agree that this Agreement
is a legally binding and valid contract, agree to abide by the intellectual property laws and all of the terms and conditions
of this Agreement, and further agree to take all necessary steps to ensure that the terms and conditions of this
Agreement are not violated by any person or entity under your control or in your service.

OWNERSHIP OF SOFTWARE AND HARDWARE: The Licensor and/or its affiliates or subsidiaries own certain rights that
may exist from time to time in this or any other jurisdiction, whether foreign or domestic, under patent law, copyright
law, publicity rights law, moral rights law, trade secret law, trademark law, unfair competition law or other similar
protections, regardless of whether or not such rights or protections are registered or perfected (the "Intellectual Property
Rights"), in the computer software and hardware, together with any related documentation (including design, systems
and user) and other materials for use in connection with such computer software and hardware in this package
(collectively, the "Licensed Works"). ALL INTELLECTUAL PROPERTY RIGHTS IN AND TO THE LICENSED WORKS ARE AND
SHALL REMAIN IN LICENSOR.

RESTRICTIONS:
(a) You are expressly prohibited from copying, modifying, merging, selling, leasing, redistributing, assigning, or
transferring in any matter, Licensed Works or any portion thereof.
(b) You may make a single copy of software materials within the package or otherwise related to Licensed Works only as
required for backup purposes.
(c) You are also expressly prohibited from reverse engineering, decompiling, translating, disassembling, deciphering,
decrypting, or otherwise attempting to discover the source code of the Licensed Works as the Licensed Works contain
proprietary material of Licensor. You may not otherwise modify, alter, adapt, port, or merge the Licensed Works.
(d) You may not remove, alter, deface, overprint or otherwise obscure Licensor patent, trademark, service mark or
copyright notices.
(e) You agree that the Licensed Works will not be shipped, transferred or exported into any other country, or used in any
manner prohibited by any government agency or any export laws, restrictions or regulations.
(f) You may not publish or distribute in any form of electronic or printed communication the materials within or
otherwise related to Licensed Works, including but not limited to the object code, documentation, help files, examples,
and benchmarks.

TERM: This Agreement is effective until terminated. You may terminate this Agreement at any time by uninstalling the
Licensed Works and destroying all copies of the Licensed Works both HARDWARE and SOFTWARE. Upon any termination,
you agree to uninstall the Licensed Works and return or destroy all copies of the Licensed Works, any accompanying
documentation, and all other associated materials.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 3

Manual Version 1.0
By Francesco de Simone

WARRANTIES AND DISCLAIMER: EXCEPT AS EXPRESSLY PROVIDED OTHERWISE IN A WRITTEN AGREEMENT BETWEEN
LICENSOR AND YOU, THE LICENSED WORKS ARE NOW PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE, OR THE WARRANTY OF NON-INFRINGEMENT. WITHOUT LIMITING THE FOREGOING,
LICENSOR MAKES NO WARRANTY THAT (i) THE LICENSED WORKS WILL MEET YOUR REQUIREMENTS, (ii) THE USE OF THE
LICENSED WORKS WILL BE UNINTERRUPTED, TIMELY, SECURE, OR ERROR-FREE, (iii) THE RESULTS THAT MAY BE
OBTAINED FROM THE USE OF THE LICENSED WORKS WILL BE ACCURATE OR RELIABLE, (iv) THE QUALITY OF THE LICENSED
WORKS WILL MEET YOUR EXPECTATIONS, (v) ANY ERRORS IN THE LICENSED WORKS WILL BE CORRECTED, AND/OR (vi)
YOU MAY USE, PRACTICE, EXECUTE, OR ACCESS THE LICENSED WORKS WITHOUT VIOLATING THE INTELLECTUAL
PROPERTY RIGHTS OF OTHERS. SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY MAY LAST, SO THE ABOVE LIMITATIONS MAY
NOT APPLY TO YOU. IF CALIFORNIA LAW IS NOT HELD TO APPLY TO THIS AGREEMENT FOR ANY REASON, THEN IN
JURISDICTIONS WHERE WARRANTIES, GUARANTEES, REPRESENTATIONS, AND/OR CONDITIONS OF ANY TYPE MAY NOT
BE DISCLAIMED, ANY SUCH WARRANTY, GUARANTEE, REPRESENATION AND/OR WARRANTY IS: (1) HEREBY LIMITED TO
THE PERIOD OF EITHER (A) Five (5) DAYS FROM THE DATE OF OPENING THE PACKAGE CONTAINING THE LICENSED WORKS
OR (B) THE SHORTEST PERIOD ALLOWED BY LAW IN THE APPLICABLE JURISDICTION IF A FIVE (5) DAY LIMITATION WOULD
BE UNENFORCEABLE; AND (2) LICENSOR'S SOLE LIABILITY FOR ANY BREACH OF ANY SUCH WARRANTY, GUARANTEE,
REPRESENTATION, AND/OR CONDITION SHALL BE TO PROVIDE YOU WITH A NEW COPY OF THE LICENSED WORKS. IN NO
EVENT SHALL LICENSOR OR ITS SUPPLIERS BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING, WITHOUT
LIMITATION, THOSE RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT LICENSOR HAD BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH
THE USE OF THE LICENSED WORKS. SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. THESE LIMITATIONS
SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

SEVERABILITY: In the event any provision of this License Agreement is found to be invalid, illegal or unenforceable, the
validity, legality and enforceability of any of the remaining provisions shall not in any way be affected or impaired and a
valid, legal and enforceable provision of similar intent and economic impact shall be substituted therefore.

ENTIRE AGREEMENT: This License Agreement sets forth the entire understanding and agreement between you and
NURVE NETWORKS LLC, supersedes all prior agreements, whether written or oral, with respect to the Software, and may
be amended only in a writing signed by both parties.

NURVE NETWORKS LLC
12724 Rush Creek Lane
Austin, TX 78732
support@nurve.net
www.xgamestation.com

Support contacts: support@nurve.net, c3synapse@c3emulation.com

mailto:support@nurve.net
http://www.xgamestation.com/
mailto:support@nurve.net
mailto:c3synapse@c3emulation.com

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 4

Manual Version 1.0
By Francesco de Simone

A. TABLES OF CONTENT

Index

B INTRODUCTION ... 7

C. CONTENT OF THE C3SYNAPSE KIT .. 8

Software CD with firmware, drivers and tools .. 8

The DVD-ROM contains everything you need to learn to use your brand new C3Synapse. ... 8

C3Synapse board ... 8

D. QUICK START GUIDE .. 9

D.1. Mounting the C3Synapse on the PropC3.. 11

D.2. The first test of the C3Synapse: setup phase ... 13

D.3. The first test of the C3Synapse: execution phase... 14

E. INSIDE THE C3SYNAPSE .. 21

E.1. The interface of the C3Synapse .. 21

E.2. The command decoder ... 22

E.3. The core of the C3Synapse: the 512Kbytes SRAM chip .. 25

E.4. The memory addressing system ... 26

E.4.1. The address low nibble latch .. 27

E.4.2. The low nibble clocking sequence .. 29

E.4.3. The middle and high nibble latch ... 31

E.4.4. The memory reading and writing procedure ... 33

F. PROGRAMMING THE C3SYNAPSE .. 36

F.1. Initializing the C3Synapse ... 36

F.2. The status LED routine .. 37

F.3. Set the memory address routine .. 38

F.4. Write byte routine .. 39

F.5. Read byte routine ... 40

F.6. Write block of bytes routine ... 41

F.7. Read block of bytes routine .. 42

F.8. C3Synapse advanced programming ... 43

F.9. C3Synapse and PropellerGCC ... 43

G. C3SYNAPSE DEMOS ... 44

G.1. VGM player demo ... 45

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 5

Manual Version 1.0
By Francesco de Simone

G.2. Photo frame demo ... 46

G.3. Font demo .. 48

G.4. TV driver demo ... 49

H. EXPANDING THE C3SYNAPSE ... 50

H.1. Expansion examples ... 51

H.2. C3Synapse and other microcontroller boards .. 52

I. C3SYNAPSE DRIVERS .. 53

J. APPENDICES AND BONUS MATERIAL ... 54

J.1. How to create the micro SD card for test and demos .. 54

J.1. Support stuff ... 55

J.2. C3Synapse TV driver color chart ... 56

J.1. Conversion table ... 57

J.1. Schematics .. 63

J.2. LED Tester ... 68

Table of figures

Figure 1: DVD-ROM. ... 8

Figure 2: C3Synapse Board. .. 8

Figure 3: The C3Synapse Board. ... 9

Figure 4: C3Synapse board. .. 10

Figure 5: Annotated PropC3. .. 11

Figure 6: Bottom side of C3Synapse. ... 12

Figure 7: Views of the C3Synapse stacked on top of the PropC3 . .. 12

Figure 8: Parallax Serial Terminal program. ... 14

Figure 9: Power LED when PropC3 powers up. .. 14

Figure 10: C3Synapse test program main menu. ... 15

Figure 11: Virtual keyboard function. .. 15

Figure 12: First memory write/read test. ... 16

Figure 13: Third Memory write/read test. ... 16

Figure 14: The system header of the C3Synapseboard. ... 17

Figure 15: The OUT lines test. .. 17

Figure 16: The Status LED on the C3Synapse board... 18

Figure 17: The Status LED test screen. ... 18

Figure 18: The test pattern picture showed on the screen. ... 19

Figure 19: Insert SD Card message. .. 19

Figure 20: The C3Synapse headers. ... 21

Figure 21: The C3Synapse/PropC3 header. .. 21

Figure 22: C3Synapse command decoder stage. ... 22

Figure 23: Decoder stage. .. 23

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 6

Manual Version 1.0
By Francesco de Simone

Figure 24: Status LED circuit. .. 24

Figure 25: SRAM IC. .. 25

Figure 26: “6T” SRAM Cell (6 Transistors). ... 25

Figure 27: IS61LV5128AL pins configuration. ... 26

Figure 28: Low nibble addressing circuit (latch)... 27

Figure 29: Low nibble addressing circuit. ... 28

Figure 30: Low nibble addressing circuit (sequential action). .. 30

Figure 31: Middle and high nibble addressing circuit (latch). .. 31

Figure 32: Middle and high nibble addressing circuit. ... 32

Figure 33: SRAM circuit. ... 34

Figure 35: VGM music player demo music loader. .. 45

Figure 36: VGM music player demo playing screen. .. 45

Figure 37: VGM music player demo start screen. .. 45

Figure 39: Photo frame demo, art picture. .. 46

Figure 40: Photo frame demo, Iron man 2 picture. ... 46

Figure 41: Photo frame demo, Transformers 2 picture. .. 46

Figure 42: Photo frame demo, Wolverine picture. .. 47

Figure 43: Photo frame demo, tropical picture.. 47

Figure 44: Photo frame demo, Airwolf picture. ... 47

Figure 45: Photo frame demo, Megan Fox picture. ... 47

Figure 47: Font demo, example. .. 48

Figure 50: Middle and high nibble addressing circuit (latch). .. 50

Figure 52: Arduino IDE with a blink program. .. 52

Figure 53: PropC3 Micro SD card slot. ... 54

Figure 54: 2GB Micro SD card (SanDisk, Kingston, etc. 1GB-2GB is fine). .. 54

Figure 55: C3Synapse TV driver color palette. ... 56

Figure 56: Power LED circuit. ... 63

Figure 57: C3Synapse headers circuits. .. 63

Figure 58: Command decoder IC1 SN74ACT138D circuit. .. 64

Figure 59: STATUS LED Circuit. ... 64

Figure 60: Low nibble address circuit. .. 65

Figure 61: Middle and high nibble latching system. .. 66

Figure 62: SRAM interface circuit. .. 66

Figure 63: LED tester on a little breadboard. ... 68

Figure 64: LED tester connected to the C3Synapse. .. 68

Figure 65: LED tester connected to the C3Synapse. .. 69

Figure 66: Custom LED Tester for the C3Synapse. ... 69

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 7

Manual Version 1.0
By Francesco de Simone

B. INTRODUCTION

Welcome to “C3Synapse Expansion Board”.

C3Synapse is an expansion board designed for PARALLAX PropC3 Unit. It adds extra 512Kb of fast static RAM to PropC3
and gives to PropC3 the control of 5 extra output lines.

This hands-on guide covers the design and hardware of the C3Synapse as well as demos and tutorials to get you going
fast. First and foremost the C3Synapse is an expansion board designed for PropC3 unit. PropC3 is a Propeller-based
product, so everything you know about the PropC3 and multicore Propeller microcontroller applies. If you’re a seasoned
expert then you might just want to skim this manual focusing on the schematic and the main routines to access the board
since that’s all you need to get started.

This manual does not teach you Spin, assembly language, graphics, or how to write drivers
for the Propeller chip. This manual only covers the C3Synapse hardware and software demos
that come with it. If there is particular material that is beyond the scope of this manual, I will
refer you to one of the books above in many cases. Of course, I hope you by default read the
Propeller Reference Manual itself!

Otherwise you should start here at the Parallax Propeller site to see what’s available online:
www.parallax.com/propeller

Specifically be sure to review these documents especially:

 Propeller Manual (from the Propeller Downloads link).
 Propeller Datasheet (from the Propeller Downloads link).
 Propeller Questions & Answers system (from the Propeller Q&A link).

Also, there are a number of printed books about the Propeller you might want to pick up and read:

 Programming and Customizing the Multicore Propeller Microcontroller, Parallax.
 Game Programming for the Propeller Powered HYDRA, André LaMothe.
 Programming the Propeller with Spin, A Beginners Guide to Parallel Processing, Harprit Sandhu.

When you have familiarized with the Propeller microcontroller, you should read carefully the manual “Unleashing the
Propeller

TM
C3” by André LaMothe:

http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/UnleashingPropellerC3v1.0.pdf

Which will guide you in mastering PropC3, and then you will want to read this manual carefully.

Now you are ready to see what’s included in the kit!

http://www.parallax.com/propeller
http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/UnleashingPropellerC3v1.0.pdf

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 8

Manual Version 1.0
By Francesco de Simone

C. CONTENT OF THE C3SYNAPSE KIT

Software CD with firmware, drivers and tools
The DVD-ROM contains everything you need to learn to use your brand new C3Synapse.

Figure 1: DVD-ROM.

DVD-ROM Contents:

 FTDI USB Windows drivers.
 PARALLAX Propeller IDE v1.3.
 Test Firmware for PropC3 unit.
 Files needed by the firmware during tests.
 SPIN/Assembly Drivers.
 Demos.
 Manuals.
 Schematics.
 Goodies.

C3Synapse board
This is the memory expansion board to be stacked on your PropC3, see the Figure 2 below.

Figure 2: C3Synapse Board.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 9

Manual Version 1.0
By Francesco de Simone

D. QUICK-START GUIDE

In this brief quick-start guide we are going to review the C3Synapse briefly, mount it on a PropC3, power it up,
and run the test demo. This will confirm everything is working properly as well as familiarize you with the
C3Synapse board itself.

First off, take a look at Figure 3 which is your C3Synapse board.

Figure 3: The C3Synapse Board.

Take a detailed look at the C3Synapse by looking at Figure 4, which is an annotated image of the board. Review all the
interfaces and location of various components. Later we will drill down closer and each of the I/O headers and chips used
by the C3Synapse will be illustrated, but for now, just get a birds-eye view of the board.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 10

Manual Version 1.0
By Francesco de Simone

Figure 4: C3Synapse board.

(1) Power LED. It shows you when the board receives power from the PropC3.

(2) Status LED. It turns on when you activate its line. You can use it for debugging purposes.

(3) Expansion header. Here there are 5 out lines, 3 system lines (Read, Write and Clock) and power lines (3.3v, 5v and
GND) that you can use to expand your C3Synapse.

(4) Interface header. Here all the PropC3 bus lines are available for future use. Refer to PropC3 docs.

(5) Analogue header. C3Synapse doesn’t use these lines. They are only carried on top of the C3Synapse for an easy use.

(6) Tri-Ports header. C3Synapse doesn’t use these lines. They are only carried on top of the C3Synapse for an easy use.

C3Synapse has been designed with stackable pass-through headers to let you take
advantage of the other resources of the PropC3. As you will learn later in this manual, you
will be able to take the best from both boards for other projects.

Now, take a look at Figure 5 below, which is an annotated image of the PropC3 board. Take a moment to review all the
interfaces and connectors. You probably already know the PropC3, but you should notice that the C3Synapse board has
the same form factor and position of headers of the PropC3 and can be stacked perfectly on top.

 (3) Expansion header .

 (4) Interface header .

 (6) Tri-Ports headers .

 (5) Analogue header .

 (2) Status LED .

 (1) Power LED .

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 11

Manual Version 1.0
By Francesco de Simone

Figure 5: Annotated PropC3.

Now that you have an idea of what goes where, let’s move on and follow the next section to setup the C3Synapse and the
PropC3 for the first time.

D.1. Mounting the C3Synapse on the PropC3

The following steps will guide you in mounting the C3Synapse on top of the PropC3 in order to work with it. Follow
them carefully.

STEP 1: Make sure you follow these simple anti-static precautions before handling the C3Synapse board:

 Touch a metal window-frame or similar with your finger before handling the PCB.
 Only handle the edges of the PCB and avoid touching microchips with your fingers.

STEP 2: Prepare your PropC3 on the table and take your C3Synapse out from the plastic anti-static envelope. You should

see the interface pins on the bottom side of the board. These pins have their corresponding headers on the
PropC3 (Figure 6).

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 12

Manual Version 1.0
By Francesco de Simone

Figure 6: Bottom side of C3Synapse.

STEP 3: Once you have understood the correct orientation, carefully position the C3Synapse on top of the PropC3. As you
perform this operation be sure that all corresponding headers and pins are aligned, then gently insert the board
until the pins are all seated, if the pins don’t insert easily try “rocking” the board a little to get the pins to slide in.
Take a moment to inspect all sides of the board to assure that all pins are perfectly inserted on their header. See
Figure 7 below.

Figure 7: Views of the C3Synapse stacked on top of the PropC3.

There you go! Nothing difficult really, but every time you mount/unmount the C3Synapse on/from the PropC3 you should
take care, so that you won’t damage pins or the boards.

The C3Synpase board mounts on top of the PropC3, however, due to the tight clearance, make sure to inspect the area
above the PS/2 connector. Its metal housing may come in contact with the underside of the C3Synapse PCB. A simple
safeguard it to place a piece of electrical tape under the C3Synpase or on top of the PS/2's metal connector, as show in
Figure 7(a-c).

Figure 7(a-c): Details of the PS2 connector and the piece of electric tape.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 13

Manual Version 1.0
By Francesco de Simone

D.2. The first test of the C3Synapse: setup phase

You are going to have your first test with the C3Synapse. To accomplish this task you need a TV video monitor
that can catch the NTSC signal and of course the PC you use to program the PropC3. Let’s see how to do it quickly.

Plug the video composite cable to “Video out” port of PropC3 to your NTSC monitor/TV “Video in” port. Confirm that the
power switch of the PropC3 is in the OFF position (to the right). Now you can plug the USB mini cable to PropC3 USB port
and to a free PC USB port.

I assume that if you have a PropC3 you should have already used the Propeller Tool also.
Otherwise, take some time to get familiar with it by reading some books/docs on Propeller.
When you are familiar with uploading a binary file or a SPIN program on PropC3, you can
move on.

It’s time now to burn the test firmware on PropC3 unit. Open the Propeller Tool and navigate to the main menu [“File”]
[Open...]. Or simply press [CTRL+O] keys. Next, locate the firmware file on DVD-ROM.

 C3Synapse Test Suite Firmware
 [C3SYNAPSE DVD-ROM Root]

C3Synapse/Tools/PropC3 _Firmware.eeprom

After the load option is confirmed, the “Object Info” window appears. You can ignore all technical information about this
file and simply click on the [load EEPROM] button. The firmware will start burning into the PropC3 unit - easy!

Before starting the full test session, you need to activate the Serial Terminal program from the Propeller Tool. It allows
you to control the PropC3 via the PC keyboard over the USB serial connection. In this way you won’t need an extra PS2
keyboard connected to the PropC3!

To open the Serial Terminal program select the menu [“Run”] [Parallax Serial Terminal...]
from Propeller Tool, or simply press [F12] key on the PC keyboard.

This opens the PARALLAX “Serial Terminal program” window. The PropC3 firmware handles serial communications at
115,200 Baud, so verify this value is set correctly, and otherwise change it.

Also verify that the COM port number is the same you are using to program your PropC3.

Basically the Parallax Serial Terminal window should look similar to Figure 8 shown below. Verify that you have the same
settings you see here for Baud Rate, check boxes, and echo on (your COM port will be different of course).

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 14

Manual Version 1.0
By Francesco de Simone

Figure 8: Parallax Serial Terminal program.

If you focus on another window, or switch to another application running on Windows, the
terminal will be “disabled” and put in stand-by mode. To re-enable it, just go back to the
terminal application (usually ALT+TAB keys) and click on [Enable] button.

Now you can click inside the “yellow” input area on top of the window to enable keyboard input. Perfect, you are ready!

D.3. The first test of the C3Synapse: execution phase

In this section you will perform the Full Test to check if C3Synapse is working properly. This will give you a first
overview of the features of C3Synapse.

Turn on your TV monitor and select the correct video source that came from the PropC3. Turn on the unit also and you
will see the power green LED of the C3Synapse board turning on. See Figure 9 below.

Figure 9: Power LED when PropC3 powers up.

As soon as the program on the PropC3 starts, the main menu should appear on your TV monitor screen (Figure 10):

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 15

Manual Version 1.0
By Francesco de Simone

Figure 10: C3Synapse test program main menu.

Option [1] performs a full test, while options from [2] to [10] perform single tests and should be used when you want to
test each single feature.

To start the full test you need to activate the Serial Terminal program and type “1” in the yellow input area and “a-ha”,
on the TV monitor you should see “1” near the text “Selection >” (Figure 11)!

Figure 11: Virtual keyboard function.

Now press the “ENTER” key on terminal to confirm the option, exactly as if you had a keyboard plugged to the PropC3
unit. The full test starts and automatically performs all checks to verify that the C3Synapse board works properly. It starts
with three memory writing/reading cycles.

The first cycle writes the byte “0x00” along the entire memory space. For each write, it reads the byte back to check if the
written value is the same (Figure 12).

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 16

Manual Version 1.0
By Francesco de Simone

Figure 12: First memory write/read test.

The second cycle tries to write a byte “0xAA” along the entire memory space while the third one tries to write the byte
“0xFF”. If something goes wrong in any of these tests, you will see an error message that tells you the read byte is not the
byte just written. Figure 13 illustrates an example of a possible error.

Figure 13: Third Memory write/read test.

If something doesn’t work correctly inside the C3Synapse’s memory access test it means that
the byte read doesn’t correspond to the byte written, so press “ESC” key and repeat the test.
If you see the error message again, then turn off the PropC3 and inspect the assembly to see
if every pin is inserted in its header hole properly. If everything is ok, then maybe the board may be
damaged in some way. Follow the warranty section for any problems.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 17

Manual Version 1.0
By Francesco de Simone

The full test program now continues by testing the output lines, which are located on the system header of the C3Synapse
board (Figure 14).

Figure 14: The system header of the C3Synapseboard.

There’s no way for the software to get any feedback if these lines work properly (Figure 15). Actually, they have been
already tested during manufacturing process, so if you want to visually verify them, you can plug some LEDs or use a
special LED tester (shown in section J.2 LED tester).

If you are going to develop software that uses the C3Synapse you might want to have a visual feedback of what you are
doing.

Figure 15: The OUT lines test.

There are 5 OUT lines that are checked following a binary counter-up sequence. If you had LEDs connected to these lines,
you would see this sequence:

00000  00001  00010  00011  00100  00101  00110  00111  …  11111

After this test, the program will drive the system lines following this sequence: Write  Read  Clock.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 18

Manual Version 1.0
By Francesco de Simone

The last test is the Status LED test. This LED is located on the right side of the C3Synapse near the middle of the
board/right header. Figure 16 shows where this LED is.

Figure 16: The Status LED on the C3Synapse board.

In this test this LED will rapidly blink 10 times. The screen will show you only that the test is performed (Figure 17). You
must check if the LED lights up. No problem if you can’t count how many times it lights up, the important is that it does!

Figure 17: The Status LED test screen.

At the end of the initial memory tests, an image from the SD card is loaded into the C3Synapse memory and displayed on
the NTSC monitor; this will give you a “visual” test to verify if the memory is working properly. If the memory isn’t
working, you will “see” problems visually very quickly.

Make sure you have a test SD card inserted into the SD card slot of the PropC3. You should see the “Test” image on TV
monitor as shown below (Figure 18).

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 19

Manual Version 1.0
By Francesco de Simone

Figure 18: The test pattern picture showed on the screen.

Note: if you haven’t inserted a SD card in the PropC3 SD card slot, the program will prompt you to insert one to continue
with the test (Figure 19).

Figure 19: Insert SD Card message.

This phase of the test is important as well as the previous tests. If the program can’t find a test SD card in the slot, it will
retry to read the slot until you insert an SD card.

Additionally, try ejecting and reinserting the SD card if there are read problems.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 20

Manual Version 1.0
By Francesco de Simone

To build the test SD card, refer to “Section J.1 How to create the micro SD card for test and
demos”.

The bitmap image showed on the screen is useful to quickly check if the overall function of the C3Synapse is correct. In
fact, pixel data are stored in the C3Synapse’s SRAM frame buffer and then read in real time and sent to the TV monitor.

This final test uses all features of the C3Synapse as fast as possible to really test it and make sure its 100%!

While the C3Synapse shows the image on the screen, the system control lines (Write, Read and Clock) are continuously
accessed, so if you had some LEDs connected to these lines you should see them still.

The test is now complete and we can go deeper in C3Synapse functions. In the next section you will learn how it works.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 21

Manual Version 1.0
By Francesco de Simone

E. INSIDE THE C3SYNAPSE

This section shows you how actually the C3Synapse works. You will learn the functions of each IC and how it
interfaces to the PropC3. At the end you will be ready to develop some programs that use your C3Synapse!

E.1. The interface of the C3Synapse

The C3Synapse board interfaces to the PropC3 with some lines of the bus. Have a look at Figure 20.

Figure 20: The C3Synapse headers.

Headers (2) and (3) are not used by the C3Synapse. They are only carried on top for an easy use of them.

C3Synapse shares the same signals of the PropC3 Bus through Header (1) instead. In particular it uses lines from [P7:P0]
as an 8-bit data bus, while lines from [P18:P16] are used to select all functions of the C3Synapse. Figure 21 highlights
these shared lines.

Figure 21: The C3Synapse/PropC3 header.

If you are familiar with SPIN the following code can be used to access to the data lines, and keep in mind that data bus is
bi-directional.

(1)

(2) (3)

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 22

Manual Version 1.0
By Francesco de Simone

DIRA [7..0] := %11111111
OUTA [7..0] := Byte to send

DIRA [7..0] := %00000000
Byte to read := INA [7..0]

You should do in the same way for control lines also, but only in output direction.

DIRA [18..16] := %111
OUTA [18..16] := bits to send

In this case you will have 3 bits only for the range of values between 0 and 7. Thus you will have 8 commands that can be
sent to the C3Synapse, cool! We will come back to this later on in the manual, in the programming section.

E.2. The command decoder

In order to control all functions of the C3Synapse you have to access to the command decoder with control lines
associated to the pins [P18:P16]. Look at the schematic in Figure 22, the circuit is very simple.

Figure 22: C3Synapse command decoder stage.

Decoding the 3 address lines is accomplished by the 3 8 bit decoder (IC1 – 74*138 family chips). According to the binary
value read on “CTRL_#” lines, IC1 will enable one of the n outputs (active LOW). These outputs are directly connected to
the active LOW chip select line of each IC that drives the Static RAM IC.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 23

Manual Version 1.0
By Francesco de Simone

74 * 138 family datasheet

 [C3SYNAPSE DVD-ROM Root]
C3Synapse\Hardware\Components_Datasheets\Integrated_Circuits\74LV138.pdf

As you can see from the picture below (Figure 23), you can find the IC1 on PCB near the bus.

Figure 23: Decoder stage.

The Propeller feeds the 3 bits labeled [CTRL_2:CTRL_0] into the decoder IC1 at inputs A, B, C on pins 1, 2, 3 respectively.
Thus, the binary value sent selects lines [Y7:Y0] to assert (active LOW) on the decoder. These signals are referred in the
schematic with the name of their function discussed later on in this manual.

Therefore, to select any of these lines the SPIN algorithm is very simple, you need to send the command using the value
of Yn, and then 0 (which corresponds to Y0 non connected) to reset the decoder.

{ Let's say we want to enable the CMD_WR to send a Byte, we need to activate the
line Y1. Thus we need to send value "1" }

OUTA [18..16] := %001

{ It's a good habit to reset the decoder after any command has been sent. If you
send the value "0" the line Y0 will be selected, but since it's not connected to
anything every other lines Y will be reset. }

OUTA [18..16] := %000

As you should have noticed, the line Y7 of the decoder is connected to the Status LED circuit (Figure 24). When the line is
asserted (active LOW) it makes the LED turn on.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 24

Manual Version 1.0
By Francesco de Simone

Figure 24: Status LED circuit.

You already saw this LED at work during the full test, now you know how to drive it, and use it as a debug tool. Let’s see
how:

DIRA [18..16] := %111

repeat 10
 { We will active the line Y7 by sending the value "7" to the decoder,
then we will wait for a second (assuming the main clock is set to 80Mhz) }

 OUTA [18..16] := %111
 waitcnt(cnt + 80_000_000)

 { Then we will active the line Y0 by sending the value "0" to the
decoder, this will turn off the LED. Then we will wait for another second }

 OUTA [18..16] := %000
 waitcnt(cnt + 80_000_000)

 { If you send this in a loop you will see Status LED blinking with a
pause of 1 second each. }

Now if you put this example in a SPIN template you should have a program like the following one:

CON
 _CLKmode = xtal1 + pll16x
 _xinfreq = 5_000_000

PUB main

DIRA [18..16] := %111

repeat 10
 { We will active the line Y7 by sending the value "7" to the decoder,
then we will wait for a second (assuming the main clock is set to 80Mhz) }

 OUTA [18..16] := %111
 waitcnt(cnt + 80_000_000)

 { Then we will active the line Y0 by sending the value "0" to the
decoder, this will turn off the LED. Then we will wait for another second }

 OUTA [18..16] := %000
 waitcnt(cnt + 80_000_000)

 { If you send this in a loop you will see Status LED blinking with a
pause of 1 second each. }

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 25

Manual Version 1.0
By Francesco de Simone

This is pretty cool, right? At this point you know how to send a command to the C3Synapse. Now you can try making
changes to this program to see how fast the LED can blink, or try setting different delay values for “OFF” and “ON” status
of the LED.

E.3. The core of the C3Synapse: the 512Kbytes SRAM chip

The core of this board is a parallel Static RAM chip that can store up to 512Kbytes of data. You can see it in Figure 25.

Figure 25: SRAM IC.

Since the C3Synapse is designed around this IC, it’s important that we really understand how it works at a high level as
well as a low level, so let's take a look at a single SRAM memory cell.

Static Random Access Memory (SRAM) is a type of semiconductor memory that uses bistable latching circuitry to store
each bit. The Figure 26 below shows a typical static cell circuit that stores one bit.

Figure 26: “6T” SRAM Cell (6 Transistors).

Each bit in an SRAM cell is stored using four transistors (M1, M2, M3 and M4) that form two cross-coupled inverters.

This storage cell has two stable states which are used to denote “0” and “1”. Two additional access transistors serve to
control the access to a storage cell during read and write operations. A typical SRAM uses six MOSFETs (Metal Oxide
Semiconductor Field Effect Transistor) to store each memory bit. The C3Synapse uses 10 Transistors cells technology
(10T) instead.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 26

Manual Version 1.0
By Francesco de Simone

Semiconductor theory is quite complex! There are numerous types of “transistors”, but they
fall into two major categories: Junction transistors and field effect transistors. Junction
transistors are constructed by creating N and P type materials and then literally placing them
in contact with each other to create the transistor action. Field effect transistors operate on a different
premise where an electric field causes a “channel” of positive or negative charge to accumulate which is
then used as the transistor action. Most modern chips use the later type of transistor due to its lower
power and cost.

The term static differentiates it from Dynamic RAM (DRAM) which must be periodically refreshed. This makes them faster
and lets them reach higher speed.

C3Synapse mounts an IS61LV5128AL-10TLI (IC7). This IC has 512 K * 8 memory cells (512 Kb) and has an access time of
10ns, which lets you reach the maximum speed of 100Mhz. More than enough required for a Propeller based system.

 IS61LV5128AL-10TLI Datasheet
 [C3SYNAPSE DVD-ROM Root]
C3Synapse\Hardware\Components_Datasheets\Integrated_Circuits\IS61LV5128AL-10TLI.pdf

As all SRAMs do, also this chip exhibits data permanence, but it is still volatile in the conventional sense that data is
eventually lost when the memory is not powered.

If you store data, it will still remain unless you disconnect the USB cable from the PropC3. Data still remain there even if
you turn off power switch on the PropC3.

This is useful for debugging purposes, because when you store data with one SPIN program, then you can upload another
program that let you check memory locations and see if values were correctly stored. Not bad!

E.4. The memory addressing system

At this point, we can see how this memory works inside the C3Synapse. First of all have a look at the pin configuration of
IS61LV5128AL-10TLI in Figure 27. Pins [A7:A0] are active high address lines, pins from [I/O7:I/O0] are active high data
lines while the chip control lines are CE, OE and WE active low. It’s very simple to use this memory!

Figure 27: IS61LV5128AL pins configuration.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 27

Manual Version 1.0
By Francesco de Simone

Address lines have been divided in 3 groups so that it is possible to control them with only 8 lines (3 * 8 = 24). Thus we
have 3 nibbles to set for a complete address setup procedure.

 LOW Nibble: [A7:A0] (8-bits)
 MIDDLE Nibble: [A15:A8] (8-bits)
 HIGH Nibble: [A18:A16] (3-bits)

We can setup the address in three times by sending 3 values to the C3Synapse through the data bus. To build the whole
address there is a different latch system for each nibble, which must be activated to store each value. The algorithm to
setup the memory address is:

Step 1, Send low nibble value, latch low nibble

Step 2, Send middle nibble value, latch middle nibble
Step 3, Send high nibble value, latch high nibble

After this procedure the whole address is setup and a memory location can be accessed for reading or writing. That said,
let’s see how each latch system works.

E.4.1. The address low nibble latch

Low nibble [A7:A0] is handled by two 4-bits latch/counters (IC2, IC3) that not only store a value, but even has an internal
counter. This lets you setup the value and then you simply have to feed the counter with a clock pulse to advance in the
address space. Let’s have a look at the schematic in the Figure 28 below.

Figure 28: Low nibble addressing circuit (latch).

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 28

Manual Version 1.0
By Francesco de Simone

The 74HC161D is a latch/counter IC that can store a 4-bit value in parallel using the Latch signal, and then count
sequentially using the Count signal.

74HC161D Datasheet
[C3SYNAPSE DVD-ROM Root]

C3Synapse\Hardware\Components_Datasheets\Integrated_Circuits\74HC161D.pdf

These two ICs are located on the left of the SRAM IC, see Figure 29 below.

Figure 29: Low nibble addressing circuit.

It’s time now to see how this stage works.

To latch a value into the counter we first need to provide a 4-bit value on the data lines A, B, C, and D. When these signals
"settle" the signal LD (LOAD, active LOW) must be asserted to store the value in the internal buffer of the counter IC.

When dealing with integrated circuits, they operate very fast, but not infnitely fast, thus it
takes a finite amount of time, usually measure in nanoseconds before signals stablize and or
propagate in the chip. These values are listed in the chip's data sheet, under names such as
"holding time" or "settling time".

In this case the two ICs share the same LD line, in this way the value in data lines is stored in two halves at the same time.
This signal is labeled SRAM_A0-7_CS and connects both LD signals of IC2 and IC3 to the command decoder IC1 port Y6.

These ICs need also to be clocked once to buffer the value, that’s why the LD signal goes through some NAND gates that
delay it, and then it arrives to the NAND gate connected to the CLK signal (which is always HIGH in this kind of access) and

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 29

Manual Version 1.0
By Francesco de Simone

produces a clock pulse on CLK signal of IC2 and IC3. You don’t have to worry about generating this pulse because it’s
completely automatic.

Let’s see now, how to do it in SPIN.

CON
 _CLKmode = xtal1 + pll16x
 _xinfreq = 5_000_000

PUB main | Address

Address := $12ACF ' An arbitrary value within the memory address space
 ' $00000 .. $7FFFF

' Setup direction of lines
DIRA [18..16] := %111
DIRA [7..0] := %11111111

OUTA [7..0] := %00000000 ' Resets lines to prevent any accidental value
OUTA [18..16] := %000 ' Resets lines to prevent any accidental value

OUTA [7..0] := Address & $FF ' Sends the low nibble of the address
OUTA [18..16] := %110 ' Sends the value "6",Y6 of command decoder

OUTA [18..16] := %000 ' Resets and finalizes the command on latch

Signal SRAM_A0-7_CS needs to be asserted then de-asserted to make IC1 and IC2 latch the value in input lines A, B, C and
D like a pulse. As said before this is the way to set a value for the first nibble of the address.

This step may be used for a random access to the memory or as a starting location for reading/writing a memory block.
Now you will see how perform a clocked auto-increment on low nibble.

E.4.2. The low nibble clocking sequence

IC2 and IC3 can be clocked by trigging the clock signal to increment by 1 the value stored in their buffer. Let’s have a look
at the schematic in the Figure 30.

When you pulse the signal Y3 of the command decoder, the signal SRAM_A0-7_CNT will go through a NAND gate of IC4,
which returns an HIGH signal and drives the CLK signal of IC2 and IC3. The value in buffer will be incremented by 1.

Once this value reaches 15, on the next increment it overflows and a carry signal is triggered on pin 15. This RCO signal
connected to ENT signal can be used to activate another 74HC161 in cascade.

IC2 and IC3 are used to buffer a value ranging from 0 to 255 and to count from n0 to n1 within the range between 0 and
255.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 30

Manual Version 1.0
By Francesco de Simone

Figure 30: Low nibble addressing circuit (sequential action).

Let’s see how to do this in SPIN:

CON
 _CLKmode = xtal1 + pll16x
 _xinfreq = 5_000_000

PUB main | Address

Address := $12ACF ' An arbitrary value within the memory address space
 ' $00000 .. $7FFFF

' Setup direction of lines
DIRA [18..16] := %111
DIRA [7..0] := %11111111

OUTA [7..0] := %00000000 ' Resets lines to prevent any accidental value
OUTA [18..16] := %000 ' Resets lines to prevent any accidental value

OUTA [7..0] := Address & $FF ' Sends the low nibble of the address
OUTA [18..16] := %110 ' Sends the value "6",Y6 of command decoder

OUTA [18..16] := %000 ' Resets and finalizes the command on latch

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 31

Manual Version 1.0
By Francesco de Simone

' This first step has setup the Low nibble to $CF, now we can start from this
value to increment the location of memory.

repeat 16
 OUTA [18..16] := %011 ' Sends the value "6",Y6 of command decoder
 OUTA [18..16] := %000 ' Resets and finalizes the command on latch

Very Simple! Later on in the manual you will learn how to write/read a value on SRAM.

E.4.3. The middle and high nibble latch

Middle and High nibbles are handled by two 8-bits that store a value by asserting the CLK signal of the chip. Let’s have a
look at the schematic in the Figure 31 shown below.

Figure 31: Middle and high nibble addressing circuit (latch).

As you can see from the schematic above, there are two buffers 74HC374 (IC5, IC6) used to handle the two nibbles of the
memory address.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 32

Manual Version 1.0
By Francesco de Simone

 74HC374 Datasheet
 [C3SYNAPSE DVD-ROM Root]
C3Synapse\Hardware\Components_Datasheets\Integrated_Circuits\74HC374.pdf

These two chips are located below the expansion header, see Figure 32 below.

Figure 32: Middle and high nibble addressing circuit.

The first (IC6) handles the middle nibble [A15:A8], while the second (IC5) handles the three bits of the High nibble.

To latch a value on these chips is really simple; you need only to send a value to the C3Synapse and pulse the SRAM_A8-
15_CS and SRAM_A16-18_CS signal.

These signals are driven by Y4 and Y5 of the command decoder. Easy!

Let’s see how to this in SPIN.

CON
 _CLKmode = xtal1 + pll16x
 _xinfreq = 5_000_000

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 33

Manual Version 1.0
By Francesco de Simone

PUB main | Address

Address := $12ACF ' An arbitrary value within the memory address space
 ' $00000 .. $7FFFF

' Setup direction of lines
DIRA [18..16] := %111
DIRA [7..0] := %11111111

OUTA [7..0] := %00000000 ' Resets lines to prevent any accidental value
OUTA [18..16] := %000 ' Resets lines to prevent any accidental value

 ' Sends value $2A to C3Synapse and pulse the control signal
OUTA [7..0] := (Address>>8)&$FF 'Sends the middle nibble of the address
OUTA [18..16] := %100 ' Sends the value "4",Y4 of command decoder
OUTA [18..16] := %000 ' Resets and finalizes the command on latch

 ' Sends value $1 to C3Synapse and pulse the control signal
OUTA [7..0] := (Address>>16)&$7 ' Sends the high nibble of the address
OUTA [18..16] := %101 ' Sends the value "5",Y5 of command decoder
OUTA [18..16] := %000 ' Resets and finalizes the command on latch

Very Simple!

E.4.4. The memory reading and writing procedure

I have already introduced the Static RAM IC used by the C3Synapse. It’s necessary to understand how to setup the
address before reading and writing a value from/into memory, so if something is not clear go back in this section and read
it again.

Now that you know how to setup an address in memory it’s time now to learn how to actually access to memory for
reading or writing.

IC7 has only 2 functions that can be controlled: Write and Read. As you can see from the schematic in Figure 33 below,
this chip is always enabled (CE signal is active LOW), so its use is extremely easy.

If you want to perform a write or a read action, you simply have to pulse the corresponding signal. Read and write lines
are driven by signal Y1 and Y2 of the command decoder.

As well as you do with other signals driven by IC1, you need to send the correct value to it, and then reset it to finalize the
command.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 34

Manual Version 1.0
By Francesco de Simone

Figure 33: SRAM circuit.

Now I will show you how to perform the access to the C3Synapse for writing or reading

1) Write a byte to the C3Synapse:

CON
 _CLKmode = xtal1 + pll16x
 _xinfreq = 5_000_000

PUB main | Byte_value

Byte_value := $08

' Setup direction of control lines
DIRA [18..16] := %111

' Write a byte
DIRA [7..0] := %11111111 ' Output direction for the data bus (OUTPUT)
OUTA [7..0] := %00000000 ' Resets lines to prevent any accidental value
OUTA [18..16] := %000 ' Resets lines to prevent any accidental value

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 35

Manual Version 1.0
By Francesco de Simone

OUTA [7..0] := Byte_value ' Prepare the byte value on the BUS
OUTA [18..16] := %001 ' Sends the value "1",Y1 of command decoder
OUTA [18..16] := %000 ' Resets and finalizes the command on latch

2) Read a byte from the C3Synapse :

CON
 _CLKmode = xtal1 + pll16x
 _xinfreq = 5_000_000

PUB main | Byte_value

Byte_value := $0

'Setup direction of control lines
DIRA [18..16] := %111

'Write a byte
DIRA [7..0] := %00000000 ' Output direction for the data bus (INPUT)
OUTA [18..16] := %000 ' Resets lines to prevent any accidental value

OUTA [18..16] := %010 ' Sends the value "2",Y2 of command decoder
OUTA [18..16] := %000 ' Resets and finalizes the command on latch
Byte_value := INA [7..0] ' Get the byte value from the BUS

The use of the C3Synapse is really easy.

As soon as you have mastered the access to the C3Synapse you can experiment
different techniques.

For example, if you want to read a byte you can even omit the reset of command
lines, because if you read the datasheet of the SRAM chip, you will learn that as soon as you
assert the OE line the resulting data from memory is already available on the data bus.

This chip also has a buffer on the data bus, that’s why if you de-assert OE, it’s still possible to get
data from the bus.

Even though, I have shown you some shortcuts, I suggest that initially when you are writing your
first C3Synapse programs that you follow all the steps even if they aren't required. Doing this,
makes cleaner code and less bugs. Then once you feel comfortable with the C3Synapse’s
operation, then you can start optimizing and using these tricks.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 36

Manual Version 1.0
By Francesco de Simone

F. PROGRAMMING THE C3SYNAPSE

This section will show you basic demos on how to use the C3Synapse! At the end you will be able to develop
your own driver for your applications.

Before starting our trip in programming the C3Synapse, I want you to have a look at some tutorials I’ve coded for you:

 C3Synapse Demos
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Software\Tutorials*.*

F.1. Initializing the C3Synapse

When you develop a driver that uses the C3Synapse it is a good idea to create constants that represent direction of pins
used by the C3Synapse. So you will define all possible commands for the command decoder, for data and command
direction, and other useful temporary variables.

CON
 ' Data pins (7..0) direction definitions
 DATA_DIR_OUT = %11111111 ' out direction for data bus
 DATA_DIR_IN = %00000000 ' in direction for data bus
 CMD_DIR = %111 ' out direction for sending commands to
 ' C3Synapse

 ' Commands pins (18..16) to drive 74HC138
 CMD_Null = %000 ' (Y0) null
 CMD_WE = %001 ' (Y1) write enable
 CMD_OE = %010 ' (Y2) output enable
 CMD_CNT = %011 ' (Y3) increment counter
 CMD_SetMd = %100 ' (Y4) set middle nibble of address
 CMD_SetHi = %101 ' (Y5) set high nibble of address
 CMD_SetLo = %110 ' (Y6) set low nibble of address
 CMD_Led = %111 ' (Y7) turn on status led

VAR
 long Addr
 byte LowByte, MidByte, HighByte
 byte MemBuffer[256]

PUB start

'Setup direction of control and data lines
DIRA [18..16] := CMD_DIR
DIRA [7..0] := DATA_DIR_OUT

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 37

Manual Version 1.0
By Francesco de Simone

The code is really easy to understand. The variable section sets some temporary variable to store values for address
nibble and a buffer. This is useful when we need to implement the write/read block routine. More on this later on.

F.2. The status LED routine

As discussed before, the Status LED was added to the C3Synapse for debugging purposes. You can blink on and off the
Status LED when you need a visual feed-back on what’s going on within the program.

PUB _StatusLED_On

OUTA [18..16] := CMD_Led 'This command will turn on the Status LED

This routine only turns on the Status LED. You can use this as is or within another routine that will blink the led a certain
number of times. If you need a routine to turn it off, the following one will be for you.
program.

PUB _Null

OUTA [18..16] := CMD_Null 'This command will turn off the Status LED

Another possible use of the Status LED as a debugging tool is that you can also blink it n times to represent a number
when needed. Of course, unless you are a cyborg, trying to count an LED blinking 100-200 times isn't going to be easy!

Otherwise, the blinking routine can be helpful to show a number by blinking the LED n times, for example if you need to
know the value of a byte.

PUB _StatusBlinks (times, pause, duration) | n

 repeat n from 0 to times - 1

 if duration > 0 ' turn on led only if the period is greater
 ' than 5 msec which seems to hang Propeller

 OUTA[18..16] := CMD_Led ' sends "7" to 74HC138 to activate line #7
 waitcnt(cnt+((clkfreq/1000)*duration)) ' waits for milliseconds

 OUTA[18..16] := CMD_Null 'sends "0" to 74HC138 to activate line #0 N.C.
 waitcnt(cnt+((clkfreq/1000)*pause)) ' waits for milliseconds

This routine blinks the Status LED n times where each blink has a delay of duration milliseconds and between blinks there
is a delay of pause milliseconds.

In this example, clkfreq is divided by 1000 to compute milliseconds, thus you can have any value for frequency.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 38

Manual Version 1.0
By Francesco de Simone

F.3. Set the memory address routine

A typical routine to setup a memory address sets each nibble of the address value, but this isn’t mandatory, it depends on
your application. Eventhough the code below illustrates how to set all the nibbles, and we have been doing this thru out
the manual, you are free to experiment and optimize to save space and speed up your code.

PUB _SetAddress (Address)

 Addr := Address
 LowByte := Address & $FF
 MidByte := (Address >> 8) & $FF
 HighByte := (Address >> 16) & $7

' Sends the low nibble of the address
OUTA [7..0] := LowByte
OUTA [18..16] := CMD_SetLo ' Sends the value "6",Y6 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

' Sends the middle nibble of the address
OUTA [7..0] := MidByte
OUTA [18..16] := CMD_SetMd ' Sends the value "4",Y4 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

' Sends the high nibble of the address
OUTA [7..0] := HighByte
OUTA [18..16] := CMD_SetHi ' Sends the value "5",Y5 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

This routine sets the hardware logic that drives the SRAM and stores each single value in separate variables for future use
within the driver.

In fact, you may see drivers that function in completely different ways; there are always different ways to do the same
thing.

You can also split this routine to three different modules giving you the control over each individual nibble.

PUB _SetLowAddress (LowByte)

' Sends the low nibble of the address
OUTA [7..0] := Address & $FF
OUTA [18..16] := CMD_SetLo ' Sends the value "6",Y6 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

For example, the routine above sets only the low nibble of the address.

It’s up to you! Cool!

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 39

Manual Version 1.0
By Francesco de Simone

F.4. Write byte routine

A byte can be written in two ways: random access and sequential access.

Method 1: Randomly writing a byte routine:

PUB _wrByteRnd (Address, data)

 _SetAddress (Address)

OUTA [7..0] := data ' Prepare the byte value on the BUS
OUTA [18..16] := CMD_WE ' Sends the value "1",Y1 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

This routine sets the address by calling a function previously defined. Of course this will waste some cog time, but if you
want to optimize performance you can embed the _SetAddress function.

Method 2: Sequentially writing byte routine:

PUB _wrByteSeq (data)

OUTA [7..0] := data ' Prepare the byte value on the BUS
OUTA [18..16] := CMD_WE ' Sends the value "1",Y1 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

Let's take a moment to clarify the code above. It writes data at the last location loaded into the address latch buffers, it
does nothing more. Therefore, you need to make sure that you have previously set them to the correct starting address
you want to write at. Furthermore, after you write the data, then typically you will want to update the address and
continue the sequential data access which is discussed below. If you need to increment the address, instead of
incrementing the internal variable linked to the address, you can feed a clock pulse to the command decoder IC1.

PUB _wrByte (Address, data)

OUTA [7..0] := data ' Prepare the byte value on the BUS
OUTA [18..16] := CMD_WE ' Sends the value "1",Y1 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

' Sends a clock pulse
OUTA [18..16] := CMD_CNT ' Sends the value "6",Y6 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

This approach is useful to handle blocks of memory. Very cool!

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 40

Manual Version 1.0
By Francesco de Simone

F.5. Read byte routine

A byte can be read in two ways: Random access and sequential access.

1) Randomly read byte SPIN routine:

PUB _rdByteRnd (Address) : data
_SetAddress (Address)
DIRA [7..0] := DATA_DIR_IN ' Sets BUS direction to input
OUTA [18..16] := CMD_OE ' Sends the value "1",Y1 of command decoder
data := INA [7..0]
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch
DIRA [7..0] := DATA_DIR_OUT ' Reset the direction to output
return data

This routine sets the address by calling a function previously defined. Of course this will waste some cog time, but if you
want to optimize performance you can embed the _SetAddress function.

2) Sequentially read byte SPIN routine:

PUB _rdByteSeq : data
DIRA [7..0] := DATA_DIR_IN ' Sets BUS direction to input
OUTA [18..16] := CMD_OE ' Sends the value "1",Y1 of command decoder
data := INA [7..0]
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch
DIRA [7..0] := DATA_DIR_OUT ' Reset the direction to output
return data

This routine only accesses to the memory for reading a byte.

If you need to increment the address, instead of incrementing the internal variable linked to the address, you can feed a
clock pulse to the command decoder IC1.

PUB _rdByte (Address) : data
DIRA [7..0] := DATA_DIR_IN ' Sets BUS direction to input
OUTA [18..16] := CMD_OE ' Sends the value "1",Y1 of command decoder
data := INA [7..0]
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch
DIRA [7..0] := DATA_DIR_OUT ' Reset the direction to output
' Sends a clock pulse
OUTA [18..16] := CMD_CNT ' Sends the value "6",Y6 of command decoder
OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch
return data

As well as the write procedures this approach is useful to handle blocks of memory.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 41

Manual Version 1.0
By Francesco de Simone

F.6. Write block of bytes routine

Let’s say you want to handle the memory in chunks of 256 bytes. You can implement a routine to read or write in
sequence 256 bytes using the sequential access.

The SRAM chip has 512Kb, so 2048 chunks of 256 bytes. You can use the number of the chunk multiplied by 256 as
address.

PUB _wrBlock256 (Chunk) | index

 index := 0

 _SetAddress (Chunk * 256)

repeat 256
 OUTA [7..0] := MemBuffer[index++] ' Prepare the byte value on BUS
 OUTA [18..16] := CMD_WE ' Sends the value "1",Y1 of command decoder
 '(*) OUTA [18..16] := CMD_Null this can be commented

 ' Sends a clock pulse
 OUTA [18..16] := CMD_CNT ' Sends the value "6",Y6 of command decoder
 '(*) OUTA [18..16] := CMD_Null this can be commented

In the code above, notice that I commented out some extra states that aren't needed. Referring to the lines with the (*),
these code fragments between each sub-state, put the decoder into "neutral" state where it’s selecting no devices.
However, since the decoder can only select one device at one time, and the outputs are mutually exclusive, we can skip
the Null state and transition from the Write command, immediately to the Count command without any problems or
glitches.

After the command Write Enable, you use the “Count” command which doesn’t drive directly the SRAM chip read/write
features. Thus, you automatically finalize the command on SRAM! This is really cool because we can save a lot of
processor cycles. The same thing happens when the repeat cycle continue to the next byte. Using this technique you
saved a lot of time! Now let's review the final optimized routine:

PUB _wrBlock256 (Chunk) | index

index := 0

_SetAddress (Chunk * 256)

repeat 256
 OUTA [7..0] := MemBuffer[index++] ' Prepare the byte value on BUS
 OUTA [18..16] := CMD_WE ' Sends the value "1",Y1 of command decoder
 OUTA [18..16] := CMD_CNT ' Sends the value "6",Y6 of command decoder

This is fast, but if you convert it to assembly language it will run about 50-100 times faster. However, we can still optimize
the algorithm itself by taking advantage of the Propeller's internal counters to do some of the work for us.

I leave it as an exercise for you advanced programmers to figure it out!

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 42

Manual Version 1.0
By Francesco de Simone

F.7. Read block of bytes routine

Keeping in mind the previous section you can code the same kind of routine for reading a chunk.

PUB _rdBlock256 (Chunk) | index

index := 0

_SetAddress (Chunk * 256)

DIRA [7..0] := DATA_DIR_IN ' Set direction of data BUS to input

repeat 256
 OUTA [18..16] := CMD_OE ' Sends the value "1",Y1 of command decoder
 MemBuffer[index++] := INA [7..0] ' Get the byte value from BUS
 '(*) OUTA [18..16] := CMD_Null this can be commented

 ' Sends a clock pulse

OUTA [18..16] := CMD_CNT ' Sends the value "6",Y6 of command decoder
'(*) OUTA [18..16] := CMD_Null this can be commented

DIRA [7..0] := DATA_DIR_OUT ' Reset the direction to output

As well as described in the previous sections lines marked with (*) can be commented. After the command Output
Enable, you use the “Count” command which doesn’t drive directly the SRAM chip read/write features. Thus, you
automatically finalize the command on SRAM after having stored the value from the bus!

Even the read block routine is really fast! The same happens when the repeat cycle will continue to the next byte. In this
way you have saved a lot of time! Let’s have a look at the “condensed” routine:

PUB _rdBlock256 (Chunk) | index

index := 0
_SetAddress (Chunk * 256)

DIRA [7..0] := DATA_DIR_IN ' Set direction of data BUS to input

repeat 256
 OUTA [18..16] := CMD_OE ' Sends the value "1",Y1 of command decoder
 MemBuffer[index++] := INA [7..0] ' Get the byte value from BUS
 OUTA [18..16] := CMD_CNT ' Sends the value "6",Y6 of command decoder

DIRA [7..0] := DATA_DIR_OUT ' Reset the direction to output

This routine is fast, but when you implement this algorithm in Propeller Assembly, you will have a SUPER FAST block
writing routine!

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 43

Manual Version 1.0
By Francesco de Simone

F.8. C3Synapse advanced programming

The control lines of the C3Synapse have been configured so that you can use them at full speed by using COG’s internal
counters to drive each signal. One example is used in the TV driver that uses 256x192 resolution. You can find it inside the
Driver folder of the DVD ROM.

Let’s see quickly how it can be done.

The most powerful feature of the C3Synapse is the sequential access for writing or reading bytes. You can speed up
drastically the access by driving the CNT and Read/Write lines with the full speed of a counter. Since you can associate a
pin to a counter you can trig one of the control signals with high frequencies. Now I will show you how to read bytes at
full speed from C3Synapse. Let’s look at control signals PINs:

Read: %010
Counter: %011

You will have certainly noticed that these two commands have both bit number 1set. So you can alternate bit 0 to trig
repeatedly the Read and the Counter command. That said you have to configure a counter to drive the bit 0, which is
associated to P16 of the Propeller, while you can keep the bit 1 (P17 of the Propeller) always set.

This is an advanced technique and you need to master Propeller Assembly language and the COG’s counters configuration
because the access to control lines must be synchronized with the INA operation, so you should calculate the amount
clock cycles used by the byte reading loop iteration and the period of the frequency set for the counter.

Basically the sequence in pasm code is the following one:

DAT

movi CTRB, #%00110_111 ' counter b set to duty cycle mode
movs CTRB, #16 ' on pin 16, connected to "Write" control line (%001)

 mov c, #256 ' setup the amount of iterations
 mov frqb, FreqSynapse ' starts the counter with the proper frequency
 mov phsb, #0 ' reset the phase to align the period to the loop

:read mov data, ina ' catch the ina value from C3Synapse
 wrbyte data, memPtr ' write the byte to the shared memory
 add memPtr, #1 ' advance the pointer in the shared memory
 djnz c, #:read ' decrement and jump back to loop

 mov frqb, #0 ' stops the counter

F.9. C3Synapse and PropellerGCC

The Propeller chip can be programmed also with C/C++ language thanks to the release of the PropGCC compiler.

In the actual date, June 2012, the beta version of the SimpleIDE application has been released, and it lets you to write
program for several propeller based boards, PropC3 and C3Synapse included. In the section “Tutorials” of the DVD ROM,
you will find all tutorials seen before in this manual, written in C++ code. You need only to download and install Propeller
GCC, /load project files and run each program by pressing “F8” key.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 44

Manual Version 1.0
By Francesco de Simone

G. C3SYNAPSE DEMOS

This section will show you how the expansion header works and some possible ideas to take advantage from it.

We have developed a number a demos to show off the C3Synapse and its capabilities, you can find them here:

 C3Synapse Demos

 [C3SYNAPSE DVD-ROM Root]
C3Synapse\Software\Demos*

Each demo is heavily commented and hopefully you won’t have any problems figuring out what is going on there.

Since this book focuses on the C3Synapse only, and programming, we haven't had time to discuss topics like graphics,
sounds, game development, etc. If you want to know more about these topics, read "Game Programming for the
Propeller Powered HYDRA" which can be downloaded for free from the link below:

http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/HydraGameDevManual-v1.0.1.pdf

That will guide you in mastering the Propeller. Then you should read the manual “Unleashing the Propeller
TM

C3” by
André LaMothe:

http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/UnleashingPropellerC3v1.0.pdf

That will help you in mastering the PropC3 and its devices. Let's take a quick look at each demo and how they all work.

http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/HydraGameDevManual-v1.0.1.pdf
http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/UnleashingPropellerC3v1.0.pdf

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 45

Manual Version 1.0
By Francesco de Simone

G.1. VGM player demo

 C3Synapse Demos
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Software\Demos\C3Synapse_VGM_Player*.*

This is a music player that plays SEGA MASTER SYSTEM VGM (Video Game Music) music files. This demo loads a list
of files from the root folder of the SD card. Then it plays all music files in sequence. By using a PS2 keyboard
connected to the PropC3 you can select previous and next track, pause/play the music and exit from application. In
this demo the C3Synapse is used to cache VGM music files and later read in real time during playback.

Figure 34: VGM music player demo start screen. Figure 35: VGM music player demo music loader.

Figure 36: VGM music player demo playing screen. Figure 37: VGM music player demo start screen.

You can find more information about VGM music in the support folder of this demo, and at this link:

http://www.smspower.org/Music/VGMs

http://www.smspower.org/Music/VGMs

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 46

Manual Version 1.0
By Francesco de Simone

G.2. Photo frame demo

 C3Synapse Demos
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Software\Demos\C3Synapse_Photoframe*.*

This is basically a slideshow. It loads bmp 8-bit indexed images from the SD card and show them on screen following a
random sequence or the order read from the directory. There are two transitions implemented: Wipe and Immediate.
The first reveals the next image over the previous one like a wipe. The second simply shows the next image all at once
over the previous one.

This demo uses the C3Synapse as a multiple page frame buffer, and just interleaves the access to SRAM chip between the
TV driver and the main application that loads images from SD card.

You can find some useful color palettes within the support folder. These color palettes are useful to convert images into
the correct optimized palette.

Figure 38: Photo frame demo, cover. Figure 39: Photo frame demo, art picture.

Figure 40: Photo frame demo, Iron man 2 picture. Figure 41: Photo frame demo, Transformers 2 picture.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 47

Manual Version 1.0
By Francesco de Simone

Figure 42: Photo frame demo, Wolverine picture. Figure 43: Photo frame demo, tropical picture.

Figure 44: Photo frame demo, Airwolf picture. Figure 45: Photo frame demo, Megan Fox picture.

The TV driver has a resolution of 180*224 pixels and it reads bytes from SRAM pages in real time. Colors correspond to
pixels at 1:1; this means that you can show all possible colors in the same line without color artifacts.

You can learn more on how the Propeller handles NTSC color in the section “J.1. C3Synapse TV driver color chart”

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 48

Manual Version 1.0
By Francesco de Simone

G.3. Font demo

This demo illustrates how to put tiles into the C3Synapseframe buffer. To help develop this demo, I implemented some
simple functions that let you load a font and use it, print a string or a character at x, y coordinates.

You must convert them into bmp 8-bit Propeller indexed format.

 C3Synapse Demos
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Software\Demos\C3Synapse_Font_demo*.*

When you decide to change the tile set or the font bitmap, the program simply loads it in and caches it in the Propeller’s
shared memory.

That tile set will be used until a new one is loaded.

Figure 46: Font demo, 1 font set each character. Figure 47: Font demo, example.

This demo only loads 95 tiles (characters from 32 to 127 inclusive) but you can easily modify the code to load more tiles
from a bitmap. In the “Goodies” directory on the DVD you will find a number of arcade bitmap font samples. To use them
you must convert them into bmp 8-bit Propeller indexed format.

 C3Synapse Bonus Material
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Bonus_Material\Arcade_bitmap_fonts*.*
C3fonts*.*

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 49

Manual Version 1.0
By Francesco de Simone

G.4. TV driver demo

This TV driver is a small NTSC video driver optimized for the C3Synapse. It can display video at a resolution of 180x224
with full color 8bpp, see Figure 48 below.

When drawing a scanline it simply reads the C3Synapse pages.

 C3Synapse Demos
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Software\Demos\C3Synapse_TV*.*

A page is 256x256 bytes, this let you treat the first byte of the address as x columns of pixels, and the second byte as y
rows of pixels. The third byte of the address can be used as an index for pages, for a page flipping method, which is used
also in Photo frame demo.

As soon as the driver has drawn the last line (in this case the 224th) it trigs an interrupt that is used to interleave
operation on the frame buffer. In this way you can access the frame buffer without interfering the TV screen active
period. The interleaved time left for the user will increase if you reduce the active area scanlines. For a typical resolution
of videogames you can set the height of the screen to 192 pixels. This will leave you more time for drawing on the frame
buffer. This driver source is heavily commented to help you in figuring out how it works.

Figure 48: The Test pattern picture showing on the screen.

You will find other TV drivers in the folder Drivers:

 C3Synapse Drivers
[C3SYNAPSE DVD-ROM Root]

 C3Synapse\Software\Drivers\C3Synapse_TVOUT*.*

These drivers will let you learn how to use different techniques to use C3Synapse for Video generation. They are enough
commented to let you figure out its use.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 50

Manual Version 1.0
By Francesco de Simone

H. EXPANDING THE C3SYNAPSE

This section will show you how the expansion header works and some possible ideas to take advantage from it.

Now It’s time to talk about the expansion header located on top of the C3Synapse board. On this header, you will find a
number of signals used by the C3Synpase and multiplexed out to the header. These signals can be used to facilitate
additional expansion of the Synpase board. (Figure 49).

Figure 49: Expansion header.

As you can see from the picture above, there are 3 groups of signals: System, Outputs and Power.

System lines are those lines that drive directly the SRAM chip: Write, Read and Clock. These lines are driven as you can
imagine by the command decoder, so are handled as you saw before in the manual.

 ' Commands pins (18..16) to drive 74HC138
 CMD_Null = %000 ' (Y0) null

 CMD_WE = %001 ' (Y1) write enable

 CMD_OE = %010 ' (Y2) output enable

 CMD_CNT = %011 ' (Y3) increment counter

Output lines are driven by IC5 (Figure 50), but this time you need to handle bits [7:3]. You will have a combination of 32
values you can send with these lines, so they are useful for activating some external device.

Figure 50: Middle and high nibble addressing circuit (latch).

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 51

Manual Version 1.0
By Francesco de Simone

In the following example you can send a value from 0 to 31 to the C3Synapse to activate one of the 5 OUT lines.

PUB _SetOutLines (Value)

OUTA [7..0] := (Value & $1F) << 3

OUTA [18..16] := CMD_SetHi ' Sends the value "5",Y5 of command decoder

OUTA [18..16] := CMD_Null ' Resets and finalizes the command on latch

It’s very simple!

Last but not least, there are extra power lines that can be use for your expansion: Gnd, +3.3v and +5v.

Be careful when using the extra power lines! In order to use them safely and not overload
the USB port make sure you have the PropC3 plugged to an external power supply or a
powered USB Hub. This ensures the PropC3 has enough power to supply the C3Synapse and
anything else you might connect to it.

Keep in mind that you still have all the PropC3 headers free so you can still use the data bus shared with the PropC3 and
the C3Synapse.

H.1. Expansion examples

We have Data bus to use, system lines to drive the SRAM and some OUT lines. Let’s imagine you would like to have a
second VGA port! You can use the data bus [P7:P0] to drive signals for your external DAC, then with system lines you can
drive a latch that as soon as a Clock or Read signals occur put in its buffer the byte. In this case you don’t have do
anything else than driving the C3Synapse counter to fetch bytes as if you were reading a frame buffer!

You will update then the frame buffer in some interleaving mode during blank time of the video frame.

How you can use the OUT lines? Hum you can multiply your VGA outs to 32! Do you like the idea to have 32 monitor
connected to your PropC3? Well not impossible since with OUT lines you can drive a buffer, to which is connected a
multiplexing system which selects each DAC buffer for each VGA monitor. Not bad, the only problem would be the speed
in handling 32 monitor! Of course, this is an absurd but a potential example on what you could do.

Maybe a more realistic example would be to drive dot matrix display circuitry that would access directly to SRAM and
would be driven with its own Cog.

You can do whatever you want with the C3Synapse!

So, have fun, release your imagination and ENJOY!

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 52

Manual Version 1.0
By Francesco de Simone

H.2. C3Synapse and other microcontroller boards

The C3Synapse has been designed on PropC3 format factor, but it’s not mandatory that you use it only with the PropC3.
Signals can be handled perfectly with other MCU such as Arduino, Basic STAMP, AVR etc. You can use it with CPLD and
FPGA too. If you want for example to use it on an Arduino board (Figure 51), you need some wires to connect the PropC3
data bus [P7:P0] to a port of Arduino, let’s say PORT D [0:7]. Then the three control lines to other three digital ports, i.e.
PORT B [10:8].

Figure 51: C3Synapse and Arduino Duemilanove board.

Lastly, you need to power up the C3Synapse with the three power lines: Gnd, 3.3v, 5v. Figure 52 illustrates a short
example that blink the Status LED of the C3Synapse using Arduino Duemilanove and Arduino IDE.

Figure 52: Arduino IDE with a blink program.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 53

Manual Version 1.0
By Francesco de Simone

I. C3SYNAPSE DRIVERS

This section will show you how the expansion header works and some possible ideas to take advantage from it.

You can find two drivers inside the DVD-ROM. One is written in SPIN Language, the other is in PASM language, and of
course is faster than the previous.

 C3Synapse Drivers
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Software\Drivers*

Both are heavily commented and I’m sure you won’t have problems in reading them. Here I include a summary of their
functions.

These are the functions for both drivers; you can see some “dummy” parameters for methods because both drivers are
the same for compatibility reason:

'Object "C3Synapse_SRAM_010" Interface:

PUB start : okay
PUB init
PUB SRAM_SetAddress (Address, dummy0, dummy1)
PUB SRAM_SetOUT (OutAddress, dummy0, dummy1)
PUB SRAM_SetLow (Nibble, dummy0, dummy1)
PUB SRAM_SetMid (Nibble, dummy0, dummy1)
PUB SRAM_SetHigh (Nibble, dummy0, dummy1)
PUB SRAM_FillByte (Address, data, length)
PUB SRAM_Write_Block (Address, length, memPtr)
PUB SRAM_Read_Block (Address, length, memPtr)
PUB SRAM_WrByte (Address, data, dummy0)
PUB SRAM_RdByte (Address, dummy0, dummy1)
PUB _StatusBlinks (num, duration, pause)
PUB _StatusLED (dummy0, dummy1, dummy2)
PUB _Null (dummy0, dummy1, dummy2)

The only difference between the SPIN code and the PASM one is that the second runs on a separate COG so that it can
take advantage of having full speed.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 54

Manual Version 1.0
By Francesco de Simone

J. APPENDICES AND GOODIES

This provides you some useful information for your work with the C3Synapse and the PropC3, charts, tables,
etc. Have fun!

J.1. How to create the micro SD card for test and demos

The automated “Full test” program reads some files from an SD card (Figure 54) which needs to be inserted in the PropC3

micro SD slot (Figure 53) during the test procedure.

Figure 53: PropC3 Micro SD card slot.

The test micro SD card must be less than or equal to 4GB. This version of the PropC3 firmware doesn’t support larger
cards (Figure 54).

Figure 54: 2GB Micro SD card (SanDisk, Kingston, etc. 1GB-2GB is fine).

Inside the DVD you can find the files needed by the test program and demos. You can locate them inside each program
folder under:

 SD Card files for each demo
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Software\Drivers\ * \SD_CARD_CONTENT

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 55

Manual Version 1.0
By Francesco de Simone

J.1. Support stuff

Each demo has its support stuff. That will let you better understand what is the demo about and eventually how to use
that demo as a starting point for some other applications.

 Demos support stuff
 [C3SYNAPSE DVD-ROM Root]

C3Synapse\Software\Drivers\ * \Support

So you can find some music files, players, some useful support files to use with Photoshop etc. but you should focus on
the use of the C3Synapse for each demo.

This manual does not teach you how to make graphics or how to create music for these
demos. This manual only covers the C3Synapse hardware and software demos that come
with it. You will find some link where to start from.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 56

Manual Version 1.0
By Francesco de Simone

J.2. C3Synapse TV driver color chart

The C3Synapse TV driver was coded to use a color burst control signal $02_8A. This will give you the following color
palette made by 96 colors plus 6 shades (Figure 55):

Figure 55: C3Synapse TV driver color palette.

These colors are for demonstration purposes only since every TV monitor have its color settings. However if you want to
have a reference for sending color bytes to my C3Synapse TV driver you should use this chart.

As you probably know, the Propeller generates color by adding luma to chroma information. Luma varies from $2 to $7
and chroma varies from $0 to $F.

You need to build a color byte in this way:
$ (Chroma << 4) + (Is_color << 3) + (Luma)

Where

Chroma is a value taken from a range between 0 and 15.
Is_color is a bit set if the byte carries color information.
Luma is a value taken from a range between 2 and 7.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 57

Manual Version 1.0
By Francesco de Simone

J.1. Conversion table

This table will provide you a quick conversion chart between these formats: Decimal, Hexadecimal, Binary, Octal, ASCII
value, char code and HTML code.

Dec Oct Hex Binary Value Description Char Entity

00 00 00 00000000 NUL Null character

01 01 01 00000001 SOH Start of Header

02 02 02 00000010 STX Start of Text

03 03 03 00000011 ETX End of Text

04 04 04 00000100 EOT End of Transmission

05 05 05 00000101 ENQ Enquiry

06 06 06 00000110 ACK Acknowledgment

07 07 07 00000111 BEL Bell

08 10 08 00001000 BS Backspace

09 11 09 00001001 HT Horizontal Tab 	

10 12 0A 00001010 LF Line Feed

11 13 0B 00001011 VT Vertical Tab

12 14 0C 00001100 FF Form Feed

13 15 0D 00001101 CR Carriage Return

14 16 0E 00001110 SO Shift Out

15 17 0F 00001111 SI Shift In

16 20 10 00010000 DLE Data Link Escape

17 21 11 00010001 DC1 XON Device Control 1

18 22 12 00010010 DC2 Device Control 2

19 23 13 00010011 DC3 XOFFDevice Control 3

20 24 14 00010100 DC4 Device Control 4

21 25 15 00010101 NAK Negative Acknowledgement

22 26 16 00010110 SYN Synchronous Idle

23 27 17 00010111 ETB End of Transmission Block

24 30 18 00011000 CAN Cancel

25 31 19 00011001 EM End of Medium

26 32 1A 00011010 SUB Substitute

27 33 1B 00011011 ESC Escape

28 34 1C 00011100 FS File Separator

29 35 1D 00011101 GS Group Separator

30 36 1E 00011110 RS Request to Send - Record
Separator

31 37 1F 00011111 US Unit Separator

32 40 20 00100000 SP Space &sp;

33 41 21 00100001 ! exclamation mark ! !

34 42 22 00100010 " (double) quotation mark " "

35 43 23 00100011 # number sign # #

36 44 24 00100100 $ dollar sign $ $

37 45 25 00100101 % percent sign % %

38 46 26 00100110 & ampersand & &

39 47 27 00100111 ' apostrophe, single quote mark ' '

40 50 28 00101000 (left/opening parenthesis ((

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 58

Manual Version 1.0
By Francesco de Simone

41 51 29 00101001) right/closing parenthesis))

42 52 2A 00101010 * asterisk * *

43 53 2B 00101011 + plus sign + +

44 54 2C 00101100 , comma , ,

45 55 2D 00101101 - minus sign, dash, hyphen - ‐
−

46 56 2E 00101110 . period, decimal point, full stop,
dot

. .

47 57 2F 00101111 / forward slash, virgule, solidus / /

48 60 30 00110000 0 digit 0 0

49 61 31 00110001 1 digit 1 1

50 62 32 00110010 2 digit 2 2

51 63 33 00110011 3 digit 3 3

52 64 34 00110100 4 digit 4 4

53 65 35 00110101 5 digit 5 5

54 66 36 00110110 6 digit 6 6

55 67 37 00110111 7 digit 7 7

56 70 38 00111000 8 digit 8 8

57 71 39 00111001 9 digit 9 9

58 72 3A 00111010 : colon : :

59 73 3B 00111011 ; semi-colon ; ;

60 74 3C 00111100 < less than sign < <

61 75 3D 00111101 = equal sign = =

62 76 3E 00111110 > greater than sign > >

63 77 3F 00111111 ? question mark ? ?

64 100 40 01000000 @ AT symbol, commercial at sign @ @

65 101 41 01000001 A capital A A

66 102 42 01000010 B capital B B

67 103 43 01000011 C capital C C

68 104 44 01000100 D capital D D

69 105 45 01000101 E capital E E

70 106 46 01000110 F capital F F

71 107 47 01000111 G capital G G

72 110 48 01001000 H capital H H

73 111 49 01001001 I capital I I

74 112 4A 01001010 J capital J J

75 113 4B 01001011 K capital K K

76 114 4C 01001100 L capital L L

77 115 4D 01001101 M capital M M

78 116 4E 01001110 N capital N N

79 117 4F 01001111 O capital O O

80 120 50 01010000 P capital P P

81 121 51 01010001 Q capital Q Q

82 122 52 01010010 R capital R R

83 123 53 01010011 S capital S S

84 124 54 01010100 T capital T T

85 125 55 01010101 U capital U U

86 126 56 01010110 V capital V V

87 127 57 01010111 W capital W W

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 59

Manual Version 1.0
By Francesco de Simone

88 130 58 01011000 X capital X X

89 131 59 01011001 Y capital Y Y

90 132 5A 01011010 Z capital Z Z

91 133 5B 01011011 [left/opening square bracket [[

92 134 5C 01011100 \ back slash, reverse solidus \ \

93 135 5D 01011101] right/closing square bracket]]

94 136 5E 01011110 ^ caret, spacing circumflex, accent ^ ˆ

95 137 5F 01011111 _ spacing underscore, low line, _ _

96 140 60 01100000 ` spacing grave accent, back
apostrophe

` `

97 141 61 01100001 a small a a

98 142 62 01100010 b small b b

99 143 63 01100011 c small c c

100 144 64 01100100 d small d d

101 145 65 01100101 e small e e

102 146 66 01100110 f small f f

103 147 67 01100111 g small g g

104 150 68 01101000 h small h h

105 151 69 01101001 i small i i

106 152 6A 01101010 j small j j

107 153 6B 01101011 k small k k

108 154 6C 01101100 l small l l

109 155 6D 01101101 m small m m

110 156 6E 01101110 n small n n

111 157 6F 01101111 o small o o

112 160 70 01110000 p small p p

113 161 71 01110001 q small q q

114 162 72 01110010 r small r r

115 163 73 01110011 s small s s

116 164 74 01110100 t small t t

117 165 75 01110101 u small u u

118 166 76 01110110 v small v v

119 167 77 01110111 w small w w

120 170 78 01111000 x small x x

121 171 79 01111001 y small y y

122 172 7A 01111010 z small z z

123 173 7B 01111011 { left/opening brace, curly bracket { {

124 174 7C 01111100 | vertical bar | |

125 175 7D 01111101 } right/closing brace, curly
bracket

} }

126 176 7E 01111110 .. tilde accent ~ ˜

127 177 7F 01111111 DEL delete, DEL

128 200 80 10000000 € Euro €

129 201 81 10000001 • 

130 202 82 10000010 ‚ low left rising single quote ‚ ‚

131 203 83 10000011 ƒ small italic f, function symbol,
florin

ƒ ƒ

132 204 84 10000100 „ low left rising double quote „ „

133 205 85 10000101 … low horizontal ellipsis … …
&ldots;

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 60

Manual Version 1.0
By Francesco de Simone

134 206 86 10000110 † dagger mark † †

135 207 87 10000111 ‡ double dagger mark ‡ ‡

136 210 88 10001000 ˆ letter modifying circumflex ˆ

137 211 89 10001001 ‰ per thousand (mille) sign ‰ ‰

138 212 8A 10001010 Š capital S, caron, hacek Š Š

139 213 8B 10001011 ‹ left single angle quote mark
(guillemet)

‹ ‹

140 214 8C 10001100 Œ capital OE ligature Œ Œ

141 215 8D 10001101 • 

142 216 8E 10001110 Ž capital ž Ž

143 217 8F 10001111 • 

144 220 90 10010000 • 

145 221 91 10010001 ‘ left single/hi- right rising
single quotation mark

‘ ‘
’

146 222 92 10010010 ’ right single quotation mark ’ ’

147 223 93 10010011 “ left double/hi- right rising
double quotat'n mark

“ “
”

148 224 94 10010100 ” right double quotation mark ” ”

149 225 95 10010101 • round filled bullet • •

150 226 96 10010110 – en dash – –
&endash;

151 227 97 10010111 — em dash — —
&emdash;

152 230 98 10011000 ˜ small spacing tilde accent ˜ ˜

153 231 99 10011001 ™ trademark sign ™ ™

154 232 9A 10011010 š small s, caron, hacek š š

155 233 9B 10011011 › right single angle quote mark
(guillemet)

› ›

156 234 9C 10011100 œ small oe ligature œ œ

157 235 9D 10011101 • 

158 236 9E 10011110 ž small ž ž

159 237 9F 10011111 Ÿ capital Y dieresis or umlaut Ÿ Ÿ

160 240 A0 10100000 A0 non-breaking space

161 241 A1 10100001 ¡ inverted exclamation mark ¡ ¡

162 242 A2 10100010 ¢ cent sign ¢ ¢

163 243 A3 10100011 £ pound sterling sign £ £

164 244 A4 10100100 ¤ general currency sign ¤ ¤

165 245 A5 10100101 ¥ yen sign ¥ ¥

166 246 A6 10100110 ¦ broken vertical bar ¦ ¦
&brkbar;

167 247 A7 10100111 § section sign § §

168 250 A8 10101000 ¨ spacing dieresis, umlaut ¨ ¨ ¨

169 251 A9 10101001 © copyright sign © ©

170 252 AA 10101010 ª feminine ordinal indicator ª ª

171 253 AB 10101011 « left (double) angle quote
(guillemet)

« «

172 254 AC 10101100 ¬ logical not sign ¬ ¬

173 255 AD 10101101 soft hyphen ­ ­

174 256 AE 10101110 ® registered trademark sign ® ®

175 257 AF 10101111 ¯ spacing macron (long) accent, ¯ ¯
&hibar;

176 260 B0 10110000 ° degree sign ° °

177 261 B1 10110001 ± plus-or-minus sign ± ±

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 61

Manual Version 1.0
By Francesco de Simone

178 262 B2 10110010 ² superscript 2 ² ²

179 263 B3 10110011 ³ superscript 3 ³ ³

180 264 B4 10110100 ´ spacing acute accent ´ ´

181 265 B5 10110101 µ micro sign µ µ

182 266 B6 10110110 ¶ paragraph sign, pilcrow sign ¶ ¶

183 267 B7 10110111 · middle dot, centered dot · ·

184 270 B8 10111000 ¸ spacing cedilla ¸ ¸

185 271 B9 10111001 ¹ superscript 1 ¹ ¹

186 272 BA 10111010 º masculine ordinal indicator º º

187 273 BB 10111011 » right (double) angle quote
(guillemet)

» »

188 274 BC 10111100 ¼ fraction 1/4 ¼ ¼

189 275 BD 10111101 ½ fraction 1/2 ½ ½
½

190 276 BE 10111110 ¾ fraction 3/4 ¾ ¾

191 277 BF 10111111 ¿ inverted question mark ¿ ¿

192 300 C0 11000000 À capital A grave À À

193 301 C1 11000001 Á capital A acute Á Á

194 302 C2 11000010 Â capital A circumflex Â Â

195 303 C3 11000011 Ã capital A tilde Ã Ã

196 304 C4 11000100 Ä capital A dieresis or umlaut Ä Ä

197 305 C5 11000101 Å capital A ring Å Å

198 306 C6 11000110 Æ capital AE ligature Æ Æ

199 307 C7 11000111 Ç capital C cedilla Ç Ç

200 310 C8 11001000 È capital E grave È È

201 311 C9 11001001 É capital E acute É É

202 312 CA 11001010 Ê capital E circumflex Ê Ê

203 313 CB 11001011 Ë capital E dieresis or umlaut Ë Ë

204 314 CC 11001100 Ì capital I grave Ì Ì

205 315 CD 11001101 Í capital I acute Í Í

206 316 CE 11001110 Î capital I circumflex Î Î

207 317 CF 11001111 Ï capital I dieresis or umlaut Ï Ï

208 320 D0 11010000 Ð capital ETH Ð Ð

209 321 D1 11010001 Ñ capital N tilde Ñ Ñ

210 322 D2 11010010 Ò capital O grave Ò Ò

211 323 D3 11010011 Ó capital O acute Ó Ó

212 324 D4 11010100 Ô capital O circumflex Ô Ô

213 325 D5 11010101 Õ capital O tilde Õ Õ

214 326 D6 11010110 Ö capital O dieresis or umlaut Ö Ö

215 327 D7 11010111 × multiplication sign × ×

216 330 D8 11011000 Ø capital O slash Ø Ø

217 331 D9 11011001 Ù capital U grave Ù Ù

218 332 DA 11011010 Ú capital U acute Ú Ú

219 333 DB 11011011 Û capital U circumflex Û Û

220 334 DC 11011100 Ü capital U dieresis or umlaut Ü Ü

221 335 DD 11011101 Ý capital Y acute Ý Ý

222 336 DE 11011110 Þ capital THORN Þ Þ

223 337 DF 11011111 ß small sharp s, sz ligature ß ß

224 340 E0 11100000 à small a grave à à

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 62

Manual Version 1.0
By Francesco de Simone

225 341 E1 11100001 á small a acute á á

226 342 E2 11100010 â small a circumflex â â

227 343 E3 11100011 ã small a tilde ã ã

228 344 E4 11100100 ä small a dieresis or umlaut ä ä

229 345 E5 11100101 å small a ring å å

230 346 E6 11100110 æ small ae ligature æ æ

231 347 E7 11100111 ç small c cedilla ç ç

232 350 E8 11101000 è small e grave è è

233 351 E9 11101001 é small e acute é é

234 352 EA 11101010 ê small e circumflex ê ê

235 353 EB 11101011 ë small e dieresis or umlaut ë ë

236 354 EC 11101100 ì small i grave ì ì

237 355 ED 11101101 í small i acute í í

238 356 EE 11101110 î small i circumflex î î

239 357 EF 11101111 ï small i dieresis or umlaut ï ï

240 360 F0 11110000 ð small eth ð ð

241 361 F1 11110001 ñ small n tilde ñ ñ

242 362 F2 11110010 ò small o grave ò ò

243 363 F3 11110011 ó small o acute ó ó

244 364 F4 11110100 ô small o circumflex ô ô

245 365 F5 11110101 õ small o tilde õ õ

246 366 F6 11110110 ö small o dieresis or umlaut ö ö

247 367 F7 11110111 ÷ division sign ÷ ÷

248 370 F8 11111000 ø small o slash ø ø

249 371 F9 11111001 ù small u grave ù ù

250 372 FA 11111010 ú small u acute ú ú

251 373 FB 11111011 û small u circumflex û û

252 374 FC 11111100 ü small u dieresis or umlaut ü ü

253 375 FD 11111101 ý small y acute ý ý

254 376 FE 11111110 þ small thorn þ þ

255 377 FF 11111111 ÿ small y dieresis or umlaut ÿ ÿ

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 63

Manual Version 1.0
By Francesco de Simone

J.1. Schematics

This section includes schematics of the C3Synapse circuit. First let’s see the Power LED, a very basic circuit (Figure 56).

Figure 56: Power LED circuit.

The first stage is the connection between the PropC3, C3Synapse and the expansion port. The Schematic is in Figure 57.

Figure 57: C3Synapse headers circuits.

The PropC3 Port A carries Propeller’s pins [P7:P0], and it’s connected to C3Synapse Data BUS. PropC3 Port B carries
Propeller pins [P23:P16] and connects only P16, P17 and P18 to the C3Synapse and is used as a control bus.

The PropC3 Tri-ports and Analog port are pass through only and were added to leave these ports available over the
C3Synapse board.

The C3Synapse has another expansion header JP4+JP5 that gives the user some extra lines to use with possible
expansions. These lines are:

 The system lines that drive the SRAM chip: Write, Read and Clock.
 The extra address lines unused by the SRAM chip.
 The three power lines: Gnd, +3.3v, +5v.

The C3Synapse is very easy to program, and it takes advantage from the PropC3 unit using only 11 lines to drive the whole
512Kbytes space of Static RAM and 5 extra lines for expansion.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 64

Manual Version 1.0
By Francesco de Simone

The 7-bits data lines used to carry information are used to setup the address of the SRAM chip in three separate times,
and are used obviously to carry actual bytes that go to and come from SRAM. There is also a special feature on the first
nibble of the address [A7:A0]. The address here can be incremented by sending a clock pulse.
In this way you haven’t to set all the address but simply clock it to increase the position in the SRAM chip.

In order to manage how to setup the address or data there is a “Command decoder” that multiplexes the control lines to
drive 8 different actions in the C3Synapse.

The following is the command decoder stage (Figure 58).

Figure 58: Command decoder IC1 SN74ACT138D circuit.

The three control lines can code a value from [7:0]. The multiplexer selects the corresponding out line. This chip has
active low out lines to make easier the access to SRAM chip which already has active low control lines.

So we can examine each “command” selected by the multiplexer.
The line Y7 is named STATUS_LED and connects directly to a led circuit (Figure 59). This led is used for debug purposes.

Figure 59: STATUS LED Circuit.

Then we have Y9, Y11, Y10 which drive the latching systems to setup the address nibbles. Y8 connected to some logic
gates is used to clock the first latching system to make the value increment.

The following is the first nibble latching/control circuit (Figure 60).

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 65

Manual Version 1.0
By Francesco de Simone

Figure 60: Low nibble address circuit.

There are two counters/buffers that handle 4 bits each; they are connected in cascade so that the counting feature will
send a carry bit to the second when the first overflows. The Clock signal SRAM_A0-7_CNT is inverted through a NAND
gate so that it becomes active HIGH and drive correctly the counter circuitry of counters.

The latch trigger instead remains active LOW, but it also passes through 3 NAND gates and it’s delayed a little (it takes
advantage of the time propagation inside the logic chip).

After some nanoseconds it trigs also the clock of counter. This procedure makes the value in [DATA_7:DATA_0] to store in
the buffer correctly. The output lines of these two chips will configure according the internal value of the buffer and the
counter configuration.

Then we have the other two nibbles of the address that are handled by two 8bit buffers.

The following is the schematic of this stage (Figure 61).

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 66

Manual Version 1.0
By Francesco de Simone

Figure 61: Middle and high nibble latching system.

This is very simple; the bits present in the data bus are stored in each buffer when the clock line is triggered by the
command decoder. IC6 handles the address nibble [A15:A8], while IC5 handles the remaining 3 bits of the address (512Kb
= 19 bits).

The remaining 5 lines of this IC are still addressable but aren’t connected to the SRAM IC. They are used as extra output
lines for the C3Synapse. In this way you can use those lines to latch some other external system. You need to pay
attention in setting up these lines because you may risk to interfere with the SRAM address, so you should logically “OR”
these lines with the address or use them while the address system is not used.

Last least but not least, there is the SRAM chip.

Figure 62: SRAM interface circuit.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 67

Manual Version 1.0
By Francesco de Simone

This IC has 512Kbytes of memory and is controlled by only 3 lines:

 Write Enable
 Output Enable
 Chip Select

Let’s see the schematic in Figure 62. As you can see the line CS is always active, in this way the chip is always selected. No
need to be inactive in the C3Synapse since it’s the only memory chip present.

The other two lines when active low just store/read the value present in the data bus at the actual address present in the
address lines. These lines need to be reset after each read write operation so that you don't risk corrupting up data when
changing the address.

If you want to go deeper and learn how all ICs present in the C3Synapse work, you can find all datasheets in the DVD-
ROM:

 Datasheets

 [C3 SYNAPSE DVD Root]
 C3Synapse\Hardware\Components_Datasheets*.*

Inside the Hardware folder you will find also everything concerning the hardware of the C3Synapse: Gerber files, Eagle
projects, schematics and LED tester data.

All the stuff present there is ruled by copyright laws and GNU license agreement.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 68

Manual Version 1.0
By Francesco de Simone

J.2. LED Tester

If you would like to have a cheap but useful tool to debug your programs for the C3Synapse, you can build a LED tester
(Figure 63). You just need few LEDs and resistors, wires and a breadboard.

Figure 63: LED tester on a little breadboard.

This circuit needs to be connected to the expansion header of the C3Synapse. You can follow the circuit diagram in Figure
65 to build your own.

Figure 64: LED tester connected to the C3Synapse.

This circuit is very basic and shouldn’t need any explanation except for the values of the components used. All resistors
from R1 to R10 are 330 Ohm; the LEDs are common 3mm round LEDs (Figure 64). You can choose the colors you prefer.

By André LaMothe (Nurve Network LLC)

and Francesco de Simone (Digimorf)

C3Synapse

SRAM expansion board for PropC3 unit

 Page 69

Manual Version 1.0
By Francesco de Simone

Figure 65: LED tester connected to the C3Synapse.

I have built a tiny LED tester (Figure 66) which uses SMD components. You can find inside the DVD ROM a PCB bitmap I
have used to build mine. You will find also a sticker you can print on adhesive paper and put on top of the assembled LED
tester PCB

 C3Synapse LED tester
 [C3 SYNAPSE DVD Root]

 C3Synapse\Hardware\LED_Tester\C3-C3Synapse_LED_Tester_PCB.png
 \C3-C3Synapse_LED_Tester_Sticker.jpg

Figure 66: Custom LED Tester for the C3Synapse.

