

 2

CHAMELEON™ AVR 8-Bit User Manual v1.0

“Exploring the CHAMELEON AVR 8-Bit – A Guide to Programming the CHAMELEON AVR 8-Bit System”

Copyright © 2009 Nurve Networks LLC

Author
Andre’ LaMothe

Editor/Technical Reviewer
The “Collective”

Printing
0001

ISBN
Pending

All rights reserved. No part of this user manual shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent

liability is assumed with respect to the user of the information contained herein. Although every precaution has been taken in

the preparation of this user manual, the publisher and authors assume no responsibility for errors or omissions. Neither is any

liability assumed for damages resulting from the use of the information contained herein.

Trademarks
All terms mentioned in this user manual that are known to be trademarks or service marks have been appropriately

capitalized. Nurve Networks LLC cannot attest to the accuracy of this information. Use of a term in this user manual should

not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this user manual as complete and as accurate as possible, but no warranty or fitness is

implied. The information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor any

responsibility to any person or entity with respect to any loss or damages arising from the information contained in this user

manual.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted

herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,

person, place, or event is intended or should be inferred.

eBook License
This electronic user manual may be printed for personal use and (1) copy may be made for archival purposes, but may not be

distributed by any means whatsoever, sold, resold, in any form, in whole, or in parts. Additionally, the contents of the DVD
this electronic user manual came on relating to the design, development, imagery, or any and all related subject matter

pertaining to the CHAMELEONTM systems are copyrighted as well and may not be distributed in any way whatsoever in

whole or in part. Individual programs are copyrighted by their respective owners and may require separate licensing.

 3

Licensing, Terms & Conditions
NURVE NETWORKS LLC, . END-USER LICENSE AGREEMENT FOR CHAMELEON AVR HARDWARE, SOFTWARE , EBOOKS, AND USER MANUALS

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PRODUCT. IT CONTAINS SOFTWARE, THE USE OF

WHICH IS LICENSED BY NURVE NETWORKS LLC, INC., TO ITS CUSTOMERS FOR THEIR USE ONLY AS SET FORTH BELOW. IF YOU DO NOT AGREE TO THE

TERMS AND CONDITIONS OF THIS AGREEMENT, DO NOT USE THE SOFTWARE OR HARDWARE. USING ANY PART OF THE SOFTWARE OR HARDWARE

INDICATES THAT YOU ACCEPT THESE TERMS.

GRANT OF LICENSE: NURVE NETWORKS LLC (the "Licensor") grants to you this personal, limited, non-exclusive, non-transferable, non-assignable license solely to use in a

single copy of the Licensed Works on a single computer for use by a single concurrent user only, and solely provided that you adhere to all of the terms and conditions of this

Agreement. The foregoing is an express limited use license and not an assignment, sale, or other transfer of the Licensed Works or any Intellectual Property Rights of Licensor.

ASSENT: By opening the files and or packaging containing this software and or hardware, you agree that this Agreement is a legally binding and valid contract, agree to abide by

the intellectual property laws and all of the terms and conditions of this Agreement, and further agree to take all necessary steps to ensure that the terms and conditions of this

Agreement are not violated by any person or entity under your control or in your service.

OWNERSHIP OF SOFTWARE AND HARDWARE: The Licensor and/or its affiliates or subsidiaries own certain rights that may exist from time to time in this or any other

jurisdiction, whether foreign or domestic, under patent law, copyright law, publicity rights law, moral rights law, trade secret law, trademark law, unfair competition law or other

similar protections, regardless of whether or not such rights or protections are registered or perfected (the "Intellectual Property Rights"), in the computer software and hardware,

together with any related documentation (including design, systems and user) and other materials for use in connection with such computer software and hardware in this package

(collectively, the "Licensed Works"). ALL INTELLECTUAL PROPERTY RIGHTS IN AND TO THE LICENSED WORKS ARE AND SHALL REMAIN IN LICENSOR.

RESTRICTIONS:

(a) You are expressly prohibited from copying, modifying, merging, selling, leasing, redistributing, assigning, or transferring in any matter, Licensed Works or any portion

thereof.

(b) You may make a single copy of software materials within the package or otherwise related to Licensed Works only as required for backup purposes.

(c) You are also expressly prohibited from reverse engineering, decompiling, translating, disassembling, deciphering, decrypting, or otherwise attempting to discover the source

code of the Licensed Works as the Licensed Works contain proprietary material of Licensor. You may not otherwise modify, alter, adapt, port, or merge the Licensed Works.

(d) You may not remove, alter, deface, overprint or otherwise obscure Licensor patent, trademark, service mark or copyright notices.

(e) You agree that the Licensed Works will not be shipped, transferred or exported into any other country, or used in any manner prohibited by any government agency or any

export laws, restrictions or regulations.

(f) You may not publish or distribute in any form of electronic or printed communication the materials within or otherwise related to Licensed Works, including but not limited to

the object code, documentation, help files, examples, and benchmarks.

TERM: This Agreement is effective until terminated. You may terminate this Agreement at any time by uninstalling the Licensed Works and destroying all copies of the Licensed

Works both HARDWARE and SOFTWARE. Upon any termination, you agree to uninstall the Licensed Works and return or destroy all copies of the Licensed Works, any

accompanying documentation, and all other associated materials.

WARRANTIES AND DISCLAIMER: EXCEPT AS EXPRESSLY PROVIDED OTHERWISE IN A WRITTEN AGREEMENT BETWEEN LICENSOR AND YOU, THE

LICENSED WORKS ARE NOW PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THE WARRANTY OF NON-INFRINGEMENT. WITHOUT

LIMITING THE FOREGOING, LICENSOR MAKES NO WARRANTY THAT (i) THE LICENSED WORKS WILL MEET YOUR REQUIREMENTS, (ii) THE USE OF THE

LICENSED WORKS WILL BE UNINTERRUPTED, TIMELY, SECURE, OR ERROR-FREE, (iii) THE RESULTS THAT MAY BE OBTAINED FROM THE USE OF THE

LICENSED WORKS WILL BE ACCURATE OR RELIABLE, (iv) THE QUALITY OF THE LICENSED WORKS WILL MEET YOUR EXPECTATIONS, (v) ANY ERRORS

IN THE LICENSED WORKS WILL BE CORRECTED, AND/OR (vi) YOU MAY USE, PRACTICE, EXECUTE, OR ACCESS THE LICENSED WORKS WITHOUT

VIOLATING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED

WARRANTIES OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY MAY LAST, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. IF

CALIFORNIA LAW IS NOT HELD TO APPLY TO THIS AGREEMENT FOR ANY REASON, THEN IN JURISDICTIONS WHERE WARRANTIES, GUARANTEES,

REPRESENTATIONS, AND/OR CONDITIONS OF ANY TYPE MAY NOT BE DISCLAIMED, ANY SUCH WARRANTY, GUARANTEE, REPRESENATION AND/OR

WARRANTY IS: (1) HEREBY LIMITED TO THE PERIOD OF EITHER (A) Five (5) DAYS FROM THE DATE OF OPENING THE PACKAGE CONTAINING THE

LICENSED WORKS OR (B) THE SHORTEST PERIOD ALLOWED BY LAW IN THE APPLICABLE JURISDICTION IF A FIVE (5) DAY LIMITATION WOULD BE

UNENFORCEABLE; AND (2) LICENSOR'S SOLE LIABILITY FOR ANY BREACH OF ANY SUCH WARRANTY, GUARANTEE, REPRESENTATION, AND/OR

CONDITION SHALL BE TO PROVIDE YOU WITH A NEW COPY OF THE LICENSED WORKS. IN NO EVENT SHALL LICENSOR OR ITS SUPPLIERS BE LIABLE

TO YOU OR ANY THIRD PARTY FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES

WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THOSE RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT LICENSOR HAD

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OF

THE LICENSED WORKS. SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL

DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF

ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

SEVERABILITY: In the event any provision of this License Agreement is found to be invalid, illegal or unenforceable, the validity, legality and enforceability of any of the

remaining provisions shall not in any way be affected or impaired and a valid, legal and enforceable provision of similar intent and economic impact shall be substituted therefore.

ENTIRE AGREEMENT: This License Agreement sets forth the entire understanding and agreement between you and NURVE NETWORKS LLC, supersedes all prior

agreements, whether written or oral, with respect to the Software, and may be amended only in a writing signed by both parties.

NURVE NETWORKS LLC

12724 Rush Creek Lane

Austin, TX 78732

support@nurve.net

www.xgamestation.com

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 4

Version & Support/Web Site

This document is valid with the following hardware, software and firmware versions:

• CHAMELEON AVR 8-Bit Board Revision A. or greater.

• Atmel AVR Studio 4.14 or greater.

• Arduino Toolchain 0017 or greater for Windows/Linux/Mac OS X.

• Propeller IDE 1.26 or greater.

The information herein will usually apply to newer versions but may not apply to older versions. Please contact Nurve
Networks LLC for any questions you may have.

Visit www.xgamestation.com & www.chameleon-dev.com for downloads, support and access to the Chameleon user
community and more!

For technical support, sales, general questions, share feedback, please contact Nurve Networks LLC at:

support@nurve.net / nurve_help@yahoo.com

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 5

“Exploring the CHAMELEON AVR 8-Bit”
User Manual and Programming Guide

LICENSING, TERMS & CONDITIONS...3

VERSION & SUPPORT/WEB SITE..4

“EXPLORING THE CHAMELEON AVR 8-BIT” USER MANUAL AND PROGRAMMING GUIDE5

0.0 INTRODUCTION AND ORIGINS..11

1.0 ARCHITECTURAL OVERVIEW ...13

1.1 Package Contents ...15

1.2 Chameleon AVR “Quick Start” Demo...16
First Things First... ..16
Playing Crate-It!..17

1.3 The Atmel Mega AVR328P Chip...19

1.3 The Parallax Propeller Chip ..24
1.31 Propeller Core (COG) Video Hardware ..26

1.4. System Startup and Reset Details ...26

PART I - HARDWARE DESIGN PRIMER ..26

2.0 5.0V & 3.3V POWER SUPPLIES ...29

3.0 RESET CIRCUIT ..29

4.0 ATMEL 6-PIN ISP PROGRAMMING PORT...30

4.1 AVR ISP Programming Port ...30

5.0 SERIAL USB UART PROGRAMMING PORT ...31

6.0 USB SERIAL UART ...33

7.0 ATMEL AVR 328P SUBSYSTEM ..34

8.0 PARALLAX PROPELLER SUBSYSTEM ..35

8.1 The Propeller Local 8-Bit I/O Port ..35

9.0 THE SPI BUS AND COMMUNICATIONS SYSTEM ..36

10.0 VGA GRAPHICS HARDWARE ..36

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 6

10.1 Origins of the VGA...37

10.2 VGA Hardware Interface...38

10.3 VGA Signal Primer ..41
10.3.1 VGA Horizontal Timing..42
10.3.2 VGA Vertical Timing..42
10.3.3 Generating the Active VGA Video ..43

11.0 NTSC/PAL COMPOSITE VIDEO HARDWARE ...44

11.1 Video Hardware Interface..44

11.2 Introduction to NTSC Video ..45
11.2.1 Interlaced versus Progressive Scans...45
11.2.2 Video Formats and Interfaces ..47
11.2.3. Composite Color Video Blanking Sync Interface ..47
11.2.4 Color Encoding...49
11.2.5 Putting it All Together...49
11.2.6 Generating B/W Video Data..52
11.2.7 Generating Color Video Data ..52
11.2.8 NTSC Signal References...53

12.0 KEYBOARD & MOUSE HARDWARE..53

12.1 Keyboard Operation...54
12.1.1 Communication Protocol from Keyboard to Host...55
12.1.2 Keyboard Read Algorithm...56
12.1.3 Keyboard Write Algorithm..56
12.1.4 Keyboard Commands..57

12.2 Communication Protocol from Mouse to Host ..58
12.2.1 Basic Mouse Operation ...59
12.2.2 Mouse Data Packets ..59
12.2.3 Modes of Operation ..60
12.2.4 Sending Mouse Commands ...61
12.2.5 Mouse Initialization ..63
12.2.6 Reading Mouse Movement..63

13.0 THE I/O HEADERS...63

14.0 AUDIO HARDWARE ..65

14.1 A Little Background on Low Pass Filters (EE stuff) ...66
14.1.1 Pulse Code Modulation (PCM)..67
14.1.2 Frequency Modulation (FM) ...68
14.1.3 Pulse Width Modulation (PWM) ...68

15.0 INSTALLING THE TOOL CHAINS: AVRSTUDIO, ARDUINO, AND PROPELLER IDE75

15.1 ATMEL’S AVR STUDIO TOOLCHAIN OVERVIEW...76

15.1.1 Installing AVR Studio 4.xx (Optional) ..77

15.1.2 Installing the AVR ISP MKII Hardware (Optional) ..81

15.1.3 Installing WinAVR
TM

..82

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 7

15.1.4 Building a Project and Testing the Tool Chain...86
15.1.4.1 Setting up the Project Options ..89
Map File Example (.map) ..91
List File Example (.lss)..91
Hex File Example (.hex)..92
15.1.4.2 Adding Files to the Project ...94

15.1.5 Setting up the AVR ISP MKII Hardware...98

15.1.7 Final Words on AVR Studio Tool Chain Installation ...105

15.2 ARDUINO TOOLCHAIN SETUP ..105

15.2.1 Installing the Arduino Toolchain in Windows ..106

15.2.2 Copying the Files to Your Hard Drive ..107

15.2.3 Preparation to Launch the Arduino Tool for the First Time..110
15.2.3.1 Installing a Serial Terminal Program...112
15.2.3.1 Running the Arduino Tool..114
15.2.3.2 Loading the Hello World Sketch...118
15.2.3.3 A Couple Notes About the Arduino Version of Hello World ...121

15.3 INSTALLING THE PARALLAX PROPELLER IDE ..121

15.3.1 Launching the Propeller Tool..124

16.0 CHAMELEON INTER-PROCESSOR ARCHITECTURE OVERVIEW......................................128

16.1 Master Control Program (MCP)..129

16.2 Selecting the Drivers for the Virtual Peripherals...131
16.2.1 Complete Data Flow from User to Driver ..132

16.3 Remote Procedure Call Primer (Theory)...133
16.3.1 ASCII or Binary Encoded RPCs..134
16.3.2 Compressing RPC for More Bandwidth...135
16.3.3 Our Simplified RPC Strategy ..135

16.4 Virtual Peripheral Driver Overview ..136
16.4.1 Normalization of Drivers for Common RPC Calls in Future...137

17.0 CHAMELEON AVR API OVERVIEW ...137

17.1 System Library Module..142
15.1.1 Header File Contents Overview...142
17.1.2 API Listing Reference...143
17.1.3 API Functional Declarations..144

18.0 UART AND RS-232 LIBRARY MODULE PRIMER..145

18.1 The Architecture of the UART API Library and Support Functionality..146

18.2 Header File Contents Overview ...147

18.3 API Listing Reference ..148

18.4 API Functional Declarations ..148

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 8

19.0 SPI AND I2C LIBRARY MODULE PRIMER ...152

19.1 SPI Bus Basics ..153
19.1.1 Basic SPI Communications Steps ..155

19.2 I
2
C Bus Basics...155

19.2.1 Understanding I2C Bus States..156

19.3 Header File Contents Overview ...158

19.4 API Listing Reference ..160

19.5 API Functional Declarations ..161

20.0 NTSC LIBRARY MODULE PRIMER..167

20.1 Sending Messages to the Propeller Directly...168

20.2 Header File Contents Overview ...169

20.3 API Listing Reference ..169

20.4 API Functional Declarations ..169

21.0 VGA LIBRARY MODULE PRIMER..171

21.1 Header File Contents Overview ...172

21.2 API Listing Reference ..172

21.3 API Functional Declarations ..173

22.0 GFX LIBRARY MODULE PRIMER ..175

22.1 GFX Driver Architectural Overview ...175
22.1.1 GFX Driver Register Interface...180

22.2 Header File Contents Overview ...180

22.3 API Listing Reference ..184

22.4 API Functional Declarations ..186

23.0 SOUND LIBRARY MODULE PRIMER...194

23.1 Header File Contents Overview ...195

23.2 API Listing Reference ..195

23.3 API Functional Declarations ..195

24.0 KEYBOARD LIBRARY MODULE PRIMER ...197

24.1 Header File Contents Overview ...197

24.2 API Listing Reference ..198

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 9

24.3 API Functional Declarations ..199

25.0 MOUSE LIBRARY MODULE PRIMER...200

25.1 A Brief Mouse Primer ..201

25.2 Header File Contents Overview ...201

25.3 API Listing Reference ..201

25.3 API Functional Declarations ..202

26.0 PROPELLER LOCAL I/O PORT MODULE PRIMER...203

26.1 Header File Contents Overview ...203

26.2 API Listing Reference ..203

26.3 API Functional Declarations ..204

27.0 CHAMELEON HANDS-ON PROGRAMMING TUTORIALS AND DEMOS205

27.1 Setup to Compile the Demos and Tutorials..205
27.1.1 Differences Between the AVRStudio and Arduino Demos and General Porting Strategies..205
Include Files..205
Renaming the main() Function and setup()...206
Serial I/O Libraries..208
27.1.2 Setup for AVRStudio Version of Demos ...209
27.1.3 Setup for Arduino Version of Demos...209
Copying the Sketches from DVD...210
27.1.3 Setting the Chameleon Hardware Up ...210

28.1 Graphics Demos..211
28.1.1 NTSC Printing Demo..211
28.1.2 NTSC Glowing Top/Bottom Overscan Demo ..213
28.1.3 NTSC Smooth Scrolling Tilemap Demo..215
28.1.4 VGA Printing Demo ...217
28.1.5 Dual NTSC / VGA Printing Demo ..219
28.1.6 VGA Star Field Demo...220

29.1 Sound Demos ..222
29.1.1 Sound Demo...223

30.1 Input Device Demos..225
30.1.1 Keyboard Demo..225
30.1.2 Mouse “ASCII Paint” Demo..228

31.1 Serial, FLASH, and Port I/O Device Demos ..230
31.1.1 Propeller Local Port LED Blinker Demo ...231
31.1.2 Serial RS-232 Communications Demo...233
31.1.3 FLASH Memory Demo (with XModem Protocol Bonus Example) ..238
X-Modem Protocol..239
Sending X-Modem Files from the PC ..243

32.1 Native Mode / Bootloader mode ...248

33.1 Developing Your Own Propeller Drivers...249
33.1.1 Adding SPIN Driver Support for the Status LED ...250
31.1.2 Adding AVR Support at the Client/Master Side...252

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 10

34.1 Advanced Concepts and Ideas..254

35.1 Demo Coder Applications, Games, and Languages ...255
35.1.1 Chameleon BASIC by David Betz...255
35.1.2 Crate-It! by JT Cook ...255

Epilog - From Intel 4004 to the Multiprocessing/Multicore Chameleon...256

APPENDIX A: SCHEMATICS ..257

APPENDIX B: ATMEL AVR 328P PINOUT ...259

APPENDIX C – BOARD LAYOUT AND I/O HEADERS ..260

APPENDIX D - USING THE AVR IN "STAND-ALONE" MODE. ...261

APPENDIX E - USING THE PROPELLER IN "STAND-ALONE" MODE.261

APPENDIX F – PORTING HYDRA AND PARALLAX DEVELOPMENT BOARD APPLICATIONS TO
THE CHAMELEON...262

APPENDIX G - RUNNING ON THE MAC AND LINUX. ...262

APPENDIX H – OVERCLOCKING THE AVR AND PROPELLER...263

H.1 Overclocking the Propeller Microcontroller...263

H.2 Overclocking the AVR328P Microcontroller..263

APPENDIX I: ASCII / BINARY / HEX / OCTAL UNIVERSAL LOOKUP TABLES264

APPENDIX J: ANSI TERMINAL CODES...266
Examples ..267

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 11

0.0 Introduction and Origins

Welcome to the Hardware/Programming Manual for the Chameleon AVR 8-Bit Development Kit. This is a light-
hearted, non-censored, no-holds-barred manual. If you find technical errors or have comments, simply write them down in
a file and please send them to us at support@nurve.net or post on our forums and we will continue to merge them into
this working document.

The document contains two main sections –

� The Hardware Manual - This is a fast and furious circuit description of the Chameleon AVR 8-Bit Board’s dual
processor implementation around the Atmel AVR 328P and Parallax Propeller processors. The Atmel 328P chip
is 8-bit, single cycle instruction (in most cases) supporting 16-bit math and multiplication. It has 32K of FLASH
and 2K of SRAM. We are running it at 16 MHz on the Chameleon, but its capable of running 20 MHz nominally
and beyond when over clocked. The Parallax Propeller chip is used for media processing and runs at 80Mhz per
core with 8 cores. Each instruction takes 4 clocks thus the Propeller runs at 20 MIPS per core nominally. It has
32K of SRAM and 32K ROM.

� The Programming Manual – This is the nitty gritty of the manual and has examples of programming graphics,
sound, keyboard, mice, I/O, etc., and explains how the processors work together along with their various tool
chains.

NOTE

The Chameleon PIC 16-Bit is very similar to the Chameleon AVR 8-Bit. In fact, the
processor was removed from my originally design and replaced by the PIC 16 and the
I/O interfaced re-connected, so if you learn one system you learn them both more or
less.

The Chameleon’s were designed to be application boards to solve real world problems that you might have day to day in
your designs, engineering classes, or work. The Chameleons philosophy is to be very powerful, but very simple. I have
always been very interested in graphics and media processing, however, its is very hard to get a simple embedded
system or development board to output NTSC, PAL, VGA, etc. Thus, I set out to design something that wasn’t a
development or educational kit like our other products, but was something you just “use” to solve problems that is also
good at displaying information and interfacing to user input devices. Nonetheless, I wanted the Chameleons to be able
to do graphics, produce sound, interface to keyboards and mice and be as small as a credit card. There are a number of
approaches to this design, but with multiprocessing and multicore so popular, I thought it would be interesting to use both
concepts in a product. The Chameleon is the culmination of these ideas. To create a product that with very little coding
you could output NTSC/PAL graphics, VGA graphics, read keyboards, and mice as well as communicate with serial ports
and perform digital and analog I/O.

The selection of the processors was difficult as it always is. We have to balance price, performance, user base, flexibility
and a number of other factors. Additionally, since the Chameleon is a dual processor design, I had to think of a clean way
to interface the processors such as shared memory, SPI, I

2
C, etc. Taking all those factors into consideration, I decided to

use the Atmel AVR AT328P processor for the Master and the Parallax Propeller chip for the Slave. The PIC version
uses a PIC24 16-bit processor, but the idea is the same.

Thus, the idea is that the AVR (or PIC) with its huge fan/user base will be the ring leader, you code in C/ASM on the AVR
processor and then over a SPI interface you send commands to the Propeller chip (which is running a SPI driver) and
then issues the commands from the AVR to various processors (more on this in the Architecture Overview). This is the
perfect fusion and balance of the two processors. From the AVR’s perspective the Propeller chip is simply a media
processor, the programmer need not know a single thing about the Propeller if he doesn’t want to. On the other hand, this
setup is incredibly flexible. The Propeller can run any set of drivers on it that we wish and thru an agreed on
communications protocol the AVR can control these drivers remotely and get work done.

Finally, when I started designing the AVR version of the Chameleon a couple years ago, I kept hearing about this product
called the Arduino, finally I went to the site and checked it out, but was surprised that there was no “Arduino” per se. The
Arduino isn’t a product so much as it’s an ideal or methodology of software and tools. There is nothing but a single AVR
ATMega 168/328 on each Arduino board there is no extra hardware to do anything. So I looked deeper and found out the
Arduino guys came to the same conclusion I did about embedded system programming – its too hard!

The tool chains area nightmare, installation has too many steps, and its just too complicated for newbie’s that just want to
play with something. So what they did was not concentrate on hardware, but concentrate on software. They took the AVR
tool GNU GCC tool chain and covered it up with a Java application. Therefore, from your perspective as a programmer
you don’t need to know anything about AVRStudio, GNU GCC, WinAVR, etc. All you need to know is how to type in the

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 12

Arduino text editor and press a couple buttons. Now, programming AVRs (and PICs) is a challenge as well. You normally
need an ISP (in circuit programmer) and to use another tool. Thus, you first write your code with AVRStudio, compile it,
then you have a binary that you download with yet another software tool and a physical ISP programmer.

This again is a nightmare and a mess for newbies, so the Arduino guys also integrated this into the tool and supplied a
“bootloader” on the AVR chips their Arduino's ship with, therefore all you need is a serial connection to the AVR chip on
the Arduino hardware and the Arduino tool can initiate communications and download to the FLASH memory.

Therefore, with a single AVR chip programmed with the Arduino bootloader and the Arduino software tool, you can write
code and immediately download to the chip. Moreover, they ported the tool to Mac and Linux, so the experience from
Windows, to Mac OS X to Linux is more or less the same (once you have the tool installed). This is good since AVRStudio
does NOT even work on Mac or Linux!!!

Anyway, I knew I had to try and be compatible with the Arduino tool since it would be very cool if people could use
Arduino software and tools on the Chameleons. Of course, I was using the new Atmel 328P in my designs and Arduino
was still using the Atmel 168, but I hoped they would upgrade in time and they did! So now the Chameleons will run the
Arduino tool chain and you can use Chameleons as supped up Arduinos'. Of course, our boards are physically different
and our headers are slightly different, but more or less with a little work any program designed for the Arduino can be
ported to the Chameleon in a matter of minutes. Then you get the power of the Propeller media processor to display text,
graphics, read keyboards, mice, and make sounds, etc.

As an example, imagine you have an Arduino servo controller program and it uses one of the PWM ports on the AVR
328P. Since we are using the same chip, the Chameleon has the same PWM ports and we export the pins out to the
digital and analog I/O headers just like the Arduino. But, now imagine that instead of just sending a signal on the digital
ports to move the servo right or left, you can use a PS/2 keyboard? Or mouse? And now imagine that you can display the
position and angle on a VGA monitor and even draw the servo in color graphics on the screen!

So the Chameleon is like a super charged Arduino with support for graphics, audio, keyboard, mice and much more! And
the cool thing is that the code you have to write to support the added features and capabilities of the Chameleon are
usually just a few lines that call API functions to communicate with the Parallax Propeller media processor.

NOTE

The Chameleon PIC 16-Bit is very similar to the Chameleon AVR 8-Bit, but porting the
Arduino software to the Chameleon version has not been done yet. However, all the
pieces are there. There is a GNU GCC compiler for the PIC24, and other than that its
just a matter of porting the Arduino libraries and runtime software template. The Java
application is chip agnostic and is nothing more than a Java app. So hopefully,
someone ports the Arduino software to run on the Chameleon PIC as well, so all us PIC
users can experience the ease of use and multiplatform support as well.

IMPORTANT!

Last, but not least, peruse the entire manual before doing anything. There are a few
items that are embedded in the middle or end that will help you understand things, so
best to read the whole thing first then go ahead and start playing with the hardware and
programming.

So without further ado, let’s begin!

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 13

1.0 Architectural Overview

Part I – Hardware Manual

Figure 1.0 – The Chameleon AVR 8-Bit.

The Chameleon AVR 8-Bit or simply the “Chameleon AVR” is developed around the Atmel 8-Bit Mega AVR 328P28-
Pin DIP QFP. Figure 1.1 shows an image of the Chameleon AVR 8-bit annotated. The Chameleon AVR has the following
hardware features:

� 28-Pin DIP Package version of the AVR 328P, runs at 16 MHz with a maximum speed of 20 MHz suggested by
Atmel. However, it can easily be over clocked to 25-30 MHz.

� Parallax Propeller multicore processor, 32K RAM, 32K ROM, QFP 44-Pin package running at 80 MHz per core
with 64K Byte serial EEPROM for program storage (2x required memory).

� RCA Video and Audio Out Ports.
� HD15 Standard VGA Out Port.
� Single PS/2 Keyboard (and mouse) Port.
� Single 9V DC power in with regulated output of 5.0V @ 500mA and 3.3V @ 500 mA on board to support external

peripherals and components (the AVR 328P is 5V, Propeller is 3.3V).
� Removable XTALs to support faster speeds and experimenting with various reference clocks.
� Expansion headers that exposes I/O, power, clocking ,etc. for both the AVR and Propeller.
� USB UART built in with Mini-B connector.
� 6-PIN ISP (In System Programming) interface compatible with Atmel AVRISP MKII as well as other 3

rd
 party

programmers.
� 1 MByte of SPI FLASH storage chip that can be used as local storage or a full FAT file system.
� “Break Away” experimenter prototyping board that can be snapped off for prototyping and adding extra hardware

to the Chameleon.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 14

Figure 1.1 – Chameleon system level diagram.

Referring to Figure 1.1, this is a system level diagram of the relationship of the Chameleon to all the system components.
First, everything to the right is optional and only needed for programming the Chameleon. Once the Chameleon is
programmed it’s a stand alone application that you can put anywhere you like. With that in mind, let’s take a quick look at
how things work. To begin with, there are two processors on the Chameleon AVR, the AVR ATMega 328P and the
Parallax Propeller chip. The AVR chip is used as the “master” processor. You write your application on there in C/C++,
ASM, or with the Arduino tool and then using a very simply API you send “messages” to the Propeller chip. The
messages direct the Propeller chip to perform tasks. These tasks can ultimately be anything, but for now, we have set the
Propeller up so it can generate NTSC and VGA graphics, audio, and read keyboards and mice. So the Propeller does all
the work for you, the AVR does very little, thus freeing the AVR to take the role as master controller.

The messages sent to the Propeller are transferred over a high speed SPI (serial peripheral interface) link. The AVR has
SPI hardware built in, so sending bytes to the Propeller is as simple as setting up a few registers and writing some bytes.
However, the Propeller has no SPI hardware, so we had to write drivers that emulate the SPI protocol with software. This
means there are limits to the speed you can send SPI traffic as well as the software SPI drivers are not very robust, they
are just “starter” drivers for you, I suggest you improve them.

As an example of how the system works, let’s say you have a AVR C/C++ program you developed with AVRStudio or
maybe the Arduino tool. It has a A/D convertor and measures temperature. The temperature is then sent out to a crude
LCD screen and looks ugly. Also, there are some controls for the program that you must use some external push button
switches to set, but it would be nice if you had a keyboard or mouse for user input. This is no problem for the chameleon!

You would take you original program, compile it for the Chameleon, then add a few lines of code from our NTSC or VGA
API that command the Propeller to draw text on the screen. Then you can print out your temperature information nicely on
a little NTSC/VGA monitor. Moreover, you can write some simple GUI controls, so with the mouse or keyboard you could
make command selections on the NTSC/VGA screen! Very slick! As another example, you can use the Chameleon’s built
in USB serial port to communicate to the PC. So say you want to control some motors, or do some A/D, but you want the
PC to take that information and plug it into some larger application. Normally, to get something interfaced with the PC is
nightmare in the era or post legacy devices where only USB connectors exist and there are no parallel or DB9 serial ports.
But, with the Chameleon its easy, you just write your driver code on the Chameleon, use the serial UART library to
communicate to the PC and send the information. Moreover, you can display status and what’s going on thru one of the
local video ports of the Chameleon, so even if the PC is remote the local Chameleon can display what’s going on and
what its being told to do by the PC.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 15

The possibilities are limitless with the Chameleon. We wanted to take the work out of generating video, audio, reading
keyboards and mice out of the picture for you, but at the same time insulate you from what’s going on under the hood –
unless you really want to know.

Next, let’s inventory your Chameleon AVR 8-Bit Kit.

1.1 Package Contents

Figure 1.2 – Chameleon AVR 8-Bit kit contents (DVD not shown).

You should have the following items in your kit, referring to Figure 1.2.

� Chameleon AVR 8-Bit System Board.

� DVD ROM with all the software, demos, IDE, tools, and this document.

� White solderless experimenter board to be affixed to “break away” experimenter prototyping area on Chameleon if

desired.
� (1) Bi-color Red/Green LED.

Not Included

� 9V power supply with tip +, ring -, 2.1mm barrel.
� Mini B USB cable to go from PC to Chameleon AVR.
� AVR MK II ISP Programmer.

The Chameleon will run off the USB cable, so you do not require a wall adapter for development. Also, the Chameleon
AVR is pre-loaded with the Arduino bootloader, therefore, if you use the Chameleon in “Arduino mode” only you will not
need an Atmel AVR ISP MK II programmer, but we recommend one so that you can use AVR Studio to write more
advanced C/C++ and ASM programs and to have more control over the platform. Additionally, if you inadvertently damage
the FLASH'ed bootloader you will have to reload it. Thus, you need an AVR ISP MK II or similar programming hardware
tool in the event you need to re-FLASH the bootloader.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 16

1.2 Chameleon AVR “Quick Start” Demo

Figure 1.3 – The Console demo running – Crate-it!

The Chameleon AVR 8-bit is pre-loaded with a demo programmed into the AVR’s FLASH memory, a screen shot is
shown in Figure 1.3 that illustrates images of both the NTSC and VGA monitors during the demo. We will use this to test
your system out. The following are a series of steps to try the demo out and make sure your hardware is working.

IMPORTANT!

We are going to assume you are running Windows XP or similar. Linux and Mac
systems are similar for this simple demo experiment. However, Linux and Mac detect
and install the FTDI USB drivers differently which we will cover in their respective setups
in the Appendices.

First Things First...

Before we plug the Chameleon in and test it, a couple things to pay attention to. First, the Chameleon can be powered by
either a 9V DC adapter or draw power from the USB port connection. If you have a 9V DC adapter then you can use it for
power. However, to “talk” to the Chameleon you are going to need a mini-B USB cable no matter what. Therefore, when
we get to the power setup in Step 3, you can either plug in both the 9V adapter and the USB cable or just the USB cable.

If you plug in the USB port cable then the PC will detect a new USB device and if you have Windows SP 2/3 then it should
install the FTDI drivers itself. If it doesn’t, its alright we will perform driver installation later during the software installation
phase. Point is, the moment you plug the Chameleon into the Windows PC, plug and play is going to detect the new USB
device of the serial UART built into the Chameleon, so don’t panic!

Step 1: Place your Chameleon AVR on a flat surface, no carpet! Static electricity!

Step 2: Make sure the power switch at the front is in the OFF position, this is to the RIGHT.

Step 3: Plug your 9V DC wall adapter in and plug the 2.1mm connector into the bottom right power port on the
Chameleon AVR. If you do not have a power adapter then you can power the Chameleon AVR with the USB port. Plug a
USB mini-B cable from you PC to your Chameleon AVR. We suggest using a powered USB hub since the Chameleon
will draw a lot of power.

Step 4: Insert the A/V cable into the ORANGE (video) and WHITE (audio) port of the Chameleon AVR located top-right of
the board and then insert them into your NTSC/Multi-System TV’s A/V port.

Step 5: Plug a PS/2 compatible keyboard into the PS/2 port on the Chameleon (top right).

Step 6: Turn the power ON by sliding the ON/OFF switch to the LEFT then hit the Reset button as well (next to the AVR
chip).

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 17

Step 7: The demo will start immediately, it’s a little block pushing game called “Crate-it!”. Use the keyboard arrow keys to
move your character and push blocks around and move them to their resting positions (usually on the opposite side of the
screen).

You should see something like that shown in Figure 1.3. The actual program that is loaded into the AVR is located on your
DVD here:

 DVD-ROM:\ CHAM_AVR \ SOURCE \ CRATE_IT_V010.C

The Arduino version is located in the \Sketches directory on the DVD here:

DVD-ROM :\ CHAM_AVR \ TOOLS \ ARDUINO \ SKETCHES \ CHAM_AVR_CRATE_IT

Both versions are nearly identical, the Arduino version has simply been converted into an Arduino Sketch.

Of course, the demo needs many other driver and system files to link with, but we will get to this latter when we discuss
the installation of AVR Studio/WinAVR/Arduino and the tool chain in general for C/C++ and ASM programming.

The demo took about a week to develop and was written by one of our Demo coder’s JT Cook to see what he could do
wit the Chameleon in a week and rely 100% on our drivers. The results are pretty amazing, and the cool thing is the game
literally was ported to the PIC version in a matter of minutes. So as an extra bonus by leveraging the Propeller to do all
media processing, the AVR/PIC processor running the applications (or games) is usually in pure C/C++ and since the
interface APIs to the Propeller are the same you get the exact same experience when you port an applications from the
Chameleon AVR to PIC and vice versa. Of course, the PIC version is faster and has more memory – but, use AVR users
like it that way – a challenge!

Hit the Reset button over and over and the demo will reset and reload immediately, If the system ever locks up (rare, and
always due to bad code), then simply hit Reset a few times or cycle the power.

Playing Crate-It!

Crate-it! is your standard block pushing game where you want to get the objects (blocks) from one side of the screen to
resting positions on the other side. The problem is that if a block hits up against an immovable object, they can get stuck
and you are out of luck. These types of games are very easy to develop, but hard to play. You have to really think about
what order you move blocks and you have to be weary about getting stuck.

This version requires an NTSC monitor, and the local PS/2 keyboard plugged in. Also, make sure to have the audio port
connected to your TV, there is sound.

To play, simply move the character with the arrow keys and push the blocks around. The first level has the blocks on the
left side and their resting positions on the right side, so you have to “push” the moveable blocks from the left side to the
right side without getting stuck, or putting yourself in a corner. The first level has 6 blocks that must be moved.

This concludes the Quick Start demo.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 18

Figure 1.4 – The Atmel Mega AVR 328P packing for 28-Pin TQFP and PDIP packages.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 19

Figure 1.5 – The Atmel Mega AVR 328P architecture block diagram.

1.3 The Atmel Mega AVR328P Chip

The Atmel AVR 328P (P stands for Pico Power) comes in a number of packages including 28-pin DIP (duel inline
package). We are using the Mega AVR 328P DIP package in the Chameleon. Figure 1.4 shows the packaging and pin out
of the chip. The AVR 328P was designed as a general purpose, high performance microcontroller with an 8-bit data path,
single clock execution on many instructions, as well as support for 16-bit operations and built in multiply instructions. The
chip has a large FLASH memory of 32K Bytes, but a smaller 2K Byte SRAM which makes a lot of RAM intensive
applications challenging; however, the Chameleon is designed for control applications and 2K of RAM should be more
than enough for anything you need. Moreover, the 328P has 2x the amount of FLASH as the 168 which successfully was
used in thousands if not tens of thousands of Ardunios and everyone did just fine. For complete details on the processor,
please review the datasheet located on the DVD-ROM here:

DVD-ROM: \ cham_avr \ docs \ datasheets \ ATMega48_88_168_328_doc8161.pdf

Table 1.2 below shows the various differences between the 48, 88, 168, and 328 variants for reference. Additionally, there
is a useful EEPROM memory as well that can be used as a little disk drive or memory storage for whatever purposes. Of

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 20

course, the AVR 328P allows re-writing to the FLASH as well, so unused portions of FLASH can be used for storage;
however, it’s not ideal to constantly re-write FLASH since there is a limit to the number of times it can be re-written;
100,000 give or take. Additionally, you can use the 1MByte SPI FLASH on the Chameleon as well for storage.

NOTE

FLASH memories typically have a maximum number of times they can be written;
something in the range of 10,000 to 100,000. This doesn’t mean that at 10,001 or
100,001 the memory won’t work, it just means the erase cycles and write cycles may
take longer to get the memory to clear or write. And this then degrades further as the
write/erase cycles persist. Thus, if you were to code all day and re-write your FLASH
100x times a day, then at 100,000 re-write cycles, you would have 3-4 years before you
ever saw any problems. On the other hand, if you write code to use the FLASH as a
solid state disk and constantly re-write the memory 10,000x a run, you can see how
quickly you might degrade the memory. Thus, use the EEPROM for memory you need
to update and still be non-volatile and save the life of the FLASH.

Table 1.2 - Differences between ATmega 48P, 88P, 168PP, and 328P.

Device Flash EEPROM RAM

ATmega 48P 4 K Byte 256 Bytes 512 Bytes
ATmega 88P 8 K Byte 512 Bytes 1 K Byte
ATmega168P 16 K Byte 512 Bytes 1 K Byte
ATmega328P 32 K Byte 1 K Byte 2 K Byte

Note: The “P” suffix simply means “Pico Power” and has nothing to do with the chip operation or functionality. The Pico
power version is identical to the non-pico power for our purposes and I will use them interchangeably.

Figure 1.5 shows the AVR 328P architecture in block diagram form and Table 1.3 lists the pins and their function for the
AVR 328P.

NOTE

Since the AVR 328P has so many internal peripherals and only a finite number of pins,
many functions are multiplexed on the I/O pins such as SPI, I2C, UARTs, A/D, D/A, etc.
Thus, when you enable one of the peripherals they will typically override the I/O
functionality and take on the special functions requested. However, when you don’t
enable any peripherals each I/O pin is a simple I/O pin as listed in Table 1.3.

Table 1.3 – The AVR 328P general pin descriptions.

Pin Group Description

Port B (PB7:PB0) - Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port
B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running. Port B also contains the SPI interface signals as well as
the clocking input pins.

Port C (PC6:PC0) - Port C serves as analog inputs to the Analog-to-digital Converter. Port C is an 7-bit bi-directional I/O
port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics
with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-
up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not
running. Note: even though Port C only has 7-pins bonded out on the chip, the port register is still 8-bits wide, but the 8

th

bit is simply ignored.

Port D (PD7:PD0) - Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port
D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a
reset condition becomes active, even if the clock is not running. Port D also contains the UART signals.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 21

/RESET – Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the
clock is not running.

XTAL1 - Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 – Output from the inverting Oscillator amplifier.

VCC – Main power, 5V.
GND – System ground.

AVCC - AVCC is the supply voltage pin for the Analog-to-digital Converter. It should be externally connected to VCC,
even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.

AREF - This is the analog reference pin for the Analog-to-digital Converter.

The AVR 328P is a 8-bit RISC-like architecture chip with instructions being either 16 or 32-bits in size (mostly 16-bit).
The memory model is a “Hardware Architecture” meaning that the data and memory are located in separate memories
that are not addressed as a contiguous space, but rather as separate memories with different instructions to read/write to
them. This allows faster execution since the same buses aren’t used to access data and program space. Therefore, you
will typically access SRAM as a continuous 2K of memory and program/FLASH memory is in a completely different
address space as is EEPROM memory. Thus, there are 3 different memories that the AVR 328P supports. Additionally,
the AVR 328P maps registers as well as all it’s I/O ports in the SRAM memory space for ease of access. Figure 1.6 show
these memories.

TIP

Harvard as opposed to Von Neumann architecture are the two primary computer
memory organizations used in modern processors. Harvard was created at Harvard
University, thus the moniker, and likewise Von Neumann was designed by
mathematician John Von Neumann Von Neumann differs from Harvard in that Von
Neumann uses a single memory for both data and program storage.

Figure 1.6 – FLASH and SRAM memory layouts.

Referring to Figure 1.6, Program Memory is composed of both a “Boot FLASH Section” and the “Application
Section”. The boot section holds boot ROM code and can be different sizes or disabled. The application section then
holds the actual run-time code for the application. The Data Memory is stored in SRAM of course and is 2048 bytes in
length. However, due to register space allocation there is a shift in the addresses; the first 256 byte addresses are used to
access registers and system I/O then from address [$0100 - $08FF] is the 2K block of free memory. Not shown in the

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 22

memory map is the “stack” which will need to go somewhere when you run your code, the C/C++ compiler sets this up
for you. When programming in pure ASM, you would have to set the stack pointer appropriately

The AVR C/C++ compiler is based on the GNU GCC tool chain and thus is not the best optimizing compiler on the planet,
but isn’t bad. Hence, our approach will be to use C primarily for our coding and any time critical performance code you will
want to write in assembly language if you need to. But, we want to rely on C as much as possible for ease of use. ASM
should be used for drivers when necessary via APIs that can be called from C. Additionally, the Arduino tool chain uses
C/C++ as well. Even though the Arduino folks call the language “Processing”, its just good old C/C++!!!

NOTE

The tool of choice for native AVR development is of course AVR Studio. This tool was
developed by Atmel and supports source level debugging, various programmer and ICE
debuggers etc. However, the C/C++ compiler is a plug in based on GNU GCC called
“WinAVR”. We will discuss the installation of the tool chain shortly, but keep in mind
the separation. Additionally, we will be using straight “C” for coding. C++ is supported,
but due to its overhead and lack of 100% support for embedded applications, we will
avoid it. C is much more compatible with all embedded systems and C++ is just asking
for trouble especially with the compiler.

Figure 1.7 – Atmel AVR Studio 4 in action.

AVR Studio is shown in Figure 1.7, it’s a standard Windows application that is used to develop applications for the entire
line of AVR microcontrollers. It’s very similar to Visual C++, but not as polished, you will find little quirks with file
management focus issues, etc. The IDE allows viewing of the various files and statistics as builds are performed. The IDE
supports the built in Atmel assembler directly or GNU GCC. When in Atmel ASM mode then all your programs must be
ASM files using Atmel ASM directives and syntax, they are assembled and linked and a final binary image is generated
ready for download to the target (Chameleon in this case). This is not how we will use the tool in most cases. Typically,
we will use it in GCC mode, so we can code in both C and ASM. However, when you use the GCC mode of operation you
are using the entire GCC tool chain including GCC (the C compiler), GAS (GNU assembler), make, librarian and so forth.
Luckily, all of this is handled for you automatically as are the creation of Make scripts and so forth.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 23

But, when you use GCC and the GNU assembler GAS, you must use all GNU syntax which is fine for C, but a bit tedious
for ASM. The Atmel assembler is a little cleaner in my opinion, but GAS is fine as well. In any event, when you create a
new project for the Chameleon you will select GCC and then you can write .C or .S (asm) files and then will be compiled,
assembled and linked together. More of the mechanics of this later, but that’s the idea.

Additionally, you can use inline assembly with GCC, but the syntax is terrible as shown in the code snippet below which
simply swaps a pair of integers:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
 "mov %A0, %D0" "\n\t"
 "mov %D0, __tmp_reg__" "\n\t"
 "mov __tmp_reg__, %B0" "\n\t"
 "mov %B0, %C0" "\n\t"
 "mov %C0, __tmp_reg__" "\n\t"
 : "=r" (value)
 : "0" (value)
);

As you can see there is a lot of pontification with syntax. If you are a 80xxx coder and have used the VC++ inline
assembler or Borland for that matter you should be appalled at the above syntax.

Hence, I personally avoid the inline assembler, but if you want to write some inline ASM you can. However, I recommend
against this since it makes it hard to port. Better, to simply add an external .S ASM file and then put your ASM functions in
there, and call them from C. This way, you use straight C, and straight ASM, and both are easily portable to other
compilers and assemblers by other vendors. Anyone that has used the GNU GCC inline assemblers knows they would
rather poke dull forks in their eyes!

Figure 1.8 – The Parallax Propeller Chip block diagram.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 24

1.3 The Parallax Propeller Chip

The Parallax Propeller chip is a low cost multicore processor with a very simple design and programming model. Referring
to Figure 1.8 take a look at the block diagram of the chip. The Propeller chip consists of (8) symmetrical processing units
(cores) that are identical. Each core has a 32-bit CPU, 512 32-bit words of memory, a pair of counters and a crude video
streaming unit. The cores run at 80MHz nominal and take 4 clocks to execute an instruction. Therefore, each core is
capable of running at 20 MIPs. Additionally, each core has access to the 32 I/O pins of the chip as well as a shared 32K
Byte RAM and 32K Byte ROM. Access to the RAM is arbitrated by a “hub” that gives each core access to the RAM in lock
step, thus its impossible for one core to access RAM while another core is, thus, no potential for corruption of memory.
For complete details on the processor, please review the datasheet located on the DVD-ROM here:

DVD-ROM: \ cham_avr \ docs \ datasheets \ PropellerDatasheet-v1.2.pdf

Referring to the pinout of the Propeller as shown in Figure 1.9, the philosophy of the Propeller is to keep things really
simple; therefore, there are no peripherals (other than the video hardware) on the chip. The idea is that if you want a SPI
port, UART, D/A, A/D, etc. you will write one with pure software and run it on one of the cores as a “virtual peripheral”.
Therefore, chip space and silicon aren’t wasted on peripherals you will never use. Rather, the Propeller is 100%
programmable and you simply load peripherals as software.

Figure 1.9 – The Propeller pinouts.

As you can see, the Propeller chips have nothing more than power, reset, clock, and 32 I/O pins. There are no dedicated
peripherals whatsoever (actually, that’s not completely true – each core has video hardware).

Table 1.4 – Propeller pin and signal descriptions.

Pin Name Direction Description

P0 – P31 I/O General purpose I/O Port A. Can source/sink 40 mA each at 3.3 VDC. CMOS level logic with threshold of ≈ ½ VDD or
1.6 VDC @ 3.3 VDC.
The pins shown below have a special purpose upon power-up/reset but are general purpose I/O afterwards.
P28 - I2C SCL connection to optional, external EEPROM.
P29 - I2C SDA connection to optional, external EEPROM.
P30 - Serial Tx to host.
P31 - Serial Rx from host.

VDD --- 3.3 volt power (2.7 – 3.6 VDC)

VSS --- Ground

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 25

BOEn I Brown Out Enable (active low). Must be connected to either VDD or VSS. If low, RESn becomes a weak output
(delivering VDD through 5 kΩ) for monitoring purposes but can still be driven low to cause reset. If high, RESn is
CMOS input with Schmitt Trigger.

RESn I/O Reset (active low). When low, resets the Propeller chip: all cogs disabled and I/O pins floating. Propeller restarts 50
ms after RESn transitions from low to high.

XI I Crystal Input. Can be connected to output of crystal/oscillator pack (with XO left disconnected), or to one leg of crystal
(with XO connected to other leg of crystal or resonator) depending on CLK Register settings. No external resistors or
capacitors are required.

XO O Crystal Output. Provides feedback for an external crystal, or may be left disconnected depending on CLK Register
settings. No external resistors or capacitors are required.

The Parallax Propeller is really useful for doing many things at once without trying to use interrupts, multitasking, and
round robin programming techniques to perform multiple tasks. You simply write your code and run it on a core. Then if
that code crashes or is broken it does not affect the other cores at all! This is exactly what the Chameleon needs – a way
to run multiple processes that each perform some kind of media task and then these processes wait for the master (the
AVR) to send commands. Each core does not care what the neighboring cores are doing, only what it is doing.

Luckily, if this all sounds like this is way too complicated, you don’t’ have to worry about it! You do not have to program the
Propeller chip at all if you do not want to. The AVR communicates to it via a simple API, and from the AVR (your)
perspective, the Propeller is just a media slave that generates NTSC/PAL/VGA graphics, plays sounds, reads mice and
keyboards and more. However, to really explore the power of the Chameleon you will definitely want to play with the
Propeller chip and modify its kernel driver(s) and so forth. This is actually quite easy to do with a single tool that interfaces
to the Chameleon AVR over the USB port. Its called the Propeller IDE, and Figure 1.10 below shows a screen shot of it.

Figure 1.10 – The Propeller IDE in action.

The Propeller IDE allows you to program the Propeller chip in its native BASIC like language called “Spin” as well as
assembly language. The editor has lots of features like syntax highlighting and code marking to help you keep things
straight. Spin uses tabs for block nesting, so a little tricky if you’re a BASIC or C/C++ programmer and not used to
spaces/tabs indicating nesting. In any event, if you want to program the Propeller you will use Spin/ASM primarily.
However, there are 3

rd
 party C compilers, a FORTH is available, and other languages if you search the Parallax site.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 26

1.31 Propeller Core (COG) Video Hardware

Lastly, let’s talk about the video hardware for a moment. Probably the coolest thing about the Propeller chip is that each
core has a little state machine that can stream video data out. These little devices are called Video Streaming Units or
VSUs and every core has one. Thus, you can in theory drive 8 different video signals at the same time. The VSUs are not
graphics engines, GPUs, even 2D stuff. They are nothing more than serializers that send bytes out to port. However, they
send bytes out at a specific rate and the analog signals they can generate can be timed to synthesize NTSC or PAL
signals including blanking, sync, chroma, and color burst signals. In essence, with each core you can use software to set
up the VSU units, then the unit will send out data representing one portion or “chunk” of the video signal, then you feed it
more. Therefore, you have to know how to generate NTSC, PAL, or VGA yourself, but the VSU helps and offloads a lot of
the timing and critical coding you would need to do usually.

Alas, once again, you don’t have to worry about this. Myself, and numerous other programmers have written countless
video drivers for the Propeller chip. Everything from bitmap graphics, text modes, to sprite engines. So if you want
graphics, you just find a driver, add it to your program and then make calls to it. More on this later when we learn how to
modify the Chameleon drivers at the end of the manual.

1.4. System Startup and Reset Details

The Chameleon AVR has no operating system or external peripherals that need initialization, thus the AVR 328P more or
less is the entire “system”. When the AVR powers up out of reset, it will either load the boot loader (if there is one), or
begin execution from the primary application memory of the FLASH. The initial configuration of the chip is defined by the
“fuse” bit settings which are controlled by the programming of the chip. In our case, the fuse settings are mostly default,
with the Arduino boot loader and set to clock from an external high speed xtal. We will discuss exact details when we get
to the software and IDE configuration. Once the AVR 328P boots and starts executing code, whatever is in the application
program area is executed, simple as that.

While this is all happening the Propeller chip boots as well and will start up doing whatever its programmed to do.
Normally, this will be to load the default SPI driver system and “wait” for commands from the AVR. However, there is no
reason the Propeller couldn’t be programmed with a game, or other application and ignore the commands on the agreed
to SPI interface pins. Therefore, the Chameleon can be used as a stand alone AVR or Propeller controller if you wish.
However, the point is to use them together than leverage their strong points; the AVR’s simple programming model,
C/C++ support, huge library of software and customer base along with the multicore support of the Propeller and its ability
to run multiple tasks at once as well as its special ability to generate video

With that in mind, now let’s discuss every one of the hardware modules in the design.

Part I - Hardware Design Primer

In this section, we are going to cover every one of the Chameleon AVR’s hardware sub-sections, so you can get an idea
of what’s going on and how the systems and signals are routed. Taken as a whole the Chameleon is rather complex, but
as you will see, each individual sub-system is rather straightforward. Let’s begin with a birds eye view of the entire system
schematic on the next page in landscape mode (Figure 2.1a). Please take a good look at it, and see if you can locate the
AVR, Propeller, FLASH memory, EEPROM, and power supplies to help with our discussions. Then right under it in Figure
2.1(b) is a PCB view so you can see where everything is as well as a clear view of the I/O headers in black and white with
high contrast. The board is so small its, a bit hard to see things.

Figure 2.1(a) – The complete Chameleon AVR 8-bit schematic.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 27

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 28

Figure 2.1(b) – The complete Chameleon AVR 8-bit PCB layout.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 29

2.0 5.0V & 3.3V Power Supplies

Figure 2.1 – The Chameleon AVR power supply design.

The Chameleon AVR system has a duel 3.3V / 5.0V power supply system that is feed by a single 9V DC unregulated
input from a wall adapter or feeds from the USB port header. The supplies design is shown in Figure 3.1 for reference.
The supplies are straight forward, the only interesting thing is the coupling of the USB power and the regulated power at
node 1 of the power switch SW1. This allows the system to use power from either the regulated supply or the USB port.
The Chameleon AVR is a mixed voltage system to support 5V AVR and 3.3V Propeller chip. Both supplies are
independent and can each supply up to 500 mA for all your needs. Additionally, the power supplies are exported to the
expansion header J7 for external interfacing.

3.0 Reset Circuit

Figure 3.1 – The Chameleon AVR reset circuit.

The Chameleon AVR can be reset externally via a number of sources including the reset switch SW2, the ISP
programming port as well as pressing as thru the DTR or RTS lines of the USB UART. The reset circuitry on the AVR

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 30

328P and Propeller don’t require much conditioning, thus the manual reset circuit is nothing more than a switch and a pull
up resistor as shown in Figure 3.1. Typically, you will reset the system yourself via the reset button (next to the AVR), but
the Propeller tool as well as the Arduino tool both use the serial port lines DTR to control the reset of the respective chips
during programming.

4.0 Atmel 6-Pin ISP Programming Port

The Chameleon AVR has two different programming ports:

� 6-pin ISP (In System Programming) port used to program the AVR chip directly
� USB UART used to program the AVR (with bootloader) as well as Propeller chip.

For more technical information on these ports and protocols please refer to these documents on the DVD:

DVD-ROM:\ CHAM_AVR \ DOCS \ ISP_JTAG \ ATAVRISPUserGuide.pdf
DVD-ROM:\ CHAM_AVR \ DOCS \ ISP_JTAG \ AVR_JTAG_ICE_USER_MANUAL_DOC2475.pdf

Let’s discuss both programming ports and their relevance beginning with AVR’s built in ISP port.

4.1 AVR ISP Programming Port

The ISP port is for programming the AVR chip only. Atmel and other 3

rd
 party manufacturers sell programmers that are

compatible with AVR Studio. The AVR product called the “AVR ISP MKII” is typically used from the Atmel line of products
as shown in Figure 4.1.

Figure 4.1 – The Atmel AVR ISP MKII programmer.

The interface is typically 6-pin, but some hardware uses a 10-pin interface as well. The ISP interface was designed to be
controlled by either a simple RS-232 or parallel interface with a modicum of hardware. The Chameleon AVR, uses the 6-
pin interface variant as shown in Figure 4.2(a) (located right below the Propeller I/O port header).

Figure 4.2 – Diagram of the AVR ISP interfaces.

The ISP programming port is directly connected to the AVR chip’s SPI (Serial Peripheral Interface) interface and consists
of the following signals as shown in Table 4.1.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 31

Table 4.1 – AVR ISP signals.

Signal 6-pin 10-pin I/O Description

MISO 1 9 Input Data from target AVR to AVR ISP.
MOSI 4 1 Output Data from AVR ISP to target.
SCK 3 7 Output Serial clock from AVR ISP.
RESET 5 5 Output Reset from AVR ISP.
VTG 2 2 POWER Power from target to power AVR ISP (< 50mA).
GND 6 3,4,6,8,10 POWER System ground.

The ISP protocol supports little more than reading and writing AVR (FLASH and EEPROM), resetting it, manipulating the
“fuse” register settings and so forth. Debugging is NOT supported. However, you can build a AVR ISP programmer fairly
easy and lots of schematics and designs are on internet that need only a RS-232 or parallel port. However, the Atmel
product is USB based for speed.

TIP
The AVR ISP uses the primary SPI interface on the AVR, therefore, if you have anything
connected to the SPI pins on the interface headers you might need to remove it during
ISP programming, so you don’t have conflicts.

Figure 4.3 – The Chameleon ISP programming interface schematics.

Figure 4.3 shows the actual circuitry for the ISP interface. As you can see its fairly straightforward. Nothing more than the
port header routed to the proper pins and a bypass cap on the power signals. Also, the ISP programmer pulls its power
from the Chameleon which is on the order of 50mA.

5.0 Serial USB UART Programming Port

The Propeller chip as well as the AVR can also be programmed via the serial USB UART. The Propeller uses serial to
communicate as default; however, the AVR uses serial only when there is a “bootloader” programmed into the AVR that
“listens” to the serial port and there is a protocol in place as well as tool on the other end that follow the protocol
agreement to re-program the FLASH. Therefore, the native method to re-program the Propeller is via the serial
connection, but the AVR is typically re-programmed via the USP port, thus the serial re-programming is a trick/hack that is
simply supported by a bootloader that supports it. With that in mind, the next section cover the USB UART design, but
before we take a look at that there is one sub-section of the design we need to look at and that’s the serial port “routing”
switch shown in Figure 5.1.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 32

Figure 5.1 – Serial port routing/selector switch.

The USB UART has a standard TX/RX serial line pair. But, there are two targets we need these to go to; the Propeller
chip and the AVR, thus, we just can’t connect them in parallel since if both the Propeller and AVR try to transmit at the
same time then there will obviously be a problem. Moreover, the impedance reflected by tying the TX/RX to both devices
is not desired. Thus, a mechanical switch SW3 is used to switch the RX lines which at very least are needed to allow both
devices to share the serial port. Therefore, when you want to talk to the Propeller chip via the USB serial port you must
place the switch into the Propeller mode (UP), and similarly when you want to talk to the AVR you must put the switch into
the AVR mode (DOWN).

TIP

Typically, you will leave the switch in down (AVR mode) most of the time unless you are
constantly re-programming the driver on the Propeller chip.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 33

6.0 USB Serial UART

Figure 6.1 – The FTDI USB to Serial UART.

Referring to Figure 6.1, this is the USB to serial converter designed into the Chameleon AVR. Its based on a FTDI
FT232R USB to serial UART chip. The chip works by converting a USB packet stream into a standard serial port signal
set. Of course, the other end of the USB cable has to be plugged in a PC running the custom FTDI USB drivers that
create “virtual” COM ports from the operating system’s perspective, but other than that. This magical little chip let’s us talk
serial to the Chameleon with a USB port. FTDI has written drivers for Windows, Linux, and Mac OS X, so these chips are
quite popular since its very difficult to find a real DB9 RS-232 serial port on a PC anymore. You can take a look at the data
sheet for the chip here:

DVD-ROM: \ CHAM_AVR \ DOCS \ DATASHEETS \ DS_FT232R.pdf

Considering all that, let’s take a quick look at the design. The USB cable from the PC plugs into H1 (which is a Mini-B
USB header) the USB packets are converted into a serial stream by the chip and the standard RS-232 signals are
generated by the chip. We are only interested in TX/RX and DTR (data terminal ready) which is used to reset the
Propeller and AVR by both the Propeller tool and Arduino tools respectively. The TX/RX signals are routed to both the
Propeller and AVR chips where they are interfaced to the appropriate I/O pins. Additionally, at the top of the schematic
you see the signal USB_5VOUT, this is the power coming in from the USB port header, this is routed to the system as 5V
power when there is no external 9V supply plugged in. However, if you are going to use the Chameleon without a 9V
power supply and power it from the USB port, I highly recommend you use a powered USB hub since the Chameleon will
draw up to 200mA or more as it throttles its performance and powers up all its peripherals.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 34

7.0 Atmel AVR 328P Subsystem

Figure 7.1 – The AVR 328P Subsystem (not including SPI mux).

Referring to Figure 7.1, you can see the schematic refers to the ATMega 168 in the notation, this is because the 168 and
328 are 100% compatible, but the 328P has 2X the FLASH and RAM. Thus, when we started the design only the 168 was
available. Moving on, the chip is very simple to interface, just power and an external XTAL (which is removable) at 16
MHz. Take note of the SPI interface lines on the right, these are very important since they are used to communicate with
the Propeller chip as well as the on board 1MB FLASH.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 35

8.0 Parallax Propeller Subsystem

Figure 8.1 – The Propeller Subsystem.

Figure 8.1 depicts the entire Propeller chip subsystem. It consists of the Propeller chip itself (QFP package), the 64K I

2
C

serial EEPROM for program storage, a single LED, and the Propeller Port I/O header at J8. Additionally, the Propeller is
clocked by a 5 MHz nominal XTAL at X1. The only thing interesting about the design is the free Propeller Local Port at J8,
it connects to Propeller I/O pins P0…P7. Thus, you can connect other devices to this header, or potentially drive another
NTSC/PAL/VGA video device or you can just use it at 8 more digital I/O ports. Lastly, the Propeller chip only needs a 32K
EEPROM to load its runtime image into its local SRAM, however, we are using a 64K EEPROM which not only allows 2
images, but potentially a single image with additional program assets like graphics, sound, or code.

8.1 The Propeller Local 8-Bit I/O Port

The Propeller Local Port is an 8-bit port consisting of 8 free digital I/O pins from P0…P7 on the Propeller chip. You can do
anything you want with the port. You can even power devices from the port by using some of the pins as power and virtual
ground. The Propeller can source up to 40mA per pin, so if you tie 2 lines together and set them HIGH, you can source up
to 80mA, more than enough for most applications.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 36

9.0 The SPI Bus and Communications System

Figure 9.1 – The SPI multiplexer design.

The Chameleon uses SPI (serial peripheral interface) communications as the electrical communications interface to the
Propeller chip as well as the on board 1MB FLASH memory. The idea was we wanted to interface the AVR with both the
Propeller and the FLASH. The Propeller has no communications peripherals, so we could use anything we wanted; 2
lines, 4 lines, etc. and any kind of protocol we wished. However, since the FLASH memory was SPI, and there are 1000’s
of SPI devices out there, we decided to create a virtual SPI interface/driver for the Propeller and let it act as a SPI slave
device. With this design decision then we can communication with the Propeller, FLASH and any other external SPI
devices all with the AVR’s built in hardware (very fast) and we have a nice clean communications bus for everything. The
only challenge was supporting enough SPI devices, so the design uses a couple AVR I/O pins as chip selects for a
multiplexer. Referring to Figure 2.10, the idea is you place a 2-bit code on a pair of I/O pins (AIN2, AIN3) which are fed
into a 74138 decoder, this gives us 4 active low chip select signals (SPI_SS0n…SPI_SS3n) which we can export out to 4
SPI devices on the bus!

Referring to the schematic SPI_SS3n chip selects the FLASH. And if you look back a page or two at the Propeller
schematic on the left hand side locate the SPI signals, you will see that the Propeller uses SPI_SS2n as its chip select
respectively. The remaining chip selects (SPI_SS0n, SPI_SS1n) are exported out to the interface header J6 on pins (7,8)
respectively. So, you can hook up 2 more SPI devices easily with the MISO, MOSI, SCLK lines and then connect on of
the aforementioned SPI selects to enable it. All the other SPI devices will be disabled and thus no bus contingency issues.

10.0 VGA Graphics Hardware

In this chapter, we are going to take a look at the VGA hardware on the Chameleon AVR. The VGA hardware is very
simple consisting of little more than (8) I/O lines, and (3) D/A converters based on resistors. The Propeller chip does all
the work generating the VGA signal, but its nice to understand what’s going on, so we are going to briefly take a look at
the VGA specification, so you have a conversational understanding of it if you haven’t programmed direct VGA before and
why VGA is both good and bad from a video generation point of view. So, here’s what’s in store:

� Origins of VGA.
� Chameleon AVR VGA hardware design.
� VGA signal primer.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 37

10.1 Origins of the VGA

Before we start into the design, let’s get some history and terminology correct. First, the last time I saw a real VGA
monitor was about 20 years ago, the new 21

st
 century monitors that you are used to are super-sets of VGA, they are

typically multisync, variable refresh, and can go up to 2400x2400 or more. The “VGA” specification is more of a base point
than anything anyone actually uses anymore. IBM released the VGA or “Video Graphics Array” technology in 1987
roughly. It was touted to change the world (definitely an improvement from CGA and EGA), but it was doomed from the
start with not enough resolution, shortly after, higher resolution monitors were available and the VGA specification was
enhanced with the Super VGA standard, but this was only a momentary hold on its execution, what was needed was a
more progressive standard that could change at any time, and thus the VESA “Video Electronics Standard
Association” graphics cards and drivers were created and the rest is history. However, the original specs for the VGA
are shown below.

� 256 KB Video RAM.
� 16-color and 256-color modes.
� 262,144-value color palette (six bits each for red, green, and blue).
� Selectable 25 MHz or 28 MHz master clock.
� Maximum of 720 horizontal pixels.
� Maximum of 480 lines.
� Refresh rates up to 70 Hz.
� Planar mode: up to 16 colors (4 bit planes).
� Packed-pixel mode: 256 colors, 1-byte per pixel (Mode 13h).
� Hardware smooth scrolling support.
� Some "raster operations" (Raster Ops) support to perform bitmap composition algorithms.
� Barrel shifter in hardware.
� Split screen support.
� Soft fonts.
� Supports both bitmapped and alphanumeric text modes.

Standard graphics modes supported by VGA are:

� 640×480 in 16 colors.
� 640×350 in 16 colors.
� 320×200 in 16 colors.
� 320×200 in 256 colors (Mode 13h, "chunky graphics mode").

I spent many years writing graphics algorithms and drivers for VGA cards to push them to the outer limit; now, my cell
phone has better graphics! However, the VGA spec is great for baseline computer displays and any standard modern
computer monitor will display old school 640x480 VGA modes and refresh rates. However, the Propeller chip can
generate VGA modes at much higher resolutions and there are a number of multicore hi-resolution drivers that you can
employ that go all the way up to 1200x1024 or greater last time I checked on the Parallax Object Exchange. You can
use any of these drivers with the Chameleon! You just need to modify the Propeller driver module, include the new VGA
drivers, make connections to it via commands, and you are off and running.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 38

10.2 VGA Hardware Interface

Figure 10.1 – The Chameleon AVR VGA interface and support hardware.

The VGA hardware for the Chameleon is very minimal since the Propeller chip is doing all the signal generation with direct
control of the VGA signal via its built in VSU (video streaming unit). Of course, someone still has to write a driver for the
VGA to work on the Propeller, but that’s been done 100x. Referring to Figure 10.1, you see that there are 8 signals
connected to the VGA port, Table 10.1 shows the relationship between I/O port bits and signals.

There are 2-bits for each channel; Red, Green, and Blue as well as a single bit for HSYNC and VSYNC which are TTL
level. These outputs are connected directly to the HD15 connector via a series of 2-bit D/A converters that sum each 2-bit
channel pair (R1, R0), (G1, G0), and (B1, B0) and directly interface the sync bits. The VGA spec dictates that for each
channel 0% intensity is 0.0V and 100% intensity is 1.0V (some references use 0.7V). Also, each channel input to the VGA
monitor itself per input has a nominal impedance of 75 Ohms (similar to the NTSC input impedance).

Table 10.1 – The Video Hardware.
e Port Mapping Bits.

Prop Port Bit Chameleon Signal Description

P23 VGA_RED_B1 Bit 0 of RED channel.
P22 VGA_RED_B0 Bit 1 of RED channel.
P21 VGA_GREEN_B1 Bit 0 of GREEN channel.
P20 VGA_GREEN_B0 Bit 1 of GREEN channel.
P19 VGA_BLUE_B1 Bit 0 of BLUE channel.
P18 VGA_BLUE_B0 Bit 1 of BLUE channel.

P17 VGA_HSYNC VGA HSYNC TTL level.
P16 VGA_VSYNC VGA VSYNC TTL level.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 39

Figure 10.2 – Electrical model of VGA inputs and 2-bit D/A channels.

Therefore, from the D/A’s perspective with both bits on, the circuit looks like that shown in Figure 10.2 (for any particular
channel; R, G, or B). Noting, that the Propeller is a 3.3V device with both channel bits HIGH, that means that we have a
270 Ohm in parallel with a 560 Ohm and this combination in series with the intrinsic impedance of 75 Ohms of the VGA,
thus, we can do a simple computation to compute the voltage at the 75 Ohm VGA input realizing we have a voltage
divider configuration:

 VGA_IN_RED = 3.3V * 75 Ohm / ((270 Ohm || 560 Ohm) + 75 Ohm) = 0.95V

Which is what we desire, performing similar math for all 4 combinations of inputs we get the results shown in Table 10.2
for codes.

Table 10.2 – VGA input voltages for all 2-bit inputs.

B1 B0 Code VGA Voltage Description

0 0 0 0.0V Black
0 1 1 0.30V Dark Gray
1 0 2 0.64V Gray
1 1 3 0.95V White

Considering there are 4 shades of each channel; R, G, and B that means that there are a total of 4*4*4 = 64 colors
available in VGA mode (without any tricks). Not bad! For reference, the VGA connector has the following pin out shown in
Table 10.3. The VGA port on the Chameleon AVR is a female HD15 (High Density) which is standard on the back of video
card hardware. It will connect to any VGA monitor, but be careful when making connections, it’s a special “low profile”
connector and not that sturdy, so hold it when you plug the VGA cable into it.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 40

Table 10.3 - VGA female header pin out (HD15)

Pin Function Color Code (most manufactures)

1 RED Video BLACK
2 GREEN Video BLACK/WHITE

3 BLUE Video BROWN
4 RESERVED BROWN/WHITE
5 -GROUND RED+SHIELD
6 -RED Ground ORANGE
7 -GREEN Ground YELLOW
8 -BLUE Ground MINT GREEN
9 NC NC
10 -GROUND GREEN
11 ID0 (Ground) BLUE
12 ID1 (NC) PURPLE
13 VSYNC GREY
14 HSYNC WHITE
15 NC SHRIMP

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 41

10.3 VGA Signal Primer

The VGA standard is much easier to understand that the NTSC standard is, in fact, using a visual explanation (Figure
10.3) is usually all people need to see, but still there are some gotcha’s so we are going to discuss them as well in the
brief primer. To start, the actual important signals you need to generate for VGA are (referring to Table 10.3 are) Red,
Green, and Blue video as well as Hsync and Vsync. The R,G,B signals are analog voltages representing the
instantaneous intensity of any particular channel and range from 0-1.0V, the Hsync and Vsync are simply TTL signals,
usually active LOW (but these can be inverted on most monitors) where a logic LOW is sync, and a logic HIGH is no sync.
Now, let’s look more closely at the signal itself.

Figure 10.3 – The VGA timing specifications.

To begin with the VGA standard as implemented is 640x480 pixels across as shown in Figure 2.13(a). The image is
rendered left to right, top to bottom, similarly to the NTSC/PAL signals, and thus a similar syncing scheme is used that is
composed of both a horizontal sync pulse each line and a vertical sync pulse each frame. However, there are no color
burst signals, serrations, pre-equalizations pulses, etc. the interface is nearly digital as noted.

The dot clock used in a basic VGA generation system is 25.175 MHz, all timing can be derived from this base frequency.
Typically, designers like to run the system dot clock at this frequency and compute all events as a number of clocks, for
example, getting ahead of myself, take a look at Figure 10.3(b), the Hsync pulse which is labeled “B” in the table (and a

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 42

negative polarity), its 3.77us, therefore at a dot clock of 25.175 MHz, or inverting this to get the period time we get
39.72194638 ns. This is how long a pixel takes, anyway, dividing this into our Hsync time we get:

Number of dot clocks for Hsync pulse = 3.77 µs / 39.72194638 ns = 94.90 clocks.

Call it 95 dot clocks, thus you can simply use a counter and count 95 clocks, drive Hsync LOW and that it. The entire VGA
signal can be generated like this. Of course, the tough part is when you get to video, here you only have roughly 39
nanoseconds to do whatever you are going to do, this amounts to more or less doing nothing, but accessing a video
buffer as fast as you can and getting the next data word ready to build the pixel.

NOTE

You might be wondering where the 25.175 MHz clock is generated on the Chameleon?
Well, the Propeller chip is generating the signal and it has internal counters and PLLs
that generate the 25.175 MHz signal for us.

10.3.1 VGA Horizontal Timing

Referring to Figure 2.13(b), each of the 480 lines of video are composed of the following standard named regions:

� A (31.77 µs) Scanline time.
� B (3.77 µs) HSync pulse.
� C (1.89 µs) Back porch.
� D (25.17 µs) Active video time.
� E (0.94 µs) Front porch.

As you can see even the names are similar to NTSC. However, unlike NSTC, VGA is very unforgiving you must follow the
spec more closely otherwise the monitor’s will typically ignore the signal. The next interesting thing is that all the signals
are riding on different lines. For example, the hsync and vsync both have their own signal lines, and the R,G, and B
signals do as well, so its much easier to generate all the signals in a large state machine and then route them to the
output ports as a single byte wide stream of data.

TIP

Even though, VGA is 640x480 that doesn’t mean that you have to put out 640x480
pixels and stream video at that rate. The Propeller chip for example only has 32K bytes
of memory, thus a full frame buffer with one byte per pixel would require 307,200 bytes!
Therefore, the idea is to use tile graphics modes, or reduced resolution modes, but still
conforming to the VGA timing constraints.

Therefore, to generate a line of video (with a negative sync polarity), you start by turning off all the R, G, B channels with a
0.0V, and simply hold the hsync line LOW for 3.77 µs (B), then you wait 1.89 µs (C) and the VGA is ready to take R, G, B
data, now you clock out 640 pixels at 25.175 MHz for a total time of 25.17 µs (D) for the active video portion. You then
turn the video lines R, G, B off, and wait 0.94 µs (E) and then start the process again. And that’s all there is too it. Perform
this process 480 times then its time for a vertical sync and retrace, let’s look at that.

10.3.2 VGA Vertical Timing

The vertical sync and retrace is much easier than the horizontal timing since there is no video to interleave in the signal.
Referring to Figure 8.3 (c) the various named timing regions of the vertical timing are:

O (16.68 ms) Total frame time
P (64 µs) Vsync pulse.
Q (1.02 ms) Back porch
R (15.25 ms) Active video time.
S (0.35 ms) Front porch.

The meaning of each is similar to that in the horizontal sync period, except the “event” they are focused around are the
480 lines of active video, so the 480 lines are encapsulated in (R). The most important thing to realize is that these times
are in measured in milliseconds for the most part except for the Vsync pulse. So once again, the timing of an entire frame
starts off with the Vsync pulse (P) for 64 µs, after which comes the back porch (Q) for 1.02 ms, followed by the active
video (R) for 15.25 ms. During the active video you don’t need to worry about the Vsync line since you would be

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 43

generating 480 lines of video, when complete, back to the Vsync timing region (S) the front porch for 0.35 ms and then the
frame is complete.

The thing to remember is that unlike composite video, a VGA signal needs to be driven by multiple signals for each of the
constituent controls; R, G, B, Hsync, and VSync which in my opinion is much easier than modulating and mixing them all
together as in NTSC which is a blood bath of crosstalk and noise! Now, that we have the horizontal and vertical timing for
VGA covered, let’s review the actual video data portion of the signal during the active video and see what that’s all about.

Table 10.4 – The RGB signals and their relationship to VGA and the Propeller I/O pins.
e Port Mapping Bits.

Prop Port Bit Chameleon Signal Description

P23 VGA_RED_B1 Bit 1 of RED channel.
P22 VGA_RED_B0 Bit 0 of RED channel.
P21 VGA_GREEN_B1 Bit 1 of GREEN channel.
P20 VGA_GREEN_B0 Bit 0 of GREEN channel.
P19 VGA_BLUE_B1 Bit 1 of BLUE channel.
P18 VGA_BLUE_B0 Bit 0 of BLUE channel.

P17 VGA_HSYNC VGA HSYNC TTL level.
P16 VGA_VSYNC VGA VSYNC TTL level.

10.3.3 Generating the Active VGA Video

Generating the actual RGB video pixels is trivial on any system, there is no look up, no math, just send out bytes or words
that represent the RGB values and that’s it. Of course the Propeller will do this for us via the VSU and a driver, but there is
no reason you can’t drive the I/O pins manually with pure software as well. Either way, let’s take a look at the mechanics
of the signal. On the Chameleon AVR for example, there are 2-bits per channel, so the encoding of the VGA data byte is
as simple as generating bytes in the format shown in Figure 10.4.

Figure 10.4 – VGA data byte encoding.

I/O P23 P22 P21 P20 P19 P18 P17 P16 P23 P22 P21 P20 P19 P18 P17 P16 P23 P22 P21 P20 P19 P18 P17 P16 P23 P22 P21 P20 P19 P18 P17 P16
 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
 | R1 | R0 | G1 | G0 | B1 | B0 | VSYNC | HSYNC |
 | Red Red Red Red SignalSignalSignalSignal | Green SignalGreen SignalGreen SignalGreen Signal | BlueBlueBlueBlue Signal Signal Signal Signal | Sync SignalsSync SignalsSync SignalsSync Signals |

Let’s say that we have a BYTE buffer called vga_byte[] and a function Write_VGA(value, time_us) that we use to send
data to the VGA port, given that, we can write all kinds of functions that send out different signals as long as we stream
the bytes to the port at the 25.175MHz rate everything will work out fine. For example, say that we are working with a
positive sync system, that is a VGA monitor that wants a TTL HIGH for sync, then to generate a Hsync pulse we could
use some pseudo-code like this:

vga_byte = 0b00000010;
Write_VGA(vga_byte, 3.77);

Ok, now consider we want to draw 640 pixels from an array video_buffer[] that is storing the pixel data in byte format
already in the proper format for our hardware, then all we would do is this:

UCHAR video_buffer[640]; // pre-initialized video buffer

for (pixel = 0; pixel < 640; pixel++)
 Write_VGA(video_buffer[pixel], 0.039721946);

Of course, you would need some might fast hardware to delay at a resolution of 39 ns, but you get the idea. This is a
“model” of the algorithm for a line of video, this coupled with the model for the horizontal timing, vertical timing, and put it
all together as a state machine and you have a VGA generator! The VGA drivers on the Propeller are more complex than
this of course, but that’s the idea.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 44

11.0 NTSC/PAL Composite Video Hardware

To begin with there are many online and written sources for NTSC, the primary online resource is located here:

http://www.ntsc-tv.com/

At the end of the discussion on NTSC there is a list of other resources as well.

Figure 11.1 – The Chameleon AVR composite video hardware.

11.1 Video Hardware Interface

Referring to Figure 11.1, the composite video generation hardware consists nothing more than a crude 3-bit D/A converter
(summing circuit) along with a single signal for audio summed with the node as well. The real magic of the video
generation is up to the Propeller chip, it not only generates the luma (brightness), but the chroma (color) in the proper
format and timing for whatever the desired protocol is (NTSC or PAL).

The Propeller chip video hardware is designed to be interfaced to a simple 3-bit DAC with the resistance values chosen
and shown above in the figure. Table 11.1 shows the signal relationship to the Propeller I/O signals.

Table 11.1 – The Video Hardware.
e Port Mapping Bits.

Prop Port Bit Chameleon Signal Description

P12 VIDEO_0 Bit 0 of the overall composite video signal (contains both LUMA and CHROMA).
P13 VIDEO_1 Bit 1 of the overall composite video signal (contains both LUMA and CHROMA).
P14 VIDEO_2 Bit 2 of the overall composite video signal (contains both LUMA and CHROMA).
P15 AURAL_0 Single “aural” audio bit used when transmitting broadcast video.

There are 3-bits of D/A conversion for the overall composite video signal VIDEO_0-3 thus giving a total of 8 different
overall LUMA values; however, a number of them at the low scale of the range must be used to jump from “sync level”
0.0V to “black level” 0.25 - 0.3V. For example if the entire D/A range is 1.0V then 0.3 / 1.0 = 30%, 30% of 7 is 2, thus the
3-bit value of 0 is sync while the 4-bit value of 2 is black, leaving us with only the values 3-7 or 5 different intensity levels.
Additionally, since the chroma signal rides on top of the luma signal there is yet another constraint since the chroma need
to have a peak to peak of at least 2 units, this in fact, we can only drive the video signal to a value of 6, so the Propeller’s
chroma hardware can twiddle the luma +-1 to obtain the chroma. However, in fact most drivers simply use 0 as sync, 1 as
black, then values 1…6 as shades of gray. This gives us a total luma range of 6 values and still allows color to work which
the Propeller is designed to be able output 16 phase shifts of the color burst. This gives a total color/luma range of 16*6 =
96 colors without resorting to tricks. If you are really interested in how to write graphics drivers you should peruse the
source code of the various graphics drivers written by various authors for the Propeller. Additionally, the only reference
book that explains in detail how the graphics system works is “Game Programming for the Propeller Powered
HYDRA” which you can find on Amazon.com, Parallax.com, and XGameStation.com. There is also some minimal

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 45

coverage of the Propeller’s graphics hardware (transcribed from the HYDRA book) in the Propeller Manual itself located
on the DVD here:

DVD-ROM: \ CHAM_AVR \ DOCS \ PROPELLER \ Propeller_Manual_WebPM-v1.1.pdf

Now let’s discuss a little bit about NTSC video signal generation.

Figure 11.2 - Horizontal scan versus display brightness

NOTE

“IRE” is an arbitrary unit that relates to the voltage of the video signal, 100 IRE = 1.0V
these days; however, previously 140 IRE 1.0V. There is an EXACT spec for broadcast,
but many video generation hardware units assume a total of 1.0V for the total SYNC ->
WHITE video amplitude peak-peak voltage.

11.2 Introduction to NTSC Video

A video image is "drawn" on a television or computer display screen by sweeping an electrical signal (that controls a
beam of electrons that strike the screen’s phosphor surface) horizontally across the display one line at a time. The
amplitude of this signal versus time represents the instantaneous brightness at that physical point on the display. Figure
11.2 illustrates the signal amplitude relationship to the brightness on the display.

At the end of each line, there is a portion of the waveform (horizontal blanking interval) that instructs the scanning circuit in
the display to retrace to the left edge of the display and then start scanning the next line. Starting at the top, all of the lines
on the display are scanned in this way. One complete set of lines makes a frame. Once the first complete frame is
scanned, there is another portion of the waveform (vertical blanking interval, not shown) that tells the scanning circuit to
retrace to the top of the display and start scanning the next frame, or picture. This sequence is repeated at a fast enough
rate so that the displayed images are perceived to have continuous motion.

11.2.1 Interlaced versus Progressive Scans

These are two different types of scanning systems. They differ in the technique used to "render" the picture on the screen.
Television signals and compatible displays are typically interlaced, and computer signals and compatible displays are
typically progressive scan (non-interlaced). These two formats are incompatible with each other; one would need to be
converted to the other before any common processing could be done. Interlaced scanning is where each picture, referred
to as a frame, is divided into two separate sub-pictures, referred to as fields.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 46

Two fields make up a single frame. An interlaced picture is painted on the screen in two passes, by first scanning the
horizontal lines of the first field and then retracing to the top of the screen and then scanning the horizontal lines for the
second field in-between the first set. Field 1 consists of lines 1 through 262 1/2, and field 2 consists of lines 262 1/2
through 525. The interlaced principle is illustrated in Figure 11.3. Only a few lines at the top and the bottom of each field
are shown.

NOTE

Most computer displays that output to TVs are progressive scans, that is, they draw a
single frame 60 times a second without interlacing. However, some computers and
game systems do put out interlaced video. The old Amiga computer was one such
example that had an interlaced video mode option to double the number of scanlines.

Figure 11.3 - Interlaced scanning system.

A progressive, or non-interlaced, picture is painted on the screen by scanning all of the horizontal lines of the picture in
one pass from the top to the bottom. This is illustrated in Figure 11.4.

Figure 11.4 - Progressive (non-interlaced) scanning system.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 47

11.2.2 Video Formats and Interfaces

There are many different kinds of video signals, which can be divided into either two classes; those for television and
those for computer displays. The format of television signals varies from country to country. In the United States and
Japan, the NTSC format is used. NTSC stands for National Television Systems Committee, which is the name of the
organization that developed the standard. In Europe, the PAL format is common. PAL (phase alternating line), developed
after NTSC, is an improvement over NTSC. SECAM is used in France and stands for sequential coleur avec memoire
(color with memory). It should be noted that there is a total of about 15 different sub-formats contained within these three
general formats. Each of the formats is generally not compatible with the others. Although they all utilize the same basic
scanning system and represent color with a type of phase modulation, they differ in specific scanning frequencies, number
of scan lines, and color modulation techniques, among others. The various computer formats (such as VGA, SVGA, XGA)
also differ substantially, with the primary difference in the scan frequencies and resolutions. These differences do not
cause as much concern, because most computer equipment is now designed to handle variable scan rates (multisync
monitors are now the de-facto standard). This compatibility is a major advantage for computer formats in that media, and
content can be interchanged on a global basis. Table 11.2 lists some of the more popular formats along with comparisons
of their specifications.

Table 11.2 - Typical Frequencies for Common TV and Computer Video Formats.

Video Format NTSC PAL HDTV/SDTV VGA XGA

Description
Television Format
for North America

and Japan

Television Format
for Most of Europe
and South America

High Definition/
Standard Definition
Digital Television

Format

Video
Graphics

Array (PC)

Extended
Graphics

Array (PC)

Vertical Resolution
Format (visible
lines per frame)

Approx 480 (525
total lines)

Approx 575 (625
total lines)

1080 or 720 or 480;
18 different formats

480 768

Horizontal
Resolution Format
(visible pixels per
line)

Determined by
bandwidth, ranges

from 320 to 650

Determined by
bandwidth, ranges

from 320 to 720

1920 or 704 or 640;
18 different formats

640 1024

Horizontal Rate
(kHz)

15.734 15.625 33.75-45 31.5 60

Vertical Frame
Rate (Hz)

29.97 25 30-60 60-80 60-80

Highest
Frequency (MHz)

4.2 5.5 25 15.3 40.7

Of course, not listed in the table are HDMI video modes. These are a whole other ballgame, but are very similar to XGA
modes and higher.

11.2.3. Composite Color Video Blanking Sync Interface

Composite signals are the most commonly used analog video interface for NTSC/PAL. Composite video is also referred to
as CVBS, which stands for color, video, blanking, and sync, or composite video baseband signal. It combines the
brightness information (luma), the color information (chroma), and the synchronizing signals on just one cable. The
connector is typically an RCA jack. This is the same connector as that used for standard line level audio connections. S-
video of course is slightly cleaner since the analog mixing of chroma and luma does NOT take place. A typical waveform
of an all-white NTSC composite video signal is shown in Figure 11.5 (a).

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 48

Figure 11.5 (a) - NTSC composite video waveform.

This figure depicts the portion of the signal that represents one horizontal scan line. Each line is made up of the active
video portion and the horizontal blanking portion. The active video portion contains the picture brightness (luma) and color
(chroma) information. The brightness information is the instantaneous amplitude at any point in time. The unit of measure
for the amplitude is in terms of an IRE unit. IRE is an arbitrary unit where 140 IRE = 1Vp-p (or sometimes 1.4Vp-p). From
the figure, you can see that the voltage during the active video portion would yield a bright-white picture for this horizontal
scan line, whereas the horizontal blanking portion would be displayed as black and therefore not seen on the screen.
Please refer back to Figure 11.3..4 for a pictorial explanation. Some video systems (NTSC only) use something called
"setup," which places reference black a point equal to 7.5 IRE or about 54mV above the blanking level.

Figure 11.6 (b) - NTSC composite video waveform.

Figure 11.6 (b) depicts yet another timing drawing the NTSC video signal, this time, more formally labeled at the RS-170A
color standard created in the early 1950’s as the successor to the B/W only RS-170 standard created 1941.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 49

11.2.4 Color Encoding

Color information is superimposed on top of the luma (brightness) signal and is a sine wave with the colors identified by a
specific phase difference between it and the color-burst reference phase at the beginning of each scanline. This can be
seen in Figure 11.6(c), which shows a horizontal scan line of color bars.

Figure 11.6 (c) - Composite Video Waveform of the Color Bars.

The amplitude of the modulation is proportional to the amount of color (or saturation), and the phase information denotes
the tint (or hue) of the color. The horizontal blanking portion contains the horizontal synchronizing pulse (sync pulse) as
well as the color reference (color burst) located just after the rising edge of the sync pulse (called the "back porch"). It is
important to note here that the horizontal blanking portion of the signal is positioned in time such that it is not visible on the
display screen.

11.2.5 Putting it All Together

Generating a NTSC (or PAL) signal means controlling the signal into the TV such that all the timing specifications are met.
There are a number of aspects that must be taken into consideration to achieve this successfully. However, one important
detail is that the video signal does not have to be perfect, that is, the timings can be slightly off per line, per frame, per
color burst, etc. nevertheless, the amount of “slack” must be consistent. In general here are the steps to generating an
NTSC signal.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 50

Figure 11.7 – NTSC “Super Frame” video signal reference for NTSC frame construction.

11.2.5.1 Frame Construction

Referring to Figure 11.7. This diagram represents the NTSC color “Super Frame”. The complete NTSC spec actually has
4 fields per super frame (if you want to follow the spec and interlace 100%). We aren’t going to follow the spec 100%, but
we are going to follow some of the more important parts of the spec, one such area is in the “vertical sync” and
“equalization pulses” area, please concentrate your attention on this area of Figure 2.20, for the description below.

A Frame is composed of 262.5 lines (non-interlaced), 262 will suffice. Of those 262 lines, many of them are invisible due
to overscan, and some must be used for the vertical retrace pulse. Therefore, a first attempt to generate a video signal
frame is the following algorithm:

// Step 1: Draw the top over scan
For line = 1 to 8
 Begin
 Generate the next black scanline
 End

// Step 2: Draw the active region of the scan, 240 lines
For line = 1 to 240
 Begin
 Generate the next scanline
 End

// Step 3: Draw the bottom over scan
For line = 1 to 10
 Begin
 Generate the next black scanline
 End

// Step 4: Generate a vertical sync pulse, basically apply 0V to the signal for
// the time duration of scanlines, note, no HSYNC pulse is sent, no serrations
Video = 0.0V

Delay(4-6 Scanlines)

If you add up the lines, you will get a total of 262 lines including active, inactive, and retrace or vertical sync. Now, due to
overscan, you probably won’t be able to see more than 200-220 of the active scan video lines, they will typically be
beyond view. Thus, most games systems don’t waste draw them, and simple increase the overscan regions. So a good
rule of thumb is that active video should be from 192-224 lines with equal amount of top and bottom overscan.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 51

Now, the above algorithm to draw a frame will work, and is very simple, but it doesn’t comply with the RS-170A spec
completely. It’s missing a very important signal component called the vertical serrations in the vertical sync pulse. If you
look at the rough draft algorithm above, we have a vertical sync period, where we simply generate sync signal for 4-6
scanlines. This is fine, and will work, but you will notice an effect called “flagging” at the top of the display which is ugly. A
better approach is to continue to generate hsync pulses during the vsync. This keeps the horizontal sync timing hardware
tracking. To accomplish this, the hsync is simply inverted. Both, the hsync and vsync filters will still detect the edges of
the pulses, so the inversion doesn’t hurt anything, so both the hsync and vsync occurs and the horizontal timing circuitry
doesn’t loose sync. Now, you might ask, “why wouldn’t you always perform this inversion of the hsync during the vsync?”.
Well, the answer is that you might want to have once big continuous block of 4-6 lines that you set a single bit (sync) and
then you can do work without interruption, but the video looks quite ugly, so it’s a compromise.

In any event, considering this adjustment to our algorithm, all we have to do is generate 6 hsync pulses at the end of the
bottom overscan that are inverted, thus, this new algorithm will suffice:

// Step 1: Draw the top over scan
For line = 1 to 8
 Begin
 Generate the next black scanline
 End

// Step 2: Draw the active region of the scan, 240 lines
For line = 1 to 240
 Begin
 Generate the next scanline
 End

// Step 3: Draw the bottom over scan
For line = 1 to 10
 Begin
 Generate the next black scanline
 End

// Step 4: Generate a vertical sync pulse with serrated (inverted) hsync pulses,
Video = 0.0V for entire video line, expect for BLACK during hsync pulse
Output 6 blank lines with inverted hsync, this will keep horizontal tracking and cause a vsync to occur

11.2.5.2 Line Construction

Generating each line is a little more tricky that generating a frame since the real work must be done on each line. The
basic idea is that you must generate the video signal which controls the luma (brightness), the chroma (color), and
synchronization all within the same signal. This is accomplished by mimicking the signals you see in Figures 11.5 and
11.6. Each line consists of a total of 63.5 us where 52.6 us is actual video data and the other 10.9 us is sync and setup
data. However, you can slightly alter them if you wish. For example, if you want to make the video portion of a line 50 us
rather than 52.6 us then it will work since you can just stuff black into non-active region; however, the more you alter the
spec (especially in terms of the length of the sync and color burst) the higher the chances are that the signal will not work
on some older (or newer sets such as LCD and plasma with digital filtering).

To generate the actual video signal the Propeller chip gives you total control over the actual output voltage of the
composite video line, therefore, you program the voltages as a function of time to create each video line using the VSU
(video streaming unit). For example, each line consists of the following areas:

“Front Porch” - The spec calls for a “front porch” of 1.5 us consisting of black, therefore you would tell the Propeller
hardware to send out black, then you would delay for 1.5 us (talking into consideration the amount of time to execute the
actual instruction that turns black on).

“Sync Tip” - The next part of the spec is the horizontal sync or HSYNC, this should be approximately 4.7 us, therefore,
you would tell the video hardware to output a 0.0V for 4.7 us.

The next portion of the video signal is the “Color Burst” which consists of a pre-burst phase called the “Breezeway”, the
burst itself called the “Color Burst” and finally the post-burst called the “Back Porch”.

“Breezeway” - This part of the spec says to output black for 0.6 us.

“Color Burst” - This is the most complex part of the specification and the one that would be nearly impossible to do
without the extra hardware support of the Propeller’s VSU. In any case, we will explain how this works shortly, but for now,
you need to know that you must generate 8-10 cycles of color burst tone. This is a 3.579594 MHz “tone” signal that the TV
locks onto and uses as a phase reference for the remainder of the video line. The color of each pixel is determined by the

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 52

phase difference from the color burst reference at the beginning of each line and the color burst tone of each pixel. In any
case, 8-10 clocks must be sent, I usually send 9-10 cycles of color burst. Each cycle at 3.579594 MHz takes 279.36 ns,
therefore, if you want 10 cycles of color burst, you must turn the color burst hardware on for 279.36 ns * 10 = 2.79 us
approximately.

“Back Porch” - Immediately following the color burst is the final part of the setup for the actual pixel data, this is called
the “back porch” and should last 1.6 us.

11.2.6 Generating B/W Video Data

The remainder of the video information is 52.6 us, this is where you insert your pixel data. Now, if you wanted a B/W only
signal then you would modulate the video signal from BLACK (0.3V) to WHITE (1.0V) for the remainder of the line and be
done with it. For example, each line could rasterize a line buffer, or a sprite and different values would map to different
voltages from BLACK to WHITE. With this approach most TVs have an input bandwidth wide enough to display about 320
luminance changes per active line, that means that no matter how fast you try to change the luminance signal only 320
times a line will you see anything. Let’s see how we roughly estimate this.

The line length is 52.6 us, we want to make 320 changes in that time, that means that we need to send data at a rate of:

52.6 us / 320 = 164.375 ns per change

Inverting this gives us the frequency which is 1/164.375 ns = 6.0 MHz roughly! Ouch, that means that the input to the TV’s
luminance has to be 6.0 MHz or greater. Sorry to say, it’s not. In most cases, you are lucky if you get 4.5 – 5.0 MHz input
bandwidth, this 320 is a definitely upper limit on B/W luminance transitions per line.

11.2.7 Generating Color Video Data

Generating color video is much more complicated than B/W, however, if we take a practical approach rather that a
mathematical, its quite easy. Forgoing the complex quadrature encoding of color and luminance and the encoding and
decoding of the signals, creating a color is very easy. For each color clock on the active scan line, you must generate a
3.579594 MHz sine wave, this must ride on top or be superimposed on the luminance signal (the Chameleon AVR
hardware does all this). The overall amplitude of the signal is the brightness or luminance just as it was with B/W, but the
color signal’s saturation is simple the peak-peak (p-p) value of the color signal 3.579595 MHz signal as shown in Figure
7.6. The actual color that is displayed has nothing to do with the amplitude of the video signal, but only the PHASE
difference from the reference burst from the original color burst reference at the beginning of each line.

To re-iterate, to generate color, we simply produce a 3.579594 MHz signal, superimpose or add it to the overall luminance
signal, and the phase difference between our color signal and the reference is the color on the screen! Cool.

Taking this further, let’s break up the line into pixels once again and see how many can be displayed each line. There are
52.6 us of active video time. We have to generate a 3.589594 MHz signal and stuff it into each pixel; given this how many
pixels can fit into a line?

Calculation of Color Clocks Per Line

52.6 µs / (3.579594 MHz
-1

) = 188.

This means that at best case you can have 188 colored pixels per active scanline, but it gets worst! That doesn’t
necessarily mean that you can have 188 DIFFERENT colored pixels across the screen, it just means you can request that
from the poor TV with limited bandwidth. Again, this is a give take world, and in many cases, you would never have 188
different colors on the same line, it would look like a rainbow. In most cases, objects have constant color for a few pixels
at a time. In any case, many video system over drive the video to 224, 240, or 256 virtual pixels (but, the color will not
change that fast), you can do this if you wish, however, I suggest using a nice 160 x 192 display or thereabouts which will
always look pretty good, has enough resolution, and you will almost get a 1:1 color change per pixel even if you change
each pixel’s color. However, give everything a try and see what you get.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 53

11.2.8 NTSC Signal References

Here are a number of web sites and documents to help you understand the NTSC / PAL video formats:

http://www.ntsc-tv.com/
http://www.sxlist.com/TECHREF/io/video/ntsc.htm
http://www.bealecorner.com/trv900/tech/RS170A.jpg
http://www.bealecorner.com/trv900/tech/
http://www.maxim-ic.com/appnotes.cfm/appnote_number/734/ln/en
http://pdfserv.maxim-ic.com/en/an/AN734.pdf

12.0 Keyboard & Mouse Hardware

PS/2 keyboards and mice are very similar from a hardware interface point of view. The interface is a simple serial system
with two lines; DATA and CLOCK. Both lines are open collector, thus each end point typically can drive the line LOW, but
there is a pull up that pulls the line(s) HIGH. Also, PS/2 interfaces are 5V, so when interfacing to a 3.3V system then some
voltage translation must be performed. Additionally, we are interfacing the PS/2 port directly to the Propeller chip and
since it’s a 3.3V device care must be taken.

Figure 12.1 – The Chameleon AVR keyboard and mouse interface hardware.

\
As noted above, the keyboard (and mouse) are controlled via two bi-directional data lines; CLOCK and DATA. To
interface to the Propeller, a pair of I/O lines are all that is needed. It would be nice if the serial protocol for keyboards and
mice was identical to RS-232A then things would be a little easier and we could use one of the Propeller serial drivers, but
the hardware and protocol is slightly different, so we have to use I/O pins and write our own driver. Or use one of the
mouse/keyboard drivers already written for the Propeller which is the tactic we use for the Chameleon. More or less every
single device interfaced uses a standard pre-written driver and all we do is make calls to it from the AVR chip. But, its nice
to know how these things work, so let’s take a look.

Table 12.1 below lists the pins and I/O map for the hardware interface.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 54

Table 12.1 – PS/2 connector interface to Chameleon AVR.
.

Prop Port Bit/Pin Chameleon Signal Description

P27 PS2_CLOCK Keyboard clock signal, open collector.
P26 PS2_DATA Keyboard data signal, open collector.

NOTE

As noted, the PS/2 interface works the same for keyboards and mice, the protocols are
different, but the low level serial and hardware interfaces are the same. Thus, if you plug
a mouse into the port, it would work the same, the clock and data lines would be in the
same place. Thus, all you would have to do is write the driver.

In the section below general keyboard and mouse operation is described, so you can write your own drivers if you wish.
The driver we used for the Propeller driver supports both keyboard and mouse, but its not integrated thus a core is
needed for each driver object – a bit wasteful.

12.1 Keyboard Operation

The keyboard protocol is straightforward and works as follows; for every key pressed there is a "scan code" referred to
as the "make code" that is sent, additionally when every key released there is another scan code referred to as the
"break code" that in most cases is composed of $E0 followed by the original make code scan value. However, many
keys may have multiple make codes and break codes. Table 12.2 lists the scan codes for keyboards running in default
mode (startup).

Table 12.2 – Default scan codes.

KEY MAKE BREAK KEY MAKE BREAK KEY MAKE BREAK

A 1C F0,1C 9 46 F0,46 [54 FO,54

B 32 F0,32 ` 0E F0,0E INSERT E0,70 E0,F0,70

C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C

D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D

E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71

F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69

G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A

H 33 F0,33 TAB 0D F0,0D U ARROW E0,75 E0,F0,75

I 43 F0,43 CAPS 58 F0,58 L ARROW E0,6B E0,F0,6B

J 3B F0,3B L SHFT 12 FO,12 D ARROW E0,72 E0,F0,72

K 42 F0,42 L CTRL 14 FO,14 R ARROW E0,74 E0,F0,74

L 4B F0,4B L GUI E0,1F E0,F0,1F NUM 77 F0,77

M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,F0,4A

N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C

O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B

P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79

Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A E0,F0,5A

R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69

U 3C F0,3C F1 05 F0,05 KP 2 72 F0,72

V 2A F0,2A F2 06 F0,06 KP 3 7A F0,7A

W 1D F0,1D F3 04 F0,04 KP 4 6B F0,6B

X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73

Y 35 F0,35 F5 03 F0,03 KP 6 74 F0,74

Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C

0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 55

1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D

2 1E F0,1E F9 01 F0,01] 5B F0,5B

3 26 F0,26 F10 09 F0,09 ; 4C F0,4C

4 25 F0,25 F11 78 F0,78 ' 52 F0,52

5 2E F0,2E F12 07 F0,07 , 41 F0,41

6 36 F0,36
PRNT
SCRN

E0,12,
E0,7C

E0,F0,
7C,E0,

F0,12

 . 49 F0,49

7 3D F0,3D SCROLL 7E F0,7E / 4A F0,4A

8 3E F0,3E PAUSE
E1,14,77,
E1,F0,14,
F0,77

-NONE-

The keyboard hardware interface is either an old style male 5-pin DIN or a new PS/2 male 6-pin mini-DIN connector. The
6-pin mini DIN’s pin out is shown in Figure 12.2 (referenced looking at the computer’s female side where you plug the
keyboard into, notice the staggering of the pin numbering).

Figure 12.2 - Female PS/2 6-Pin Mini Din Connector at Chameleon AVR socket.

Table 12.3 lists the signals for reference, the descriptions of the signals are as follows:

DATA Bi-directional and used to send and receive data.

CLOCK Bi-directional; however, the keyboard nearly always controls it. The host can pull the CLOCK line LOW

though to inhibit transmissions, additionally during host -> keyboard communications the CLOCK line is
used as a request to send line of sorts to initiate the host -> keyboard transmission. This is used when
commands or setting need to be sent to the keyboard.

VCC/GND Power for the keyboard (or mouse). Specifications state no more than 100mA will be drawn, but I

wouldn’t count on it and plan for 200mA for feature rich keyboards with lots of lights etc.

When both the keyboard and the host are inactive the CLOCK and DATA lines should be HIGH (inactive).

Table 12.3 – Pin out of PS/2 6-Pin Mini Din.

Pin Function

1 DATA (bi-directional open collector).
2 NC.
3 GROUND.
4 VCC (+5 @ 100 mA).
5 CLOCK.
6 NC.

12.1.1 Communication Protocol from Keyboard to Host

When a key is pressed on the keyboard, the keyboard logic sends the make scan code to the host computer. The scan
code data it is clocked out by the keyboard in an 11-bit packet, the packet is shown in Figure 12.3. The packet consists of
a single LOW start bit (35 µs) followed by 8 data bits (70us each), a parity bit, and finally a HIGH stop bit. Data should

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 56

be sampled by the host computer on the data line on the falling edge of the CLOCK line (driven by keyboard). Below is
the general algorithm for reading the keyboard.

Figure 12.3 – Keyboard Serial Data Packet.

12.1.2 Keyboard Read Algorithm

The read algorithm makes the assumption that the main host has been forcing the keyboard to buffer the last key. This is
accomplished by holding CLOCK LOW. Once the host releases the keyboard, then the keyboard will start clocking the
clock line and drop the DATA line with a start bit if there was a key in the buffer, else the DATA line will stay HIGH. So
the following steps are after the host releases the keyboard and is trying to determine by means of polling if there is a key
in the keyboard buffer.

Step 1: Delay 5 µs to allow hold on CLOCK line to release and keyboard to send buffered scan code.

Step 2 (Start of frame): If both CLOCK and DATA are low (start bit) then enter into read loop, else return, no key present.

Step 3 (Start of data): Wait until clock goes high...

Step 4 (Read data): Read data bits loop.

 // pseudo code
 for (t = 0; t <= 7; t++) {
 wait for CLOCK to go low...
 delay 5 µs to center sample
 bit(t) = DATA;
 } // end for

Step 5: (Read parity and Stop Bits): Lastly the parity and Stop Bits must be read.

And that’s it! Of course, if you want to be strict then you should read the parity and stop bit, but you don’t need to unless
you want to perform error correction.

NOTE

Both the keyboard and mouse use an “odd parity” scheme for error detection. Odd
parity is HIGH when the number of 1’s in a string is ODD, LOW otherwise. Even parity is
HIGH when the number of 1’s in a string is EVEN, LOW otherwise. Note that parity only
tells us there is an error, but not how to correct it, or where it was. You simply have to
re-transmit the data.

12.1.3 Keyboard Write Algorithm

The process of sending commands to the keyboard or “writing” to the keyboard is identical to that when reading. The
protocol is the same except the host initiates the conversation. Then the keyboard will actually do the clocking while the
host pulls on the data line at the appropriate times. The sequence is as follows:

Step 1: Wait for the keyboard to stop sending data (if you want to play nice). This means that both the DATA and CLOCK
lines will be in a HIGH state.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 57

Step 2 (Initiate transmission): The host drives the CLOCK line LOW for 60us to tell the keyboard to stop all
transmissions. This is redundant if you waited for Step 1; however, the keyboard might not want to shut up, therefore, this
is how you force it to stop and listen.

Step 3 (Data ready for transmission): Drive the DATA line LOW, then release the CLOCK line (by release we mean not
to put a HIGH or a LOW, but to set the CLOCK into a tristate or input mode, so the keyboard can control it). This puts the
keyboard into the “receiver” state.

Step 4 (Write data): Now, the keyboard will generate a clock signal on the CLOCK line, you sample the DATA line when
the CLOCK line is HIGH and send it. The host program should serialize the command data (explained momentarily) made
up of 8-bits, a parity bit, and a stop bit for a total of 11-bits.

Step 5 (End transmission): Once the last data bit is sent then the parity (odd parity) and stop bit is sent then the host
drives the DATA line (Stop bit) and releases the DATA line.

12.1.4 Keyboard Commands

Table 10.4 illustrates some of the commands one can send to a generic keyboard based on the 8042 keyboard controller
originally in the IBM PC spec. This table is not exhaustive and only a reference, many keyboards don’t follow the
commands 100% and/or have other commands, so be weary of the commands.

Table 12.4 – Keyboard Commands.

Code Description

$ED Set/Reset Mode Indicators, keyboard responds with ACK then waits for a following option byte. When the option
 byte is received the keyboard again ACK's and then sets the LED's accordingly. Scanning is resumed if scanning
 was enabled. If another command is received instead of the option byte (high bit set on) this command is
 terminated. Hardware defaults to these indicators turned off.

 |7-3|2|1|0| Keyboard Status Indicator Option Byte

 | | | `--- Scroll-Lock indicator (0=off, 1=on)

 | | `----- Num-Lock indicator (0=off, 1=on)

 | `------- Caps-Lock indicator (0=off, 1=on)

 `---------- reserved (must be zero)

$EE Diagnostic Echo, keyboard echoes the $EE byte back to the system without an acknowledgement.

$F0 PS/2 Select/Read Alternate Scan Code Sets, instructs keyboard to use one of the three make/break scan code
 sets. Keyboard responds by clearing the output buffer/typematic key and then transmits an ACK. The system
 must follow up by sending an option byte which will again be ACK'ed by the keyboard:

 00 return byte indicating scan code set in use.
 01 select scan code set 1 (used on PC & XT).
 02 select scan code set 2.
 03 select scan code set 3.

$F2 PS/2 Read Keyboard ID, keyboard responds with an ACK and a two byte keyboard ID of 83AB.

$F3 Set Typematic Rate/Delay, keyboard responds with ACK and waits for rate/delay byte. Upon receipt of the
 rate/delay byte the keyboard responds with an ACK, then sets the new typematic values and scanning continues
 if scanning was enabled.

 Typematic Rate/Delay Option Byte

 |7|6|5|4|3|2|1|0|

 | | | |-+-+-+-+---- typematic rate indicator (see INT 16,3)

 | | | | | `-------- A in period formula (see below)

 | | | `------------ B is period formula (see below)

 | `---------------- typematic delay

 `------------------ always zero

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 58

 delay = (rate+1) * 250 (in milliseconds)

 rate = (8+A) * (2**B) * 4.17 (in seconds, ñ 20%)

 Defaults to 10.9 characters per second and a 500ms delay. If a command byte (byte with high bit set) is received
 instead of an option byte this command is cancelled.

$F4 Enable Keyboard, cause the keyboard to clear its output buffer and last typematic key and then respond with an
 ACK. The keyboard then begins scanning.

$F5 Default w/Disable, resets keyboard to power-on condition by clearing the output buffer, resetting typematic
 rate/delay, resetting last typematic key and setting default key types. The keyboard responds with an ACK and
 waits for the next instruction.

$F6 Set Default, resets to power-on condition by clearing the output buffer, resetting typematic rate/delay and last
 typematic key and sets default key types. The keyboard responds with an ACK and continues scanning.

$F7 PS/2 Set All Keys to Typematic, keyboard responds by sending an ACK, clearing its output buffer and setting the
 key type to Typematic. Scanning continues if scanning was enabled. This command may be sent while using any
 Scan Code Set but only has effect when Scan Code Set 3 is in use.

$F8 PS/2 Set All Keys to Make/Break, keyboard responds by sending an ACK, clearing its output buffer and setting
 the key type to Make/Break. Scanning continues if scanning was enabled. This command may be sent while
 using any Scan Code Set but only has effect when Scan Code Set 3 is in use.

$F9 PS/2 Set All Keys to Make, keyboard responds by sending an ACK, clearing its output buffer and setting the key
 type to Make. Scanning continues if scanning was enabled. This command may be sent while using any Scan
 Code Set but only has effect when Scan Code Set 3 is in use.

$FA PS/2 Set All Keys to Typematic Make/Break, keyboard responds by sending an ACK, clearing its output buffer
 and setting the key type to Typematic Make/Break. Scanning continues if scanning was enabled. This command
 may be sent while using any Scan Code Set but only has effect when Scan Code Set 3 is in use.

$FB PS/2 Set Key Type to Typematic, keyboard responds by sending an ACK, clearing its output buffer and then
 waiting for the key ID (make code from Scan Code Set 3). The specified key type is then set to typematic.
 This command may be sent while using any Scan Code Set but only has effect when Scan Code Set 3 is in use.

$FC PS/2 Set Key Type to Make/Break, keyboard responds by sending an ACK, clearing its output buffer and then
 waiting for the key ID (make code from Scan Code Set 3). The specified key type is then set to Make/Break.
 This command may be sent while using any Scan Code Set but only has effect when Scan Code Set 3 is in use.

$FD PS/2 Set Key Type to Make, keyboard responds by sending an ACK, clearing its output buffer and then waiting
 for the key ID (make code from Scan Code Set 3). The specified key type is then set to Make. This command
 may be sent while using any Scan Code Set but only has effect when Scan Code Set 3 is in use.

$FE Resend, should be sent when a transmission error is detected from the keyboard

$FF Reset, Keyboard sends ACK and waits for system to receive it then begins a program reset and Basic Assurance
 Test (BAT). Keyboard returns a one byte completion code then sets default Scan Code Set 2.

12.2 Communication Protocol from Mouse to Host

The mouse protocol is exactly the same as the keyboard protocol as far as sending and receiving bytes with the 11-bit
packet. The only difference of course is the data format the mouse sends to the host and the commands the host
(Propeller chip) can send the mouse. Again, we will cover real programming examples in the Programming Manual, but
let’s just review the technical details briefly to get acquainted with the commands and data.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 59

12.2.1 Basic Mouse Operation

The standard PS/2 mouse interface supports the following inputs:

� X (right/left) movement.

� Y (up/down) movement.

� Left, Middle, and Right buttons.

The mouse has an internal microcontroller that translates the motion of either a mechanical ball or optical tracking
system. The inputs along with the buttons are scanned at a regular frequency and updated are made to the internal “state”
of the mouse via various counters and flags that reflect the movement and button states. Obviously there are mice these
days with a lot more than 3 buttons and 2-axes, but we are not going to concern ourselves with these (extensions) we just
need to read the X,Y position along with the state of the buttons.

The standard PS/2 mouse has two internal 9-bit 2’s complement counters (with an overflow bit each) that keep track of
movement in the X and Y axis. The X and Y counters along with the state of the three mouse buttons are sent to the host
in the form of a 3-byte data packet. The movement counters represent the amount of movement that has occurred since
the last movement data packet was sent to the host; therefore they are relative positions, not absolute.

Each time the mouse reads its inputs (controlled internally by the microcontroller in the mouse), it updates the state of the
buttons and the delta’s in the X, Y counters. If there is an overflow, that is if the motion from the last update is so large it
can’t fit in the 9-bits of either counter then the overflow flag for that axis is set to let the host know there is a problem.

The parameter that determines the amount by which the movement counters are incremented/decremented is the
resolution. The default resolution is 4 counts/mm and the host may change that value using the "Set Resolution" ($E8)
command. Additionally, the mouse hardware can do a scaling operation to the sent data itself to save the host the work.
The scaling parameter controls this. By default, the mouse uses 1:1 scaling, which means that the reported motion is the
same as the actual motion. However, the host may select 2:1 scaling by sending the "Set Scaling 2:1" ($E7)
command. If 2:1 scaling is enabled, the mouse applies the following mapping as shown in Table 12.5 the counters before
sending their contents to the host in the data packet.

Table 12.5 – Mouse scaling reported data mapping when in 2:1 mode.

Actual Movement
(delta)

Reported
Movement

0 0
1 1
2 1
3 3
4 6
5 9

delta > 5 delta*2

So the scaling operation only takes affect when the actual movement delta is greater than 1, and for delta > 5, the
reported movement is always (delta*2). Now, let’s look at the actual data packet format for the mouse state.

12.2.2 Mouse Data Packets

The PS/2 mouse sends the movement information to the host which includes the position counters, button state, overflow
flags and sign bits in the format show in Table 12.6.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 60

Table 12.6 – Mouse data packet format.

Byte 1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Y overflow bit X overflow bit Y sign bit X sign bit Always 1 Middle Button Right Button Left Button
Byte 2 X Movement (delta)
Byte 3 Y Movement (delta)

The movement counters are 9-bit 2's complement integers, since the serial protocol only supports 8-bits at a time, the
upper most sign bit for each 9-bit integer is stored in Byte 1 of the overall movement packet. Bit 4 holds the 9

th
 bit of the X

movement and Bit 5 holds the 9
th
 bit of the Y movement. Typically, you don’t need to worry about the 9

th
 bits since that

would be a lot of motion in one update, so just use byte 2 and 3 to track motion.

The motion counters are updated when the mouse reads its input and movement has occurred. The movement counters
once again only record differential or delta motion rather than absolute. With a 9-bit value recording each counter, a total
amount of -255 to +256 can be represented in 9-bit 2’s complement. If this range is exceeded, the appropriate overflow bit
is set for either the X or Y counter. Note that the movement counters are reset whenever a movement data packet is
successfully sent to the host. The counters are also reset after the mouse receives any command from the host other than
the "Resend" ($FE) command. Next, let’s discuss the different mouse operation modes.

12.2.3 Modes of Operation

There are four standard modes of operation which dictate how the mouse reports data to the host, they are:

� RESET - The mouse enters Reset mode at power-up or after receiving the "Reset" ($FF) command. For this
mode to occur both the DATA and CLOCK lines must be HIGH.

� STREAMING - This is the default mode (after Reset finishes executing) and is the mode in which most software
uses the mouse. If the host has previously set the mouse to Remote mode, it may re-enter Stream mode by
sending the "Set Stream Mode" ($EA) command to the mouse.

� REMOTE - Remote mode is useful in some situations and may be entered by sending the "Set Remote Mode"
($F0) command to the mouse.

� WRAP - This diagnostic mode is useful for testing the connection between the mouse and its host. Wrap mode
may be entered by sending the "Set Wrap Mode" ($EE) command to the mouse. To exit Wrap mode, the host
must issue the "Reset" ($FF) command or "Reset Wrap Mode" ($EC) command. If the "Reset" ($FF) command
is received, the mouse will enter Reset mode. If the "Reset Wrap Mode" ($EC) command is received, the mouse
will enter the mode it was in prior to Wrap mode.

RESET Mode - The mouse enters Reset mode at power-on or in response to the "Reset" ($FF) command. After entering
reset mode, the mouse performs a diagnostic self-test referred to as BAT (Basic Assurance Test) and sets the following
default values:

� Sample Rate = 100 samples/sec.
� Resolution = 4 counts/mm.
� Scaling = 1:1.
� Data Reporting Disabled.

After Reset, the mouse sends a BAT completion code of either $AA (BAT successful) or $FC (Error). The host's response
to a completion code other than $AA is undefined. Following the BAT completion code of $AA (ok) or $FC (error), the
mouse sends its device ID of $00. This distinguishes the standard PS/2 mouse from a keyboard or a mouse in an
extended mode.

After the mouse has sent its device ID of $00 to the host, it will enter Stream mode. Note that one of the default values
set by the mouse is "Data Reporting Disabled". This means the mouse will not issue any movement data packets until
it receives the "Enable Data Reporting" command. The various modes of operation for the mouse are:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 61

STREAM Mode - In stream mode, the mouse sends movement data when it detects movement or a change in state of
one or more mouse buttons. The rate at which this data reporting occurs is the sample rate (defaults to 100 samples/sec
on Reset). This parameter can range from 10 to 200 samples/sec on most drivers. The default sample rate value is 100
samples/sec, but the host may change that value by using the "Set Sample Rate" command. Stream mode is the default
mode of operation following reset.

REMOTE Mode - In this mode the mouse reads its inputs and updates its counters/flags at the current sample rate, but it
does not automatically send data packets when movement occurs, rather the host must “poll” the mouse using the
"Read Data" command. Upon receiving this command the mouse sends back a single movement data packet and resets
its movement counters.

WRAP Mode - This is an "echoing" mode in which every byte received by the mouse is sent back to the host. Even if the
byte represents a valid command, the mouse will not respond to that command -- it will only echo that byte back to the
host. There are two exceptions to this: the "Reset" command and "Reset Wrap Mode" command, this is obviously the
only way to get the mouse back out of the Wrap mode! The mouse treats these as valid commands and does not echo
them back to the host. Thus Wrap mode is a good diagnostic mode to test if a mouse is connected and if its working.

12.2.4 Sending Mouse Commands

A mouse command similar to a keyboard command is sent using the standard 11-bit serial protocol outlined in the

Keyboard Write section. The commands supported are shown in Table 12.7.

Table 12.7 - Lists the set of command accepted by the standard PS/2 mouse.

Code Description

$FF Reset - The mouse responds to this command with "acknowledge" ($FA) then enters Reset Mode.

$FE Resend - The host can send this command whenever it receives invalid data from the mouse. The mouse
 responds by resending the last packet it sent to the host. If the mouse responds to the "Resend"
 command with another invalid packet, the host may either issue another "Resend" command, issue an
 "Error" command, cycle the mouse's power supply to reset the mouse, or it may inhibit communication (by
 bringing the Clock line low). The action taken depends on the host.

$F6 Set Defaults - The mouse responds with "acknowledge" ($FA) then loads the following values into its
 driver:

 Sampling rate = 100.
 Resolution = 4 counts/mm.
 Scaling = 1:1.
 Disable Data Reporting.

 The mouse then resets its movement counters and enters Stream mode.

$F5 Disable Data Reporting - The mouse responds with "acknowledge" ($FA) then disables Data Reporting
 mode and resets its movement counters. This only effects data reporting in Stream mode and does not
 disable sampling. Disabled Stream mode functions the same as Remote mode.

$F4 Enable Data Reporting - The mouse responds with "acknowledge" ($FA) then enables Data Reporting
 mode and resets its movement counters. This command may be issued while the mouse is in Remote
 mode (or Stream mode), but it will only effect data reporting in Stream mode.

$F3 Set Sample Rate - The mouse responds with "acknowledge" ($FA) then reads one more byte from the
 host which represents the sample rate in unsigned 8-bit magnitude format. The mouse saves this byte as
 the new sample rate. After receiving the sample rate, the mouse again responds with "acknowledge"
 ($FA) and resets its movement counters. Most mice accept sample rates of 10, 20, 40, 60, 80, 100 and
 200 samples/sec.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 62

$F2 Get Device ID - The mouse responds with "acknowledge" ($FA) followed by its device ID ($00 for the
 standard PS/2 mouse.) The mouse also resets its movement counters in most cases.

$F0 Set Remote Mode - The mouse responds with "acknowledge" ($FA) then resets its movement counters
 and enters Remote mode.

$EE Set Wrap Mode - The mouse responds with "acknowledge" ($FA) then resets its movement counters
 and enters Wrap mode.

$EC Reset Wrap Mode - The mouse responds with "acknowledge" ($FA) then resets its movement counters
 and enters the mode it was in prior to Wrap mode (Stream Mode or Remote Mode.)

$EB Read Data - The mouse responds with acknowledge ($FA) then sends a movement data packet. This is
 the only way to read data in Remote Mode. After the data packet has been successfully sent, the mouse
 resets its movement counters.

$EA Set Stream Mode - The mouse responds with "acknowledge" then resets its movement counters and
 enters Stream mode.

$E9 Status Request - The mouse responds with "acknowledge" then sends the following 3-byte status packet
 (then resets its movement counters) as shown below:

Byte 1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Always 0 Mode Enable Scaling Always 0 Left Button Middle Button Right Button
Byte 2 Resolution
Byte 3 Sample Rate

Right, Middle, Left button = 1 if button pressed; 0 if button is not pressed.
Scaling = 1 if scaling is 2:1; 0 if scaling is 1:1 (Refer to commands $E7 and $E6).
Enable = 1 if data reporting is enabled; 0 if data reporting is disabled (Refer to commands $F5 and $F4).
Mode = 1 if Remote Mode is enabled; 0 if Stream mode is enabled (Refer to commands $F0 and $EA).

$E8 Set Resolution - The mouse responds with acknowledge ($FA) then reads the next byte from the host
 and again responds with acknowledge ($FA) then resets its movement counters. The byte read from the
 host determines the resolution as follows:

Byte Read from Host Resolution

$00 1 count/mm

$01 2 count/mm

$02 4 count/mm

$03 8 count/mm

$E7 Set Scaling 2:1 - The mouse responds with acknowledge ($FA) then enables 2:1 scaling mode.

$E6 Set Scaling 1:1 - The mouse responds with acknowledge ($FA) then enables 1:1 scaling (default).

Lastly, the only commands the standard PS/2 mouse will send to the host are the "Resend" ($FE) and "Error" ($FC).
They both work the same as they do as host-to-device commands. Other than that the mouse simply sends 3-byte data
motion packets in most cases.

NOTE
If the mouse is in Stream mode, the host should disable data reporting (command $F5)
before sending any other commands. This way, the mouse won’t keep trying to send
packets back while the host is trying to communicate with the mouse.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 63

12.2.5 Mouse Initialization

During the mouse power up both the DATA and CLOCK lines must be pulled HIGH and/or released/tristated by the host.
The mouse will then run its power up self test or BAT and start sending the results to the host. The host watches the
CLOCK and DATA lines to determine when this transmission occurs and should look for the code $AA (ok) followed by
$00 (mouse device ID). However, you can forgo this step if you like and just wait 1-2 seconds and “assume” the mouse
was plugged in properly. You do not have to respond to this code in other words. If you wish to Reset the mouse, you can
at any time send the command code $FF, and the mouse should respond with a $FA to acknowledge that everything
went well.

Once the mouse sends the $AA, $00 startup codes then the mouse enters its standard default mode as explained in the
sections above. The only thing we need to do to get the mouse sending packets is to tell the mouse to start reporting
movement. This is done by sending the command “Enable Data Reporting” ($F4), the mouse responds with $FA to
acknowledge the command worked and then will start streaming out 3-byte movement packets at the default rate of 100
samples/sec. This step is necessary, since on start up if the mouse simply started streaming data packets the host could
loose important data, thus the mouse “waits” to be told to start streaming the data and reporting the motion.

The movement data packets are formatted as shown in Table 12.5. You simply need to read these packets and send
them upstream to your application.

12.2.6 Reading Mouse Movement

Assuming that the mouse has been initialized and is in Streaming mode with Reporting mode enabled, then you simply
loop and read each 3-byte movement packet. As you read the first byte you use it to determine the state of the buttons as
well as any overflows with the counters. Then the next two bytes, the X and Y deltas should be added to running counters
(16-bit) that track the absolute position of the mouse cursor. That’s it!

Of course, this is only for your edification, the Propeller driver does all this for you, so all you have to do is send a simple
command from the AVR to the Propeller to read the keyboard or mouse.

13.0 The I/O Headers

The I/O headers on the Chameleon AVR consist of a number signals that interface to both the AVR and Propeller chip.
The Propeller chip has its own 8-bit local I/O port located right under the composite video and PS/2 ports. The other
headers surrounding the Chameleon PCB interface mostly to the AVR chip. Let’s take a look at the PCB for a moment for
reference as shown in Figure 13.1.

Figure 13.1 – The Chameleon’s annotated I/O headers.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 64

Referring to the figure, there are two 8-pin I/O headers on the bottom of the board. A single 16-pin header on the right,
and finally the 8-bit Propeller local port. The Propeller local port is discussed elsewhere, so let’s concentrate on the other
3 headers. First off, on the Chameleon AVR version specifically we tried to map the Arduino compatible signal names to
the same pins on the 328P chip, so programs written for Arduinos’’’ that use digital I/O would
work with little modification. Similarly, we used the name naming conventions for the signals such as Dn for digital I/Os
and AINn for analog inputs. However, the Chameleon has a few extra signals mostly on the larger 16-pin header on the
right. Signals such as the multiple power sources as well as the SPI multiplexer chip selects SPI_SS1n and SPI_SS0n
respectively. Figure 13.2 below illustrates the electrical design of the headers themselves laid out as they are on the PCB.

Figure 13.2 – I/O headers electrical design.

Also, the pins on the headers obviously connect to multifunction pins such as the serial UARTS, SPI, and so forth. Table
13.1 below maps the header pin names to the physical pin names and numbers for your convenience.

Table 13.1 – I/O header pinout map.

I/O Header Designator I/O Header Pin Name/# AVR Pin # AVR Pin Name/Extra Function

J5 AREF 21 AREF
J5 GND

1
 8, 22 GND

J5 DPIN13 19 PB5 (SCK / PCINT5)
J5 DPIN12 18 PB4 (MISO / PCINT4)
J5 DPIN11 17 PB3 (MOSI / OC2A / PCINT3)
J5 DPIN10 16 PB2 (SSn / OC1B / PCINT2)
J5 DPIN9 15 PB1 (OCA1 / PCINT1)
J5 DPIN8 14 PB0 (PCINT0 / CLK0 / ICP1)

J4 DPIN7 13 PD7 (PCINT23 / AIN1)
J4 DPIN6 12 PD6 (PCINT22 / OC0A / AIN0)
J4 DPIN5 11 PD5 (PCINT21 / OCB0 / T1)
J4 DPIN4 6 PD4 (PCINT20 / XCK / TO)

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 65

J4 DPIN3 5 PD3 (PCINT19 / OC2B / INT1)
J4 DPIN2 4 PD2 (PCINT18 / INT0)
J4 DPIN1 3 PD1 (PCINT17 / TXD)
J4 DPIN0 2 PD0 (PCINT16 / RXD)

J6 SPI_SS1n NA NA
J6 SPI_SS0n NA NA
J6 AIN5 28 PC5 (ADC5 / SCL / PCINT13)
J5 AIN4 27 PC4 (ADC4 / SDA / PCIN12)
J6 AIN3 26 PC3 (ADC3 / PCINT11)
J6 AIN2 25 PC2 (ADC2 / PCINT10)
J6 AIN1 24 PC1 (ADC1 / PCINT9)
J6 AIN0 23 PC0 (ADC0 / PCINT8)
J7 GND

1
 8,22 GND

J7 GND
1
 8,22 GND

J7 RESn 1 PC6 (PCINT14 / RESETn)
J7 33VCC

1
 NA NA

J7 5VCC
1
 20 VCC

J7 GND
1
 8,22 GND

J7 GND
1
 8,22 GND

J7 VIN
2
 NA NA

Note 1: Power pins 5VCC, 33VCC, GND don’t actually connect to the AVR, but to the system power lines which in-turn
are electrically connected to the AVR’s AVCC, VCC, and GND respectively.

Note 2: VIN is connected to the 5V regulator’s input pin. This signal reflects the input analog voltage plugged into the 9V
DC power jack. If only the USB power is plugged in this signal will be floating or near ground.

14.0 Audio Hardware

There is no dedicated audio hardware inside the AVR chip nor the Propeller chip, therefore we have to rely on “software
techniques” to create sound for the system. However, knowing that software is going to be used to generate sound we
can add a little analog circuitry to “help” the audio software out and allow us to use certain common techniques for
generating sounds. The Propeller does have counters on board and can generate PWM signals, thus the audio drivers
typically leverage these hardware elements. Thus, for most audio applications that connect to a Propeller chip all you
need is a typical PWM “integrator” or “low pass” filter. The Chameleon employs such a hardware design as shown in
Figure 14.1.

Figure 14.1 – The analog audio hardware on the Chameleon AVR.

Referring to the circuit, we see that the signal AUDIO_MONO (I/O P24, pin 31 on the Propeller) is an input into the
network. This signal is passed thru a low pass filter consisting of a resistor (R14 @ 1K ohm) and a capacitor (C15 @
0.1uF). Note these reference designators may change in the future, but the point is there is an R/C network here. Moving

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 66

on there is also another AC coupling capacitor (C14 @ 10uF) to the final RCA output. The circuit has two sections and
they each serve different purposes. Refer to Figure 14.1 for the following explanation.

14.1 A Little Background on Low Pass Filters (EE stuff)

The signal Vin(t) comes in at the port and the low pass filter made up of R14 and C15 pass low frequencies, but block
high frequencies. This is what’s called a “single pole RC filter”. The “gain” of the filter or the “transfer function”
describes the relationship between the output and the input signal, thus a signal with a gain of 1 at the output, call it
Vout(t) would be equal to the input (with some possible phase variance, but this is irrelevant for our discussion). The
single pole RC filter acts like a voltage divider, but we have to use more complex math to describe it based on imaginary
numbers and/or differential equations. This is a tough, but there is a trick based on the Laplace Transform which
transforms differential equations into algebraic equations (called the S-Domain) then we can work with the circuit as if it
were made of resistors then transform back when done. This is all not that important, but its fun to know a little about
analog stuff, so let’s continue.

So given all that, we want to know what the voltage or signal is at the top of C15 (Vout) since this signal or voltage will
then affect the remainder of the circuit. Using a voltage divider made of R14 and C15, we need to write a relationship
between the input voltage at AUDIO_MONO, call it Vin(t) and the output voltage of the RC filter at the top of C15, call it
Vout(t). Ok, here goes a few steps:

 Vout(s) = Vin(s) * [(1/sC) / (R + 1/sC)]

Then dividing both sides by Vin(s) we get,

 Gain = H(s) = [(1/sC) / (R + 1/sC)]

Simplifying a bit, results in,

 Gain = H(s) = 1 / (1+sRC)

Then transforming back from the S-domain to the frequency domain we get,

 Gain = H(f) = 1 / (1 + 2*PI*f*RC)

Note: Technically there is another term in there relating to phase, but it’s not important for this discussion. In any event,
now this is interesting, this equation:

 Gain = H(f) = 1 / (1 + 2*PI*f*RC)

Describes the amplification or more correctly the attenuation of our signal as a function of frequency f. This is very
interesting. Let’s try something fun. Let’s plug in some values really quickly and see what happens, let’s try 0 Hz, 1 Hz,
100 Hz, 1000 Hz, 1 MHz and see what we get. Table 14.1 shows the results.

Table 14.1 – The results of passing various frequencies thru a low pass single pole RC filter.

Frequency f Hz Gain Comments

0 1/1 DC gain is 1.0 or no attenuation

1 1/(1+2*PI*RC)
10 1/(1+2*PI*10*RC)
100 1/(1+2*PI*100*RC)
1000 1/(1+2*PI*1000*RC)
1,000,000 1/(1+2*PI*1,000,000*RC)

This is very interesting, ignoring for a moment the actually values of RC, we see that very quickly larger values of f
(frequency) very quickly dominate the denominator and the quotient goes to 0. This is why this filter is called a “single
pole”, as the term in the denominator goes to infinity the quotient goes to zero. Ok, so how does this help us? Well, if we
select values of RC, we can tune the frequency that this “attenuation” gets really strong. This is typically called the 3dB
point, that is the point where the signal is attenuated by 3dB (decibels), not really important, to know what a decibels is,
it’s a measure of power or ratio of signals more or less, but what is important is that 3dB is about 70% of the signal, so if
you want to filter out everything above 10KHz you would set the 3dB point for about 10KHz (maybe a bit more) and you

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 67

would see the signal get filtered. Also, note that at DC, frequency f=0, the right hand term in the denominator sum (1 +
2*PI*0*RC) = 1, thus the gain is 1/1 or 1.0 which is exactly what it should be! Cool huh!

Filters can be a lot of fun since you can chain them together; low pass, high pass to make a band pass, or multiple low
and high pass to make them fall off faster and so forth. Here’s a cool tool on the web to get a “feel” for filters:

 Low Pass: http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/experiment/lowpass/lpf.html
 High Pass: http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/experiment/highpass/hpf.html

In any event, playing with the math, the 3dB point for our circuit is:

 f3dB = 1/(2*PI*RC)

Notice, f is not in there since we solved for it. Therefore, we have everything we need to use the circuit and the equation.
Let R and C in our circuit be 1K Ohm and 0.1uF respectively, plugging them in we get:

 f3dB = 1/(2*PI*1K*0.1uF) = 1.59 KHz

Which might be a little low, to loosen this up, let’s make the resistor smaller – 200 Ohm:

 f3dB = 1/(2*PI*200*0.1uF) = 7.95 KHz

Which is a rather high frequency about 50% the max range of most human ears which top out at 15-20KHz.

Figure 14.2 – Sine wave riding on a constant DC offset as its passed thru a coupling capacitor.

Why is this important? Well, first off if you send a signal thru our little low pass filter to the output (connected to the audio
port on the TV) then the signal is going to attenuate at high frequencies. We will get back to this momentarily, let’s move
on to the second stage in the audio circuit which is based on C15. This stage of the circuit is a AC pass filter, that means
that it will only pass AC and the DC component will be blocked. In other words, say that the input was a sine wave or
square or square wave with a peak to peak voltage of 1V, but it was riding on a 2V signal, this would look like Figure 14.2
(top graph in blue). However, after going thru the AC coupling capacitor, the signal would look like that shown in Figure
14.2 (bottom graph in red). So all C15 does is block the DC. Now, let’s talk about the some more hardware related
concepts about making sounds with a couple specific techniques used for many of the Propeller audio drivers. Of course,
you don’t need to know this material since you are simply going to use a driver someone else writes (like the default
drivers we provide), however, it can’t hurt to have an understanding of how the sounds are generated typically by these
drivers.

14.1.1 Pulse Code Modulation (PCM)

The most common method to make sound on a game console is to use PCM or Pulse Code Modulation. This is really
nothing more than storing a series of samples of the sound in some resolution; 4,8,12,16 bit along at some playback rate.
A .WAVE file for example is PCM data, you simply output the data at the proper rate to a D/A converter with an amplifier

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 68

connected to a speaker and you will hear the sound. There are a number of issues with this; first it takes huge amounts of
memory (even with compression), secondly you need a D/A (digital to analog) converter on the hardware and there is no
“synthesis “ opportunities really (of course you can always synthesis the samples). PCM is a viable option for the
Chameleon AVR, but there is so little FLASH memory (relatively speaking) you would have to stream off and external SD
card. Thus, instead of digitizing sound effects, the technique used to save memory is to synthesize sound effects with
various techniques. Still, you can definitely do PCM with the Chameleon AVR and or develop a “Mod” player if you wish,
but at the output stage you only have a single bit, thus you have to use PWM to output your PCM data! More on this later.

14.1.2 Frequency Modulation (FM)

Frequency modulation with a fixed waveform is very easy to do and the Chameleon AVR can do this no problem. The
idea here is to output a square wave or sine wave directly to the output device and then modulate the frequency. So if we
use the Chameleon AVR’s internal timers we can do this (more on this later) or we can write a software loop to do it. For
example, if you wanted to hear a 500KHz, 1KHz, and 2KHz signal you just write a software loop that toggles the output
AUDIO_MONO at that rate and you will hear the sound on the attached output device. Figure 14.3 shows this graphically.

Figure 14.3 – Synthesizing a single frequency.

Now, there are a couple problems with this; first it’s not readily apparent how to “add” signals and play more than one
sound at once. In fact, it’s nearly impossible directly using this technique. Secondly, the only signal you can output is a
square wave, you can’t out put sine waves. This tends to make the sounds have a “textured” sound since harmonics are
in the square wave. That is if you output a square wave at frequency f then you will find that there are harmonics at 3f, 5f,
etc. all these sine wave are what really make up a square wave. Take a look at Fourier transform theory to see this:

 http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT4/node2.html

Of course our little low pass filter is going to filter most of these harmonics, but you aren’t going to hear a pure sine until
you increase the frequency to about the 3dB cutoff which maybe desired.

In any event, if all you need is a single channel, some noise, pure tones, then FM with the AUDIO_MONO port at (P24) is
more than enough. You can use software or the built in timer in PWM mode to accomplish this as well, but you won’t have
any control over amplitude since you would be running the output at audio frequencies and not at PWM frequencies.

14.1.3 Pulse Width Modulation (PWM)

Pulse width modulation or PWM is a very clever way to create any kind of sound with a single bit of output! The bad
news is that the generation of the output and the algorithms needed are fairly involved and take a little bit of numerical
analysis, but once you get it working its not an issue and you can build libraries to create any sound you wish – in fact
many advanced synthesizers use PWM systems, so it’s very powerful.

To start with you might want to “Google” for PWM techniques and read up a bit. Watch out since most PWM references
are about using PWM for motor control. Here are a few PWM articles to get your started:

 http://www.freescale.com/files/32bit/doc/app_note/MC68EZ328PWM.pdf
 http://www.freescale.com/files/32bit/doc/app_note/MC68EZ328DTMF.pdf
 http://www.intel.com/design/mcs96/technote/3351.htm
 http://ww1.microchip.com/downloads/en/AppNotes/00655a.pdf
 http://archive.chipcenter.com/knowledge_centers/embedded/todays_feature/showArticle.jhtml?articleID=
 10100668

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 69

Figure 14.4 - Duty cycle modes.

After reading all these documents you should have a fairly good grasp of PWM techniques. More or less, PWM is really a
method of digital to analog conversion using a single bit output along with a low-pass filter that acts as an “averaging” or
“integration” device. A PWM signal is at fixed output frequency usually many times the highest frequency you want to
synthesis, for example a good rule of thumb is that the PWM signal should be 10-100x greater than the frequencies you
want to synthesis. Also, the PWM period is fixed, the modulation of information in the PWM signal is in the duty cycle of
the signal. Recall, duty cycle is defined as:

 Duty Cycle = Time Waveform is HIGH / Total Period of Waveform

For example, say we had a 1KHz signal, this means the period is 1/1KHz = 1mS = 1000 µs. Now, let’s say we are talking
about square waves in a digital system with a HIGH of 5V and a LOW of 0V. Furthermore, let’s say that the duty cycle is
20%, what would the final waveform look like? Figure 9.4(a) depicts this. As you can see the waveform is HIGH 20% of
the total period or 200 µs, and the waveform is LOW 800 µs. Therefore, if you were to average this signal f(t) over time
you would find that the average is simply the area under the HIGH part divided by the total AREA of the waveform which
is:

 Average Signal @ 20% duty cycle = (5V)* [(200 µs) / (1000 µs)] = 1.00V.

This is a VERY interesting result, by just varying the time we pulse a digital output HIGH we can create an analog voltage!
Thus, we can modulate the analog voltage in any shape we wish to create a final waveform of any shape we want;
sounds, explosions, voices, etc. plus since this is all digital we can synthesis as many channels as we wish since at the
end of the day we need only a single bit as the output. Figure 14.4(b) shows another PWM like technique where instead of
modulating the duty cycle, instead complete 50% duty cycle pulses are sent, but they are interspersed with 0% duty
cycles as a function of time. If the rate of these “pulses” is high enough, they too create an “average” voltage over time. In
Figure 14.4(b) there are 10 total cycles and in 2 of them we have 50% duty cycles for a total analog voltage per 10 clocks
of:

 Average Signal @ 20% duty cycle = (5V)* (50%)*[(100 ns) / (1000 ns)] = 0.5V.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 70

Notice we are dealing in nanoseconds in the second example, this technique needs to run at a higher frequency to give
the “average” enough time to change at the highest frequency rate you want to synthesize in this method of D/A.

Figure 14.5 – A low pass “averaging” filter and the “stair step” results.

Now, the only mystery component to the D/A PWM converter is “averaging” of the signal. Well, fortunately for us, a low
pass filter as shown in Figure 14.5 acts as an averaging circuit, in fact, those of you with an EE background know that 1/S
is integral in the S-Domain and a low pass filter has a 1/S term it in. Intuitively it makes sense as well since a low pass
filter as shown in Figure 15.5(a) is really just a charging circuit and as we send these pulses to it, the circuit charges a bit,
then another pulse comes and it charges a bit more, when a pulse doesn’t come or the duty cycle is smaller then the RC
circuit discharges, so the PWM modulated pulse train gets turned into a signal by an “averaging” process and looks like
a stair step where you can see the averaging period superimposed on the signal. Figure 14.5(b) shows an example of
this. Here we see a PWM signal running at frequency f0, and a sine wave being synthesized at 1KHz before and after the
averaging circuit. We will get more into the programming of PWM when we discuss sound generation in the programming
section of the manual. But, for now realize that the low pass filter (LPF) that the Chameleon AVR uses on the audio
circuit acts as a LPF as well as an “averaging” circuit for PWM, so it has two uses – pretty cool.

14.1.3.1 Selecting the Filtering Frequency

Also, there are a couple of concerns with the actual values of the LPF, so that you don’t get too much noise. Noise is
going to come from the PWM frequency itself. For example, say you use a PWM frequency of 1MHz then your filter
obviously needs to cut this frequency out, but it also needs to cut in at the highest frequency you plan to synthesis, for
example, if you plan to have sounds all the way up to CD quality at 44KHz then you might set the 3dB point at 50KHz for
example.

Also, we are using an “passive” or “inactive” single pole filter. You might want a “sharper” response in a more high
end sound system like a 2 or 4 pole system. You can achieve this by daisy chaining our little LPFs together OR you can
use an “active filter” that consumes power based on a transistor or better yet simple Operational Amplifier (Op Amp)
like the LM 741. Or better yet pick an 8-pole switched capacitor filter by National, TI, or Linear Tech and the signal will hit
a “brick wall” at the cutoff ☺

But, for our purposes; games, simple music, audio warnings, sound effects, etc. a single pole passive filter will do fine, if
there is one thing I know, most people can’t tell the difference between 16-bit, 96 KHz sound and 8-bit, 11 KHz, so sound
generation can be a little rough!

14.1.3.2 PWM Setup Procedure

As mentioned, we will write some real code in the software section of this manual, but just to get you thinking about it, let’s
briefly digress a moment and work up an example with real numbers, so you can see this all in your head. Many of you
are already sound experts and half of us have written MOD players and done DOS games for years, so this is old news,
simple stuff, but a couple of you may never have played with sound, so this review can’t hurt.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 71

So to PWM modulate a “signal” we encode the signal onto the PWM carrier by means of encoding the “information” or
analog value of the signal onto the PWM carrier by modulating the period or the duty cycle of the fixed frequency PWM
carrier. This is a VERY important concept to understand – the PWM frequency/period NEVER changes, only the duty
cycle of any particular cycle. Thus by modulating the information onto the duty cycle we can then later demodulate the
signal by integrating or averaging the PWM signal with a RC circuit and presto we have an analog voltage!

Figure 14.6 – Indexing into a Sine look up table to synthesize a signal at a given PWM rate.

The first thing we need to do is decide what kind of waveforms we want to synthesis, remember they can be ANYTHING,
they can be periodic and simple like sine, square wave (redundant), triangle, sawtooth, noise, or even digitized speech.
But, to start simple, let’s synthesis a single sine wave. So first we need a look up table for sine wave, let’s call it
sinetable[] and assume it has 256 entries and we generate it such that a single cycle has a low of 0 and a high of 255
and is encoded in 8-bits (similar to an example in the references). Now, the algorithm is fairly simple, we need to index
thru the sine table a rate such that we complete a single cycle of our sine wave at the desired output signal frequency. As
a quick and dirty example, let’s say that we use a PWM frequency of 256 KHz and we want to play a 1 KHz sine wave,
then this means that each second there are 256,000 PWM pulses, we want to index into our table and play 1000 iterations
of our data which has a length of 256 entries, thus we need to index into our table at a rate of:

 256,000 / (1000 * 256) = 1

Interesting, so every cycle we simple increment a counter into the sine table and output the appropriate duty cycle in the
table lookup. This is shown in Figure 14.6. As another example, say we want to synthesis a 240 Hz signal then let’s see
what we would need:

 256,000 / (240 * 256) = 4.16

In this case, we would increment a counter until it reached 4 then we would increment our index into our sine table. But,
this example as well as the last should bring something to your attention, there is a max frequency we can synthesis and
our signal synthesis is going to be inaccurate for anything, but integral divisors, so that’s an issue we need to address in a
moment. First, let’s look at the maximum signal frequency, if you want to play back all 256 sine samples then the
maximum “signal” frequency is always:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 72

 Maximum Synthesis Frequency = PWM frequency / Number of Samples per Cycle

Which in this example is,

 256,000 / 256 = 1000 Hz

So, you have two options; either increase the PWM frequency or index into your sample table at larger intervals. This
problem along with the lack of precision can be handled by use of fixed point arithmetic and a little numerical trick. We are
going to scale all the math by 8-bits or in essence multiply by 256 then we are going to create two variables one called a
phase accumulator (PHASE_ACC) and one called a phase increment (PHASE_INC). Then instead of using count down
algorithms, we are going to simply add the phase increment to the phase accumulator and use the phase accumulator as
an index into the sine table. Therefore, what we have done is turned out 256 element sine table into a “virtual” 256*256 =
65536 element sine table for math purposes to give us more accuracy for slower, non-integral waveforms as well as allow
fast waveforms to index and skip elements in the look up table, so a possible setup is something like this:

The Phase Accumulator 16-bit

b15 | b14 | b13 | b12 | b11 | b10 | b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
| | |
| b15-b8 used as index | value |

Now, we have two interesting properties; first, no matter what the index in the upper 8-bits can never exceed 255, so we
can never go out of bounds of our table, secondly, we can put very small numbers into the phase accumulator via that
phase increment variable.

So now the algorithm for PWM sound is simple:

Step 1: Run the PWM at the output frequency 256,000 Hz.

Step 2: Calculate the Phase Increment (PHASE_INC) to add to the Phase Accumulator (PHASE_ACC) such that the final
desired “signal” frequency is output via the lookup into the sine or waveform table.

Step 3: Continually add the Phase Increment to the Phase Accumulator and every cycle use the upper 8-bits of the Phase
Accumulator as the index into the 256 element sine table.

Figure 14.7 – Our final PWM setup.

Now, to recap, we still have a table that has only 256 elements, but we are going to pretend it has 65536 elements, that is,
256*256 to improve our accuracy, this is nothing more than using a shift << 8 and create a fixed point value in 8.8 format.
Next, we are going to call out a couple vars to make the algorithm easy, one is an accumulator called PHASE_ACC that
simply accumulates the current count then we convert it back to an integer by shifting it >> 8 times OR just using the
upper 8-bits at the index into our 256 element sine table (the later is preferred). Then we simply need the magic number

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 73

PHASE_INC that for a given PWM frequency (256,000 in this case) and a desired output signal frequency along with a
specific number of data table elements will make the whole thing work. Here’s the final math:

Given,

1. A complete sine waveform has 65536 data entries in our virtual table and 256 in the real table.
2. The PWM frequency is 256K.

 NUM_INCREMENTS = The number of times that the PWM signal increments thru the final signal table in ONE
 complete wave cycle. This is shown in Figure 14.7.

In other words,

 NUM_INCREMENTS = signal period / PWM period
 = PWM frequency / signal frequency

Now, let’s compute PHASE_INC,

 PHASE_INC = 65536 / NUM_INCREMENTS

That is, the PHASE_INC is the rate at which we need to increment thru the data table to maintain the relationship so that
the output is changing at the rate of the signal frequency. Now, plugging this all in together and moving things around a
bit:

 PHASE_INC = 65536 * signal frequency / PWM frequency.

And of course PHASE_ACC is simply set to 0 to begin with when the algorithm starts. As an example, let’s compute some
values and see if it works. First let’s try a 1KHz signal and see what we get:

 PHASE_INC = 65536 * 1KHz / 256,000 = 256.

So this means that we add 256 to the phase accumulator each PWM cycle, then use the upper 8-bits of the phase
accumulator as the index, let’s try it a few cycles as see of it works:

Table 14.2 – Test of PWM algorithm at 1KHz with PHASE_INC of 256.

Iteration PHASE_INC PHASE_ACC PHASE_ACC (upper 8-bits)

0 256 0 0
1 256 256 1
2 256 512 2
3 256 768 3
4 256 1024 4
5 256 1280 5
6 256 1536 6
7 256 1792 7
.
.
255 256 65280 255

Referring to Table 14.2, we see that each cycle of the PWM the PHASE_ACC is incremented by 1 and the next element
in the 256 element sine table is accessed, thus the table is cycled thru at a rate of 256,000 / 256 = 1,000 Hz! Perfect!
Now, let’s try another example where the frequency is higher than what we could sustain with our more crude approach at
the beginning of the section with only a counter and not using the accumulator and fixed point approach. Let’s try to
synthesize a 2550 Hz signal.

 PHASE_INC = 65536 * 2550 / 256,000 = 652.8

Now, this is a decimal number which will be truncated during the fixed point math to 652, but this is fine, that’s only an
error or:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 74

 Truncation error = 100*(0.8 / 652.8) = 0.12%

I think I can live with that! Table 14.3 shows the results of the synthesis algorithm running once again.

Table 14.3 – Test of PWM algorithm at 2500 Hz with PHASE_INC of 652.

Iteration PHASE_INC PHASE_ACC PHASE_ACC (upper 8-bits)

0 652 0 0
1 652 652 2
2 652 1304 5
3 652 1956 7
4 652 2608 10
5 652 3260 12
6 652 3912 15
7 652 4564 17

.

.
100 652 65000 253

As you can see in this case, each cycle the sine table is accessed by skipping an entry or two causing a bit of distortion,
but since the table has 256 entries the amount of distortion is 1-2% at most, so once again we see that the technique
works perfectly. Also, notice that it takes only 100 cycles of the PWM clock to iterate thru one complete cycle of the sine
table which makes sense as well.

In conclusion, the software is where the magic is here. The PWM audio circuitry couldn’t be simpler as shown in Figure
14.5. Additionally, you can synthesize multiple channels by simply having multiple phase accumulators and phase
increments, in fact to synthesize a 64 channel system you would just need something like:

int phase_inc[64], phase_acc[64];

And you simply run a loop over everything and at sum up all the phase accumulators each cycle and use the sum as the
index into the sine table. Of course, the sine table itself has to scaled in the amplitude axis and you must do a auto-scale,
so that the sum doesn’t overflow, but you get the idea. Moreover, you can store other waveforms like square, triangle,
sawtooth, and so on and then mix various waveforms. Finally, you can easily overlay a ADSR (attack – decay – sustain –
release) envelope to a note based system and create just about anything. The only downside to PWM is that it must be
VERY accurate, your ears are VERY sensitive to frequency shifts, so the timing loops must be perfect, thus a hardware
timer or a tight loop needs to be used that doesn’t vary otherwise, you will hear it.

In conclusion, that’s a taste of what goes into generating sounds on the Propeller chip. Then there is the whole other
process of creating a sound engine on top of these techniques to play “music” such as MIDI or MOD.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 75

Part II – Programming Manual

15.0 Installing the Tool chains: AVRStudio, Arduino, and Propeller IDE

The first step in developing applications for the Chameleon AVR is to install the tool chains and all their components.
Since the Chameleon is compatible with the Arduino tool chain as well as the standard AVR Studio, we are going to
cover both methods with the emphasis on the more complex toolchain – AVR Studio. The Arduino tool is relatively easy to
install, so we will cover that at the end of this section. Also, the Chameleon’s AVR is pre-loaded with the Arduino
bootloader in its flash memory. So if you don’t have a AVR ISP MKII programmer, or you simply don’t want to deal with
AVRStudio you can work with the Arduino toolchain alone. However, I still recommend you skim the discussion of
AVRStudio since it’s a much more powerful tool than the Arduino tool.

Additionally, the Chameleon has a Parallax Propeller chip on it, so we have to install that tool as well, so there is a lot to
do. We are going to show the installations of the tool in the following order:

� AVR Studio IDE
� Arduino Development System
� Propeller IDE

If you do not own a AVR ISP MK II or similar in-circuit-programmer then you can skim the first section.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 76

15.1 Atmel’s AVR Studio Toolchain Overview

Atmel’s AVR Studio is the premier development tool for AVR processors. The tool is 100% free, support assembly
language natively and now with the integration of WinAVR, the tool supports C/C++ seamlessly.

Like all tool chains this can be quite complex and a single incorrect checkbox can wreak havoc on many installation
making them useless. For this reason, we will cover the installation of all main tools in the chain step by step. For those of
you reading that are already expert in installation of AVR tools then you can skim this section and jump to the Arduino tool
installation.

Figure 15.1 – The relationship of the various AVR programming tools in the tool chain.

Referring to Figure 15.1, you can see that there are three main components of the tool chain for the Chameleon AVR and
AVR processors in general, they are:

� AVR Studio 4.xx
� AVRISP MKII (sold seperately)
� WinAVR

AVR Studio 4.xx – This is the primary IDE developed by Atmel for programming the AVR line of processors. The tool
comes complete with everything you need to program in assembly language, use simulators, debuggers and various
programming tools developed by Atmel as well as 3

rd
 party vendors. AVR Studio 4.xx does NOT have a built in

compiler (only assembler). For this we will use a free GNU GCC compiler targeted toward AVR processors. Normally,
this would be a very complex task to set up; however, there is another tool called WinAVR that eases this process for
us.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 77

AVRISP MKII – This is the actual hardware programmer that is recommended for the Chameleon AVR 8-Bit. The
programmer only supports programming and not debugging, but is low cost and very versatile. The programmer must
be installed as well and its firmware potentially updated. This installation will be done after the other tools are
installed, so AVR Studio 4.xx specifically can update any drivers needed for the tool, since AVR ISP is integrated into
the AVR Studio IDE itself.

WinAVR – This is a GNU GCC compiler installation that works on Windows that integrates the GNU GCC compiler
and appropriate tools such as the GNU Assembler, Linker, and Make tools all in a single Windows installation
package. Thus, after we install AVR Studio 4.xx, we will install WinAVR to give the IDE C/C++ support. In addition to
the GCC compiler, the 3

rd
 party run-time C/C++ library named “AVR Libc” is installed which you can leverage for

your C/C++ programs. It more or less implements the standard C/C++ library, but additionally has a multitude of AVR
and embedded system specific functions and libraries along with it.

AVR Studio 4.xx and WinAVR are located on the DVD-ROM at these locations:

DVD-ROM:\ CHAM_AVR \ TOOLS \ AVR \ AvrStudio417Setup.exe
DVD-ROM:\ CHAM_AVR \ TOOLS \ AVR \ WinAVR-20090313-install.exe

NOTE

AVRISP MK II (AVR ISP) is simply a piece of hardware and Windows will detect it and
install the drivers from the AVR Studio install, thus there is no software per se that we
need to worry about. However, if you wanted to install AVR ISP by itself then there are
stand alone programming applications from Atmel. But, we aren’t going to consider
them since we will use AVR Studio which has programming and debugging built in.

15.1.1 Installing AVR Studio 4.xx (Optional)

Installing AVR Studio is relatively straightforward as long as you know what you’re doing to begin with. This is the problem
with many IDEs and installation programs; you have to install the tool to figure out what not to do and then in many cases
un-install the tool then re-install it. To save you all this grief, we are going to install the tool together step by step with a
complete set of screen shots of each step along with explanations. Thus, without further ado, let’s get this done. The first
step is to locate and launch the AVR Studio 4.xx installer. The file is located on the DVD here:

DVD-ROM:\ CHAM_AVR \ TOOLS\ AVR \ AvrStudio417Setup.exe

TIP

You can always download the latest copy of the install from Atmel directly; however,
small changes in the installation and setup may de-synchronize what you see here in
these page, thus, let’s just use the same installation packages on the DVD. You can
always update later after you have installed the complete tool chain and have it
working.

At this point, please launch the AVR Studio installation program. You should see the initial splash screen as show in
Figure 15.2.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 78

Figure 15.2 – Initial splash screen for AVR Studio 4 installer.

Press <Next> this will take you to the licensing screen shown in Figure 15.3 below.

Figure 15.3 – AVR Studio License Agreement.

The license screen is the usual you would expect, simply press <Next> to continue. This brings up the installation target
directory as shown in Figure 15.4 below.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 79

Figure 15.4 – AVR Studio installation directory selection.

I highly recommend you select a “shallow” installation directory for the files. In other words, don’t put the installation in a
long path with many sub-directories. I would install the software right off the root of one of your drives. This way, it’s easy
to type the path for command line applications. Moreover, use “\AVR” in the suffix of the path for convention purposes,
makes it easier to find the installation. Finally, avoid spaces in your directory names and I suggest not using drive C:\, the
less you put on your OS drive the better. You ever wonder why Windows gets slow after a while? The reason is that there
are so many files on the install drive, DLLs in the Windows directory, etc. that the performance of Windows grinds to a
halt. So anytime you can put apps on another drive or partition that’s your best bet. “My Programs” is cute for soccer
moms, but to be avoided as an installation target for serious programmers. Once you have selected the desired
installation directory go ahead and press <Next> to continue the installation process.

Figure 15.5 – AVR Studio extra installation features dialog.

Figure 15.5 shows the AVR Studio features installation dialog. As you can see, there’s not many features. Actually, they
all come by default. In any event, select the USB driver upgrade to save you the time of installing it later. This option
includes the needed driver for any external USB based programmer/debugger which we need. Press <Next> and the
final installation confirmation dialog will display as shown in Figure 15.6.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 80

Figure 15.6 – AVR Studio final installation dialog.

Unless you want to go back and make changes, simply press <Install> and the installation will begin. If all goes well, then
the installation complete message box will be displayed as shown in Figure 15.7.

Figure 15.7 – AVR Studio installation complete message box.

You’re probably thinking, “that was easy!”. I agree, but installation isn’t really the hard part, it’s the “setup” of the tools
after installation! With that in mind, let’s keep moving on with the installation of AVR ISP MKII.

TIP
Make sure to reboot your machine to allow the system to configure and all the
environment variables to get set correctly. The WinAVR step of the installation depends
on the previous installation of AVR Studio, so we want to make sure everything is clean.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 81

15.1.2 Installing the AVR ISP MKII Hardware (Optional)

Now that AVR Studio is installed, we could install WinAVR next, but I find that installation the programming hardware is a
better idea, so the drivers can load and it can register itself, so that WinAVR will find it during its installation. This way we
don’t get into a “chicken and the egg” problem and have to install something two times.

TIP
Of course, if you do not have a AVR ISP MKII then you can skip this section since you
are probably planning on using the pre-flashed bootloader in Arduino mode over the
USB serial connection.

Installing the AVR ISP MKII programmer consists of nothing more than plugging it into your PC with a USB cable. Go
ahead and do this now as. Once you plug it in, the PC should detect it and begin the installation process as shown in
Figure 15.8 below.

Figure 15.8 – Window’s detecting the Atmel AVR ISP MKII.

Select the radio button to install the software automatically and then click <Next>. Unless something went wrong with the
AVR Studio installation you should see the hardware being installed as shown in Figure 15.9 below.

Figure 15.9 – Windows installation AVR ISP hardware and drivers.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 82

When complete simply press <Next>, then the drivers should install. If all went well, you should see the final splash
screen shown in Figure 15.10.

Figure 15.10 – AVR ISP drivers successfully installed.

Press <Finish> and the programmer should be ready to go.

15.1.3 Installing WinAVRTM

WinAVR is a complete open source Windows based installation of the GNU GCC compiler and tool chain that integrates
into the installation of AVR Studio. You can find out more here:

http://winavr.sourceforge.net/

We are very lucky to have this, without it, we would have to use a 3

rd
 party compiler which costs lots of $$$. On the other

hand, it’s GNU-GCC based which means very little support and documentation written by paid professionals, so it’s a
compromise. As mentioned before WinAVR integrates into AVR Studio giving AVR Studio C/C++ support (along with the
GCC assembler named “GAS”). Before WinAVR you could still get AVR processor GCC support, but you would have to
do a lot of work to accomplish this, thus the installer for WinAVR performs all kinds of really complex and tedious setup
tasks and hides all the complexity from you.

With that in mind, let’s begin the installation. The latest WinAVR installer is located on the DVD here:

DVD-ROM:\ CHAM_AVR \ TOOLS \ AVR \ WinAVR-20090313-install.exe

Of course, you can always download the very latest copy to the minute from the Source Forge site, but once again, let’s
just use the one on the DVD-ROM, so we both have the exact same software. You can update in the future once you
have everything working. Once you have located the installation file, go ahead and launch it, you will see the language
splash screen as shown in Figure 15.11 below (ignore the version differences from our screen shots to the latest copy on
the DVD).

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 83

Figure 15.11 – WinAVR language selection.

Select English and click <Ok>, this will bring you to the main splash screen shown below in Figure 15.12.

Figure 15.12 – WinAVR main splash screen.

Click <Next> and the famous GNU GPL license agreement should display on your screen. Read it and then click
<I Agree> to continue as shown in Figure 15.13 below.

Figure 15.13 – WinAVR’s GPL license.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 84

The next step in the installation is the selection of the installation file directory. Browse and select the same root
directory you previously installed AVR Studio into. By doing this, everything will be conveniently located in a single
directory. Figure 15.15 illustrates this.

Figure 15.14 – Selection of WinAVR’s installation directory – should be the same as AVR Studio.

Once you are satisfied with the installation directory location, click <Next> for the installation components dialog as shown
in Figure 15.15 below.

Figure 15.15 – WinAVR software components selection dialog.

The WinAVR components selection dialog is straightforward and mostly redundant (of course I want to install the files!). In
any event, simply check all checkboxes and then click <Install> to initiate the installation process. The installation
progress dialog should display as shown in Figure 15.16 below.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 85

Figure 15.16 – WinAVR installation progresss dialog.

The installation is rather quick (under a minute). When complete, the installation finished message box will display, click
<Finish> to complete the process and you can stop holding your breath ☺

Figure 15.17 – WinAVR successfully installed!

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 86

15.1.4 Building a Project and Testing the Tool Chain

Congratulations, you have installed the tool chain and if you are still with me then everything must have went correctly! At
this point, we have to set up the tools themselves which includes a lot of detail. I highly recommended you first skim over
this section then return back to this point. This way you have an idea of what’s coming. If you make mistakes during the
setup process they are easy to fix if you know you made them, but very hard if you don’t. Thus, take a few moments to
skim the screen shots then return here and we set things up for real…

Alright, we are going to approach all development with the Chameleon AVR is as simple as possible. To that end, we
need to create a single project to work with then for each demo we will simply include the source files in the source tree
that the demo needs and remove ones it doesn’t This way we don’t have dozens of projects, hundreds of directories and a
big mess. The primary steps that we must follow are:

� Create an initial project and directory within the AVR installation directory.
� Set up the GCC tool chain properly; the compiler, linker, etc.
� Set up the AVR ISP MKII programmer itself (if you have one).
� Copy all the source files from the DVD with all the demos and drivers into the Source\ directory locally on your

hard drive.

Let’s begin by launching AVR Studio 4. You should have an icon on your Desktop or link in the Start Menu, locate AVR
Studio 4 and launch it. You should see something like the image depicted in Figure 15.18.

Figure 15.18 – AVR Studio starting up for the first time.

Hopefully, you see something similar to this. However, it’s possible that some of the tools in different locations or not at all
(eg. the I/O view and Processor state). Any of these differences can be remedied at a later time from the Main Menu
under <View→Toolbars>. Now, let’s get to work.

The first step to setting up the tool is to create an initial project. The New Project dialog is shown in Figure 15.19 below.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 87

Figure 15.19 – Setting up the New Project dialog correctly.

Make the following changes to the default dialog, so we have the same project:

� Select AVR GCC – This tells the tool that we want to use C/C++ and GCC ASM.
� Check “Create Folder” and uncheck “Create Initial File”.
� Type in “cham_avr_work_01” under “Project Name”.
� Under “Location” browse to your install directory’s “\source” sub-directory (or wherever you want to put projects),

we will put all projects in there.

After you make these changes, you should have something that looks like Figure 15.19. Also, it’s important you use the
project name “cham_avr_work_01” since I will refer to that from time to time and this will be the directory we will copy
data to. However, in the future, you can create as many projects as you wish with whatever names you wish. Just make
sure to place them all in their own directories, so you don’t have file collisions.

Once complete, go ahead and click <Next> to move onto the section of the “Debug Platform” as shown in Figure 15.20.

Figure 15.20 – AVR Studio selection of the Debug Platform.

AVR Studio supports all kinds of programmers, debuggers; hardware and software tools. This dialog helps you select
the programming device along with the target device you will be working with. In our case, under Debug Platform select
“AVR Simulator 2” along with “ATmega328P” under Device. The software simulator is of some use, but you will find its
capabilities limited. Moreover, it only simulates the processor not any the hardware connected to it. Thus, in the future,
you might want to purchase the AVR JTAG ICE debugger or other similar 3

rd
 party tool.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 88

Moving on, click <Finish> once you have the Debug Platform filled out appropriately. This should open AVR Studio up to
its default view which we might need to make adjustments to, so the correct tools are displayed. Take a look at Figure
15.21 below to accomplish this.

Figure 15.21 – Selecting the active tools in AVR Studio.

Referring to Figure 15.21 and selecting <View→Toolbars> from the Main Menu, you can select/de-select various tools
that you wish enabled in the IDE. More or less, enable all of them especially “AVR GCC” shown last in the list, we need
this tool, so we have access to the source tree of our project. You might want to do without the “Processor” and “I/O”
displays since they really only matter for simulation and debugging support, but it’s up to you. When you select the AVR
GCC tool, you should see the file list control on the left side of the IDE as shown in the figure, this is important. The
reason of course, this file list is where we will add/remove files for the current project in the “Source Files” folder as
shown in Figure 15.22 below.

Figure 15.22 – The AVR Studio GCC Source Files folder.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 89

WARNING!

You will notice that I have also highlighted the tabs at the bottom of the tool interface’s
primary window in Figure 15.21. It consists of the following tabs; Build, Message, Find
in Files, and Breakpoints and Tracepoints. This GUI control has a bug in it that you
must watch out for. Sometimes during compilation, it will switch from Build view to
Message view, this is very confusing since YOU, the USER did not request it. So you
are minding your business, compiling an application and all of a sudden you look down
at the output window and get the most bizarre errors? But, what you don’t realize is that
the window tab has switched from Build to Message. So the point is, watch out for this.
And make sure when you are compiling and you get warnings, errors, etc. that the tab is
set to Build view, so you can see the real problems and not some cryptic GCC tool
error.

15.1.4.1 Setting up the Project Options

We will get to adding files to the project in a moment, right now, we need to perform more setup to get the tool chain
where we need it. The next step is to launch the “Configuration Options” dialog from the Main Menu via the
<Project→Configuration Options> as shown in Figure 15.23 below.

Figure 15.23 – Locating the Configuration Options dialog.

Once you launch the tool then you should see the very complex interface shown in Figure 15.24 below.

Figure 15.24 – The Project Options tool which sets up the entire tool chain.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 90

WARNING!

This is the most important tool of the entire application. It’s here that everything is
configured. If the settings are not correct here you will have nothing, but trouble. Alas, in
the next few paragraphs and screen shots we are going to painstakingly setup every
single little detail. The number one problem with using tools like this is the setup, so take
your time, it will pay you back in hours or days of frustration!

Referring to Figure 15.24, there is a lot going on with this tool interface. First, there are a number of categories on the left
that can be selected such as;

General - General settings across the compiler.
Include Directories - Sets various search directories for the compiler.
Libraries - Add/remove libraries that the linker might need.
Memory Settings - Manipulate the initial memory configurations of the AVR.
Custom Options - Set flags and controls for the tools like GCC and MAKE.

We aren’t going to need to make changes to all the tool settings, but nonetheless, I highly recommended that you view all
of them and read about them in the documentation and help since these settings control everything. In any event, let’s
begin with the General settings as shown in Figure 15.24. Make sure the General tab is set on the left hand side and
highlighted.

First off, at the top of the tool under “Active Configuration” we are altering the “default” configuration, so make sure
that’s selected properly. Next, make sure “Use External Makefile” is un-checked. For those that aren’t familiar with
command line tools, Make is a tool that reads in a “Makefile” containing commands for everything from the compiler to
the linker to the debugger. Make is typically used by Unix/Linux programmers and of course is part of the GCC tools we
are using. Thus, you can use an external “makefile” if you wish. Luckily, WinAVR takes care of this for us and generates
the make file, so we don’t have to.

Next, the under “Output File Name:” should be the name of the project itself with the extension “.elf”. Elf is the final
output of the compiler and linker which is ready for conversion to the binary image downloaded into the AVR. Elf stands
for “Executable and Linkable Format” and is a very common file format for executable files, binary objects, and other
objects that are ready to be loaded or executed on various platforms. The WinAVR uses it as an intermediate format
before the final binary AVR hex image is generated that we will download into the Chameleon each time.

Under the “Output File Directory:”, you can set anything you wish, but for now set it to “\default” as shown in the figure.
This is where the final output will go and the binaries will reside with the data ready for the programmer itself to download
to the Chameleon AVR target.

The next settings panel has a lot of settings that need to be addressed, let’s talk briefly about each:

Device - Sets the actual target device, in our case set to “atmega328p”.
Frequency - Sets a constant for the compiler equal to F_CPU, set to main frequency of 16,000,000 Hz.
Optimization - Sets the level of optimization, for our use, “-Os, -O1, or -O2” are a safe settings.

You can experiment later with various optimization settings, but the Device and Frequency should be equal to the values
above.

To the right of these settings are number of checkboxes, these control some of the GCC compiler’s options which you can
read about in the GCC documentation. However, they are pretty straightforward and similar to every other compiler’s
settings. They are only a subset of the dozens of compiler settings that you might want to set with GCC, but are some of
the most common embedded programmers like to play with. In our case, the only one we want checked is “Pack
Structure Members”. All this does is pack structures tight rather than pad them to put them on WORD or other various
boundaries. In essence, saves memory.

Finally, there are (3) checkboxes at the bottom of the page; “Create Hex File”, “Create Map File”, “Generate List File”.
These are important and should be checked. You should be familiar with the map and list file if you’re a C/C++
programmer, but for those that don’t here are some basic definitions:

Map File - A “Map” file generated by a compiler typically lists the memory organization, usage, and symbol
allocation as well as bindings. Very useful.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 91

List File - This is the most useful output from a compiler; it contains the actual ASM code generated by the
compiler along with the C/C++ code along side. This way you can “see” how the compiler works
and what it’s doing in various situations. This is one of the best ways to learn optimization. I am
always shocked at how many programmers know nothing about this tool! So don’t be another
statistic!

Hex File - This is embedded system specific and contains the final AVR compatible binary hex file that the

programmer tool needs to FLASH the AVR’s memory. In 99% of the cases we want to generate
this file, so we can program the AVR with our code.

Since these files are so important and understanding what’s in them is equally important, let’s take a quick peek at each. I
explored my latest compile, and extracted some bits of each file, so you can see what’s in them.

Map File Example (.map)

The .MAP file is typically rather large and has all kinds of interesting information. By reading it, you will see all the details
and get a real respect for what goes on behind the scenes of a linker/loader. Here’s a small excerpt of one section of a
.MAP file:

Allocating common symbols
Common symbol size file

g_uart_buffer_tx 0x20 CHAM_AVR_UART_DRV_V010.o
g_uart_buffer_rx 0x20 CHAM_AVR_UART_DRV_V010.o

Memory Configuration

Name Origin Length Attributes
text 0x00000000 0x00020000 xr
data 0x00800060 0x0000ffa0 rw !x
eeprom 0x00810000 0x00010000 rw !x
fuse 0x00820000 0x00000400 rw !x
lock 0x00830000 0x00000400 rw !x
signature 0x00840000 0x00000400 rw !x
default 0x00000000 0xffffffff

Linker script and memory map

Address of section .data set to 0x800100
LOAD d:/development/xgs2/avr/winavr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr5/crtm328p.o
LOAD CHAM_AVR_VGA_DRV_V010.o
LOAD CHAM_AVR_FLASH_DRV_V010.o
LOAD CHAM_AVR_GFX_DRV_V010.o
LOAD CHAM_AVR_KEYBOARD_DRV_V010.o
LOAD CHAM_AVR_MOUSE_DRV_V010.o
LOAD CHAM_AVR_NTSC_DRV_V010.o
LOAD CHAM_AVR_PROP_PORT_DRV_V010.o
LOAD CHAM_AVR_SOUND_DRV_V010.o
LOAD CHAM_AVR_SYSTEM_V010.o
LOAD CHAM_AVR_TEST_PGM_VER1.o
LOAD CHAM_AVR_TWI_SPI_DRV_V010.o
LOAD CHAM_AVR_UART_DRV_V010.o
LOAD d:/development/xgs2/avr/winavr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr5\libm.a
LOAD d:/development/xgs2/avr/winavr/bin/../lib/gcc/avr/4.3.2/avr5\libgcc.a
LOAD d:/development/xgs2/avr/winavr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr5\libc.a
LOAD d:/development/xgs2/avr/winavr/bin/../lib/gcc/avr/4.3.2/avr5\libgcc.a
…

List File Example (.lss)

List files are my favorite since you can change settings on the compiler and then see how the code generation changes.
Additionally, you can see just how bad or good a compiler is at compiling simple statements. In many cases, you will be
shocked at what the compiler’s code generate outputs for something as simple as “x++”! Below is a small sample of a
.LSS file, specially the code generated by one of the graphics functions in the API VGA_Color(…):

int VGA_Color(int col)
{
 b8: ef 92 push r14

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 92

 ba: ff 92 push r15
 bc: 0f 93 push r16
 be: 1f 93 push r17
 c0: 8c 01 movw r16, r24
// sets the "color" of the character, means different things under different drivers

// send driver set color command, [$0C, col 0..7]
SPI_Prop_Send_Cmd(GFX_CMD_VGA_PRINTCHAR, 0x0C, 0x00);
 c2: 88 e0 ldi r24, 0x08 ; 8
 c4: 90 e0 ldi r25, 0x00 ; 0
 c6: 6c e0 ldi r22, 0x0C ; 12
 c8: 70 e0 ldi r23, 0x00 ; 0
 ca: 40 e0 ldi r20, 0x00 ; 0
 cc: 50 e0 ldi r21, 0x00 ; 0
 ce: 0e 94 3d 12 call 0x247a ; 0x247a <SPI_Prop_Send_Cmd>
 milliseconds can be achieved.
 */
void
_delay_loop_2(uint16_t __count)
{
 __asm__ volatile (
 d2: 80 e4 ldi r24, 0x40 ; 64
 d4: e8 2e mov r14, r24
 d6: 86 e0 ldi r24, 0x06 ; 6
 d8: f8 2e mov r15, r24
 da: c7 01 movw r24, r14
 dc: 01 97 sbiw r24, 0x01 ; 1
 de: f1 f7 brne .-4 ; 0xdc <VGA_Color+0x24>
_delay_us(SPI_PROP_DELAY_SHORT_US);
SPI_Prop_Send_Cmd(GFX_CMD_VGA_PRINTCHAR, col & 0x07, 0x00);
 e0: 07 70 andi r16, 0x07 ; 7
 e2: 10 70 andi r17, 0x00 ; 0
 e4: 88 e0 ldi r24, 0x08 ; 8
 e6: 90 e0 ldi r25, 0x00 ; 0
 e8: b8 01 movw r22, r16
 ea: 40 e0 ldi r20, 0x00 ; 0
 ec: 50 e0 ldi r21, 0x00 ; 0
 ee: 0e 94 3d 12 call 0x247a ; 0x247a <SPI_Prop_Send_Cmd>
 f2: c7 01 movw r24, r14
 f4: 01 97 sbiw r24, 0x01 ; 1
 f6: f1 f7 brne .-4 ; 0xf4 <VGA_Color+0x3c>
_delay_us(SPI_PROP_DELAY_SHORT_US);

// return success
return(1);

} // end VGA_Color
 f8: 81 e0 ldi r24, 0x01 ; 1
 fa: 90 e0 ldi r25, 0x00 ; 0
 fc: 1f 91 pop r17
 fe: 0f 91 pop r16
 100: ff 90 pop r15
 102: ef 90 pop r14
 104: 08 95 ret

As you can see this particular function is compiled down to a set of functions calls, thus mostly pushing parameters on the
stack then making the function call with the ASM instruction “CALL”.

Hex File Example (.hex)

Here are a few lines from a .hex file as seen in a hex compatible editor such as Visual C++, Notepad++, etc. As you can
see the data is simply a sequence or stream of bytes that are used to program the FLASH. Encoded in the format are
addresses, starting locations, and data, so the entire FLASH need not be programmed if the final .HEX file is only a few
hundred bytes long:

:100000000C9434000C945A000C945A000C945A002E
:100010000C945A000C945A000C945A000C945A00F8
:100020000C945A000C945A000C945A000C945A00E8
:100030000C945A000C945A000C945A000C945A00D8
:100040000C945A000C945A000C94A8130C94E513C9
:100050000C941E140C945A000C945A000C945A00E0
:100060000C945A000C945A0011241FBECFEFD8E014
:10007000DEBFCDBF14BE88E10FB6F8948093600058
:10008000109260000FBE16E0A0E0B1E0EEECF0E3ED
:1000900002C005900D92A43BB107D9F717E0A4EB7D
:1000A000B6E001C01D92A230B107E1F70E945107EE
:1000B0000C9465180C940000EF92FF920F931F931D
:1000C0008C0188E090E06CE070E040E050E00E943D
:1000D0003D1280E4E82E86E0F82EC7010197F1F783
:1000E0000770107088E090E0B80140E050E00E9496
:1000F0003D12C7010197F1F781E090E01F910F9148
:10010000FF90EF9008958BE090E060E070E040E0B9

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 93

:1001100050E00E943D1280EA9FE00197F1F781E0F4
:1001200090E00895CF92DF92EF92FF920F931F938A
:100130007C016B0189E090E060E070E040E050E01D
…

Moving on, the next settings we are interested in are the “Libraries” tab of the settings dialog as shown in Figure 15.25.

Figure 15.25 – The “Libraries” tab of the Project Configuration control dialog.

Shown in Figure 15.25 is the library tool. There are two main panes; one for the library search path and one that allows
you to add/remove libraries. Due to the way we setup AVR Studio, all we need to do is add one library which is:

libm.a – Math library.

Later we might add more libraries, but for now, simply select this library on the left side of the “Available Link Objects:”
and then click < Add Library→ > to add it, once done, you should see it on the right side of the pane. Of course, you can
also add single “objects” as well with this sub-dialog.

Next, up click the “Custom Options” tab to the left, this should bring up the dialog shown in Figure 15.26.

Figure 15.26 – The “Custom Options” tab of the Project Options dialog.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 94

Referring to Figure 15.26, the Custom Options tab controls the compiler/linker settings for all files, or specific files. In our
case, we need to make a change to make sure the programs compile correctly. On the left pane, select [All Files], on the
right you should see a list of options/flags that are applied to all source files by the compiler. You may recognize them
from the “General” tab. In any event, this is where you can add/delete very specific flags. Right now, we need to delete
something; notice the flag named:

-std=gnu99

This flag indicates certain compiler standards that we do not want to apply, thus we need to delete the flag. Simply
highlight it and then click <Remove> in the upper right hand side of the dialog. Finally, make sure in the “External Tools”
section at the bottom of the dialog the “Use WinAVR” checkbox is selected, if you wanted to you could actually change
the path to the compiler and make tools here to other versions, but that’s for advanced users only.

This completes the Project Options dialog settings, click <Ok> and let’s move on.

15.1.4.2 Adding Files to the Project

Now, we are ready to actually add files to our project, but first we need some files to add! Before, we get into that, let’s
briefly recap what we have been doing since at this point you might have forgotten what all these steps where for. So, we
created a new GCC project, but before getting started we had to configure a number of components in the tool chain
before we could do anything. At this point, AVR Studio is ready to go, and we can actually add the source files we want to
compile and hopefully the compiler and linker will build our application perfectly.

The first step is to copy the source files from the DVD-ROM to the installation directory on your hard drive. To do this, you
need to locate the \Source directory inside your AVR installation, it should look something like the listing shown in Figure
15.27.

Figure 15.27 – The “Source” directory in the AVR Studio installation or where you want your projects.

If you navigate into the “\Source” directory, this is where the project we created should reside in a directory called
“\cham_avr_work_01”. Yours should looks something like the listing shown in Figure 15.28 if you navigate into the
project directory.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 95

Figure 15.28 – A look inside the project directory.

Referring to the figure, the sub-directory “\cham_avr_work_01” is highlighted, this is where you need to copy the source
files from the DVD-ROM into. Additionally, note that there are some external project files at the end of the listing with the
extensions .APS, and .AWS, these are the “Project Files” themselves and contain all pertinent settings, paths, and other
information for AVR Studio to load them up. Thus, if you ever want to copy a project you have to copy these files as well
as the project directory itself. Of course, just copying the files isn’t going to be good enough since there are hard coded
paths in them, but they are there if you want to play with them. To copy the source files from the DVD-ROM, you simply
need to drag or copy the contents of the directory \SOURCE located on the DVD-ROM here:

DVD-ROM:\ CHAM_AVR \ SOURCE \ *.*

Into the project directory on your hard drive “\cham_avr_work_01”. This way we will have all the sources in a single
directory which will make organization and finding things a lot easier. True the directory will have a lot of files in it, but
that’s better than dozens of directories with copies of everything. Go ahead and copy the files now from the DVD.

Now, we are ready to add some files to our project and compile something. The first step is to gain access to the file
adding mechanism. Like all IDEs there are a couple ways to do this, but the most straightforward is to highlight the
“Source Files” folder under the project tree and right click the mouse to get a context menu. This is shown in Figure
15.29 below.

Figure 15.29 – Adding source files to the project.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 96

Clicking the “Add Existing Source File(s)” selection will launch a standard Window’s file browser, navigate it into the
project directory with all our recently copied files and then add the following files to the project:

Drivers

CHAM_AVR_SYSTEM_V010.C - This is the main “system” file that is needed for all applications.
CHAM_AVR_TWI_SPI_DRV_V010.C - This contains the SPI software API, needed for all applications.
CHAM_AVR_NTSC_DRV_V010.C - This contains the NTSC API wrapper.
CHAM_AVR_VGA_DRV_V010.C - This contains the VGA API wrapper.

Of course each of the above C files has an associated .H file. These must be added to the project as well in the headers
section, or make sure the tool has the path to them, so after you add the C files to the project’s Source Files folder, then
add the associated header files to the Header Files folder.

Main Program

CHAM_AVR_HELLO_WORLD_01.C - The demo program that prints “Hello World!” to both the NTSC and

VGA monitors. This of course does not have a header file associated
with it, just the main C file.

NOTE

The .C files are added the project explicitly, but the compiler still needs the .H header
files, however, in the previous step you copied all of them into your working compiler
directory, thus the compiler will be able to find them. However, I personally like to add
them the Header Files folders just in case, and so I can get to them easily in my project
window.

Figure 15.30 – A screen shot of the test running.

Alright, once you have all the files added to the source tree, it’s finally time to “build” the project! Referring to Figure
15.31, select <Build → Rebuild All > from the Main Menu. This will start the building process which consists of
compilation, linking, and finally hex file generation for the AVR target.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 97

Figure 15.31 – Building our project at long last.

If the build was successful then you should see the compiler output in the bottom window as shown in Figure 15.32.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 98

Figure 15.32 – A successful build indicating data memory size, warnings, etc.

Go ahead and scroll thru the output window, so you can see all the compiler and linker output. You will notice quite a few
warnings, these are fine and normal unless you want to program like a monk.

At this point, we are still not ready to program the Chameleon with AVR Studio! There is one more step – we have to
setup yet another tool; the AVR ISP MKII (that is if you’re not using the Arduino tool chain).

15.1.5 Setting up the AVR ISP MKII Hardware

Although we installed the driver and hardware for the AVR ISP programmer, we didn’t configure the tool chain inside of
AVR Studio yet to use it. This is what we need to do next. Of course, if you don’t have the AVR ISPMK II programmer
then you can skip this section. This might be the case if you are using AVR Studio for testing, simulation, or you simply
have a different programmer that is compatible. But, if you have the AVR ISP MKII programmer then read on.

WARNING!

This process is actually VERY important since a wrong configuration in the programmer
module can send the wrong data to the Chameleon AVR and ultimately to 328p chip. If
we send the wrong bits to the chip we can potentially damage it or lock it up for eternity
which would be very bad. Therefore, it’s prudent to pay close attention to the
programmer setup and know exactly what all the tabs and configuration settings do. We
will spend a good amount of time on this.

First things first, we have built the project, thus if you navigate into the project directory “\cham_avr_work_01\default”
within the \Source directory you will find a .HEX file with the name: “cham_avr_work_01.hex” within it. This is the final
result of all our hard work, now we just need to get it into the Chameleon AVR, so let’s see how to do that now.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 99

From the Main Menu select <Tools → Program AVR → Connect>, this is shown in Figure 15.33 below.

Figure 15.33 – Launching the programmer selection tool.

This should bring up the AVR programmer selection tool as shown in Figure 14.34 below.

Figure 15.34 – The AVR programmer selection tool.

WARNING!

At this point, make sure the AVR ISP MK II is plugged into a USB port on the PC and
the programmer itself is plugged into the Chameleon AVR’s ISP port as shown in
Figure 15.34. Pay attention to the pin out (the red line should be at the top). Finally,
make sure the Chameleon’s power cable is plugged in and the unit is powered up and
ON.

This tool selects which “Platform” you want to use for your programming/debugging (left list box), and then in the right list
box for the tool selected it lists the available communication devices, in this case only “USB” is listed, go ahead and
select “AVRISP mkII” and “USB” as shown in the figure and then click connect. Make sure you have the AVR ISP USB
cable connected to the PC and the 2x5 header cable from the AVR ISP programmer is plugged into the Chameleon AVR
itself as shown in Figure 15.35.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 100

Figure 15.35 – Plugging the AVR ISP MKII into the Chameleon AVR properly.

When you are ready to go, the Chameleon AVR is connected to the AVR ISP and powered up. Go ahead and plug in the
9V DC power supply or make sure the USB cable is plugged into your PC then turn the unit on by sliding the power switch
to the left. Now, hold your breath and click <Connect>… If all goes well AVR Studio will start sending communication
packets to the AVR ISP which in-turn will communicate with the ISP port on the Chameleon AVR and talk to the chip
querying it. If a communications channel is successfully opened then the AVR ISP MKII control panel will open up as
shown in Figure 15.36

Figure 15.36 – The AVR ISP MKII control panel’s “Main” tab.

The control panel might launch starting with another tab, so go ahead and select the “Main” tab as shown in Figure
15.36, so you can follow the setup steps. This control panel sets up the AVR ISP programmer and can perform many

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 101

tasks. Additionally, this tool can actually damage the AVR chip if you don’t set it up correctly. For example, you can force
the wrong part, fuse bit settings, etc. and then download garbage to the chip locking it up, therefore, this tool must be set
up correctly and care taken when using it.

Let’s begin with the “Main” tab as shown in the figure. This tab allows you to select the type of device you want to
program, read the device signature (a unique id that indicates what the device is) as well as set the type of programming
mode (ISP or JTAG) along with the frequency of programming. Let’s talk about each selection in brief.

Device and Signature Bytes – These two controls select and indicate the device and respective “signature” read

manually. In our case, we want to select the “ATmega328P” as shown in the figure,
additionally, you can click the <Read Signature> button and the tool will read the device
signature out of the Chameleon AVR and check it against the device you have selected
in the above list box. For example, the AVR Mega329P should have the signature: “0x1E
0x95 0x0F”.

Programming Mode and Target Settings – Depending on what programmer you have plugged in, it will have a number

of communication modes; ISP mode, JTAG mode, etc. In our case, simply select ISP
mode since the AVR ISP programmer uses the ISP interface on the AVR chip.
Additionally, there is a speed setting that controls the download baud rate to the
programmer. Set it for 125 KHz as a nominal value, you can get away with higher
speeds, but then risk some bit errors which can lead to locked up chips. Thus, 125 KHz
should be fast enough and the default setting. Simply press the <Settings> buttons to
adjust the programmer baud rate.

When you have completed setting the “Main” tab up properly, select the “Program” tab next. You should see the
controls shown in Figure 15.37 below.

Figure 15.37 – The AVR ISP MKII control panel’s “Program” tab.

This tab is where you command the tool to program the chip’s FLASH or EEPROM memories. In our case, we are only
going to program the FLASH memory with the .HEX files generated by AVR Studio and AVR-GCC. Reviewing the
“Program” tab at the top under “Device”, make sure both check boxes are checked, we definitely want to erase the
device each programming cycle and verify it after programming to make the download was error free. Additionally, you
can click <Erase Device> if you wish to simply erase the AVR chip and do nothing more.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 102

Moving on, the next area of interest is the “Flash” section of the tab. This is very important and what we will be using to
program the AVR chip. Make sure the second radio button “Input HEX File” is selected, then you must navigate on your
hard drive in your project directory to the .HEX file you wish programmed in each time. Now, this is an area that people
make a lot of mistakes, so please read the warning below very carefully.

WARNING!

The AVR ISP tool is completely separate from AVR Studio. In other words, when you
have a project opened in AVR Studio, it in no way communicates with the programming
tool. Thus, you can open up 100 different projects, but the programming tool will always
have the same settings which leads to confusion. This is a big problem since you might
be working on project_1, set the programming tool a certain way, then program the
chip, everything works fine. Then you work on project_2, set the programming tool
another way, everything works fine. Now, you reload project_1, open up the
programming tool, assume that it’s settings were saved with project_1, but in fact they
are whatever there were last which was project_2 ! Thus, you have a problem. So the
moral of the story is always check out the programming tool’s settings, especially the
“Main”, “Program”, “Fuses” and “Lockbits”.

Considering the warning, make sure that the input file is set correctly. To do this, navigate with the […] button to the right
of the control and locate your project directory for our work project named “\cham_avr_work_01\default” inside this
directory you will find the .HEX file that AVR Studio and GCC generated, select the file and the tool will have the proper
source data. Realize that every time you re-compile and build the project the .HEX file for the project is also updated,
thus, the programming tool always points to the latest and most updated .HEX file.

At this point, we still are not ready to program the unit, we need to set the “Fuses” and “Lockbits” tabs properly. So,
make sure your “Program” tab looks like the image shown in Figure 15.37 and then select the “Fuses” tab. You should
see something like that shown in Figure 15.38.

Figure 15.38 – The AVR ISP MKII control panel’s “Fuses” tab.

The “Fuses” tab controls a set of internal processor “fuses” that are no part of the FLASH or EEPROM memories.
Rather, the fuses control the “personality” of the chip in a number of areas. Thus, we must set these fuses every time we
program the processor, so that they are correct. Referring to Figure 15.38, you can see there are a lot of fuse settings and
a lot of cryptic labels on the left hand side. First, simply mimic what you see in the figure and set your fuses to exactly
these values. Be specially cognizant of the settings for:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 103

BODLEVEL - Brown out control (disabled).
JTAGEN - JTAG Enable.
SPIEN - SPI Enable.
BOOTSZ - Boot FLASH size (size = 1024, address =$3C00)
SUT_CKSEL - Clock Select (8Mhz, Start up time 16CK/14CK + 0ms).

However, all of the fuse settings need to be exactly as depicted in the figure. Additionally, make sure the three
checkboxes at the bottom of the window are all checked; Auto read, Smart warning, and Verify after programming.

When your fuse settings are all exactly as shown in the figure above, then the bottommost window will show you the
actual binary encoding which should be:

 Fuse Bank Name Value

EXTENDED 0xFF
HIGH 0xDA
LOW 0xDF

If you weren’t using this tool and using another tool that needed the actual binary bit values for the “extended”, “high”,
and “low” fuse bits then you could use these values.

Once you have all the fuse bits and drop downs set to mimic the settings in Figure 15.38, you could click the <Program>
button to write the fuses if you wish. This will not program the chip (since we don’t want to do that yet), but it will program
the fuse bits only. Go ahead and click <Program> to write the fuse bits, if everything goes well, you should see the text
output window at the bottom of the tool scroll some informational strings and you should see a lot of “OK!”’s displayed. If
you don’t try it again.

Normally, you do not have to do this when programming the chip. The programming process will reset the fuse bits as
well, but it can’t hurt to make sure. If your chip ever acts strangely always go and investigate the fuse bit settings and see
if they are correct (as shown in Figure 15.38).

We are almost there, the very last tab of interest is the “Lockbits” tab, select this tab as shown in Figure 15.39.

Figure 15.39 – The AVR ISP MKII control panel’s “Lockbits” tab.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 104

The “Lockbits” tab controls memory protection features of the AVR series processors. In your case, you aren’t going to
distribute the processor with some embedded application on it, so you want to disable all memory protection. Referring to
the figure, make sure that the LB, BLB0, and BLB1 are all set to “no lock” on each category as shown in the figure.
Additionally, make sure that all the checkboxes at the bottom left of the tab are all checked. Finally, go ahead and click
<Program> to write the lockbits. Again, this should initiate the writing process and you should list a number of status
operations scroll down the bottom of the window all with “OK!” if everything was successful.

TIP

The word “fuses” is really a bit out of date. Technically, early microcontrollers had
actual metal fuses inside of them that the user/program could “blow” with high current
to enable/disable specific features. But, once blown the fuse couldn’t be changed (also
referred to as OTP, “One Time Programmable”). These days fuses can typically be
programmed over and over and aren’t fuses at all, but FLASH//EEPROM memory
locations. However, the word “fuses” is used a convention for historical reasons more or
less to this day.

At this point, the programming tool is all set up for the Chameleon AVR and our development needs. Finally, it’s time to
actually download the .HEX file we previously generated and is waiting in the “\cham_avr_work_01\default” folder on
your hard drive. Re-select the “Program” tab in the tool, and under the “FLASH” section click <Program>. You should
see a progress bar at the bottom of the IDE interface as highlighted in Figure 15.40 below.

Figure 15.40 – Programming the Chameleon AVR and the progress bar at the bottom of the IDE is proof.

If all works out, immediately after the download, the AVR ISP will reboot the Chameleon AVR and you should see on your
NTSC/VGA displays the “Hello World” demo running as shown in Figure 15.30! Go ahead and press the RESET button
on the Chameleon to restart the hardware.

At this point, you can edit the “hello world” program and make changes to it. If you do, I suggest you save-as another
name, then remove the original from the source tree and add your modified version. This way you will always have the
original on your hard drive. Of course, the original sources can always be re-copied from the DVD-ROM, but that’s
inconvenient.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 105

15.1.7 Final Words on AVR Studio Tool Chain Installation

This completes our installation of the toolchain all its components and a complete example of building and downloading
an application. As we develop applications, load demos, and experiment, you will only have to modify the source files in
the project pane to the left adding and subtracting source files. The programming tool setup should be the same. Thus,
the workflow moving forward will be to add/subtract files from the “Source Files” folder of the same project, then
“Rebuild All” from the Main Menu’s “Build” menu then using the AVR ISP programming tool control panel “Program”
the Chameleon AVR with the new binary. That’s it!

TIP

Once you get your AVR Studio and the AVRISP (or other programmer) talking to the
Chameleon AVR then you can slowly increase the programming rate from 125 KHz. I
have mine set for 1 MHz and works fine, but I suggest slow moves. If you get a glitch in
communications and some fuse bits get set wrong you will be stuck and need a JTAG
programmer potentially to unlock your chip. So after you get it working at 125 KHz, then
try 250 KHz, 500 KHz , 1 MHz, and that’s as high as I would go. 2 MHz will work, but its
risky.

15.2 Arduino Toolchain Setup

The Chameleon AVR ships with the Arduino bootloader pre-loaded into the AVR’s flash memory. This allows you to
immediately use the Chameleon as an Arduino (more or less), but with added media abilities via the Propeller chip.
Without the Arduino bootloader on the AVR chip, you would have to use the AVR ISP MKII programmer or something else
to get code into the AVR chip. But, with the Arduino bootlooader, the Arduino tool talks to the AVR chip over a serial port
(via the USB serial port on the Chameleon) and you can compiler and download programs. Figure 15.41 shows the
relationship between the components of an Arduino like setup.

Figure 15.41 – The Arduino system setup with the Chameleon.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 106

As you can see, the Arduino setup is very similar to the AVRStudio setup, except that the Arduino tool along with the
bootloader allows us to program the AVR without the external programmer which is very convenient. The only downside is
you must use the Arduino tool, IDE, and setup. This isn’t too bad, but if you are a serious programmer, you will
immediately feel limited by the over simplified Arduino programming tool and its limitations. But, if you are a newbie then
you will probably really like the Arduino tool since it insulates you from the complexities of what’s really going on.

Referring to Figure 15.41, here’s what’s going on. First, there is a JAVA application that acts as the IDE for the Arduino
hardware (or compatible like the Chameleon). This JAVA application is nothing more than a GIU, it has very little
functionality, just enough for a crude text edit and a couple menus. But, the reason its in JAVA is that it will work on
Windows, Linux, and Mac OS X, that’s why they decided to use JAVA. Additionally, the application has the exact same
look and feel on each machine since it always uses the JAVA gui elements library which is nice.

Moving on, the Arduino editor creates projects in the form of “Sketches” these are nothing more than a primary C/C++ file
that you would refer to as you “main” file. The file imports all your libraries via headers and a special directory structure
that we will get to in a bit. In any event, you create a single sketch project then add #include statements to it which then
invokes the inclusion of all the libraries. Now, when you compile your program what happens is the GNU GCC C/C++
compiler is called in the background from a command line. The GCC compiler is also installed with the Arduino tool, but
you don’t have to do any setup at all. On Windows machines, the GCC compiler actually runs in a Cygwin linux shell (this
is a system that allows you to run Linux programs in Windows, you can learn about it below). Again, Cygwin is
transparently installed and you don’t have to worry about.

http://www.cygwin.com/

So, you edit your Sketch (program) in the Arduino editor, you compile it (with GCC under the hood) then finally you need
to download it to the Chameleon. The Arduino tool calls another program AVRDude which does this and sends the binary
image via the serial line with a special protocol agreed to between the bootloader and AVRDude. And that’s how it all
works!

TIP

The Arduino bootloader is really nothing more than the standard bootloader provided by
Atmel for serial communications and loading of firmware without the AVR ISP MK II
programmer or similar. Thus, you can actually use other tools like “AVR Dude” to
download firmware written in AVRStudio. Moreover, there are other bootloaders for the
AVR chips that you can flash into them that support other 3

rd
 party tool. However, the

problem with all this is that you need a tool to program the bootloader in the first place!
Thus, if you frag a bootloader in FLASH memory and you don’t have an actual
programmer like the AVR ISP MK II you are out of luck. This is why we suggest
spending $30-40 and buying one just in case if you’re going to do serious AVR
development.

Now before we get into the Arduino tool installation, a couple things to know. The Arduino tool actually uses C/C++ to
program in, its not some new language, its not BASIC, its straight up C/C++. There is a library for the Arduino called
“Processing” which allows you to use Processing language like commands and functions. Bottom line, the Arduino is
programmed in C/C++ nothing more. The Arduino guys have simply created libraries, so the system feels like the
Processing language, which you can read about here:

http://processing.org/

15.2.1 Installing the Arduino Toolchain in Windows

There isn’t really an installer for the Arduino tool, you more or less just copy the files (unzip, untar, etc.) the Arduino files
into a directory on your hard drive and that’s it. With Windows, Linux, and Mac OS there are some slight differences, but
more or less its all the same. We will concentrate on the Windows version here, the Linux and Mac installs are nearly
identical and you can read about them on the Arduino site itself. However, the adjustments we make the installation
directories are not on the Arduino site, thus read this section no matter what even if you are not installing on Windows.

The first step is to download the latest version of the Arduino development package for Windows. The latest files at the
printing of the manual are located on the DVD here:

DVD-ROM:\ CHAM_AVR \ TOOLS \ ARDUINO \ WINDOWS \ arduino-0017.zip

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 107

There are also directories for Linux and Mac which have their respective files. But, before copying the above file to your
desk, I want you to take a look at the directories on the DVD-ROM one level above. These are shown in Figure 15.42
below:

Figure 15.42 – Directory structure of the Arduino tools on the DVD-ROM.

Referring to Figure 15.42, you see the Windows, Linux, Mac directories which each contain a ZIP file (or appropriate) set
of tools for the platform. But, there are two other directories that we are going to need in a moment; \LIBRARIES and
\SKETECHES. These two directories are needed to augment the Arduino default installation, so we can compile
Chameleon programs with the Arduino tool. The \LIBRARIES directory has all the Chameleon libraries ported over to
work with the Arduino tool (very simple changes in most case) and the \SKETCHES directory has all the programs and
demos from this manual in Arduino format for you.

Later in the installation, I am going to direct you to copy the contents of these folders into their respective locations in the
Arduino installation directory. This is important since you will perform this step on all three platforms; Windows, Linux, Mac
-- whichever you are using.

15.2.2 Copying the Files to Your Hard Drive

Go ahead and locate the main ZIP file on the DVD named:

DVD-ROM:\ CHAM_AVR \ TOOLS \ ARDUINO \ WINDOWS \ arduino-0017.zip

And decompress it into your development directory. I do all my work in a directory called \SOURCE on my computer (and
this is where you should have copied all the .C|H files in previous installation steps. Go ahead and create a directory
called \ARDUINO inside \SOURCE, then decompress the ZIP file right inside the \ARDUINO folder and enable directory
names. This way the unzip will create a sub-directory named \ARDUINO-0017 for you. Then in the future as you get new
versions of the tool you can do the same and keep them organized if you want to roll back. Thus, you should have
something that looks like the directory structure shown in Figure 15.43 when done.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 108

Figure 15.43 – Setting up the main directory for the Arduino tool chain.

Referring to Figure 15.43, you will see there is a \SKETCHES directory in there! Yup, this is where you are going to copy
the \SKETCHES from the DVD directory previously mentioned. So do that now, this is simply all the projects for the
manual all pre-built and ready to go. Now, go ahead and dive into the \ARDUINO-0017 directory and take a look around,
go into all the directories, as deep as you can, then when you are done exploring come back to the root which should look
like the folder shown in Figure 15.44.

Figure 15.44 – The Arduino installation directory contents.

As you can see, there are a lot of files, hundreds if not a couple thousands with all the GNU stuff and Cygwin files buried
in there. But, we luckily don’t have to worry about much of it, we just want to update the \LIBRARIES directory with the
Chameleon packages, so we can build Chameleon compatible programs. To do this go ahead and dive down into the
\HARDWARE directory this is shown in Figure 15.45.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 109

Figure 15.45 – The Arduino “Hardware” directory.

This is probably one of the most important directories, if not the most important directories of the Arduino installation. It
contains a lot of goodies including two TXT files that describe the boards and programmers being used. So this is where
you would add new boards and programmers. Also, there is a directory called \BOOTLOADERS – this is very important,
its where all the .HEX files for the bootloaders are kept for all the flavors of Arduino. If you do happen to erase the Arduino
bootloader accidentally or purposely and want to restore it, you will go into \BOOTLOADERS and pull the 328p
bootloader .HEX file out and use that to program the AVR chip to restore it.

However, right now, we are interested in the \LIBRARIES directory. This is where all the Arduino “libraries” are kept.
Technically, both the source C/C++ file and the object files are in this directory. This is how the MAKE file for Arduino finds
things, it scans the \LIBRARIES directory and each directory name within is related 1:1 to a source library file name. Go
ahead and dive into \LIBRARIES as shown in Figure 15.46.

Figure 15.46 – The Arduino \LIBRARIES directory.

These are all the libraries provided by the Arduino development system. Go ahead and take a look in a few to see what’s
in them, then come back to the root directory as shown above. Now, what we need to do is copy our new Chameleon
libraries into this directory. So go back to the DVD in the Arduino folder and copy the contents of the \LIBRARIES sub-
folder into your install folder. When you’re done, it should look like the image shown in Figure 15.47.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 110

Figure 15.47 – The Arduino Libraries folder after copying the Chameleon libraries into it.

As you can see, there are about a dozen new libraries that we have developed for the Chameleon to run in the Arduino
environment. They are all uppercase to help you differentiate them.

Ok, that’s it – the entire Arduino installation is complete! Now, let’s fire up the tool, and set the environment up a little and
try re-building the “Hello World” program.

15.2.3 Preparation to Launch the Arduino Tool for the First Time

Before you launch the Arduino tool, make sure you have the USB cable plugged into the Chameleon (you can also have
the 9V DC power adapter plugged in if you have one). The USB is needed no matter what since that’s what the Arduino
tool will use to send serial data to the Chameleon’s bootloader with.

Figure 15.48 below shows the USB cable plugged into the Chameleon AVR. The FTDI chip device makes it easy to use
serial communications from the PC. Note that the Chameleons can be powered from the USB cable or an external 9V
power supply OR both, but USB cable is needed for serial communications always.

Figure 15.48 – The Mini-USB port on the Chameleon connects to the FTDI USB to Serial converter chip.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 111

Now, if you computer recognizes the FTDI chip and has drivers it will load them automatically and install a virtual COMxx
port into your system. However, if it doesn’t you will need to install the FTDI drivers. This is needed for all serial
communications with the Chameleon, so a necessary step. You can manually install the FTDI driver from the DVD-ROM
(ZIP file), here:

DVD-ROM:\ CHAM_AVR \ TOOLS \ DRIVERS \ USBDriverInstallerV2.04.16.exe

After you have installed the driver, then each time you plug a Chameleon AVR into the PC via the USB port, the FTDI chip
will assign a NEW COM port, you need to determine what COM port it attached itself to? Goto Windows Start menu on
and select <Control Panel → System Properties>. select <Hardware → Device Manager> and select <Ports>, you
should see something like that shown in Figure 15.49.

Figure 15.49 – Determining the COM port that the FTDI chip on the Chameleon AVR uses installation.

Make note of the “USB Serial Port”, in this case the driver installed on COM30, yours might be different, but you will
need this when running the Arduino tool, Propeller took and any terminal programs to talk to the Chameleon AVRs for the
serial RS-232 demos. So write this number down, for the next step of the tool setup.

TIP!

Each time a new Chameleon with FTDI chip is plugged into the PC via the USB port, it
will assign a NEW COM port, so if you own more than one Chameleon, or other
products that use FTDI chips, you will more than one virtual COM port, so be advised!!!

Also, we might as well install a good serial program now, so you don’t have to do it later. The Arduino tool has one built in
as does the Propeller tool, but for general terminal experiments Hyperterminal won’t cut it.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 112

15.2.3.1 Installing a Serial Terminal Program

The Chameleon AVR has a USB serial port that is used to communicate with the Arduino tool as well as the Propeller
tool. Both of these programs have built in serial communications, but if you just want to send out serial data to and from
the Chameleon you are going to need a good terminal program, we suggest PuTTY.

Chameleon AVR 8-bit ←-----Mini USB cable----------→PC Running Terminal Program (eg. PuTTY)
 |
 |------→ Arduino Tool
 |
 |------→ Propeller Tool

The PC can talk to either the Propeller chip onboard the Chameleon via the USB port OR the standard serial port on the
AVR chip, this is accomplished via a mechanical switch at the bottom of the board shown in Figure 15.49 below.

Figure 15.49 – The Serial port routing switch. In the UP position, it selects USB communication with the Propeller
chip. In the DOWN position it selects communication with the AVR chip.

At this point, go ahead and make sure the serial select switch is in the DOWN position, so the PC can talk to the AVR thru
the USB serial port.

There are many serial terminal programs available (Hyperterminal for example), but we want you to use one that is very
SIMPLE to setup and that works well with the Chameleon AVR, we are going to use “PuTTY”. From the DVD-ROM, install
this program:

DVD-ROM :\ CHAM_AVR \ TOOLS \ COMMUNICATIONS \ putty_install.exe

It is called “PuTTY” and is very easy to use. Once installed, it will create a shortcut on your desktop. Click the shortcut to
run the program, you will see a dialog like that shown in Figure 15.50.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 113

Figure 15500 - PuTTY Setup for serial communications with Chameleon AVR, 115200 baud, N81.

Click on <Serial> for the connection type as shown in the top right, then click “Serial” on the bottom of the Category tree
panel on the left and make sure the settings listed below and shown in Figure 15.51.

� Data Format: "N81", no parity, 8 data bits, 1 stop bit.
� Baud Rate: 115200.
� Handshaking: None.

Figure 15.51 - PuTTY Setup for serial communications with Chameleon AVR, 115200 baud, N81, continued.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 114

To launch the terminal program, you would press <Open> which opens a new terminal window. This is where you would
type on the PC keyboard to communicate with the Chameleon AVR and run the demos or do serial terminal experiments.

15.2.3.1 Running the Arduino Tool

We are all ready to go, let’s do a final checklist before we launch the tool:

1. You have the USB cable plugged into the PC and you have installed the FTDI serial drivers if needed.
2. You have a 9V DC power supply plugged into the Chameleon (optional).
3. You have moved the serial select switch into the DOWN position, so the USB serial port is connected to the AVR chip
(not the Propeller).

4. You have the VGA and NTSC cables connected to the Chameleon as well as a mouse (optional).

Finally, we are ready to launch the Arduino tool itself. If you take a look back in the installation directory where you
decompressed the Arduino ZIP file (Figure 15.44) you will see an icon ARDUINO.EXE, go ahead and double click it. You
should see the splash screen load shown in Figure 15.52.

Figure 15.52 – Arduino splash screen.

Then finally, the application will load and will look something like that shown in Figure 15.53.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 115

Figure 15.53 – the Arduino application at last!

Please read the Arduino documentation to learn all the features of the tool, but its fairly straightforward. It has a simple
menu and a set of icons/buttons. Simply hover over each button see what they do. From left to right they are:

Verify – Compiles only to show errors.

Stop – Stops the serial monitor.

New Sketch – Creates a new sketch.

Open Sketch – Opens a sketch.

Save Sketch – Saves the current sketch.

Upload Sketch – Compiles and uploads the sketch to the Chameleon (Arduino).

Serial Monitor – Launches a serial monitor terminal program.

Tab Controls – Standard tab controls to add more views.

Ok, so the first thing we need to do is make sure that the Arduino tool can find our sketchbook since it likes to place
sketches in a different place. If you recall, we copied our sketchbook from the DVD-ROM to the installation directory of the
Arduino files, refer to Figure 15.43. So, first we need to tell the Arduino tool where to look. To do this, from the main menu
select <File → Preferences> which should bring up the dialog shown in Figure 15.54 below.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 116

Figure 15.54 – The Arduino tool preferences dialog.

Then browse for the location where you copied the sketchbook \SKETCHES from the DVD-ROM and point the
“Sketchbook Location” to this directory that contains the folder. Click <OK>.

Setting the Proper Target

Next, we need to make sure that the Arduino tool has the correct serial port and the correct target chip. To do this, select
the <Tools→Board> from the main menu and select “Arduino Duemilanove or Nano w/ ATMega 328” which is the top
most item. This is shown in Figure 15.55.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 117

Figure 15.55 – Selecting the proper AT328P target for the Arduino tool.

Next, we need to make sure that the Arduino tool is using the proper serial port. You should have noted this earlier when
you plugged the USB cable into the Chameleon and the PC recognized the FTDI USB to serial chip. If you haven’t done
then, plug the USB cable in, and go thru the installation of the FTDI drivers. Then take not in the Control Panel where the
new USB serial port was installed, you need that information for this step.

Setting the COM Port

To set the Arduino tool’s COM port, simply select from the main menu <Tools → Serial Port> as shown in Figure 15.56
and select the proper serial port.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 118

Figure 15.56 – Selecting the serial port that the USB serial chip is connected to.

15.2.3.2 Loading the Hello World Sketch

A sketch is like a project. For each sketch there is a single directory and in that directory, there is a main file with the
extension .PDE. This is your working “main” C/C++ files. Additionally, there is a directory in each sketch named “\applet”.
This directory contains all the source files, configurations, etc. for that particular configuration, so don’t mess with it!
However, you can copy a sketch from the sketches directory to another system or the entire sketches directory usually
without a problem.

In any event, let’s load a “Hello World” sketch into the Arduino tool, compile and download to the Chameleon. Here are
the steps to get things ready:

Step 1: Make sure the Chameleon is powered, the USB cable is plugged into it.

Step 2: Make sure you have the NTSC and VGA monitor connected, at least one of them.

Step 3: Make sure you have the serial selection switch in the DOWN position to allow AVR serial traffic (UP is Propeller
traffic).

Step 4: On the main menu goto <File → Sketchbook →Sketches> and locate the sketch named “cham_hello_world”,
select it – it should load into the tool. This is shown in Figure 15.57 below.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 119

Figure 15.57 – Loading our first “Hello World” sketch.

Once you load the sketch the tool should load the source for the “main” program as shown in Figure 15.58 below.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 120

Figure 15.58 – The “Hello World” program loaded into the Arduino tool.

Go ahead and scroll thru the program a bit, its very short. Once you are done, now its time to finally download it to the

Chameleon. Simply press the Compile button ” “ this will both compile and tell us if there are any errors as well as
show the final size.

WARNING!

The Arduino tool has terrible user diagnostics. While compiling or downloading it just
sits there without any updates in the text output area at the bottom of the screen or
status. This is quite disturbing, so just hold tight while the program compiles and
downloads it could take moments.

When the compilation is complete (there should be no errors), you should see the following text appear in the black text
output window at the bottom of the tool:

Binary sketch size: 1034 bytes (of a 30720 byte maximum)

Now that we know the program is correct, lets upload it to the chameleon with the “ “ button. Go ahead and press the
button, this will take some time…When the program is done uploading, the Chameleon will immediately reboot and you
should see the “Hello World” text scrolling on both the NTSC and VGA monitors. Also, in the black text output area of the
Arduino tool you should see the message:

Binary sketch size: 1034 bytes (of a 30720 byte maximum)

That’s it - you have compiled your very first Chameleon program using the Arduino tool! Hopefully, you can see the
incredible power of the Chameleon. It leverages the toolchain and main processor of the Arduino, but adds a very
powerful multicore processor (the Propeller) to do the heavy lifting. And with literally 10 lines of code you are displaying
text on BOTH an NTSC and VGA screen! Imagine the possibilities!!!

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 121

15.2.3.3 A Couple Notes About the Arduino Version of Hello World

When we get to the Programming API, we will discuss this a little more. But, you might be wondering what are the
differences between the pure C/C++ versions of our programs that compile on AVRStudio and the Arduino versions?
Well, there aren’t many. We wrote all the libraries to be 100% compatible. In fact, the differences can be listed in a few
sentences, they are:

1. The Arduino run-time library has its own main(), thus in all our programs, we just rename main() to loop() and then add
another function called setup() (which can be empty). Setup() is simply called first for all Arduino programs then the
loop() function is called just like main() and the program stays in there.

2. The Chameleon under AVRStudio has a number of libraries. One of them that is redundant is the serial UART library.
We had to write one for the AVRStudio version, but the Arduino has a serial library of its own. So you will notice that a lot
of the programs that use serial comment out the include file for the Chameleon serial library and we just use the Arduino
built in serial library (which is a C++ class).

3. When including headers with AVRStudio its typically setup to look in the local directories for the headers, so you put
quotes “header.h“ around the header names. Whereas, the Arduino tool makes your headers part of its libraries, so you
use angled brackets <header.h>.

That’s really about it. It takes less that 5 mins to port most Chameleon programs to Arduino mode and vice versa. Of
course, we have done this for you for all the demos that follow to get you started.

So the question is which mode to use – Arduino or AVRStudio? Well, depends on what you are doing and what you have.
If you do not own a AVR ISP MK II programmer then the decision is made for you – you probably have to use Arduino
mode. But, if you do have the programmer or something else supported by AVRStudio then you probably should work in
the more robust AVRStudio since it allows ASM language, simulation, etc.

But, its up to you – just have fun!

15.3 Installing the Parallax Propeller IDE

Since each Chameleon AVR (and PIC) has dual processors consisting of an AVR and Parallax Propeller chip, both chips
need to be loaded with firmware. and accessed to program To program the Parallax Propeller chip, you need to install the
Parallax IDE tool. This tool is a very simply IDE that allows you edit programs for the Propeller chip and download them
to the target. The editor has no built in debugging which is really a result of the Propeller chip’s lack of debugging
internally in hardware. However, this isn’t as bad as it seems. You can use “printf” techniques as well as run debug like
processes on other cores and have them interrogate memory locations in real-time. Finally, its pretty easy to test code,
change something, recompile and download to the target since programs can only be up to 32K bytes in size.

The Propeller Chip IDE was developed by Parallax Inc. to program their new multi-core “Propeller” chip. The
Chameleon AVR (and PIC) uses a Propeller chip as the media processor, thus to program the Propeller chip’s EEPROM
on the Chameleon with code we need to use this tool. The Propeller is a 32-bit processor and you program it in a BASIC
like language called SPIN, or you can program in Assembly language. The Propeller IDE supports both seamlessly. The
assembly language is very nice, but SPIN takes a bit to get used as does the editor which uses indentation like Python for
block level. This can be frustrating for C/C++ programmer initially. You can read about programming the Propeller chip
here:

DVD-ROM :\ CHAM_AVR \ TOOLS \ PROPELLER \ Propeller_Manual_WebPM-v1.1.pdf
DVD-ROM :\ CHAM_AVR \ TOOLS \ PROPELLER \ PropellerDatasheet-v1.2.pdf

Also, there is a single book about developing games and media applications for the Propeller chip:

“Game Programming the Propeller Powered HYDRA” by Andre’ LaMothe.

The installation procedure for the Propeller IDE is very simple and consists of the Propeller tool itself along with some
“Virtual COM” port drivers developed by FTDI inc. that are needed to communicate with the Propeller Chip itself. These
drivers are installed as part of the installer program if everything goes smoothly. However, you might recall we have
already installed the FTDI drivers while setting up the Arduino tool. As you can see everyone seems to use FTDI chips!!!

Step 1: Locate the Propeller IDE installation program Setup-Propeller-Tool-v1.2.6.exe on the DVD here:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 122

DVD-ROM :\ CHAM_AVR \ TOOLS \ PROPELLER \ Setup-Propeller-Tool-v1.2.6.exe

and launch it, you will see the installer splash screen as shown in Figure 15.59 below. Click <NEXT>.

Figure 15.59 – The Propeller IDE installation splash screen (your version # might vary).

Step 2: The installation type should be displayed next as shown below in Figure 15.60, select “Complete” install, click
<NEXT>.

Figure 15.60 – Selection of Complete install.

Step 3: VERY IMPORTANT! The Propeller tool IDE communicates to the Chameleon AVR using a USB cable and driver,
this USB driver must be installed. The next dialog shown below in Figure 15.61 should have the “Automatically
Install/Update driver” selected, so the driver is installed. Check this box and click <NEXT>.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 123

Figure 15.61 – Automatic USB driver installation dialog.

Step 4: The tool is ready to be installed, Figure 15.62 below shows the installation ready dialog, click <INSTALL> to
begin the installation.

Figure 15.62 – The final installation dialog before the software is installed.

Step 5: As the software installs, the first thing it will do is install the FTDI inc. USB drivers that the Propeller Tool relies on,
so you should see a message box like that shown in Figure 15.63 below.

Figure 15.63 – The FTDI USB drivers successfully installed.

Step 6: Click <OK> and the final installation should take place, you will see a dialog like that shown in Figure 24.0 below,
click <FINISH> and this should complete the installation of the Propeller Tool IDE and the associated USB drivers it
needs.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 124

Figure 15.64 – The final Propeller tool installation dialog.

TROUBLESHOOTING

If you have trouble installing the USB drivers, there is another “stand alone” installer that
will do a “force install” on them. The name of the file is:
USBDriverInstallerV2.04.16.exe, it’s located in the directory CHAM_AVR \ TOOLS \
DRIVERS \ and usually will deal with any problems encountered during normal
installation.

At this point, the Propeller tool should be installed and ready to go. Let’s test it out.

15.3.1 Launching the Propeller Tool

The Propeller tool communicates to the Propeller chip over a single 2-line serial connection with the standard RS-232
TX/RX pair along with DTR (data terminal ready) as a reset line. The Chameleon’s USB serial port is used for the
communications channel for the Propeller chip. However, if you recall, the USB serial port can be used by the AVR or the
Propeller. The device that gets connected to the port is controlled by the serial selection switch next to the RESET button.
Simply place the switch in the UPPER position to select the Propeller chip to have access to the USB serial port. This is
shown in Figure 15.65 below.

Figure 15.65 – Placing the Chameleon into Propeller serial mode.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 125

You already installed the Propeller tool, so all we have to do now is run the tool which is very simple. The first step is to
make sure that the PC recognizes the Chameleon and installs a virtual USB COM port. When you connected your test
Chameleon AVR to the PC via the USB cable and powered the Chameleon up, the FTDI drivers on the PC should have
detected a NEW USB port and assigned a COM port to it, you can find the COM port # in the system devices menu. You
will need this later for the serial communications test, however, the Propeller took will autoscan all COM ports until it finds
the Propeller chip connected to one. With that in mind, here are the steps to load the firmware into the Propeller chip, you
will do this for every Chameleon AVR (and PIC) in the final testing process.

Step 1: Launch the Propeller IDE tool by clicking the shortcut on the desktop.

Step 2: Navigate to where you copied the source directory files on your PC and open the master file
cham_default2_drv_112.spin (latest copy). It is located on the DVD-ROM here:

DVD-ROM :\ CHAM_AVR \ SOURCE \ PROPELLER_DRIVER \

This is shown in Figure 15.66 (ignore my slightly different hard drive paths).

Figure 15.66 – Loading the Propeller firmware into the tool.

Once the source code is loaded into the tool, you simple have to download it into the Chameleon AVR. Make sure that
you have the USB cable plugged into the Chameleon, power is ON, and the serial selection switch is in the UP position.
When you are ready then you can press <F11> on the Propeller Tool, or from the main menu, you can select <RUN-
>Compile Current ->Load EEPROM> the results will be the same, the Propeller tool will scan all COM ports for a
connection to a Propeller chip, and then compile and download the firmware to the Chameleon. This is shown in Figure
15.67.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 126

Figure 15.67 – Downloading the firmware into the Propeller Chip.

TIP

If the Propeller tool can’t find the Propeller chip, then try unplugging the USB cable from
the Chameleon, hit the reset switch, make sure that the serial select switch is in the UP
position.

Once the firmware is downloaded into the Propeller chip on the Chameleon board it will immediately start generating
NTSC and VGA video. If you hit RESET on the Chameleon, you will see the images shown in Figure 15.68 on the NTSC
and VGA monitors respectively.

Figure 15.68 – The NTSC and VGA monitors showing the Chameleon AVR’s output after installing the Propeller
driver firmware.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 127

Also, when you hit reset each time you will see the LED D3 under the Video port blink (3) times (shown in Figure 15.69,
this is part of the testing firmware to confirm the Propeller chip is functioning correctly as well as to verify the LED is good.
Finally, you will HEAR the Chameleon make sounds as it boots up, a series of tones that play musical notes when you hit
RESET. Make sure to have the audio port plugged into your NTSC TV as well. These will all be part of the final tests for
each Chameleon.

Figure 15.69 – The LED will blink whenever you reset the Chameleon once you have loaded the Propeller driver
firmware.

Of course, all we really did was re-download the SAME firmware back into the Propeller chip, so whatever is loaded into
the AVR at this point will ultimately direct the Propeller slave what to do. But, this is the process to load the Propeller chip
with a program. Additionally, you just saw how to load the default driver that this manual uses 99% of the time which is
loaded on the Chameleons when they ship. But, you can surely change this driver if you wish, update it, make it faster,
better, change objects it relies on etc. You will learn how to do this later in the manual – update the Propeller driver, but
for now, we aren’t going to touch it other than knowing where it is, and how to download it. This is the idea of the
Chameleon – the Propeller chip is like a black box, when things go right, we shouldn’t even know its there, the Propeller
should work like another other media processing chip and just execute the command we send it.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 128

16.0 Chameleon Inter-Processor Architecture Overview

In this section, we are going to go into a bit of detail in relation to the software engineering techniques that the
Chameleon’s duel processor architecture is based on. This section isn’t necessary to use the Chameleon, but its
necessary to understand the design more completely.

Figure 16.1 - System level modular schematic.

Referring to Figure 16.1, the Chameleon’s Propeller co-processor has a number of connections to various media I/O
devices. These include NTSC/PAL composite video, VGA, audio out, serial (not shown), and PS/2 keyboard/mouse
devices. This uses up a minimum of (5) processing cores, leaving us (3) cores for other things and for future expansion.
Of course, two cores are used for the Master Control Program that runs on the Propeller as well as the SPI virtual driver.
Thus we are left with (1) core ultimately for expansion unless we modify the default Propeller driver. As shown in the
figure, the NTSC signal is on Pin 12,13,14, VGA is on pins 16…23, audio is on pin 10, the PS/2 keyboard/mouse is
connected to pins 26,27 and finally the serial is on pins 30,31. Basically, this is a standard Propeller Board Rev. C/D pin
map.

TIP

This pin map was selected to keep the Propeller sub-system very compatible with
Propeller development boards, so the Chameleon could double as a Propeller
development kit!

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 129

Table 16.1 shows the pin map in more detail.

Table 16.1 - The I/O pin map for the connections to media devices.

I/O device Propeller IO Port Pins Used

NTSC video 12, 13, 14 (video LSB to MSB)
VGA video 16(V),17(H),18(B1),19(B0),20(G1),21(G0),22(R1),23(R0)
PS/2 Keyboard 26 (data), 27 (clock)
Sound 10 (PWM or pure signal)
Serial Coms 30 (TX), 31 (RX)

Figure 16.2 – The SPI link between the AVR and Propeller chip.

16.1 Master Control Program (MCP)

The MCP (cham_default2_drv_112.spin) is the primary driver that runs on the Propeller chip and listens to SPI traffic
over the SPI link from the AVR chip as shown in Figure 16.2. As the virtual SPI interface (running on its own core)
receives packets (messages/commands) from the AVR, the messages are parsed and packaged and placed into a global
shared memory region. The MCP is listening to the global shared region and tracks a flag. Once this flag is noted to
change, the MCP reads the packet in and then tries to parse it to determine if it’s a valid command that is supported. This
is achieved via a large switch statement to see if the command portion of the packet is valid. Below is the list of current
commands supported by the MCP by the default driver cham_default2_drv_112.spin:

‘ null command, does nothing
CMD_NULL = 0

' graphics commands
GFX_CMD_NULL = 0

' NTSC commands
GFX_CMD_NTSC_PRINTCHAR = 1
GFX_CMD_NTSC_GETX = 2
GFX_CMD_NTSC_GETY = 3
GFX_CMD_NTSC_CLS = 4

' VGA commands

GFX_CMD_VGA_PRINTCHAR = 8
GFX_CMD_VGA_GETX = 9
GFX_CMD_VGA_GETY = 10
GFX_CMD_VGA_CLS = 11

' mouse and keyboard are "loadable" devices, user must load one or the other on boot before using it

' keyboard commands
KEY_CMD_RESET = 16
KEY_CMD_GOTKEY = 17
KEY_CMD_KEY = 18
KEY_CMD_KEYSTATE = 19

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 130

KEY_CMD_START = 20
KEY_CMD_STOP = 21
KEY_CMD_PRESENT = 22

' mouse commands
MOUSE_CMD_RESET = 24 ' resets the mouse and initializes it
MOUSE_CMD_ABS_X = 25 ' returns the absolute X-position of mouse
MOUSE_CMD_ABS_Y = 26 ' returns the absolute Y-position of mouse
MOUSE_CMD_ABS_Z = 27 ' returns the absolute Z-position of mouse
MOUSE_CMD_DELTA_X = 28 ' returns the delta X since the last mouse call
MOUSE_CMD_DELTA_Y = 29 ' returns the delta Y since the last mouse call
MOUSE_CMD_DELTA_Z = 30 ' returns the delta Z since the last mouse call
MOUSE_CMD_RESET_DELTA = 31 ' resets the mouse deltas
MOUSE_CMD_BUTTONS = 32 ' returns the mouse buttons encoded as a bit vector
MOUSE_CMD_START = 33 ' starts the mouse driver, loads a COG with it, etc.
MOUSE_CMD_STOP = 34 ' stops the mouse driver, unloads the COG its running on
MOUSE_CMD_PRESENT = 35 ' determines if mouse is present and returns type of mouse

' general data readback commands
READ_CMD = 36

' sound commands
SND_CMD_PLAYSOUNDFM = 40 ' plays a sound on a channel with the sent frequency at 90% volume
SND_CMD_STOPSOUND = 41 ' stops the sound of the sent channel
SND_CMD_STOPALLSOUNDS = 42 ' stops all channels
SND_CMD_SETFREQ = 43 ' sets the frequency of a playing sound channel
SND_CMD_SETVOLUME = 44 ' sets the volume of the playing sound channel
SND_CMD_RELEASESOUND = 45 ' for sounds with infinite duration, releases the sound and it enters the "release"
portion of ADSR envelope

' propeller local 8-bit port I/O commands
PORT_CMD_SETDIR = 48 ' sets the 8-bit I/O pin directions for the port 1=output, 0=input
PORT_CMD_READ = 49 ' reads the 8-bit port pins, outputs are don't cares
PORT_CMD_WRITE = 50 ' writes the 8-bit port pins, port pins set to input ignore data

' general register access commands, Propeller registers for the SPI driver cog can be accessed ONLY
' but, the user can leverage the counters, and even the video hardware if he wishes, most users will only
' play with the counters and route outputs/inputs to/from the Propeller local port, but these generic access
' commands model how you would access a general register based system remotely, so good example
' these commands are DANGEROUS since you can break the COG with them and require a reset, so if you are going to
' write directly to the registers, be careful.

REG_CMD_WRITE = 56 ' performs a 32-bit write to the addressed register [0..F] from the output register
buffer
REG_CMD_READ = 57 ' performs a 32-bit read from the addressed register [0..F] and stores in the input
register buffer

REG_CMD_WRITE_BYTE = 58 ' write byte 0..3 of output register g_reg_out_buffer.byte[0..3]

REG_CMD_READ_BYTE = 59 ' read byte 0..3 of input register g_reg_in_buffer.byte[0..3]

' system commands
SYS_RESET = 64 ' resets the prop

As you can see, there is a lot of commands supported. This is necessary, so the AVR master/client can issue commands
to the Propeller/slave to do what it needs it to do. However, this is only a template, you can re-write the default2 driver if
you wish, modify, optimize, change the objects it uses etc. But, you will have to modify all the APIs on the AVR side as
well with the new commands and SPI API calls, so we suggest you start simply by adding commands and/or modifying
commands that already exist.

Once a valid command is detected then its parsed and a case handler in the MCP tries to dispatch it to the proper driver
object (themselves running on other cores potentially). An excerpt from that section of the driver code looks like this:

' ///
' MAIN LOOP - Listen for packets to finish then execute commands sent to Prop over SPI interface
' the longer this loop is the slower processing will be, thus you will want to remove unnecessary driver support for
' your custome drivers and of course port to ASM and blend this with the virtual SPI driver code as well for the
' best performance.
' ///
repeat

' wait for SPI driver to receive a command packet in shared memory
if ((g_spi_cmdpacket & $1_00_00_00) > 0)
 ' reset the reception flags
 g_spi_buffer := (g_spi_buffer & %0_1111_1111)
 g_spi_cmdpacket := (g_spi_cmdpacket & $FF_FF_FF)

 ' extract cmd 8-bit, data 8-bit, status 8-bit
 g_cmd := ((g_spi_cmdpacket >> 16) & $FF)
 g_data := ((g_spi_cmdpacket >> 8) & $FF) ' low byte of 16-bit data
 g_data2 := g_status := ((g_spi_cmdpacket >> 0) & $FF) ' high byte of 16-bit data

 ' build 16-bit data (may not be valid though based on command)
 g_data16 := (g_data2<< 8) | (g_data)

 ' now process command to determine what user is client is requested via spi link
 case (g_cmd)

 GFX_CMD_NULL:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 131

 ' GFX GPU TILE ENGINE COMMANDS ///

 ' catch all commands right here
 GPU_GFX_BASE_ID..(GPU_GFX_BASE_ID + GPU_GFX_NUM_COMMANDS - 1):

 ' call single processing function...
 g_spi_result := gfx_ntsc.GPU_GFX_Process_Command(g_cmd, g_data16)

 ' // NTSC GFX/TILE SPECIFIC COMMANDS ///
 ' we only expose a subset of the commands the driver supports, you can add/subtract more commands as desired
 ' some commands like PRINTCHAR for example internally support a number of sub-commands that we don't need to expose
 ' at this level unless we want to add funcitonality
 GFX_CMD_NTSC_PRINTCHAR:
 ' this command pipes right to the out() function of the driver which supports the following sub-commands already
 '
 ' $00 = clear screen
 ' $01 = home
 ' $08 = backspace
 ' $09 = tab (8 spaces per)
 ' $0A = set X position (X follows)
 ' $0B = set Y position (Y follows)
 ' $0C = set color (color follows)
 ' $0D = return
 ' anything else, prints the character to terminal

 gfx_ntsc.Out_Term(g_data)

 GFX_CMD_NTSC_GETX:
 ' return x position in spi buffer, next read will pull it out on last byte of 3-byte packet
 g_spi_result := gfx_ntsc.GetX

 GFX_CMD_NTSC_GETY:
 ' return y position in spi buffer, next read will pull it out on last byte of 3-byte packet
 g_spi_result := gfx_ntsc.GetY

 GFX_CMD_NTSC_CLS: ' eventhough this command is supported above,we break it out as a seperate SPI command just in case we want to
 ' add functionality on top of, like "overloading" and handling manually, notice we end up calling the $00 sub-command
 ' but we have the flexibility to add stuff if we desire...
 gfx_ntsc.Out_Term($00)
 ' add other functionality to the clear screen here...
.
.

As you can see the code to extract and rebuild the SPI packets is tricky, a lot of bit fiddling and masking to get the data
back from the ASM SPI driver that is passing the data into the global shared memory. All packets are 3-bytes long and
look like this:

Command Packet Format

[command8, data_low8, data_high8]

Commands that only require 8-bits of data or operand only use the first data byte, commands that require 2-bytes use
both the low and high. The bottom line is all commands only are 3-bytes, so you can’t send a string or something large,
you have to design your commands so they are simple and can be constructed with only 2 bytes of data at most. Thus,
most commands are atomic in nature. For example, there is no “print string” command, there is only a “print character”
command, but by stringing a collection of “print chars” together at the master/client side you can print a string. All the
commands are designed with this in mind.

16.2 Selecting the Drivers for the Virtual Peripherals

The drivers for each of the media devices were selected based on functionality and popularity. There are definitely better
drivers for many of the devices. For example, more robust graphics drivers, or more advanced sound drivers, etc.
However, this default driver isn’t about using the best, but more about system integration. Thus, drivers that are easy to
interface to and easy to control with a simply subset of commands where used. In the sections below we will cover the
exact drivers used, but the point is, they were chosen more or less for ease of use and user base.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 132

Figure 16.3 – Another view of the complete system dataflow model.

16.2.1 Complete Data Flow from User to Driver

Now that you have seen all the pieces of the puzzle from a hardware and software point of view, let’s review exactly how
these pieces all fit together. To begin with the Propeller is running a number of drivers on multiple cores; NTSC graphics
terminal, VGA graphics terminal, keyboard/mouse driver, and sound driver. Each one of these drivers takes a single core.
Now, by themselves, they don’t do much. So the “glue” of the system is the MCP which is pure SPIN program that not
only issues commands to the drivers, but is the interface to the AVR via the virtual SPI driver's shared memory.

Thus, the MCP runs on its own core controlling the media cores themselves as well as handing SPI input from the SPI
driver itself which is written in ASM running on its own core. With the system in this know state, let’s cover exactly what
happens in each phase when the system boots.

Initialization – After reset, the MCP software simply loads each of the drivers for NTSC, VGA, keyboard, and serial.
Finally, the main PUB start() of the MCP is entered and it starts a core with the assembly language SPI driver.

Command Processing Loop – As SPI commands are sent over the SPI channel, the virtual SPI driver listens and if it
detects traffic, it then processes the bytes and places them into a globally shared memory buffer. The MCP is sitting a

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 133

loop “listening” for the SPI driver to place data into this shared memory region. When it detects a packet of information, it
then immediately tries to determine of the command portion of the packet is valid.

Command Processing and Execution – The command processor is a handler that interrogates the previously tokenized
input command data form the SPI channel and looks for commands in the packet. If a command is found then it continues
to process the command pattern and look for the parameters that should follow the command. The parameters (if any) are
extracted then the proper “handler” is entered. The handler is where the action happens. Each handler is connected to its
respective driver and can send and receive messages from that driver. So when a NTSC command is parsed for example,
the handler simply calls the NTSC driver and passes the request for execution. When the processing is complete, the
MCP loops again and “waits” for the next command to process.

16.3 Remote Procedure Call Primer (Theory)

Even if you don’t have a degree in Computer Science you have probably used “remote procedure calls” or RPCs in one
form or another or even invented them unknowingly! The idea of a remote procedure calls came about in the 1970’s
actually, so it’s a really old concept. The basic idea is very simple; for one process/program to be able to call/use a
subroutine or function in another process/program. More or less a form of interprocess communication.

Figure 16.4 RPC call from process to process in contrast to a DLL call.

RPCs are a little different than using DLLs or libraries since they are passive entities that are loaded on demand. RPCs
are more like making calls to another running program and using its resources (subroutines). Thus there is a client server
relationship here, and you can think of the RPC call as “message passing” as shown in Figure 16.4. There are various
forms of the technology and it’s more of a concept/methodology than a specific algorithm. For example, in some RPC
setups, the RPC call mimics the actual binary foot print of the function call. Assuming the C/C++ programming language,
here’s a solid example:

float DotProduct(float ux, float uy, float uz, float vx, float vy, float vz);

Looking at this function, depending on the compiler directives the parameters are passed by value on the stack right to
left, so there are 6 floats, each 4-bytes let’s assume. Also, there is a return value another 4-byte float, thus we need to
“pack” the parameters up into a single record and pass it along and then wait for a single float (4-byte result).

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 134

So we might do something like this to “pack” the parameters up into a contiguous memory space:

// this is used as transport buffer for RPC calls
CHAR RPC_input_buff[256];

// now pack the parms into the array one at a time
memcpy(RPC_input_buff+=4, @ux, sizeof(float));
memcpy(RPC_input_buff+=4, @uy, sizeof(float));
memcpy(RPC_input_buff+=4, @uz, sizeof(float));
memcpy(RPC_input_buff+=4, @vx, sizeof(float));
memcpy(RPC_input_buff+=4, @vy, sizeof(float));
memcpy(RPC_input_buff+=4, @vz, sizeof(float));

// finally, a call would be made to the “RPC interface”
RPC_Interface(“DotProduct”, RPC_input_buff, RPC_output_buff);

Now that the parameters are packed into a single data structure, we simply call the RPC interface and pass the starting
address of the structure. The RPC interface in this case takes a string as the function name and then two pointers; one to
the input parameters and one to where the output results are stored. There is obviously and “agreement” and set of
conventions between the caller and receiver on this function and how it works, so the client can make RPC calls and the
server can respond to them. In this case, the server or other process reads the first string, determines the RPC function
then calls a handler with the two pointers. It’s up to the handler to “know” how to unpack the parameters and generate the
results via calling the local function. Thus, RPC calls necessitate a number of extra steps including:

RPC Steps:

(1) Encoding → (2) Transport to server → (3) Decoding → (4) Execution → (5) Encoding → (6) Transport back to client.

Obviously not the fastest thing in the world, however, if the computation workload is 2x or more than all the interface steps
then it’s worth it or if the local process or machine can’t perform the computation, etc. Thus, RPC calls and technology
allow a process or machine to use subroutines and resources running in another process or another processor or an
entirely different machine.

In our case, we use the concept of RPCs to make calls to another processor from the AVR’s SPI interface, thus it’s a
machine to machine call where each “call” packet is only 3-bytes. But, let’s keep exploring the general idea of RPCs and
some strategies that might help you later as you update/modify the default drivers shipped with the Chameleon.

16.3.1 ASCII or Binary Encoded RPCs

When designing an RPC system you can make it really complex or really simple. The main idea is that you want to be
able to call functions in another process, processor, machine. Decisions have to be made about the “RPC protocol” and
how you are going to do things. There are no rules for RPC calls unless you are using a Windows, Linux, Sun, etc.
machine and want to use one of the official OS’s RPC call APIs. When you design your own RPC protocol, it’s up to you.
In our case, its tempting to make RPC calls ASCII based and human readable. This of course, eats bandwidth and is
slower than binary. However, since it is human readable, the RPC calls take a format that look more like commands rather
than strings of bytes representing data.

Thus, one model might be to use ASCII format which would be easy to use and remember for a human. Now, the next
step up, would be to still use ASCII formatted data that is human readable, but to make it more abstract. For example,
instead of having a command like this:

NTSC Print Hello

We might encode “NTSC” as a single number and the command “Print” as another number, and then the “Hello” would
stay as is:

25 0 Hello

As you can see, this version of the ASCII protocol is much smaller, we have saved bytes already! It’s still human readable,
but not as warm and fuzzy. The entire RPC string is 11 bytes (including NULL terminator). But, can we do better? Sure, if
we encode in binary then we don’t send the longer ASCII text, we send the actual byte data. Therefore, the binary
encoding would look like:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 135

Byte 0, Byte 1, ‘H’, ‘e’, ‘l’, ‘l’,’o’

Where byte 0 and 1 would represent the NTSC and Print sub-functions. In this case, the entire RPC call costs 7 bytes, but
isn’t human readable anymore since byte 0,1 are in binary and could be anything depending on what we picked them to
be. The point is that, if you were using another processor or process to make the RPC calls and not a human at a serial
terminal then there is no reason to use ASCII coding. However, that said, I still prefer ASCII formats when they are
feasible since they are much easier to read and debug. At least sending things in ASCII format during the de-bugging
phase, so you can at least look at your data strings on the other end and see what’s going on.

16.3.2 Compressing RPC for More Bandwidth

The whole idea of RPC technology is to use it, thus, you might have a program running that makes 100 local calls with
100 RPC calls every time thru the main loop. Thus, you want the RPC transport process to be very quick, hence,
compression of the RPC data and or caching is in order. For example, if you are sending large chunks of text or data that
has repeating symbols, then its better to compress it locally, transport it, then de-compress and execute since computers
are typically 1000’s of times if not millions of times faster than the communications links.

Additionally, advanced RPC systems might use the same data over and over. Thus, there is no need to keep sending the
data to the server and a caching system should be employed where on the first RPC call, the caller indicates that a data
structure being passed is static and cacheable. Thus, the server caches it after its first use, then on subsequent calls, the
client need not send the structure until it needs refreshing. For example, say you have a 3D data base that you want a
RPC to perform calculations on. The database never changes, so no need to keep sending it over and over, once its in
the servers memory space, you can save the bandwidth.

16.3.3 Our Simplified RPC Strategy

Considering all these interesting methods, the method used for the Chameleon is a 3-byte binary encoded SPI packets
with the following format:

[command8, data_low8, data_high8]

Where command8 is an 8-bit command code, data_low8 and data_high8 are the operands for the command. Thus, each
SPI packet is rather small and can’t do much. However, with proper design you can use these small SPI command
packets to create larger commands. For example, say you want a command to print a character to the VGA screen? Well,
that’s easy enough – you can use a specific command code for “print to VGA” then a single one of the 8-bit data words
can hold the 8-bit character.

But, what if you wrote a sound driver that plays .wav files and you want to send down 1000 bytes? Well, that’s easy, you
just have to break the process into to “states” or steps and then create a command for each state. For example, you could
create a “memory write” command that consists of 3 sub-commands:

Command 1: Set memory pointer addr.
Command 2: Write memory mem[addr] with x.

So Command 1 needs a 16-bit address, you can fit that in the two operand bytes, and command 2 needs only a single 8
of data! Thus, you can write 1000 bytes from addresses 2000 to 2999 with this simple algorithm:

for (mem_addr = 2000; mem_addr < 2999; mem_addr++)
 {
 send_spi_command(COMMAND1, mem_addr & 0xFF, mem_addr >> 8)
 send_spi_command(COMMAND2, data, 0);
 } // end for

As you can see, the 3-byte SPI command packet isn’t a limitation. In fact, most SPI (and I

2
C) devices use 2 byte

command rather than 3, thus even more steps have to be performed for larger more complex operations.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 136

Figure 16.5 - The virtual drivers used for the project.

16.4 Virtual Peripheral Driver Overview

There isn’t much to say about the drivers used on the project other than I went to the Parallax Object Exchange located
here:

http://obex.parallax.com/objects/

and hunted around for appropriate objects to use for this project based on my experience with developing objects and
using them. The objects aren’t the fastest, the coolest, or the best necessarily they just work and get the job done and in
most cases are the reference objects developed by Parallax initially with small changes by myself and other authors. The
idea was to have the NTSC, VGA, audio and keyboard/mouse all running at the same time and be able to access these
devices. In the future, you might want to use other objects or improve these for more specific needs.
In any event, referring to Figure 16.5. The objects used are shown in Table 16.2.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 137

Table 16.2 - Objects used for the Chameleon default MCP drivers.

Function Version Top object file name
(1)

MCP (master control program) 1.11 CHAM_DEFAULT2_DRV112.spin
(2)

NTSC 1.1 CHAM_GFX_DRV_001_TB_001.spin
(2)

 TV_Text_Half_Height_011.spin

(2)

VGA 1.0 VGA_Text_010.spin
Audio 5.2 NS_sound_drv_052_11khz_16bit.spin
Serial 1.2 FullDuplexSerial_drv_012.spin
PS/2 Keyboard 1.0 keyboard_010.spin

(3)

PS/2 Mouse 1.0 mouse_010.spin
(3)

Note 1: Many of the drivers include other sub-objects as well.

Note 2: There are two versions the MCP driver, one is called CHAM_DEFAULT2_DRV_V112.spin this is used for all our
examples. However, there is a slightly modified version called CHAM_DEFAULT1_DRV_V112.spin that uses the plain
vanilla NTSC terminal that might work better on some LCDs. You can drop down to it if you have trouble with the default2
driver.

Note 3: The Chameleon only has one PS/2 port, so only one driver; keyboard or mouse can be active at once. However,
the default MCP driver can “hot” swap the drivers, so you can unplug the keyboard/mouse in real-time and with software
“start” the new device.

All of the drivers and their sub-objects are included in the source directory for this chapter located on DVD-ROM in:

DVD-ROM :\ CHAM_AVR \ SOURCE \ PROPELLER_DRIVER \ *.*

If you look on the Parallax Object Exchange you should be able to find most of these drivers as well; however, we will use
the ones from my chapter and my sources since I made slight modifications to each of them to make things easier.

16.4.1 Normalization of Drivers for Common RPC Calls in Future

The last thing I want to discuss about the drivers in the interfaces to all of them. Since this is a pieced together system of
other people’s drivers, each driver obviously has its own methodology and API. For example, the NTSC calls look entirely
different from the keyboard calls and so forth. Alas, if you were to develop a system from the ground up and design
drivers for NTSC, VGA, keyboard, etc. you would be wise to design all the APIs in a similar fashion with conventions for
function calls, inputs and outputs, so that technologies like RPC calls and others could more easily be implemented and
optimized better.

17.0 Chameleon AVR API Overview

In this section of the manual we are going to discuss the Chameleon AVR API and its related components. First and
foremost, I want to make it clear that the API we have developed is by no means complete, the best, the fastest, etc. It’s
just a set of source files and functions that get you started developing applications. Moreover, since the whole idea of the
Chameleon is to leverage the functionality of the drivers running on the Propeller chip. The AVR side API is nothing more
than “wrapper” functions that container a number of SPI commands, so you don’t have to type a lot to get things done. In
other words, you don’t have to use these libraries in most cases, you can just send command directly if you wish.
Moreover, these API functions are designed for the specific drivers running on the default Propeller drivers. If you change
or modify drivers on the Propeller side chances are these new drivers will have different functionality and you will want to
re-write a new high level “wrapper” API for the driver in question.

However, I hope that you use them as starting points only to develop your own API, functions, and drivers that are much
more optimized and complete. On the other hand, I have spent a good deal of time trying to develop a base set of API
libraries to get you started, so that you can do everything from graphics and sound to UART communications with the PC.
Table 17.1 lists all the API library modules we have developed for you to jumpstart your development and exploration of
the Chameleon AVR and the AVR processor itself.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 138

Table 17.1 – The Chameleon AVR source level library modules at a glance.

Library Module Name Description

System Level Library Module

 CHAM_AVR_SYSTEM_V010.c|h System level utility functions and configuration.

High Level Graphics Module

 CHAM_AVR_GFX_DRV_V010.c|h Functions to take advantage of the graphics tile
 engine that runs under the “default2” drivers.

NTSC Text and Tile Graphics Module

 CHAM_AVR_NTSC_DRV_V010.c|h Tile engine and text console/terminal functions.

VGA Text and Tile Graphics Module

 CHAM_AVR_VGA_DRV_V010.c|h Tile engine and text console/terminal functions.

Audio Driver Module

 CHAM_AVR_SOUND_DRV_V010.c|h Sound driver functions.

Communications Modules

 CHAM_AVR_UART_DRV_V010.c|h Low level Serial RS-232 communications driver.
 CHAM_AVR_TWI_SPI_DRV_V010.c|h Low level I2C and SPI peripheral driver.

Input/Output Devices Modules

 CHAM_AVR_GAMEPAD_DRV_V010.c|h Gamepad driver.
 CHAM_AVR_KEYBOARD_DRV_V010.c|h PS/2 keyboard driver.
 CHAM_PROP_PORT_DRV_V010.c|h Propeller “local” 8-bit I/O driver.

Storage Device Modules

 CHAM_AVR_FLASH_DRV_V010.c|h 1MB SPI FLASH memory chip driver.

Mechatronics, Actuator and Sensor Modules

 N/A

Note 1: This mode uses 6x8 tiles to squeeze more characters per line for text modes.

When building application using the Chameleon AVR library you will typically include the System module always and then
include various modules such as video, keyboard, UART, etc. as needed by your application. All the C, and Header files
are located on the DVD here for reference:

DVD-ROM :\ CHAM_AVR \ SOURCE \ *.*

In the section below we will briefly cover each one of these libraries and the functions within them. Before, we get started
let’s take a look at the “big picture” illustrating all the components of the Chameleon AVR development suite of software
and tools. Figure 17.1 shows a system level architecture diagram of all the pieces involved.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 139

Figure 17.1 – System level architecture of the Chameleon API and other library modules.

Referring to the figure there are a lot of components to discuss. First off, the primary library that all C/C++ programs use is
the open source “AVR Libc” library that is part of the WinAVR install and is what the GNU GCC compiler uses as the
base for all of the standard C library functions you are used to. Therefore, when you create a C/C++ program for the
Chameleon AVR and include say <stdio.h> you are including functions from the AVR Libc installation. Let’s talk about
this for a moment. First, embedded systems are very unique in that they are very constrained, have little memory and
resources. So any function that you use from the standard C library Libc emulates what you might expect on a PC
platform, but in many cases the behavior might not be as expected. Thus, you need to take care when using standard
library functions and realize that they may have side effects or limitations that VC++ or GNU C on your PC do not. Please
refer to the AVR Libc manual located here on the DVD-ROM for a complete overview of the library:

DVD-ROM:\ CHAM_AVR \ DOCS \ avr-libc-user-manual-1.4.6.pdf

Additionally, a great resource for the library is the developer’s website itself:

http://www.nongnu.org/avr-libc/

TIP

The Arduino toolchain uses the same GNU GCC compiler and AVRLibc library, thus
everything related to C/C++ programming with AVRStudio applies to the Arduino tool as
well where it relates to GCC and WinAVR/Libc.

There are lots of tricks and tips to using the AVR Libc functionality on there. However, for the most part as long as you
don’t push it, you can use standard C functions and everything will work out. Of course, you have to have common sense
when using functions. For example, on a PC the function printf(…) makes sense since there is some kind of terminal

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 140

device. On the Chameleon AVR, this won’t work since the developer of AVR Libc has no idea about the Chameleon AVR,
thus anything that is hardware specific won’t work since Libc has no idea about the hardware. On the other hand, you
might ask “is it possible to get printf(…) to work?”. The answer is yes. However, you would have to go into the source
files where printf(…) is located and modify it to do “something” intelligent on the Chameleon AVR such as print to the
UART, or to the NTSC/VGA screen. But, you get the idea. Don’t use standard C functions that make no sense on an
embedded system.

Next, embedded systems have multiple memory types; RAM, FLASH, EEPROM. And the AVR Libc library knows this.
Thus, many functions only work in RAM or FLASH specifically. Therefore, you always have to keep in mind that you are
working with a Harvard memory architecture and a separate RAM/FLASH memory model. The AVR Libc documentation
has a lot to say about this subject, so make sure to read it.

Alright, so that’s the story with AVR libc, it’s part of the GNU GCC WinAVR installation and when you build a C/C++
application functions are pulled in from this library. To give you an idea of what Libc supports, Table 17.2 lists the header
files you can include in your Chameleon AVR applications and what functionality they support.

Table 17.2 – AVR Libc library functionality listed by header file.

Libc Header File Description

General C/C++ Library Functions

<alloca.h> Allocate space in the stack.
<assert.h> Diagnostics.
<ctype.h> Character Operations.
<errno.h> System Errors.
<inttypes.h> Integer Type conversions.
<math.h> Mathematics.
<setjmp.h> Non-local goto.

<stdint.h> Standard Integer Types.
<stdio.h> Standard I/O facilities.
<stdlib.h> General utilities.
<string.h> Strings.

AVR Specific Library Functions

<avr/boot.h> Boot loader Support Utilities.
<avr/eeprom.h> EEPROM handling.
<avr/fuse.h> Fuse Support.
<avr/interrupt.h> Interrupts.
<avr/io.h> AVR device-specific IO definitions.
<avr/lock.h> Lockbit Support.
<avr/pgmspace.h> Program Space Utilities.
<avr/power.h> Power Reduction Management.
<avr/sfr_defs.h> Special function registers.
<avr/sleep.h> Power Management and Sleep Modes.
<avr/version.h> avr-libc version macros.
<avr/wdt.h> Watchdog timer handling.

AVR Specific Utility Functions

<util/atomic.h> Atomically and Non-Atomically Executed Code Blocks.
<util/crc16.h> CRC Computations.
<util/delay.h> Convenience functions for busy-wait delay loops.
<util/delay_basic.h> Basic busy-wait delay loops.
<util/parity.h> Parity bit generation.

<util/setbaud.h> Helper macros for baud rate calculations.
<util/twi.h> TWI bit mask definitions.
<compat/deprecated.h> Deprecated items.
<compat/ina90.h> Compatibility with IAR EWB 3.x.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 141

As you can see the first set of headers looks pretty familiar, but the second and third set are totally AVR specific, but not
hardware specific to the Chameleon AVR, only to the AVR 328p processor.

Now, the hardware specific functionality for the Chameleon AVR, we had to develop. Referring to Figure 17.1, there are
a number of library classes you can glean from the figure, they are:

System The system library module is a “glue” module that ties the other modules together and is used as
a common place to put functions and constants that don’t fit into any other category. Currently,
the system library module is very small, but it will grow in the future.

Graphics This library simply makes calls to the graphics drivers running on the Propeller chip. So whatever

they do, this library tries to expose to the user. The current drivers are “tile” graphics only and
support text, printing, scrolling, and crude control of color. The default2 driver series adds some
functionality with a “gaming” tile engine that supports fine vertical scrolling, control of overscan
colors, large playfield tilemaps, re-definable character bitmaps (4 colors per tile), and many other
cool features.

Sound This library interfaces to the Propeller sound driver object and exposes limited capabilities of the

driver itself (which can do a lot more). The API gives you a few functions to play sounds, control
volume, etc. But, you will probably want to enhance this API.

Keyboard/Mouse There is a PS/2 port on the Chameleon which is connected to the Propeller. The default
driver on the Propeller has drivers for both keyboard and mouse support. Thus, we have
developed a simple API to communicate to both the keyboard and mouse driver running
on the Propeller (one at a time of course).

UART The AVR 328p processor comes with two hardware UART’s, but we have developed a library of

functions that abstracts the functionality, so you can perform buffered I/O very easily with interrupt
driven drivers.

SPI The AVR 328p has built in Serial Peripheral Interface hardware as well, but there is quite a bit to

set it up and communicate with it, thus we have created a nice abstraction layer to initialize it,
read and write bytes.

I
2
C The AVR 328p again has built in hardware for Inter-Integrated Circuit communications, but the

hardware is tricky to setup and the I2C protocol is a bit difficult to work with, so once again, we
have developed a software layer on top of it for your convenience.

FLASH The Chameleon AVR has a 1MB SPI FLASH memory on-board which can be used for storage of

assets, data, code, whatever you wish. This driver API runs 100% on the client AVR chip and
gives you the ability to read and write sectors/pages in the FLASH memory, erase, etc.
Considering that, you might want to write some software to abstract the FLASH memory into a
FAT16 like device? All you need are functions to read/write sectors/pages (which we provide)
then you can use a 3

rd
 party library to add support so the FLASH memory “feels” like a FAT16

drive. There are numerous open source drivers for SD cards and FAT16, so you are free to use
them in your development. For example the Procyon AVR Library that has FAT16 support, but for
read only. Simple google a bit and you can find other libraries or write one yourself.

 Mechatronics N/A

NOTE

Some modules like the SPI and I

2
C are actually in the same source file since they are

so similar.

These compose the main library modules that make up the Chameleon AVR specific API functions (mostly wrapper
functions). Now, before we continue, I want to make a point about language here. I have been using the word “library” in
a cavalier way. Library as is relates to C/C++ programming is a pre-compiled container with many binary objects. For
example, AVR Libc is a “library”, hundreds of functions have been compiled into a single library file and that single file is
linked against during builds with GNC GCC. In our case, we could have built an official “library” and put all the source

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 142

modules into it, but this would be tedious since it would hide what you are including in each project. Thus, I have decided
to keep the “library” in a source format as a collection of .C and .H files, so we can see what’s going on, include what we
need, and when we update one of the source files we don’t have to rebuild the library, we simply include the source file in
the source tree with our main project file.

With that in mind, there are a number of .C and .H files that make each up class of library functionality for the Chameleon
API. At this point, we are going to drill down and list each of the files with a short description. Then we are going to
discuss the key data structures and header files for each library module, list the functions one by one with examples.

Finally, all source files can be found on the DVD at location:

DVD-ROM:\ CHAM_AVR \ SOURCE \ *.*

Of course, you should have already copied this to your hard drive into your project’s working directory. To save space, we
are not going to list the contents of each source file since that would take hundreds of pages; however, key elements will
be listed for reference. Nonetheless, you should have your editor pointed to the source directory, so you can review the
complete contents of each file as we discuss them.

17.1 System Library Module

The “System” library module consists of a single C source file and its header. The “System” modules must be included in
every Chameleon AVR program since its contains some top level #defines, types, and other pertinent elements that other
API modules depend on. Additionally, the C source file contains a few utility functions that will continue to grow in the
future.

The “System” source files are named below:

CHAM_AVR_SYSTEM_V010.c - Main C file source for “System” module.
CHAM_AVR_SYSTEM_V010.h - Header file for “System” module.

You should include the .h file will all your applications and add the .C file to your source tree for all applications as well.
Next, we will take a look at some excerpts from the header file, review key elements, and any data structures that are of
interest.

15.1.1 Header File Contents Overview

The header files for many of the API modules are rather large and we won’t have time to list their contents out in their
entirety; however, the “System” header is quite manageable, so we are going to take a look inside. To begin with, the
header contains some useful macros:

// macros to manipulate bits
#define SET_BIT(value, bit) value = ((value) | (1 << (bit)))
#define SET(bit) (1 << (bit))
#define RESET_BIT(value, bit) value = ((value) & (~(1 << (bit))))
#define RESET(bit) (~(1 << (bit))))
#define WRITE_BIT(value, bit_num, bit_val) value = (((value) & (~(1 << (bit_num)))) | ((bit_val) << (bit_num)))
#define SETPORTBITS(b7, b6, b5, b4, b3, b2, b1, b0) ((b7 << 7) | (b6 << 6)| (b5 << 5)| (b4 << 4)| (b3 << 3)| (b2 << 2)| (b1 << 1)| (b0 << 0))

// conversion macros
#define HEX_TO_DEC(n) (((n >= '0') & (n <= '9')) ? (n - '0') : (((n >= 'A') & (n <= 'F')) ? (n - 'A' + 10) : 0))

// a more useful random function
#define RAND_RANGE(x,y) ((x) + (rand()%((y)-(x)+1)))

// AVR RESET MACROS ///

#define AVR_Soft_Reset() \
do \
{ \
 wdt_enable(WDTO_15MS); \
 for(;;) \
 { \
 } \
} while(0)

These macros are primarily used to manipulate port bit I/O, set bits, reset bits, and write to the ports in a clean way.
Finally, there is a convenient conversion from hex to decimal used by some of the conversion functions in the API.

Next, are the #defines and one very important definition is the processor speed:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 143

// define CPU frequency in MHz here if not defined in Makefile
#define F_CPU 16000000UL

This constant is special to many of the C libraries and it used as a compile time constant. You might recall us setting this
constant in the compiler build configuration setup. However, we are going to override that constant here (making it the
same), as extra insurance to make sure that manually set this constant and then use it throughout the code base to set up
timing calculations.

Although the Libc libraries have many standard types, I prefer to always create a few of my own that are compiler
independent, so I know they work if I port the code, with this in mind, the “System” module has a few types it declares:

// basic unsigned types
typedef unsigned short USHORT;
typedef unsigned short WORD;
typedef unsigned char BYTE;
typedef unsigned char UCHAR;
typedef unsigned long QUAD;
typedef unsigned int UINT;

// generic input device data record type, helps get back data from various multidata calls
typedef struct gid_event_type
 {

 int x,y,z; // position data
 int buttons; // buttons, bit encoded
 // bit4 = right-side button
 // bit3 = left-side button
 // bit2 = center/scrollwheel button
 // bit1 = right button
 // bit0 = left button

 } gid_event, *gid_event_ptr;

Lastly, so that the user can change the system frequency if he wishes during run-time, there is a variable shadow of the
F_CPU constant that is loaded with said constant during startup. Thus, the variable is used in the Chameleon API library
for calculations. This gives it typing information and as noted the ability to be changed during run-time, here’s the
declaration:

extern unsigned long f_cpu;

That wraps it up for the header file declarations. The remainder of the header file is simply the prototype listing for the
functions themselves which we will see in the next section.

17.1.2 API Listing Reference

The API listing for the “System” module CHAM_AVR_SYSTEM_V010.c is quite short. As said, this C file is a placeholder
for future functionality that relates to system level housekeeping and utility functions, so at this early stage there isn’t
much here. Considering that, Table 15.3 below lists the “System” API functions categorized by functionality.

Table 15.3 – “System” module API functions listing.

Function Name Description

Time and Counting

void Delay_Clocks(long count); Delays for the requesting number of processor clocks (use _delay_us() and
 _delay_ms() for time based delays, these are out of AVRLibc).

void _delay_s(int sec); Delays for the requested number of seconds.

Conversion

long atoi2(char *string); Converts binary, decimal, and hex formatted strings to integer.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 144

System Reset

int Reset_Master(void); Resets the AVR chip.
int Reset_Prop(void); Resets the Propeller chip remotely.

Note: The time functions are currently approximations and need updating to be more accurate. Please use AVRLibc
functions instead.

17.1.3 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

Function Prototype:

void Delay_Clocks(long count);

Description: Delay_Clocks(…) waits the specificied number of processor clocks then returns. The AVR Libc library

has similar timing functions as well. Note: it is recommend AVR Libc functions are used instead.

Example(s): Wait for 1000 clocks.

Delay_Clocks(1000);

Function Prototype:

void _delay_s(int sec);

Description: _delay_s(…) waits the specificied number of processor clocks then returns. The AVR Libc library

has similar timing functions as well. Note: it is recommend Libc functions are used instead.

Example(s): Wait 60 seconds.

_delay_s(60);

Function Prototype:

long atoi2(char *string);

Description: atoi2(…) has a built in parser that can parse strings in decimal, hexadecimal, and binary formats. The

sentinels $, and % are used for hex and binary representations with omission of sentinel meaning decimal
conversion. This function is convenient for text input and conversion algorithms, so users can use any of
the popular numeric bases as their inputs. The function returns the value as a long thus all inputs have to
fit into a signed long result. Returns 0 if the function can’t perform a conversion.

Example(s): Conversion examples from all bases.

char *decimal_string = “12345”;
char *hex_string = “$FFFF”; // 65536
char *binary_strng = “101”; // 5

long result;

// decimal conversion
result = atoi2(decimal_string);

// hex conversion

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 145

result = atoi2(hex_string);

// binary conversion
result = atoi2(binary_string);

Function Prototype:

int Reset_Master(void);

Description: Reset_Master(…) causes a soft reset on the AVR chip, basically re-booting it. Always returns 1.

Example(s): Reset the AVR.

Reset_Master();

Function Prototype:

int Reset_Prop(void);

Description: Reset_Prop(…) causes a soft reset on the Propeller chip, basically re-booting it. Always returns 1.

Example(s): Reset the Propeller, then the AVR.

// reset the Propeller
Reset_Prop();

// wait a moment…
_delay_ms(1000);

// now reset the AVR
Reset_Master();

18.0 UART and RS-232 Library Module Primer

The “UART and RS-232” communications module supports basic transmission and reception of bytes to and from the
Chameleon AVR serial port. The AVR 328P (“P” – Pico power version that we are using) has a single very advanced
USART (Universal Synchronous and Asynchronous Serial Receiver and Transmitters). It is connected directly to the
TX/RX pins of the USB FTDI chip which allows serial communication via the USB port. Additionally, the TX/RX lines are
exported on the I/O headers.

Before discuss the overall architecture of the UART library module, here are the main features of the AVR 328P USART:

� Full Duplex Operation (Independent Serial Receive and Transmit Registers).
� Asynchronous or Synchronous Operation.
� Master or Slave Clocked Synchronous Operation.
� High Resolution Baud Rate Generator.
� Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits.
� Odd or Even Parity Generation and Parity Check Supported by Hardware.
� Data Overrun Detection.
� Framing Error Detection.
� Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter.
� Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete.
� Multi-processor Communication Mode.
� Double Speed Asynchronous Communication Mode.

As you can see they are pretty powerful and the library API we provide here only scratches the surface of what you can
do with the USART hardware. They can even be used to stream audio or video data if you are really creative since they
are more or less interrupt driven high speed shifting devices. In any event, let’s talk about some preliminary materials

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 146

before we begin. You should review the data sheet on the AVR 328p, especially the USART. The data sheets is located
here on the DVD:

DVD-ROM:\ CHAM_AVR \ DOCS \ DATASHEETS \ ATMega48_88_168_328_doc8161.pdf

And here are some application notes specifically on using the USART:

 DVD-ROM:\ CHAM_AVR \ DOCS \ WHITEPAPERS \ avr_uart_doc2547.pdf
 DVD-ROM:\ CHAM_AVR \ DOCS \ WHITEPAPERS \ avr_usart_spi_doc2577.pdf

Finally, the “UART and RS-232” API libraries are contained in the following files:

CHAM_AVR_UART_DRV_V010.c - Main C file source for “UART and RS-232” module.
CHAM__AVR_UART_DRV_V010.h - Header file for “UART and RS-232” module.

ARDUINO
TIP

The Arduino library has some built in C++ classes for serial I/O, thus when using the
Chameleon with the Arduino tools, you do not need to use the UART library, you can
use the built in library the Arduino libraries provide.

18.1 The Architecture of the UART API Library and Support Functionality

The UART library is relatively complex in as much as to save you a lot of grief trying to program the AVR USARTs, we
wanted to give you some ready to go software and API functionality, so you could perform basic serial I/O and have some
fun. To that end, we developed a buffered, interrupt driven UART communications system with some moderately powerful
support functions to save you time. Let’s take some time to briefly discuss the overall architecture of the system, so you
know how it’s all put together. This will help understand how the API functions fit together and the data flow of the system.

Figure 28.1 – The system architecture of the UART driver.

Hopefully, you have read thru the application notes and data sheet on the AVR USARTs. Nonetheless, serial
communications at the PC level is usually quite easy. The PC has an API, hardware, interrupts, and lots of sub-systems,

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 147

so that you are insulted from what’s really going on. This is not true with microcontrollers. The AVR 328p series has
hardware USARTs (we are using for UARTs) to take the load off the bit banging, polling, and transmission and reception
of actual bytes, but we still need to write a lot of software on top of the hardware to develop an API that is useful.

There are lots of ways to approach this; for example, if you are happy with waiting for characters you could write a receive
function that simply waits for the reception buffer to get a character, this is slow though since you have to poll for it.
Secondly, you could do the same with your transmission software and write a loop that constantly writes bytes to the
transmit buffer while waiting for the bytes to transmit before writing another. These methods are fine, but I wanted to give
you a little bit more to work with as a starting point, so you can see how you might develop a more robust serial
communications system. Referring to Figure 18.1, this is the architecture of the UART module we have developed. The
UART driver API is an interrupt driven system with circular buffers on both the incoming and outgoing characters. The
system is easy to understand from a design perspective; interrupts are setup to fire when both a character has been
received and when a character has been transmitted. These interrupts both call “interrupt service routines” (ISRs) that
have been developed to support “circular buffers”. These circular buffers allow the calling functions to place characters
in the outgoing buffer and queued for transmission as well as for characters to fill up the receiving circular buffer until the
caller wants to read characters.

The idea of this being the functions that transmit and receive characters do not have to wait, they make to functions that
interrogate the circular buffers and either insert or remove characters. This way the system is responsive and only if the
buffers are overflowed is data lost. For example, say you want to transmit the string “Hello World!”. Normally, you would
have to transmit the “H”, then wait, “e”, then wait, etc. But, with interrupt driven architecture and the buffers, the string is
simply copied into the circular output buffer and the interrupt sends the string out for you.

The receiver is the same, you can interrogate the circular buffer anytime you wish. For example, say that you know the
transmitter on the other end is going to send a single string “The World is Fine.” back to you. This string fits into the
circular buffer, so you don’t have to interrogate the buffer immediately and worry about loss of data. You can finish you
activities, maybe a disk I/O or some rendering then at your leisure call the receive function which will check the buffer for
data and send it to you.

Referring to Figure 18.1 once again, you can see some of the details of the system. There are two functions similar to the
C putc(…) and getch(…) called UART_putc(…) and UART_getc(…) these functions directly access the transmit and
receive buffers for you. Thus, from a software perspective all the work of polling the transmission and reception hardware
is taken care of for you and all you have to do is use these two functions (and pay attention to their return values)!

ARDUINO
TIP

The Arduino uses similar serial methods from the “serial” class named serial.begin(…),
serial.print(…), serial.read(), etc. learn about them in the Arduino documentation.

So the idea of our UART module is that it loads up the ISRs for communication, set the USART hardware up (speed, bits
per character, parity, etc.) and then you communicate via a collection of functions. Now, although we can use the put and
get class functions, we have developed a number of other functions that help print strings, numbers, as well as directly
access the USART transmit buffer, so you can mix and match you serial library use as you wish or write you own.

18.2 Header File Contents Overview

The “UART and RS-232” module header CHAM_UART_DRV_V010.h has a few globals as well as the #defines, so at
least there is something interesting to talk about! Let’s begin with the #defines:

/* default baud rate */
#define UART_DEFAULT_BAUDRATE 115200 // slow down to 57600, 38400 if you have trouble

// transmit and receive buffer constants
#define UART_TX_BUFF_SIZE 32
#define UART_RX_BUFF_SIZE 32

The #defines are trivial; simply a constant for a convenient baud rate as well as the size of the circular buffers. You can
make these any size you wish, but memory is at a premium, so keep it in mind. If you are going to be using a lot of serial
communications and know you are going to send large strings or receive large strings and not be able to interrogate the

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 148

buffer functions then you might want to increase the buffers to 64, 128, 256 etc. But, for now 32/32 seems to work find in
all examples.

Next are all the global data structures and variables used by the API functions:

// global that holds UART current baud rate
extern int g_baudrate;

// receiver and transmitter head and tail indices for circular buffers
extern int g_uart_rx_head;
extern int g_uart_rx_tail;
extern int g_uart_tx_head;
extern int g_uart_tx_tail;

// buffers for uart interrupt driver
extern UCHAR g_uart_buffer_rx[UART_RX_BUFF_SIZE]; // receiver buffer for incoming characters
extern UCHAR g_uart_buffer_tx[UART_RX_BUFF_SIZE]; // transmit buffer for outgoing characters

First we have a global baud rate, pointers to the circular buffers, and finally the buffers themselves. These are all declared
in the C file of course, these are simply the external references.

18.3 API Listing Reference

The API listing for the “UART and RS-232” module CHAM_UART_DRV_V010.c is listed in Table 18.2 categorized by
functionality.

Table 18.2 – “UART and RS-232” module API functions listing.

Function Name Description

Initialization

int UART_Init(unsigned int baudrate); Initializes UART, ISRs, etc.
int UART_Shutdown(void); Shuts down the UART.

Transmission

int UART_putc(unsigned char ch); Transmits a character using interrupt buffer.
void UART_Transmit(unsigned char ch); Transmits a single character immediately.
void UART_Newline(void); Sends an ASCII newline - CR/LF.
void UART_Print_String(char *string); Prints a NULL terminated string.
void UART_Print_Int(int num); Prints a signed integer.
void Terminal_Clear_Screen(void); Clears the VT100 terminal with ANSI code for clearscreen.

Reception

int UART_getc(void); Receives a character thru interrupt buffer.
int UART_Receive(int wait); Waits for incoming character in receive buffer directly

18.4 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

Function Prototype:

int UART_Init(unsigned int baudrate);

Description: UART_Init(…) initializes USART0 (the primary USART connected to the SER1 serial port). The

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 149

parameter is the baud rate in bits per second and should be one of the following values; 1200, 2400,
4800, 9600, 19200, 38400, 57600…115200. If you send any other values then a mathematical
computation is performed to estimate the baud rate register settings and its not very accurate.
Additionally, the initialization function enables serial settings of “N81”, that is, no parity, 8-data bits, 1-
stop bit. You must set your PC or serial device to the same settings as well. Finally, the initialization
function enables the interrupt handlers which are hidden in the C source file. This function must be called
before any other API functions. The function returns 1 always.

Example(s): Initialize the serial communication system to a baudrate of 115200 with setting N81.

// function always sets serial to N81, so just need the baudrate to max
UART_Init(115200);

Function Prototype:

int UART_Shutdown(void);

Description: UART_Shutdown() shuts down USART0’s interrupts. Call it when you are done with

the UART. Note that you can still use the manual transmit and receive functionality of the UART, but the
interrupt driven system is disabled after this call. Returns 1 always.

Example(s): Shutdown the UART interrupts.

UART_Shutdown();

Function Prototype:

int UART_putc(unsigned char ch);

Description: UART_putc(…) places a character into the outgoing transmit circular buffer from there the ISR will

continue to process the characters and send them out the UART as the transmitter buffer empties. This
function is non-blocking and returns immediately. Returns the character sent if successful, else 0 if fails.

Example(s): Send an ASCIIZ encoded string out to the UART.

int length;
char string[] = “This is a test”;
.
.

// compute length
length = strlen(string);

// loop and send each character
for (index = 0; index < strlen; index++)
 UART_putc(string[index]);

Function Prototype:

void UART_Transmit(unsigned char ch);

Description: UART_Transmit(…) sends a single character out the UART. The function takes as a parameter the

character to send, and the function blocks until the transmitter is free. Use this function is you don’t care
about using the transmitter interrupt and can wait for the characters to transmit before the function
returns. Function returns nothing.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 150

Example(s): Initialize UART to N81, 38400, manually transmit “Chameleon”, shut the UART down.

// initialize to N81 always
UART_Init(115200);

// send the characters
UART_Transmit(‘C’);
UART_Transmit(‘H’);
UART_Transmit(‘A’);
UART_Transmit(‘M’);
UART_Transmit(‘E’);
UART_Transmit(‘L’);
UART_Transmit(‘E’);
UART_Transmit(‘O’);
UART_Transmit(‘N’);

// shutdown the UART system
UART_Shutdown();

As noted, the shutdown function really only disables the ISR’s, so you can still use the manual transmit and receive
functions if you wish.

Function Prototype:

void UART_Newline(void);

Description: UART_Newline() simply send a CR/LF (0x0A, 0x0D) to the UART. Assuming, a terminal program is

connected to the Chameleon AVR, this function is a nice helper to print newlines when needed. Returns
nothing.

Example(s): Assuming the Chameleon AVR is connected to a PC or other terminal with VT100 capabilities, print 10
newlines.

for (index = 0; index < 10; index++)
 UART_Newline();

Function Prototype:

void UART_Print_String(char *string);

Description: UART_Print_String(…) prints a NULL terminated string. The function first prints a newline then the

string, takes a pointer to the ASCIIZ string. Returns nothing.

Example(s): Print out “Hello World!”.

UART_Print_String(“Hello World!”);

Function Prototype:

void UART_Print_Int(int num);

Description: UART_Print_Int(…) takes a signed decimal integer and prints it to the UART. Returns nothing.

Example(s): Print the powers of 2 from 1 to 256.

int pow2 = 1;

while (pow2 <= 256)
 {

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 151

 UART_Print_Int(pow2);
 UART_Newline();
 pow2 *= 2;
 } // end while

Function Prototype:

void Terminal_Clear_Screen(void);

Description: Terminal_Clear_Screen() simply uses VT100 codes to clear the screen. If you are communicating with a

terminal program that has VT100 emulation, calling this function will clear the screen and place the cursor
at the top left of the screen.

Example(s): Clear the screen and print my favorite computer.

Terminal_Clear_Screen();
UART_Print_String(“Atari 800”);

Function Prototype:

int UART_getc(void);

Description: UART_getc() retrieves the next character from the circular reception buffer. Returns the next character in

the buffer or -1 if buffer is empty.

Example(s): Echo each character that is received.

// forever..
while(1)
 {
 // get next character?
 ch = UART_getc();

 // was there a character?
 if (ch != -1)
 UART_putc(ch);

 } // end while

Function Prototype:

int UART_Receive(int wait);

Description: UART_Receive(…) doesn’t use the interrupt system. The function interrogates the UART hardware

directly and checks if the receive buffer has a character in it, if so, the function returns it. However, the
function can work in two different modes; blocking and non-blocking. That is, you can call the function
with a wait = 1 and the function will wait for a character, or wait = 0, and the function will not wait for a
character and return immediately if a character isn’t ready. In either case, the function returns the
character in the receiver buffer or -1 if a character isn’t ready. Note that if you set wait = 1 the function
could theoretically wait forever.

Example(s): Wait for the character ‘X’ when received blow up the world ☺

// wait for the ‘X’
while(UART_Receive(1) != ‘X’);

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 152

// call the mainframe computer in Zion and execute its last command…
Blow_Up_The_World();

19.0 SPI and I2C Library Module Primer

The “SPI and I
2
C” module consist of a single C source file and a number of functions for initialization, transmission and

reception. The SPI module is one of the most important in the system since all communications with the Propeller chip are
performed via the SPI hardware. The API consists of the following files listed below:

CHAM_AVR_TWI_SPI_DRV_V010.c - Main C file source for “SPI and I
2
C” module.

CHAM_AVR_TWI_SPI_DRV_V010.h - Header file for “SPI and I
2
C” module.

ARDUINO
TIP

Arduino tool users you will use the “Import Library” command from the main menu to
include CHAM_AVR_TWI_SPI_DRV_V010, however all this really does is add the line
of code:

#include < CHAM_AVR_TWI_SPI_DRV_V010.h >

To your program, which you can just do yourself. The Arduino tool already knows where
to look for other C/C++ files (since we copied them into the appropriate directories
already), thus for the Arduino tool simply add the header include manually or you can let
the tool do it from the main menu <Sketch -> Import Library>. The Arduino MAKE file is
rather complex and knows how to add all the C/C++ files we dumped into the library
directory, so there is little to do with the Arduino tool when accessing these libraries
other than including the header in your program.

Before we discuss the module and functionality, let’s briefly review both SPI and I

2
C protocols and their features. For more

detailed descriptions and tutorials on both protocols, I suggest reading the SPI and I
2
C material in the AVR 328 data sheet

located here:

DVD-ROM:\ CHAM_AVR \ DOCS \ DATASHEETS \ ATMega48_88_168_328_doc8161.pdf

Also, there are numerous SPI and I

2
C documents located on the DVD here:

DVD-ROM:\ CHAM_AVR \ DOCS \ I2C \ *.*
DVD-ROM:\ CHAM_AVR \ DOCS \ SPI \ *.*

A few of which I highly recommend you read specifically are:

DVD-ROM:\ CHAM_AVR \ DOCS \ SPI \ avr_spi_doc2585.pdf
DVD-ROM:\ CHAM_AVR \ DOCS \ SPI \ avr_spi_master_doc1108.pdf
DVD-ROM:\ CHAM_AVR \ DOCS \ SPI \ SPI.pdf
DVD-ROM:\ CHAM_AVR \ DOCS \ I2C \ avr315_TWI_I2C.pdf
DVD-ROM:\ CHAM_AVR \ DOCS \ I2C \ twi_programming.htm
DVD-ROM:\ CHAM_AVR \ DOCS \ I2C \ I2C_bus.pdf

These cover AVR specific SPI controls as well as general software implementations and some interesting examples of
SPI controls. But, if you just want a quick overview, read on…

NOTE

The Atmel processors have mult-functional 2-wire hardware devices inside them. These
devices can support I

2
C as well as other protocols under programmability. Thus, instead

of calling the interfaces “I
2
C” Atmel calls them “TWI” for “Two Wire Interfaces”. I suspect

it has something to do with licensing as well. And to avoid licensing the I
2
C interface

Atmel created generalized hardware that supports the I
2
C format, but isn’t designed

specifically for it. In any event, TWI = I
2
C, I

2
C = TWI for our purposes, but the registers

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 153

in the AVR 644 are all “TWI” prefixed and suffixed, so don’t get confused. Finally, SPI
has nothing to do with this, so “SPI” is called “SPI”.

SPI stands for Serial Peripheral Interface originally developed by Motorola. Its one of two very popular modern serial
standards including I

2
C which stands for Inter Integrated Circuit by Phillips. SPI unlike I

2
C (which has no separate

clock) is a clocked synchronous serial protocol that supports full duplex communication. However I
2
C only takes 2 wires

and a ground. Where SPI needs 3 wires, ground, and potentially chip select lines to enable the slave devices. But, SPI is
much faster, so in many cases speed wins over and the extra clock line is warranted. The advantage of I2C is that you
can potentially hook hundreds of I

2
C devices on the same 2-bus lines since I

2
C devices have addresses that they respond

to. SPI bus protocol on the other hand requires that every SPI slave has a chip select line.

Figure 19.1 – The SPI electrical interface.

19.1 SPI Bus Basics

Figure 19.1 shows a simple diagram between a master (left) and a slave (right) SPI device and the signals between them
which are:

� SCLK - Serial Clock (output from master).
� MOSI/SIMO - Master Output, Slave Input (output from master).
� MISO/SOMI - Master Input, Slave Output (output from slave).
� SS - Slave Select (active low; output from master).

Note: You might find some devices with slightly different naming conventions, but the idea is there is data out and data in,
a clock, and some kind of chip select.

If you refer back to the Chameleon’s SPI interface discussion in Section 9.0 of the Hardware Primer you can see that
these signal pins are mapped from the AVR to the Propeller chip.

SPI is very fast since not only is it clocked, but it’s a simultaneous full duplex protocol which means that at you clock data
out of the master into the slave, data is clocked from the slave into the master. This is facilitated by a transmit and receive
bit buffer that constantly re-circulates as shown in Figure 19.1.

Figure 19.1 – Circular SPI buffers.

The use of the circular buffers means that you can send and receive a byte in only 8 clocks rather than clocking out 8-bits
to send, then clocking in 8-bits to receive. Of course, in some cases the data clocked out or in is “dummy” data, meaning
when you write data and you are not expecting a result the data you clock in is garbage and you can throw it away.
Likewise when you do a SPI read, typically you would put a $00 or $FF in the transmit buffer as dummy data since
something has to be sent and it might as well be predictable.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 154

Sending bytes with SPI is similar to the serial RS-232 protocol, you place a bit of information on the transmit line, then
strobe the clock line (of course RS-232 has no clock). As you do this, you also need to read the receive line since data is
being transmitted in both directions. This is simple enough, but SPI protocol has some very specific details attached to it
about when signals should be read and written that is, on the rising or falling edge of the clock as well as the polarity of
the clock signal. This way there is no confusion about edge, level, or phase of the signals. These various modes of
operation are logical called the SPI mode and are listed in Table 19.1 below:

Table 19.2 – SPI clocking modes.

Mode # CPOL (Clock Polarity) CPHA (Clock Phase)

0 0 0
1 0 1
2 1 0
3 1 1

Mode Descriptions

Mode 0 – The clock is active when HIGH. Data is read on the rising edge of the clock. Data is written on the falling

 edge of the clock (default mode for most SPI applications).

Mode 1 – The clock is active when HIGH. Data is read on the falling edge of the clock. Data is written on the rising

 edge of the clock.

Mode 2 – The clock is active when LOW. Data is read on the rising edge of the clock. Data is written on the falling

 edge of the clock.

Mode 3 – The clock is active when LOW. Data is read on the falling edge of the clock. Data is written on the rising

 edge of the clock.

Note: Most SPI slaves default to mode 0, so typically this mode is what is used to initiate communications with a SPI
device.

Figure 19.2(a) – SPI timing diagrams for clock phase polarity (CPHA=0).

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 155

Figure 19.2(b) – SPI timing diagrams for clock phase polarity (CPHA=1).

19.1.1 Basic SPI Communications Steps

Figures 19.2(a) and (b) show the complete timing diagrams for all variants of clock polarity (CPOL) and clock phase
(CPHA). You must adhere to these timing constraints during communications. In most cases, you will use mode 0 since
it’s the default that most SPI devices boot with.

The good news is this is all taken care of by the AVR 328P, in fact, most AVR microcontrollers have complete SPI (and
I
2
C) hardware built in that take care of all the details of both transmission and reception. The only thing we have to do as

programmers is set the hardware up, then send and receive bytes (and maybe handle an interrupt or two). Thus, working
with SPI in the AVR 328P is very easy. Nonetheless, the library module we developed wraps the SPI hardware with a thin
layer of functions, so that you don’t have to deal with it all yourself. However, it’s good to understand the protocol if you
need to manually build a SPI interface with I/O pins. For example, maybe you need (4) SPI interfaces all at the same time
on the Chameleon’s expansion port, the only way to do this will be to do it manually with pin toggling.

However, the AVR 328P’s USARTs (basically UARTs with extra features) both support “SPI modes”. In other words, even
though the AVR 328P has a primary SPI controller, the USART on the AVR 328P can be put into “SPI mode” as well,
giving you (2) fully functioning SPI devices, interrupt driven, etc. This is very good news. Moreover, the Chameleon’s
expansion headers port exports out the master SPI device itself as well as the ancillary SPI-mux selects.
Using the AVR SPI interface is straightforward, the steps are:

� Initialize the hardware (set speed, clock phase and polarity, etc.).
� Send and receive bytes via a pair of registers (and possibly interrupts).

That’s all there is to it. Of course, there’s a lot of detail to getting things to work and believe me, I had my share of
frustration figuring out the little quirks, but the library functions provided shortly will get you up and running very quickly
with SPI interfacing. Also, you can always write you own, or use external libraries. The AVR Libc system does not have
any SPI library of note, but there are many out there like the Procyon library located here:

http://hubbard.engr.scu.edu/embedded/avr/avrlib/
http://ccrma.stanford.edu/courses/250a/docs/avrlib/html/index.html
http://ccrma.stanford.edu/courses/250a/docs/avrlib/html/install.html

19.2 I2C Bus Basics

The I
2
C bus is a little more complex that the SPI bus interface and protocol. The reason is that the I

2
C bus uses only 2

signal lines (SDA – data, SCL – clock), thus more protocol and conventions must be adhered to, to deal with bus
contention etc., secondly I

2
C supports up to 128 devices simultaneously connected to the bus! This feature makes I

2
C

superior for “daisy chaining” devices together with as well as cheaper. Of course, you never get something for nothing

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 156

and the I
2
C bus is not without its shortcomings. First, it is nowhere near as fast as SPI. SPI can operate at 25 MHz and

even up to 50 MHz. I
2
C on the other hand averages around 100 KHz+, with 400 KHz being fast with many new devices

supporting 1Mhz. Thus, SPI is at least 25 times faster. But, that’s not the whole story. The added overhead that I
2
C

protocol attaches to communication (addressing, commands, etc.) slow the protocol even more. Thus, I
2
C devices tend to

find there way into “slow” peripherals where speed isn’t and/or issue, but addressing many of them. For example, serial
memories, sensors, etc. where the device itself is slow, the 100-400 KHz average speed of I

2
C is more than enough.

However, SPI devices you will see in very high speed applications even video and audio.

Figure 19.4 shows an architectural diagram of how the I

2
C bus is laid out in relation to the master device, and the slaves

on the line.

Figure 19.3 – I2C bus layout.

Electrically, the I
2
C bus consists of any number of “masters” and “slaves” on the bus. Masters initiate communication

while slaves listen and respond. Masters can transmit and receive from a slave, but a slave can not initiate
communications. Additionally, to enforce that masters are in charge, the clock line SCL can only be controlled by a
master furthermore placing the slave(s) into a passive role. Moreover, so that multiple devices can be connected to the
same 2-signal bus from an electrical point of view, both SDA and SCL are open drain, thus “pull-up” resistors must be
connected from SDA and SCL to Vcc via a 5-10K resistor on both lines. Note that with the SPI bus, all SPI devices share
the MISO (master input), MOSI (master output), and SCLK (serial clock) lines; however, the CS or chip select lines for
each device controls the selection of the target device (not an address), and when a device is selected its bus is active
while any other de-selected devices go tristate. Thus, the I2C bus is always active and arbitration is achieved thru an
open drain design where SDA and SCL can only be pulled down by the master, and SDA alone by the slave. Then
addressing is achieved by a 7-bit address sent down the I

2
C bus to all devices, only the listening device with the

matching address responds and communication begin. Let’s discuss this process more in detail.

19.2.1 Understanding I2C Bus States

The I
2
C protocol is rather complex compared to SPI protocol. In fact, there is no “SPI protocol” per se. SPI is a simple

serial packet much like RS-232. The only “protocol” that SPI devices have are inherent in the devices themselves and
what the bytes sent and received mean. I

2
C on the other hand has this very complex arbitration system to handle

multiple Masters on the bus, this is facilitated via the electrical design as well as a “state machine” that I
2
C is based on.

Considering this, I
2
C is rather complex. We are only briefly going to cover some of the high level concepts of the protocol

and its primary states; START, and STOP.

To begin with, data is transfer is always initiated by a Master device (remember Slaves can only respond to Masters). A
high to low transition on the SDA line while SCL is high is defined to be a “START condition” or a “repeated START
condition”. Everything begins with the “START” condition, that’s the first thing to remember with I

2
C. Figure 19.4 below

show the timing waveforms for this event.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 157

Figure 19.4 – Timing waveforms for I
2
C “START Condition”.

A START condition is always followed by the (unique) 7-bit slave address along with a single bit signifying the “Data
Direction” either read or write. The Slave device addressed acknowledges the Master by holding SDA low for one clock
cycle. If the Master does not receive an acknowledgement the transfer is terminated. Depending of the Data Direction
bit, the Master or Slave now transmits 8-bits of data on the SDA line. The receiving device then acknowledges the data.
Figure 19.5 shows what happens during data transmission following the initial START and addressing phases.

Figure 19.5 – Timing waveforms for I2C data transmission.

Multiple bytes can be transferred in one direction before a repeated START or a STOP condition is issued by the Master.
The transfer is terminated when the Master issues a “STOP condition”. A STOP condition is defined by a low to high
transition on the SDA line while the SCL is high. Confusing isn’t it?

If a Slave device cannot handle incoming data until it has performed some other function, it can hold SCL low to force the
Master into a “wait-state” for as long as it needs to. All data packets transmitted on the I

2
C bus are 9 bits long, consisting

of 8 data bits, and an acknowledge bit. Now, during a data transfer, the Master generates the clock and the START and
STOP conditions, while the receiver is responsible for acknowledging the reception. An Acknowledge (ACK) is signaled by
the receiver pulling the SDA line low during the 9th clock cycle pulse on SCL. If the receiver leaves the SDA line high, a
“NACK” (no ACK) is signaled, and the transfer is not completed.

In conclusion, I

2
C is a lot more complex that SPI, and writing a software implementation is a lot harder as well due to the

state machine, bus contention and so forth. However, the AVR 644P has built in I
2
C hardware as mentioned which makes

it all much easier to implement. Setting up the registers is still a bit challenging and you have to read the documentation
quite a bit to get the hang of it. I suggest you review the following references for a more complete treatise on I

2
C:

DVD-ROM:\ CHAM_AVR \ DOCS \ I2C \ avr315_TWI_I2C.pdf
DVD-ROM:\ CHAM_AVR \ DOCS \ I2C \ twi_programming.htm
DVD-ROM:\ CHAM_AVR \ DOCS \ I2C \ I2C_bus.pdf

Now, let’s move onto the SPI and I

2
C library module that implements a very thin layer of software on top of the built in

hardware. Moreover, you may wish to develop much higher level functionality yourself. If you do, make note that the “SD
card” library uses the SPI functions in this module, so you will have to emulate their functionality and linker names.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 158

19.3 Header File Contents Overview

The “SPI and I2C” module header CHAM_TWI_SPI_V010.h is very important since it houses the constants for the SPI
communications interface to the Propeller, so we are going to cover it in detail. Let’s begin with the #defines that declare
some of the hardware signals and constants used to represent I

2
C and SPI interfaces):

// TWI/I2C defines
// I2C clock in Hz
#define TWI_CLOCK 100000L // initially set to 100Khz, this is the default when you call TWI_Init(...)
#define SCL_CLOCK TWI_CLOCK

#define TWI_PORT PORTC
#define TWI_DDR PORTC
#define TWI_SCLK PORTC0
#define TWI_SDA PORTC1

// SPI defines
#define SPI_DDR DDRB
#define SPI_PORT PORTB
#define SPI_CS PORTB2 // not used for spi addressing
#define SPI_MOSI PORTB3
#define SPI_MISO PORTB4
#define SPI_SCLK PORTB5

#define SPI_CS_DDR DDRC
#define SPI_CS_PORT PORTC

#define SPI_CS0 PORTC2
#define SPI_CS1 PORTC3

// SPI rate bit settings
#define SPI_FOSC_2 0b100
#define SPI_FOSC_4 0b000
#define SPI_FOSC_8 0b101
#define SPI_FOSC_16 0b001
#define SPI_FOSC_32 0b110
#define SPI_FOSC_64 0b010
#define SPI_FOSC_128 0b011

The #defines simply declare the I/O ports, signal bits and some timing constants. For example, TWI_CLOCK is a
convenient constant to pass the initialization function (covered later), and the last set of constants are paraphrased from
the hardware control register settings for the SPI speed settings, but broken out, so you don’t have to decode them
yourself from the datasheet.

Also, note that the I

2
C and SPI #defines declare very specific hardware and I/O. The I

2
C interface for example uses the

TWI hardware on Port C at bits 1:0 for the interface. These are exported via the expansion port. Similarly, the SPI
interface is the “primary” SPI interface in the AVR 328P, not the USARTs in SPI mode. Moving on, the SPI channel
connects to the SPI-Mux as well as the Propeller chip and is exported to the I/O headers. So, if you want to control an
external SPI device you can use the other SPI-Mux addresses (the Propeller and FLASH use address 0 and 1).

Next, there are some timing constants that slow things down and make sure when SPI commands are sent to the
Propeller the AVR waits long enough before issuing another command. These don’t matter too much as the drivers
evolved, but were needed in earlier driver development:

///
// TIMING CONSTANTS FOR SPI COMMS - PLAY WITH THESE IF THINGS GET FUNKY
///

// what rate to run the SPI at? this effects the following constants, faster rates, longer delays
#define SPI_DEFAULT_RATE (SPI_FOSC_32) // SPI_FOSC_32 for optimization settings -O1, -O2, -O3, -Os
 // SPI_FOSC_16 for no optimizations -O0

// these defines "throttle" the SPI interaction with the virtual SPI software interface on the Prop which is slow
#define SPI_PROP_SLOW_FACTOR 4 // this number scales the delays, so if you turn on heavy optimization, then make this number
 // larger to offset the code speed
 // the optimizer seems to cause issues with the final code, interrupts, etc. if you do try turning on
 // the optimizer, you will have to play with delays and get things to work properly
 // Optimizer settings: -O0 | use slow factor of 1 or 2
 // -O1, -O2, -O3, -Os | use slow factor of 4 or 5

#define SPI_PROP_STRING_DELAY_US (50*SPI_PROP_SLOW_FACTOR) // the prop needs time to react to each spi terminal print command

#define SPI_PROP_CMD_DELAY_US ((2*SPI_PROP_SLOW_FACTOR)/2) // the prop needs time to react to each spi transition,
 // this delay insures it can keep up
 // if you optimize the Prop driver or convert to ASM then you can
 // reduce this of course

#define SPI_PROP_DELAY_SHORT_US (100*SPI_PROP_SLOW_FACTOR) // this delay is used where the critical path thru the SPI/Prop is relatively short
#define SPI_PROP_DELAY_LONG_US (250*SPI_PROP_SLOW_FACTOR) // this delay is used where the critical path thru the SPI/Prop is relatively long

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 159

The next set of #defines are rather long, they represent all the current commands that the Propeller driver understands.
These commands each have a specific set of parameters and functionality that will be clarified when we review the
individual APIs for each class of messages; graphics, sound, keyboard, etc.

// display devices
#define DEVICE_NTSC 0
#define DEVICE_VGA 1

// PROP SPI driver media and IO command set

// SPI commands
#define CMD_NULL 0

// NTSC commands
#define GFX_CMD_NTSC_PRINTCHAR 1
#define GFX_CMD_NTSC_GETX 2
#define GFX_CMD_NTSC_GETY 3
#define GFX_CMD_NTSC_CLS 4

// vga commands
#define GFX_CMD_VGA_PRINTCHAR 8
#define GFX_CMD_VGA_GETX 9
#define GFX_CMD_VGA_GETY 10
#define GFX_CMD_VGA_CLS 11

// keyboard commands
#define KEY_CMD_RESET 16
#define KEY_CMD_GOTKEY 17
#define KEY_CMD_KEY 18
#define KEY_CMD_KEYSTATE 19
#define KEY_CMD_START 20
#define KEY_CMD_STOP 21
#define KEY_CMD_PRESENT 22

// mouse commands
#define MOUSE_CMD_RESET 24 // resets the mouse and initializes it
#define MOUSE_CMD_ABS_X 25 // returns the absolute X-position of mouse
#define MOUSE_CMD_ABS_Y 26 // returns the absolute Y-position of mouse
#define MOUSE_CMD_ABS_Z 27 // returns the absolute Z-position of mouse
#define MOUSE_CMD_DELTA_X 28 // returns the delta X since the last mouse call
#define MOUSE_CMD_DELTA_Y 29 // returns the delta Y since the last mouse call
#define MOUSE_CMD_DELTA_Z 30 // returns the delta Z since the last mouse call
#define MOUSE_CMD_RESET_DELTA 31 // resets the mouse deltas
#define MOUSE_CMD_BUTTONS 32 // returns the mouse buttons encoded as a bit vector
#define MOUSE_CMD_START 33 // starts the mouse driver, loads a COG with it, etc.
#define MOUSE_CMD_STOP 34 // stops the mouse driver, unloads the COG its running on
#define MOUSE_CMD_PRESENT 35 // determines if mouse is present and returns type of mouse

// general data readback commands
#define READ_CMD 36

// sound commands
#define SND_CMD_PLAYSOUNDFM 40 // plays a sound on a channel with the sent frequency at 90% volume
#define SND_CMD_STOPSOUND 41 // stops the sound of the sent channel
#define SND_CMD_STOPALLSOUNDS 42 // stops all channels
#define SND_CMD_SETFREQ 43 // sets the frequency of a playing sound channel
#define SND_CMD_SETVOLUME 44 // sets the volume of the playing sound channel
#define SND_CMD_RELEASESOUND 45 // for sounds with infinite duration, releases the sound and it enters the "release" portion of ADSR envelope

// propeller local 8-bit port I/O commands
#define PORT_CMD_SETDIR 48 // sets the 8-bit I/O pin directions for the port 1=output, 0=input
#define PORT_CMD_READ 49 // reads the 8-bit port pins, outputs are don't cares
#define PORT_CMD_WRITE 50 // writes the 8-bit port pins, port pins set to input ignore data

// general register access commands, Propeller registers for the SPI driver cog can be accessed ONLY
// but, the user can leverage the counters, and even the video hardware if he wishes, most users will only
// play with the counters and route outputs/inputs to/from the Propeller local port, but these generic access
// commands model how you would access a general register based system remotely, so good example
// these commands are DANGEROUS since you can break the COG with them and require a reset, so if you are going to
// write directly to the registers, be careful.

#define REG_CMD_WRITE 56 // performs a 32-bit write to the addressed register [0..F] from the output register buffer
#define REG_CMD_READ 57 // performs a 32-bit read from the addressed register [0..F] and stores in the input register buffer
#define REG_CMD_WRITE_BYTE 58 // write byte 0..3 of output register g_reg_out_buffer.byte[0..3]
#define REG_CMD_READ_BYTE 59 // read byte 0..3 of input register g_reg_in_buffer.byte[0..3]

// system commands
#define SYS_RESET 64 // resets the prop

///
// Commands in this range for future expansion...
///

The commands are fairly straightforward and if there is anything that you want more detail on you can always open up the
Propeller driver file’s spin code and see exactly how the command is processed. Remember, all of these commands work
in the same way; they are sent over the SPI interface to a command dispatching loop on the Propeller, a large case
statement catches the commands and then sends it to the appropriate driver (graphics, sound, keyboard, etc.). So there
are a lot of commands, but each one is rather simple when you follow its complete path from the AVR to the Propeller to
the media driver itself.

The next subset of commands are specific to the default2 driver and support the added graphics abilities of the tile map
engine for NTSC modes. I wrote the tile engine to give you more performance and the ability to do some game like
applications. These commands are more complex and it will take a bit to explain them, but for now, just peruse them
below:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 160

// advanced GFX commands for GFX tile engine
#define GPU_GFX_BASE_ID 192 // starting id for GFX commands to keep them away from normal command set
#define GPU_GFX_NUM_COMMANDS 37 // number of GFX commands

#define GPU_GFX_SUBFUNC_STATUS_R (0+GPU_GFX_BASE_ID) // Reads the status of the GPU, Writes the GPU Sub-Function register and issues a high level
 // command like copy, fill, etc.
#define GPU_GFX_SUBFUNC_STATUS_W (1+GPU_GFX_BASE_ID) // Writes status of the GPU, Writes the GPU Sub-Function register and issues a high level
 // command like copy, fill, etc.

 // sub-function constants that are executed when the GPU_GFX_SUBFUNC_STATUS_W command is issued
 #define GPU_GFX_SUBFUNC_COPYMEM16 0 // Copies numbytes from src -> dest in wordsize chunks
 #define GPU_GFX_SUBFUNC_FILLMEM16 1 // Fills memory with data16, 2 bytes at a time

 #define GPU_GFX_SUBFUNC_COPYMEM8 2 // Copies numbytes from src -> dest in byte size chunks
 #define GPU_GFX_SUBFUNC_FILLMEM8 3 // Fills memory with low byte of data16, 1 bytes at a time

// normal commands
#define GPU_GFX_TILE_MAP_R (2+GPU_GFX_BASE_ID) // Reads 16-bit tile map ptr which points to the current tile map displayed.
#define GPU_GFX_TILE_MAP_W (3+GPU_GFX_BASE_ID) // Writes 16-bit tile map ptr which points to the current tile map displayed.

#define GPU_GFX_DISPLAY_PTR_R (4+GPU_GFX_BASE_ID) // Reads 16-bit tile map ptr which points to the current display ptr into the tile map, low
 // level print functions use this pointer.

#define GPU_GFX_DISPLAY_PTR_W (5+GPU_GFX_BASE_ID) // Writes 16-bit tile map ptr which points to the current display ptr into the tile map, low
 // level print functions use this pointer.

#define GPU_GFX_TERM_PTR_R (6+GPU_GFX_BASE_ID) // Reads 16-bit tile map ptr which points to the current terminal ptr into the tile map,
 // terminal level print functions use this pointer.

#define GPU_GFX_TERM_PTR_W (7+GPU_GFX_BASE_ID) // Writes 16-bit tile map ptr which points to the current terminal ptr into the tile map,
 // terminal level print functions use this pointer.

#define GPU_GFX_BITMAP_R (8+GPU_GFX_BASE_ID) // Reads 16-bit tile bitmaps ptr which points to the bitmaps indexed by the tilemap.
#define GPU_GFX_BITMAP_W (9+GPU_GFX_BASE_ID) // Reads 16-bit tile bitmaps ptr which points to the bitmaps indexed by the tilemap.

#define GPU_GFX_PALETTE_R (10+GPU_GFX_BASE_ID) // Reads 16-bit palette array ptr which points to the palettes in use for the tilemap.
#define GPU_GFX_PALETTE_W (11+GPU_GFX_BASE_ID) // Writes 16-bit palette array ptr which points to the palettes in use for the tilemap.

#define GPU_GFX_TOP_OVERSCAN_COL_R (12+GPU_GFX_BASE_ID) // Reads top overscan color drawn on the screen.
#define GPU_GFX_TOP_OVERSCAN_COL_W (13+GPU_GFX_BASE_ID) // Writes top overscan color drawn on the screen.

#define GPU_GFX_BOT_OVERSCAN_COL_R (14+GPU_GFX_BASE_ID) // Reads top overscan color drawn on the screen.
#define GPU_GFX_BOT_OVERSCAN_COL_W (15+GPU_GFX_BASE_ID) // Writes top overscan color drawn on the screen.

#define GPU_GFX_HSCROLL_FINE_R (16+GPU_GFX_BASE_ID) // Reads current fine horizontal scroll register (0..7) NOTE: (NOT implemented yet)
#define GPU_GFX_HSCROLL_FINE_W (17+GPU_GFX_BASE_ID) // Writes current fine horizontal scroll register (0..7) NOTE: (NOT implemented yet)

#define GPU_GFX_VSCROLL_FINE_R (18+GPU_GFX_BASE_ID) // Reads current fine vertical scroll register (0..7)
#define GPU_GFX_VSCROLL_FINE_W (19+GPU_GFX_BASE_ID) // Writes current fine vertical scroll register (0..7)

#define GPU_GFX_SCREEN_WIDTH_R (20+GPU_GFX_BASE_ID) // Reads screen width value, 0=16 tiles, 1=32 tiles, 2=64 tiles, etc.
#define GPU_GFX_SCREEN_WIDTH_W (21+GPU_GFX_BASE_ID) // Writes screen width value, 0=16 tiles, 1=32 tiles, 2=64 tiles, etc.

#define GPU_GFX_SRC_ADDR_R (22+GPU_GFX_BASE_ID) // Reads 16-bit source address for GPU operations.
#define GPU_GFX_SRC_ADDR_W (23+GPU_GFX_BASE_ID) // Writes 16-bit source address for GPU operations.

#define GPU_GFX_DEST_ADDR_R (24+GPU_GFX_BASE_ID) // Reads 16-bit destination address for GPU operations.
#define GPU_GFX_DEST_ADDR_W (25+GPU_GFX_BASE_ID) // Writes 16-bit destination address for GPU operations.

#define GPU_GFX_NUM_BYTES_R (26+GPU_GFX_BASE_ID) // Reads 16-bit number representing the number of bytes for a GPU operation Sub-Function.
#define GPU_GFX_NUM_BYTES_W (27+GPU_GFX_BASE_ID) // Writes 16-bit number representing the number of bytes for a GPU operation Sub-Function.

#define GPU_GFX_DATA_R (28+GPU_GFX_BASE_ID) // Reads 16-bit data word uses for GPU operations or memory access operations.
#define GPU_GFX_DATA_W (29+GPU_GFX_BASE_ID) // Writes 16-bit data word uses for GPU operations or memory access operations.

#define GPU_GFX_RAM_PORT8_R (30+GPU_GFX_BASE_ID) // Reads 8-bit data pointed to by the currently addressed memory location in the GPU pointed to
 // by the src_addr_low|hi.
 // After the operation, the src_addr_ptr is incremented as per the GPU configuration.

#define GPU_GFX_RAM_PORT8_W (31+GPU_GFX_BASE_ID) // Writes 8-bit data pointed to by the currently addressed memory location in the GPU pointed
 // to by the src_addr_low|hi.
 // After the operation, the src_add_rptr are incremented as per the GPU configuration.

#define GPU_GFX_RAM_PORT16_R (32+GPU_GFX_BASE_ID) // Reads 16-bit data pointed to by the currently addressed memory location in the GPU pointed
 // to by the src_addr_low|hi.
 // After the operation, the src_addr_ptr is incremented as per the GPU configuration.

#define GPU_GFX_RAM_PORT16_W (33+GPU_GFX_BASE_ID) // Writes 16-bit data pointed to by the currently addressed memory location in the GPU pointed
 // to by the src_addr_low|hi.
 // After the operation, the src_add_rptr are incremented as per the GPU configuration.

#define GPU_GFX_RASTER_LINE_R (34+GPU_GFX_BASE_ID) // Reads the current raster line being drawn from 0..191, or whatever the GPU's line resolution
 // is set to.

// gpu configuration registers
#define GPU_GFX_SET_AUTO_INC_R (35+GPU_GFX_BASE_ID) // Reads current memory auto increment setting for read/write operations lower 4-bits (0..15),
 // default 0
#define GPU_GFX_SET_AUTO_INC_W (36+GPU_GFX_BASE_ID) // Writes the current memory auto increment setting for read/write operations lower 4-bits
 // (0..15), default 0

And that’s about it for #defines, let’s move on to the API roadmap.

19.4 API Listing Reference

The API listing for the “SPI and I
2
C” module CHAM_TWI_SPI_V010.c supports a thin “wrapper” layer over the hardware

functionality. The SPI API is more developed since the I2C tends to have a lot “state” in it, functions have to return with
errors and other information, hence, you will probably want to write your own functions in the future. Nonetheless, I have
used the thin wrapper to show how to control an I

2
C peripheral (a digital potentiometer) which we will cover in the

Mechatronics section for reference. So the functions work, but you have to call them at a fairly low level. Table 19.3
below lists the “SPI and I

2
C” API functions categorized by functionality.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 161

Table 19.3 – “SPI and I

2
C” module API functions listing.

Function Name Description

TWI / I2C related functions

int TWI_Init(long twi_clock); Initializes the TWI / I2C hardware.
void TWI_Error(); Place holder for error handling

1
.

void TWI_Status(); Place holder for status codes
1
.

void TWI_Success(int code); Place holder for success codes
1
.

char TWI_Action(unsigned char command); Sends an “action” to the TWI hardware.

SPI related functions

int SPI_Init(unsigned char spi_rate); Initializes the primary SPI unit (connected to SD).
int SPI_Set_Speed(unsigned char spi_rate); Sets/resets the SPI speed.
unsigned char SPI_Write(unsigned char data8); Writes a byte to the SPI interface.
unsigned char SPI_Read(unsigned char data8); Reads a byte from the SPI interface.
unsigned char SPI_WriteRead(unsigned char data8); Writes and reads a byte to/from the SPI interface.
unsigned char SPI_Send_Recv_Byte(unsigned char data8); Writes and reads a byte to/from the SPI interface.

SPI command function to communicate with Propeller

long SPI_Prop_Send_Cmd(int cmd, int data, int status); Sends a 3-byte command packet to Propeller.
int SPI_Prop_Print_String(int device, char *string); Legacy function, uses terminal NTSC/VGA driver to print
 strings on the display.

Note 1: Not implemented yet, just a place holder.

19.5 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

Function Prototype:

int TWI_Init(long twi_clock);

Description: TWI_Init(…) takes a single parameter which is the speed in Hz that you wish the TWI hardware interface

to be initialized to. 100KHz is usually used, although some devices can support 400KHz as well as 1MHz,
read your target I

2
C device for details. Recall, that the TWI (two wire interface) is the I

2
C interface for our

purposes since we are setting it up to conform to I
2
C. Returns 1 always.

Example(s): Initialize the TWI / I

2
C interface to 400KHz.

TWI_Init(400000);

Function Prototype:

char TWI_Action(unsigned char command);

Description: The TWI_Action(…) function is very powerful since it really doesn’t do much other than pass the

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 162

parameter to the TWI hardware “control register” (listed as TWCR in the datasheet). Then the function
waits for the operation to complete by blocking on the TWINT flag. Normally, you use the TWI_Action(…)
function to perform any and all operations by logically OR’ing various TWI flags together. The flags can
be found in the AVR 328P datasheet. Returns the TWI hardware module’s status register TWSR, this can
be tested against common TWI status and success values to determine the results of any action.

Example(s): The complete listing of the digital potentiometer function excerpted from the Mechatronics library.

void POT_Set(int pot_value)
{
 // UPDATE TWI POT
 // currently supports an Analog Devices AD5242, PDF datasheet can be found on DVD here:
 // Manufacture page here:
 // http://www.analog.com/en/digital-to-analog-converters/digital-potentiometers/ad5241/products/product.html
 // this function requires the use of the "CHAM_AVR_TWI_SPI_DRV_V010.c|h" function library

 // send start command
 if (TWI_Action(SET(TWINT) | SET(TWEN) | SET(TWSTA))!= TW_START) TWI_Error();

 // now set slave address and high bit of 17-bit address "page bit" P0, selects which 64K page
 TWDR = 0x58; // 0 1 0 1 | 1 AD1 AD0 R/W' -> 0101_1000 for write, 0101_1001 for read

 if (TWI_Action(SET(TWINT) | SET(TWEN))!= TW_MT_SLA_ACK) TWI_Error();

 // now write instruction byte, reset, select pot A, 00 on digital outputs
 TWDR = 0x00; // A'/B RS SD O1 O2 X X X -> 0 1 0 0 | 0 0 0 0

 if (TWI_Action(SET(TWINT) | SET(TWEN))!= TW_MT_DATA_ACK) TWI_Error();

 // now write pot value 0..255
 TWDR = pot_value;

 if (TWI_Action(SET(TWINT) | SET(TWEN))!= TW_MT_DATA_ACK) TWI_Error();

 /* send stop condition */
 TWCR = SET(TWINT) | SET(TWEN) | SET(TWSTO);

 // wait until stop condition is executed and bus released
 while(TWCR & (1<<TWSTO));

 // END TWI WRITE

} // end POT_Set

As you can see, using the TWI_Action(…) function must be interleaved with the protocol of the target device. The low
level I

2
C protocol is handled by each call to TWI_Action(…) via the hardware, but the actual communication bytes, setup,

and control of the target device (a digital pot in this case) is a completely other issue. Reviewing the code, you can see
that the first step is to send the START and address to the device, then start writing data to control the pot. Also, notice
the testing of the return value from each call to TWI_Action(…). Depending on the results you can take what action you
must. In this case, the empty function TWI_Error() are called, which you can insert any code you wish.
__

Function Prototype(s):

void TWI_Error();
void TWI_Status();
void TWI_Success(int code);

Description(s): These functions are not implemented and are simply place holders or wrappers for future

expansion. As noted in the primer on I2C, the protocol has a lot of state and you might want to
add these functions to the API and fill them out. Currently, a much simpler approach is taken
where the single “action” function (listed above) performs both any action as well as returns
status and errors.

Example(s): None.

Function Prototype:

int SPI_Init(unsigned char spi_rate);

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 163

Description: SPI_Init(…) initializes the primary SPI hardware on the AVR 328 to master and sets it up so we can
transmit and receive. Also, it’s important to recall with SPI whenever you send a byte you receive a byte
as well due to the circular buffering of output and input. You can review the function yourself for details,
but it sets the clock polarity and phase polarity to default mode 0 in both cases. Also, the single
parameter sent spi_rate is used to set the speed of the SPI interface in the “SPI Control Register 0”
speed control bits. The speed control bits control the “divisor” to the SPI hardware where the clock source
is the input frequency of the AVR 328P, thus, the control bits set the divisor allowing a number of possible
SPI clock rates. Writing to the SPI Control Register is straightforward, but some bit manipulation and
shifting is needed to obtain the desired results, thus the constants declared in the .H file below can be
used to set the clock speed:

// SPI rate bit settings
#define SPI_FOSC_2 0b100
#define SPI_FOSC_4 0b000
#define SPI_FOSC_8 0b101
#define SPI_FOSC_16 0b001
#define SPI_FOSC_32 0b110
#define SPI_FOSC_64 0b010
#define SPI_FOSC_128 0b011

Finally, the function de-asserts the SPI_CS line, so any SPI device connected to the expansion interface will be
de-selected (if it’s using the SPI_CS line as the chip select, recall that you can use any I/O line you wish to
enable/disable a SPI slave, but bottom line is only a single SPI device better be on the MISO, MOSI, SCLK lines
at any time). Considering this, when you write code to control the SPI interface for example, before you make
calls to SPI write and read functions you will need to asserts the proper SPI_CS or appropriate SPI mux chip
selects SPI_CS0, SPI_CS1 to your SPI device while making sure all others are de-asserted. Returns 1 always.

Example(s): Example 1: Initialize the SPI hardware and set speed to main clock divided by 128 (the slowest rate).

SPI_Init(SPI_FOSC_128);

Programming
Sidebar

It is important to remember that the SPI’s built in CS line is not used to select anything.
Instead a pair of digital I/O lines are used as SPI “select” selection bits and are
multiplexed to select 1 of 4 devices named 0…3. The signals in the Chameleon design
are on Port C

#define SPI_CS0 PC2
#define SPI_CS1 PC3

To select device 0…3 you simply place 00 b, 01 b, 10 b, 11 b on these pins. 11b (3) selects
the FLASH, 10 b (2) selects the Propeller as destination. The other two unused selectors
are exported off the I/O headers to support other SPI devices you might connect. For
example, to select the Propeller chip you would use the following code:

// set CS to SPI select, select Prop SPI channel = 2
SPI_CS_PORT = (1 << SPI_CS1) | (0 << SPI_CS0);

And to de-select the Propeller and select device 0 (null device), you would use :

// set CS to SPI select channel 0 (null)
SPI_CS_PORT = (0 << SPI_CS1) | (0 << SPI_CS0);

Function Prototype:

int SPI_Set_Speed(unsigned char spi_rate);

Description: SPI_Set_Speed(…) simply updates the speed of the SPI interface in real-time, allowing you to “throttle”

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 164

the SPI interface. In many cases, SPI protocols demand that the slowest speed is used to initiate
communications with the SPI hardware, then you can throttle the speed up and/or read maximum speed
supported from the SPI device itself. In any event, this function gives you the ability to change speed on
the fly (basically updates the SPI speed setting control bits). The parameter spi_rate is the same used in
the initialization function, so are the possible parameter values. Returns 1 always.

Example(s): Assuming the SPI interface has already been initialized, reset the speed to the maximum rate which is 1/2
the clock rate or 14 MHz roughly (most SPI devices should easily be able to handle this speed).

SPI_Set_Speed(SPI_FOSC_2);

Function Prototype:

unsigned char SPI_Send_Recv_Byte(unsigned char data8)
unsigned char SPI_WriteRead(unsigned char data8);

Description: Both of these functions are aliases for each other and have the exact same body, thus we will refer to

both as SPI_WriteRead(…) since it’s a little shorter to type. Recalling, that the SPI protocol always writes
8-bits at a time and reads 8-bits at a time, each write operation really is a read operation, and each read a
write. Confusing huh? Well, its due to the circular buffer the system uses. You might ask, what if you want
to read something, how can you write something when you are trying to read? The answer is that when
you want to read data, you simply put a dummy value (usually 0xFF) in the transmit buffer which the
Slave will ignore. Same thing when you are writing data and not reading. The receive buffer will have
some data in it after you write a byte, but you can ignore it. Thus, in operations that write and read at the
same time, full duplex in other words, you get 2 pieces of data at the same time, this is the beauty of SPI
in full duplex mode, 2x the clock rate for intent purposes. But, if you are only writing or reading at any time
then this feature is irrelevant. Moving along, the function takes a single parameter data8 which is the data
you want written to the SPI interface. The function returns the data received after the data you sent is
transmitted. In other words, the function waits for the 8-bits you sent to shift out as it shifts in the new 8-
bits from the Slave. Thus, the data in the receiver buffer from the previous transaction is lost. Moreover,
the function is a “blocking” function and the transaction must complete before the function returns. Of
course, you can code your own variations that just dump the data into the transmit buffer and return. But,
then you would need a status function to determine if the transmitter is complete and or receiver has
shifted in results before writing more data. The AVR SPI hardware supports this kind of system as well as
full interrupt based systems. Finally, the function returns the 8-bit data shifted back to the Master from the
Slave.

Example(s): Example 1: Write a value to the SPI interface channel 1 (assumes its been initialized).

// set CS to SPI select, select device channel 1
SPI_CS_PORT = (0 << SPI_CS1) | (1 << SPI_CS0);

// now write the data
dummy = SPI_WriteRead(power);

// and disable the chip select lines, set to NULL device 0
SPI_CS_PORT = (0 << SPI_CS1) | (0 << SPI_CS0);

Notice that we always assert then de-assert the chip select line, so that the SPI device comes online. In some case, you
might want to keep the SPI device selected (enabled) at all times as long as you don’t have other SPI devices on the bus
that can contend with the SD SPI interface.

Example 2: Read 512 bytes from the SPI interface device 1 (assumes its been initialized somehow) and store in an array.

// set CS to SPI select, select device channel 1
SPI_CS_PORT = (0 << SPI_CS1) | (1 << SPI_CS0);

// read data, note that a dummy value of 0xFF is sent each time
for (index = 0; index < 512; index++)
 data[index] =SPI_WriteRead(0xFF);

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 165

// and disable the chip select lines, set to NULL device 0
SPI_CS_PORT = (0 << SPI_CS1) | (0 << SPI_CS0);

Additionally, there might be “timing constraints” on how fast you can read bytes of data from the SPI device you are
dealing with. Thus, you might have to put a delay after each read, etc.

Function Prototype:

unsigned char SPI_Write(unsigned char data8);
unsigned char SPI_Read(unsigned char data8);

Description: These functions are currently empty place holders, you might want to fill them up with special non-

blocking versions of the write and read functionality or something else.

Example(s): None.

Function Prototype:

long SPI_Prop_Send_Cmd(int cmd, int data, int status);

Description: SPI_Prop_Send_Cmd(…) is the workhorse of the entire inter-processor communications system. This
single function is what is used to send and receive information to and from the Propeller chip. Each command has 3-byte
always. The first byte cmd is the command 0..255 that represents what you want to do. These are the same commands
that are listed in the header file and the CHAM_DEFAULT2_DRV_V112.SPIN message dispatcher is listening for. The
second byte data is the first 8-bit data operand, the 3

rd
 byte status is the 2

nd
 8-bit data operand. For commands that

require 16-bits, then data and status are concatenated to form a 16-bit operand like this:

msb [status, data] lsb

Thus, data is the lower 8-bits and status is the upper 8-bits.

For commands that only require 8-bit operands set status to 0. If you recall, SPI is a “circular” buffer system, so each byte
we send out, we receive a byte back, thus when you call this function, 3 bytes are sent, 3 bytes are received. Currently,
the function returns a 16-bit value representing the first two returned bytes, the 3

rd
 byte is used internally for now. Also,

since this is such an important function, let’s take a look at the source for it:

// this function waits for any previous command to complete and then initiates a new command
long SPI_Prop_Send_Cmd(int cmd, int data, int status)
{
 // wait for previous command to complete
 while (SPI_Prop_Send_Cmd2(CMD_NULL, 0, 0) & 0x00ff0000)
 ;

 // initiate the new command
 return SPI_Prop_Send_Cmd2(cmd, data, status) & 0x0000ffff;

} // end SPI_Prop_Send_Cmd

As you can see the SPI_Prop_Sen_Cmd(…) function waits on a flag while calling a hidden function that actually does the
work. Let’s talk about that for a moment. In multiprocessor systems, when once processor requests another processor to
do something, the whole point of multiprocessors, is that the originating processor can continue to do more work in
“parallel”. Thus, we need code to consider this such that say processor A (the AVR) sends a command to the processor B
(the Propeller). Now, processor A goes about its business while processor B executes the command. But, the processor A
finishes something and then requests processor B to do something else – here is the problem. Processor B can’t perform
another function until it completes the last requested command, thus we need a mechanism that blocks processor A and
makes it wait for processor B when this set of conditions occur. That’s what the code above does. So if processor A, the
AVR, ask for too much, too fast, processor B, the Propeller, says “hold on a minute, let me finish the last thing!”.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 166

The function that actually sends the command is listed below:

// this function is used to send SPI commands to the Propeller slave processor
long SPI_Prop_Send_Cmd2(int cmd, int data, int status)
{
 long status_low, status_high, status_busy;

 // set CS to SPI select, select Prop SPI channel = 2
1: SPI_CS_PORT = (1 << SPI_CS1) | (0 << SPI_CS0);

 // send command byte and retrieve low byte of result
2: status_low = SPI_WriteRead(cmd);
3: _delay_us(SPI_PROP_CMD_DELAY_US);

 // send command byte and retrieve high byte of result
4: status_high = SPI_WriteRead(data);
5: _delay_us(SPI_PROP_CMD_DELAY_US);

 // send command byte and retrieve busy byte of result
6: status_busy = SPI_WriteRead(status);
7: _delay_us(SPI_PROP_CMD_DELAY_US);

 // set CS to SPI select channel 0 (null)
8: SPI_CS_PORT = (0 << SPI_CS1) | (0 << SPI_CS0);
9 : _delay_us(SPI_PROP_CMD_DELAY_US);

10: return((status_busy << 16) | (status_high << 8) | (status_low));

} // end SPI_Prop_Send_Cmd2

Even though you don’t directly call this function, its where all the action happens. Let’s go thru it line by line (I have added
manual line numbers in the listing to help). The function uses the built in SPI hardware and makes calls to the SPI
functions we already developed, so that makes things a lot easier. Here’s how it works:

Propeller Chip Selection

Step 1: Line 1 – here we select channel 2 with the SPI mux, this chip selects the Propeller chip as the target for SPI
traffic.

Data Transmission

Step 2: Lines 2,3 – here we simply send the 1st byte of the command packet and retrieve the 1st byte back in a buffer.
Step 3: Lines 4,5 – here we simply send the 2nd byte of the command packet and retrieve the 2nd byte back in a buffer.
Step 4: Lines 6,7 – here we simply send the 3

rd
 byte of the command packet and retrieve the 3rd byte back in a buffer.

Propeller Chip De-Selection

Step 5: Lines 8,9 – here we de-select channel 2 with the SPI mux and select channel 0 (the NULL channel).

Results

Step 6: Line 10 – We return the 8-16 bit result to caller.

This is how all commands are sent to the Propeller chip.

Example(s): Send command to NTSC driver to clear the screen. So first thing we do is look in the header file at the
command list in CHAM_AVR_TWI_SPI_DRV_V010.h (also the Propeller driver CHAM_DEFAULT2_DRV_112.SPIN has
the same list) and look up the command we want; GFX_CMD_NTSC_CLS, and now send the command with a function
call.

// clear the NTSC screen, this command takes no parameters, thus send 0,0 for data bytes.
SPI_Prop_Send_Cmd(GFX_CMD_NTSC_CLS, 0x00, 0x00);

Function Prototype:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 167

int SPI_Prop_Print_String(int device, char *string);

Description: SPI_Prop_Print_String(…)is a legacy function that uses terminal NTSC/VGA driver to print strings on

the display. Typically, you will use the NTSC/VGA API to print to the terminals, but this was created as a
quick and dirty function during testing, you might find it useful. The first parameter is the device you want
to print on; DEVICE_NTSC or DEVICE_VGA, and the second parameter is the ASCIIZ string you want
printed. Returns the last byte received from the SPI transmission of all the commands.

Example(s): Print “Hello World!” on both the NTSC and VGA monitors.

SPI_Prop_Print_String(DEVICE_NTSC, “Hello World!”);
SPI_Prop_Print_String(DEVICE_VGA, “Hello World!”);

Note: in this case, we are directly using the SPI command function to send commands to the Propeller, so you don’t need
the NTSC API source files.

20.0 NTSC Library Module Primer

The basic premise of the Chameleon design is that it leverages drivers running on the Propeller chip to do all the media
and graphics. Thus, whatever features the particular driver running on the Propeller side is the only features we can
access via the AVR side. That doesn’t mean we can’t abstract functionality and add higher level functions that build on the
sub-functions, however, this probably isn’t productive since you will want to change drivers, re-write the Propeller driver
and so forth. Thus, for the majority of the “media” drivers all the API functions do (including the NTSC) is expose some of
the base functionality in nice function calls so you don’t have to send SPI messages yourself. In the case of the enhanced
NTSC driver (CHAM_DEFAULT2_DRV_112.SPIN), we are using the following Propeller Object for the NTSC tile engine
and text display:

CHAM_GFX_DRV_001_TB_001.SPIN – NTSC tile engine with support for terminal mode graphics as well as tile

graphics, smooth scrolling, color manipulation, large playfields, fixed font 8x8
with 32x24 characters on the screen at one time. In essence, the mode acts like
a “console” or terminal, you can print to it, it will scroll when you print the last line,
etc. Additionally, it supports more advanced “graphics” like functions for gaming
applications, but we will discuss that in the next section.

If your TV/LCD has trouble displaying this driver’s output then you can use the other default driver that uses the generic
Parallax NTSC tile driver (not as powerful, but more stable signal). The name of that driver is
CHAM_DEFAULT1_DRV_112.SPIN). Then it loads the following driver for NTSC:

TV_Text_Half_Height_011.spin – NTSC tile engine with 40x30 characters max resolution, limited scrolling, no

redefinition of characters.

Hopefully, you can use the standard default2 driver which includes the more advanced graphics tile engine which
supports game like applications. But, again, the point is, you can change the Propeller driver and re-write it as you wish,
we simply give you a starting point to get going with. So, if you want to know what the driver supports, you can always
peek into the driver itself CHAM_GFX_DRV_001_TB_001.SPIN and to see the messages that are getting passed to it,
you always look into the CHAM_DEFAULT2_DRV_112.SPIN driver itself.

With that in mind, if you want to use the NTSC driver then you need the following files added to your project:

CHAM_AVR_NTSC_DRV_V010.c - Main C file source for “NTSC” module.
CHAM_AVR_NTSC_DRV_V010.h - Header file for “NTSC” module.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 168

ARDUINO
TIP

Arduino tool users you will use the “Import Library” command from the main menu to
include CHAM_AVR_NTSC_DRV_V010, however all this really does is add the line of
code:

#include <CHAM_AVR_NTSC_DRV_V010.h>

To your program, which you can just do yourself. The Arduino tool already knows where
to look for other C/C++ files (since we copied them into the appropriate directories
already), thus for the Arduino tool simply add the header include manually or you can let
the tool do it from the main menu <Sketch -> Import Library>. The Arduino MAKE file is
rather complex and knows how to add all the C/C++ files we dumped into the library
directory, so there is little to do with the Arduino tool when accessing these libraries
other than including the header in your program.

20.1 Sending Messages to the Propeller Directly

Before we cover the API itself, let’s take a look at how we would manually send a message to the Propeller chip and what
these “wrapper” functions do. This is the first time we are discussing this since the UART and SPI drivers run on the AVR
side of things only, so they are local libraries. On the other hand, the NTSC, VGA, Keyboard, Mouse, Sound, and
Propeller I/O Port libraries all make calls over the SPI channel to the Propeller chip. This subtle difference is very
important; you do NOT need these libraries, anything you can do with the libraries, you can do directly with the
SPI_Prop_Send_Cmd(…), but to make life a little easier, I wrapped many of the commands in function calls for
convenience. For example, to print a character to the NTSC screen you can do it directly without the NTSC API like this:

SPI_Prop_Send_Cmd(GFX_CMD_NTSC_PRINTCHAR, ch, 0x00);

Or you can call the NTSC API function to do it:

NTSC_Term_Char(ch);

But, let’s dive into NTSC_Term_Char(…) and take a look:

int NTSC_Term_Char(char ch)
{
// this prints a single character to the NTSC terminal (all drivers Default1,2, etc.)
// also supports translation commands supported by the NTSC terminals
// $00 = clear screen
// $01 = home
// $08 = backspace
// $09 = tab (8 spaces per)
// $0A = set X position (X follows)
// $0B = set Y position (Y follows)
// $0C = set color (color follows)
// $0D = return
// other characters are not translated, but simply printed to the terminal

SPI_Prop_Send_Cmd(GFX_CMD_NTSC_PRINTCHAR, ch, 0x00);

// wait a bit, driver takes time to respond...
//_delay_us(SPI_PROP_DELAY_SHORT_US);

// return success
return(1);

} // end NTSC_Term_Char

As you can see, other than comments, the functionality of the two methods is identical! So, the point is, these API
functions are very “thin” wrapper functions that more or less give function names to the commands and make them pretty.
Use them if you wish. However, once you have a really nice Propeller driver written you will definitely want to create more
advanced API layers on the AVR side, so you can write high level code. But, in this case, most of the functions are 1:1

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 169

with the equivalent SPI_Prop_Send_Cmd(…) code. However, in some cases, the API functions are nice if you want to do
a set of operations with a single function call, and that’s what APIs are all about.

20.2 Header File Contents Overview

The NTSC API module header CHAM_NTSC_DRV_V010.h has no globals or defines as of yet, nothing more than the
function prototypes.

20.3 API Listing Reference

The API listing for the “NTSC” module CHAM_NTSC_DRV_V010.c is listed in Table 20.1 categorized by functionality.

Table 20.1 – “NTSC” module API functions listing.

Function Name Description

Initialization

int NTSC_ClearScreen(void); Clears the NTSC screen.

Positioning

int NTSC_GetXY(int *x, int *y); Gets the current cursor position on the terminal.
int NTSC_SetXY(int x, int y); Sets the current position on the terminal.

Printing

int NTSC_Term_Char(char ch); Prints a single character to the terminal at the current cursor position.
int NTSC_Term_Print(char *string); Prints a NULL terminated string to the terminal.

int NTSC_Color(int col); Sets the color of the text.

20.4 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

__

Function Prototype:

int NTSC_ClearScreen(void);

Description: NTSC_ClearScreen() simply clears the NTSC terminal screen and fills the screen with
spaces. Returns 1.

Example(s): Clear the screen.

NTSC_ClearScreen();

Function Prototype:

int NTSC_GetXY(int *x, int *y);

Description: NTSC_GetXY(…) returns the position (column, row) of the virtual cursor. Depending on the driver

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 170

you are using, the (x,y) values have different possible ranges. For the Default2 driver they are
[0..31, 0..23]. The function takes two pointers to the integer variables you want to receive the
values. Returns 1.

Example(s): Retrieve the current cursor position.

int x,y;
NTSC_GetXY(&x, &y);

Function Prototype:

int NTSC_SetXY(int x, int y);

Description: NTSC_SetXY(...) sets the current cursor position on the NTSC terminal screen. The (x,y)
position ranges depend on the driver, but for Default2 they are [0..31, 0..23]. Returns 1.

Example(s): Read the current cursor position and then move the cursor one position to the right.

int x,y;

NTSC_GetXY(&x, &y);
NTSC_SetXY(x+1, y);

Function Prototype:

int NTSC_Term_Char(char ch);

Description: NTSC_Term_Char(…) prints an ASCII character to the NTSC terminal at the current
cursor position, updates the current cursor position, and potentially scroll the text screen up if printing on
last line of display. Additionally, this function is a sub-command conduit to the “terminal manager”. This
functionality should be maintained for any drivers that you develop, so users can have a standard set of
base “terminal” functionality. You can send the following ASCII codes (some functions are redundant):

$00 = clear the screen.
$01 = home the cursor to top left.
$08 = backspace.
$09 = tab (8 spaces per).
$0A = set X position (X follows).
$0B = set Y position (Y follows).
$0C = set color (color follows).
$0D = return (carriage return and linefeed).

Example(s): Clear the screen then print “Chameleon”.

NTSC_Term_Char(0x00);
NTSC_Term_Char(‘C’);
NTSC_Term_Char(‘h’);
NTSC_Term_Char(‘a’);
NTSC_Term_Char(‘m’);
NTSC_Term_Char(‘e’);
NTSC_Term_Char(‘l’);
NTSC_Term_Char(‘e’);
NTSC_Term_Char(‘o’);
NTSC_Term_Char(‘n’);

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 171

Function Prototype:

int NTSC_Term_Print(char *string);

Description: NTSC_Term_Print(…) prints a NULL terminated string to the screen with automatic
scrolling, etc. if the string prints off the right of the screen or bottom of terminal. Returns 1.

Example(s): Print the string “Hello World!” to screen.

NTSC_Term_Print(“Hello World!”);

Function Prototype:

int NTSC_Color(int col);

Description: NTSC_Color(…) sets the color of the text and background (depending on driver). The
col parameter should be from [0..7] and selects one of a number of different foreground background color
schemes for the characters printed. This function has different behavior between the Default1 driver and
the Default2 driver. The Default2 driver is more for graphics and gaming, and thus the idea is to control
the color more directly with palette manipulation. Returns 1.

Example(s): Print the character ‘X’ in all colors.

int index;

for (index = 0; index < 8; index++)
 {
 NTSC_Color(index);
 NTSC_Term_Char(‘X’);
 } // end for index

21.0 VGA Library Module Primer

The basic premise of the Chameleon design is that it leverages drivers running on the Propeller chip to do all the media
and graphics. Thus, whatever features the particular driver running on the Propeller side is the only features we can
access via the AVR side. That doesn’t mean we can’t abstract functionality and add higher level functions that build on the
sub-functions, however, this probably isn’t productive since you will want to change drivers, re-write the Propeller driver
and so forth. Thus, for the majority of the “media” drivers all the API functions do (including the VGA) is expose some of
the base functionality in nice function calls so you don’t have to send SPI messages yourself. In the case of the enhanced
NTSC driver (CHAM_DEFAULT2_DRV_112.SPIN), we are using the following Propeller Object for the VGA tile engine
and text display:

VGA_Text_010.spin – VGA tile engine with support for terminal mode graphics with a tile resolution of 32x15. Very

stable, but limited.

Unlike the NTSC driver, we are using the same VGA terminal driver for both Default1 and Default2 Propeller drivers, so it
doesn’t matter which you are using the same rules apply. The VGA standard is much higher resolution, thus this driver is
much less capable than the NTSC driver. However, you can always use a more advanced VGA driver and modify the
Propeller message dispatcher, but we choose this one to get you started since it requires only a single processing core
and many of the more advanced VGA drivers require 2 or more cores to generate higher resolutions and capabilities.

But, again, the point is, you can change the Propeller driver and re-write it as you wish, we simply give you a starting point
to get going with. So, if you want to know what the driver supports, you can always peek into the driver itself

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 172

VGA_Text_010.spin (which calls sub-objects) and to see the messages that are getting passed to it, you always look into
the CHAM_DEFAULT2_DRV_112.SPIN driver itself.

With that in mind, if you want to use the NTSC driver then you need the following files added to your project:

CHAM_AVR_VGA_DRV_V010.c - Main C file source for “VGA” module.
CHAM_AVR_VGA_DRV_V010.h - Header file for “VGA” module.

ARDUINO
TIP

Arduino tool users you will use the “Import Library” command from the main menu to
include CHAM_AVR_VGA_DRV_V010, however all this really does is add the line of
code:

#include <CHAM_AVR_VGA_DRV_V010.h>

To your program, which you can just do yourself. The Arduino tool already knows where
to look for other C/C++ files (since we copied them into the appropriate directories
already), thus for the Arduino tool simply add the header include manually or you can let
the tool do it from the main menu <Sketch -> Import Library>. The Arduino MAKE file is
rather complex and knows how to add all the C/C++ files we dumped into the library
directory, so there is little to do with the Arduino tool when accessing these libraries
other than including the header in your program.

As you will see the VGA terminal mode functionality is nearly identical to the NTSC. This is by design, so when you are
developing “terminal” applications that print out to the NTSC/VGA screens basic information, you don’t have to worry
about details, each system is like a mini-VT100 terminal with limited abilities, but at least easy to work with.

21.1 Header File Contents Overview

The VGA API module header CHAM_VGA_DRV_V010.h has no globals or defines as of yet, nothing more than the
function prototypes.

21.2 API Listing Reference

The API listing for the “VGA” module CHAM_VGA_DRV_V010.c is listed in Table 21.1 categorized by functionality.

Table 21.1 – “VGA” module API functions listing.

Function Name Description

Initialization

int VGA_ClearScreen(void); Clears the VGA screen.

Positioning

int VGA_GetXY(int *x, int *y); Gets the current cursor position on the terminal.
int VGA_SetXY(int x, int y); Sets the current position on the terminal.

Printing

int VGA_Term_Char(char ch); Prints a single character to the terminal at the current cursor position.
int VGA_Term_Print(char *string); Prints a NULL terminated string to the terminal.
int VGA_Color(int col); Sets the color of the text.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 173

21.3 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

__

Function Prototype:

int VGA_ClearScreen(void);

Description: VGA_ClearScreen() simply clears the VGA terminal screen and fills the screen with
spaces. Returns 1.

Example(s): Clear the screen.

VGA_ClearScreen();

Function Prototype:

int VGA_GetXY(int *x, int *y);

Description: VGA_GetXY(…) returns the position (column, row) of the virtual cursor. Depending on the driver
you are using, the (x,y) values have different possible ranges. For the Default2 driver they are
[0..31, 0..23]. The function takes two pointers to the integer variables you want to receive the
values. Returns 1.

Example(s): Retrieve the current cursor position.

int x,y;
VGA_GetXY(&x, &y);

Function Prototype:

int VGA_SetXY(int x, int y);

Description: VGA_SetXY(...) sets the current cursor position on the VGA terminal screen. The (x,y)
position ranges depend on the driver, but for Default2 they are [0..31, 0..23]. Returns 1.

Example(s): Read the current cursor position and then move the cursor one position to the right.

int x,y;

VGA_GetXY(&x, &y);
VGA_SetXY(x+1, y);

Function Prototype:

int VGA_Term_Char(char ch);

Description: VGA_Term_Char(…) prints an ASCII character to the VGA terminal at the current cursor
position, updates the current cursor position, and potentially scroll the text screen up if printing on last line
of display. Additionally, this function is a sub-command conduit to the “terminal manager”. This

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 174

functionality should be maintained for any drivers that you develop, so users can have a standard set of
base “terminal” functionality. You can send the following ASCII codes (some functions are redundant):

$00 = clear the screen.
$01 = home the cursor to top left.
$08 = backspace.
$09 = tab (8 spaces per).
$0A = set X position (X follows).
$0B = set Y position (Y follows).
$0C = set color (color follows).
$0D = return (carriage return and linefeed).

Example(s): Clear the screen then print “Chameleon”.

VGA_Term_Char(0x00);
VGA _Term_Char(‘C’);
VGA _Term_Char(‘h’);
VGA _Term_Char(‘a’);
VGA _Term_Char(‘m’);
VGA _Term_Char(‘e’);
VGA _Term_Char(‘l’);
VGA _Term_Char(‘e’);
VGA _Term_Char(‘o’);
VGA _Term_Char(‘n’);

Function Prototype:

int VGA_Term_Print(char *string);

Description: VGA_Term_Print(…) prints a NULL terminated string to the screen with automatic
scrolling, etc. if the string prints off the right of the screen or bottom of terminal. Returns 1.

Example(s): Print the string “Hello World!” to screen.

VGA_Term_Print(“Hello World!”);

Function Prototype:

int VGA_Color(int col);

Description: VGA_Color(…) sets the color of the text and background (depending on driver). The
col parameter should be from [0..7] and selects one of a number of different foreground background color
schemes for the characters printed. Returns 1.

Example(s): Print the character ‘X’ in all colors.

int index;

for (index = 0; index < 8; index++)
 {
 VGA_Color(index);
 VGA_Term_Char(‘X’);
 } // end for index

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 175

22.0 GFX Library Module Primer

The basic premise of the Chameleon design is that it leverages drivers running on the Propeller chip to do all the media
and graphics. Thus, whatever features the particular driver running on the Propeller side is the only features we can
access via the AVR side. That doesn’t mean we can’t abstract functionality and add higher level functions that build on the
sub-functions, however, this probably isn’t productive since you will want to change drivers, re-write the Propeller driver
and so forth. Thus, for the majority of the “media” drivers all the API functions do (including the GFX) is expose some of
the base functionality in nice function calls so you don’t have to send SPI messages yourself. In the case of the NTSC
driver (CHAM_DEFAULT2_DRV_112.SPIN), we are using the following Propeller Object for the NTSC tile engine and
text display:

CHAM_GFX_DRV_001_TB_001.spin – This is the enhanced NTSC only text/tile engine with support for terminal mode

graphics with a tile resolution of 32x24. However, the tile engine has extra
features for more graphically oriented tile graphics and gaming applications.

Now, keep in mind the GFX library functions are only supported with the Default2 driver(s) and only work on the NTSC
screen. I wrote this driver myself to fit into a single Propeller core, but give you some decent control of the tile maps,
bitmaps, palettes, scrolling, and colors. The tile engine has two layers of functionality. The topmost layer is the “console”
or “terminal” layer which acts like a simple VT100 terminal, you print to it, it scrolls, you can clear the screen etc. This
functionality give you the base abilities to write applications that only need basic text output. Moreover, we selected the
NTSC and VGA drivers in both the Default1 and Default2 example drivers to support exactly the same commands. So
applications written to drive the VGA terminal work exactly the same on Default1, Default2, or with a simple change of
function calls from “VGA” to “NTSC” they will work on the NTSC screen. That said, if you want to do “gaming” tile based
graphics, right now, as is, you have to use the Default2 driver CHAM_DEFAULT2_DRV_112.SPIN, and only the NTSC
screen output is supported.

But, again, the point is, you can change the Propeller driver and re-write it as you wish, we simply give you a starting point
to get going with. So, if you want to know what the driver supports, you can always peek into the driver itself
CHAM_GFX_DRV_001_TB_001.spin and see the messages that are getting passed to it, you always look into the
CHAM_DEFAULT2_DRV_112.SPIN driver itself.

With that in mind, if you want to use the GFX NTSC driver then you need add both the base NTSC driver along with the
GFX API as well to your project:

CHAM_AVR_NTSC_DRV_V010.c - Main C file source for “NTSC” module.
CHAM_AVR_NTSC_DRV_V010.h - Header file for “VGA” module.
CHAM_AVR_GFX_DRV_V010.c - Main C file source for “GFX” module.
CHAM_AVR_GFX_DRV_V010.h - Header file for “VGA” module.

ARDUINO
TIP

Arduino tool users you will use the “Import Library” command from the main menu to
include CHAM_AVR_NTSC_DRV_V010 as well as CHAM_AVR_GFX_DRV_V010,
however all this really does is add the line of code:

#include <CHAM_AVR_NTSC_DRV_V010.h>
#include <CHAM_AVR_GFX_DRV_V010.h>

To your program, which you can just do yourself. The Arduino tool already knows where
to look for other C/C++ files (since we copied them into the appropriate directories
already), thus for the Arduino tool simply add the header include manually or you can let
the tool do it from the main menu <Sketch -> Import Library>. The Arduino MAKE file is
rather complex and knows how to add all the C/C++ files we dumped into the library
directory, so there is little to do with the Arduino tool when accessing these libraries
other than including the header in your program.

22.1 GFX Driver Architectural Overview

The idea of the Chameleon is that you use other people’s drivers, make your own and change them as you need them on
the Propeller side. Thus, we don’t want to spend too much time explaining how any particular driver works since you will

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 176

probably change it. However, the NTSC GFX API is worth covering for a little, so if you do want to create a game or
something more graphical, you can. Please refer to Figure 22.1 for the following paragraphs, I will assume you have some
experience in tile mapped graphics and game programming for the following explanations.

Figure 22.1 – GFX Architectural Overview Flow Diagram.

The GFX NTSC tile engine is relatively simple as tiles engines go. The single driver file contains both Spin and ASM
language. The driver file name is CHAM_GFX_DRV_001_TB_001.SPIN, I highly recommend you sit down and read it
line by line if you want to understand how it works. However, it has 2 major parts to it; the SPIN message dispatcher and
the ASM code graphics driver. When the driver is started, it loads the ASM code into a Propeller core and that starts
drawing graphics on the NTSC screen immediately. Then the SPIN code has a lot of functionality to print characters,
strings, numbers, and emulation of the crude VT100 like terminal that all the other NTSC and VGA terminal drivers
require. In addition to the terminal functionality, there is a set of “virtual registers” that are used to communicate with the
ASM driver with. These registers control everything from the top and bottom overscan, tile map pointers, fine scrolling,
etc. We will see some of these constants in the following sections when we look at the header files. But, for now, the
whole point is that when the GFX driver is started, the SPIN code launches the ASM driver, it starts immediately drawing
the tiles in the 32x24 tile map. Then we can make changes to the tile map using the high level “terminal” functions or the
low level graphics functions (which is what this section is all about).

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 177

Tile Map and Playfield Size

Now, let’s take a look at the specifics of this tile map engine. Referring to Figure 22.1, the tile map starts off 32x24
displayed on the NTSC screen. This is the physical resolution and never changes. That is, we can never display more
than 32x24 tiles on the physical screen. However, the “playfield” can be much larger to facilitate scrolling or page flipping.
The engine supports horizontal tile pitches of 32, 64, 128, and 256. Thus, horizontally, the playfield can be quite large.
Vertically, there are no power of 2 restraints, so you can make the vertical pitch anything you want (as long as you don’t
run out of memory). The tile map itself starts at the declaration tile_maps (make sure to take a look yourself) in the driver
portion of code and is controlled by changing the global variable tile_map_base_ptr_parm in the register interface.

The tile map represents what’s on the screen physically and the entire playfield virtually, which might be much larger than
the physical screen of 32x24. The tile map pointer above points to the start of the tile map, but how the tiles are
interpreted, that is, how many per row is controlled by a register that controls the setup of the tile mode. This variable in
the driver is called tile_map_control_parm and controls a number of interesting things, here’s the initial default setup
code for this variable on driver start up:

tile_map_control_parm := $AC_AC_00_00 ‘ format $bc_tc_hv_ww, tc = top overscan color,
 ‘ bc= bottom overscan color,
 ‘ h=horizontal scroll (0..7), v=vertical scroll (0..7),
 ‘ ww = width: 0 = 32 tiles, 1 = 64 tiles, 2 = 128 tiles, 3 = 256 tiles
 ‘ green overscan with $AC

So the format of this 4-byte value is

[bottom overscan color | top overscan color | horizontal and vertical smooth scroll | playfield width][bottom overscan color | top overscan color | horizontal and vertical smooth scroll | playfield width][bottom overscan color | top overscan color | horizontal and vertical smooth scroll | playfield width][bottom overscan color | top overscan color | horizontal and vertical smooth scroll | playfield width]

The top and bottom overscan colors (these are the colors on the top and bottom of your TV screen, usually black) are in a
simple luma/chroma format which we will discuss in the section below on color palettes. The horizontal and vertical
smooth scroll are encoded as 4-bits each, but only vertical smooth scrolling works currently and the valid values are 0..7.
Finally, the playfield width is controlled with this register as well. It can be 32, 64, 128, or 256 tiles wide, a subset of
powers of 2.

Now, this register is accessed via a number of separate “shadow” registers in the global register interface, but I wanted
you to see this in the code, so when we discuss the registers they are familiar.

Tile Map Entry Format

Each tile map entry is a 2-bytes In the following format:

(msb)[palette_index | tile_index](lsb) (msb)[palette_index | tile_index](lsb) (msb)[palette_index | tile_index](lsb) (msb)[palette_index | tile_index](lsb)

The low byte is the actual tile character index 0..255, and the high byte is the palette index 0..255. However, in most
cases you won’t have this many tiles or palettes. In fact, initially there are only 16 palettes 0..15 and there are 144 bitmaps
extracted from file font file c64_font_05_16b.bmp followed by 16 blanks for user definition of course you can overwrite
these as well with direct memory access if you wish to. The font file was hand made and based on the Commodore 64
and Atari 800 fonts as well as some extra characters for fun. The font file is located on the CD here:

DVD-ROM:\ CHAM_AVR \ TOOLS \ GRAPHICS \ c64_font_05_16b.bmp

Figure 22.2 shows a screen shot of the font file for reference.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 178

Tile Bitmap Format

Figure 22.2 the tile engine font (I added a couple Space Invaders at the end for fun!).

The font bitmap was converted using a tool I wrote which you can find here:

DVD-ROM:\ CHAM_AVR \ TOOLS \ GRAPHICS \ BMP2SPIN.EXE

The tool takes as an input a BMP file and outputs SPIN compatible data statements. Read the C source file for the control
parameters and to understand how it works. For example, the output of the tool for the “!” character looks like this:

' Extracted from file "c64_font_05_16b.bmp" at tile=(1, 0), size=(8, 8), palette index=(1)
c64_font_05__tx1_ty0_bitmap WORD
 WORD %%1_1_1_2_2_1_1_1
 WORD %%1_1_1_2_2_1_1_1
 WORD %%1_1_1_2_2_1_1_1
 WORD %%1_1_1_2_2_1_1_1
 WORD %%1_1_1_1_1_1_1_1
 WORD %%1_1_1_1_1_1_1_1
 WORD %%1_1_1_2_2_1_1_1
 WORD %%1_1_1_1_1_1_1_1

The tool outputs a text line description of the location and file where the tile was extracted from then encodes the tile in 2-
bit pixels where each 2-bit pixel value represents one of four colors from the tile palette to use. Thus, each tile has its own
palette of 4 colors. Also, you may notice the funny “%%” character sequence this is how SPIN indicates binary
representation, but “%%”means to use 2-bit encoding to simplify your typing thus instead of writing 00b, 01b, 10b, 11b, we
can write 1,2,3,4 – which is convenient. Summing up, each tile is a 8x8 pixels. Each pixel is 2-bits, therefore, each tile
bitmap row is a single 16-bit WORD, and there are 8 WORDs that make up a tile. Each 2-bit pixel represents 1 of 4 colors
from the palette that is indexed from the tile entry’s high byte. So each tile has its own palette.

TIP

The tile engine is very optimized and thus needs the tile bitmaps in a specific format.
That is reversed. So the 2-bit pixels are reversed when output, that is the bitmaps you
enter must be mirrored, so that when displayed they are correct. Normally, bitmaps in
tile engines might be left to right as they are on the screen, but in this case the left most
pixels will display on the right, etc. So keep that in mind when making your own tiles.

The tile bitmaps themselves are defined by the declaration _tile_bitmaps in the driver and you can change the pointer to
them with the global tile_bitmaps_base_ptr_parm in the register interface. However, this is rare unless you want to point
the tile_bitmaps_base_ptr_parm to another character set. If you move the pointer only one bitmap in length, then it would
have the effect of shifting all the character, so “A” would be “B” etc. not very useful.

Palette Entry and Color Format

The palette entries are very simple. Each tile in the tile map character is actually 2-bytes (as discussed above). The low
byte is the character which is a direct index into the character bitmaps and the 2

nd
 byte is the color attribute which is an

index into the palettes. Thus, a palette entry of 0 means use palette 0, a 1 means use palette 1 and so forth. Each palette
consists of 4 colors. Each color encoded as a single byte (which I will discuss the encoding in a moment). Currently the
driver has 16 palettes allocated, nothing special, just made up colors, black, white, blue, basic colors kind of thing. You
will want to define your own palettes and your own colors as you define your bitmaps, art, and level designs for your
games. Below is a peek at the palette definition in the driver:

' palettes extracted from file "c64_font_04_8b.bmp" using palette color map 1

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 179

' only palette index 0,1 are used right now for character font, palette index 0 makes characters normal
' palette index 1 makes them look inverse video
_tile_palette_map LONG

c64_font_04__palette_map LONG
 LONG $07_07_0C_02 ' palette index 0
 LONG $07_0C_07_02 ' palette index 1

 LONG $07_0C_07_02 ' palette index 2
 LONG $07_0C_07_02 ' palette index 3
 LONG $07_0C_07_02 ' palette index 4
 LONG $07_0C_07_02 ' palette index 5
 LONG $07_0C_07_02 ' palette index 6
 LONG $07_0C_07_02 ' palette index 7
 LONG $07_0C_07_02 ' palette index 8
 LONG $07_0C_07_02 ' palette index 9
 LONG $07_0C_07_02 ' palette index 10
 LONG $07_0C_07_02 ' palette index 11
 LONG $07_0C_07_02 ' palette index 12
 LONG $07_0C_07_02 ' palette index 13
 LONG $07_0C_07_02 ' palette index 14
 LONG $07_0C_07_02 ' palette index 15

As you can see, the palettes are defined at the label _tile_pallete_map and each entry is s a LONG. The register you
access the palettes from in the global register interface is called tile_palettes_base_ptr_parm. You can read or write this
pointer and thus modify palette entries. Now, let’s talk about the format of each color.

The color format is always the same, the 32-bits of each palette entry represent 4 possible colors that are "indexed" by the
2-bit pixel data, the colors are encoded as a single byte each in the following way:

--
|31 COLOR 3 24|23 COLOR 2 16|15 COLOR 1 8|7 COLOR 0 0||31 COLOR 3 24|23 COLOR 2 16|15 COLOR 1 8|7 COLOR 0 0||31 COLOR 3 24|23 COLOR 2 16|15 COLOR 1 8|7 COLOR 0 0||31 COLOR 3 24|23 COLOR 2 16|15 COLOR 1 8|7 COLOR 0 0|
--
| |
|< --------------------------------------32 bits / 4 bytes -->|

Where each color byte is encoded as follows:

Composite Video CComposite Video CComposite Video CComposite Video Color Byte Formatolor Byte Formatolor Byte Formatolor Byte Format

 7 6 5 4 3 2 1 0

|P3 P2 P1 P0 | M | L2 L1 L0|

 ^ ^ ^
 | | |________________ Luma (0-7)
 | |
 | |______________________ Modulation Enable (0 disable chroma color modulation,
 | 1 enable chroma color burst modulation)
 |
 |________________________________ Color phase shift for color burst signal (0-15),
 this selects 1 of 16 phase shifts which represent
 16 colors equally spaced around the color wheel for
 NTSC/PAL modes.

The color byte is used to represent everything you do with Propeller video, for example; sync, black, color burst, and
active video. By setting different bits you can create "colors" that represent these signals. For example, Table 22.1 below
shows how to create black, sync, color burst, shades of gray, and colors with any intensity.

Table 22.1 - Color encoding for various color values.

Desired Signal | Bit encodingDesired Signal | Bit encodingDesired Signal | Bit encodingDesired Signal | Bit encoding
--
 | |P3 P2 P1 P0 | M | L2 L1 L0|
----------------|-------------------------------
Sync | 0 0 0 0 0 0 0 0 Control Values Group
--
Black | 0 0 0 0 0 0 1 0
Dark Grey | 0 0 0 0 0 0 1 1
Grey | 0 0 0 0 0 1 0 0 Grayscale Values Group
Light Grey | 0 0 0 0 0 1 0 1

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 180

Bright Grey | 0 0 0 0 0 1 1 0
White | 0 0 0 0 0 1 1 1
--
Blue 0.0' | 0 0 0 0 1 x x x (where 011 <= xxx <= 110)
 22.5' | 0 0 0 1 1 x x x (i.e. 3 <= xxx <=6)
Purple 45.0' | 0 0 1 0 1 x x x
Magenta 67.5' | 0 0 1 1 1 x x x
 90.0' | 0 1 0 0 1 x x x
Red 112.5' | 0 1 0 1 1 x x x
Orange 135.0' | 0 1 1 0 1 x x x
Brown 157.5' | 0 1 1 1 1 x x x Color Values Group
Yellow 180.0' | 1 0 0 0 1 x x x
Yell/Grn 202.5' | 1 0 0 1 1 x x x
Green 225.0' | 1 0 1 0 1 x x x
 247.5' | 1 0 1 1 1 x x x
 270.0' | 1 1 0 0 1 x x x
Cyan 292.5' | 1 1 0 1 1 x x x
 315.0' | 1 1 1 0 1 x x x
 337.5' | 1 1 1 1 1 x x x

NOTE 1:NOTE 1:NOTE 1:NOTE 1: Colors without names are simply linear mixes of the colors before and after.
NOTE 2:NOTE 2:NOTE 2:NOTE 2: When chroma/color is enabled the luma signal is modulated +-1;

Referring to the table, the highest "safe" value to use for brightness/luma is 6 and the lowest "safe" value is 3, so keep
your luma in the range of [3,6] when using chroma, otherwise, the system won’t have enough freedom to encode the color
signal modulation since a +-1 modulates your luma signal and you don’t want it going out of range. The color format is not
something I made up, but a direct result of the underlying Propeller video hardware’s color format that it needs to process
pixels, so we are stuck with it. However, other than the out of range luma values, and the color modulation bit, its a fairly
common way to encode color on 8/16-bit graphics hardware. They rarely use RGB.

Tile Map Review

That about sums up the tile engine design. The physical tile map on the screen always displays 32x24 characters. You
can define larger virtual tile maps for scrolling that are 32, 64, 128, 256 wide, any height. Each tile is 2-bytes representing
the tile index (character) and the palette to use for the tile (4 colors). Each tile bitmap is 8x8 pixels, each pixel 2-bits. Each
2-bit code refers to 1 of 4 colors in the “palette” for that tile.

The tile engine supports course scrolling by changing the pointer to the start of the current tile map, or page flipping by
moving the pointer an entire tile map length. The engine also supports “smooth” scrolling in the vertical direction with the
vertical scroll register (0..7). The tile maps, tile bitmaps and palettes are all in memory and can be access by reading their
base address memory locations and then writing memory. This is done via the register interface (which we will discuss in
a moment). Finally, you can control the top and bottom overscan color of the NTSC screen with a 8-bit register for each.

That’s about all there is to it, but this tile engine is more than enough to write 90% of the games from the 90’s on 8/16-bit
machines!!!

22.1.1 GFX Driver Register Interface

Before jumping into the header file contents overview, I want to re-enforce that all communications to the GFX driver are
thru a set of “virtual” registers. These registers can be read/written (in most cases) and each register usually has a bit of
code that “executes” the read/write and does what needs to be done to any low level variables or data structures in the
ASM video driver itself. Thus, much of the functionality of the register interface isn’t directly built into the driver, but
created via code, the driver, and other added elements to give the user an “interface” that is more robust.

22.2 Header File Contents Overview

Since the GFX driver is a special case, I want to re-enforce that its worth reviewing the Propeller side driver as well, so
you can see what’s really going on. We are only going to cover the C/AVR side of things here, but all these registers,
functions, API, etc. are all handled at some point on the Propeller running the enhanced graphics driver for NTSC tile
graphics. With that in mind, let’s crack open the C/C++ header file named: CHAM_AVR_GFX_DRV_V010.h and see

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 181

what’s inside. If you look inside the file, you will see nothing other than a conditional compilation section and the
prototypes for the function API, so where are all the register interface defines? Well, remember we have to keep all the
SPI commands in a single place, so the register interface are actually message ids for the SPI messaging system! Thus, if
you open up CHAM_AVR_TWI_SPI_DRV_V010.h and scroll down then you will get to the section with the register
interface messages for the GFX driver itself, they are:

// advanced GFX commands for GFX tile engine
#define GPU_GFX_BASE_ID 192 // starting id for GFX commands to keep them away from normal command set
#define GPU_GFX_NUM_COMMANDS 37 // number of GFX commands

#define GPU_GFX_SUBFUNC_STATUS_R (0+GPU_GFX_BASE_ID) // Reads the status of the GPU, Writes the GPU Sub-Function register and issues a high level
 // command like copy, fill, etc.

#define GPU_GFX_SUBFUNC_STATUS_W (1+GPU_GFX_BASE_ID) // Writes status of the GPU, Writes the GPU Sub-Function register and issues a high level
 // command like copy, fill, etc.

 // sub-function constants that are executed when the GPU_GFX_SUBFUNC_STATUS_W command is issued
 #define GPU_GFX_SUBFUNC_COPYMEM16 0 // Copies numbytes from src -> dest in wordsize chunks
 #define GPU_GFX_SUBFUNC_FILLMEM16 1 // Fills memory with data16, 2 bytes at a time

 #define GPU_GFX_SUBFUNC_COPYMEM8 2 // Copies numbytes from src -> dest in byte size chunks
 #define GPU_GFX_SUBFUNC_FILLMEM8 3 // Fills memory with low byte of data16, 1 bytes at a time

// normal commands
#define GPU_GFX_TILE_MAP_R (2+GPU_GFX_BASE_ID) // Reads 16-bit tile map ptr which points to the current tile map displayed.
#define GPU_GFX_TILE_MAP_W (3+GPU_GFX_BASE_ID) // Writes 16-bit tile map ptr which points to the current tile map displayed.

#define GPU_GFX_DISPLAY_PTR_R (4+GPU_GFX_BASE_ID) // Reads 16-bit tile map ptr which points to the current display ptr into the tile map, low
 // level print functions use this pointer.

#define GPU_GFX_DISPLAY_PTR_W (5+GPU_GFX_BASE_ID) // Writes 16-bit tile map ptr which points to the current display ptr into the tile map, low
 // level print functions use this pointer.

#define GPU_GFX_TERM_PTR_R (6+GPU_GFX_BASE_ID) // Reads 16-bit tile map ptr which points to the current terminal ptr into the tile map,
 // terminal level print functions use this pointer.

#define GPU_GFX_TERM_PTR_W (7+GPU_GFX_BASE_ID) // Writes 16-bit tile map ptr which points to the current terminal ptr into the tile map,
 // terminal level print functions use this pointer.

#define GPU_GFX_BITMAP_R (8+GPU_GFX_BASE_ID) // Reads 16-bit tile bitmaps ptr which points to the bitmaps indexed by the tilemap.
#define GPU_GFX_BITMAP_W (9+GPU_GFX_BASE_ID) // Reads 16-bit tile bitmaps ptr which points to the bitmaps indexed by the tilemap.

#define GPU_GFX_PALETTE_R (10+GPU_GFX_BASE_ID) // Reads 16-bit palette array ptr which points to the palettes in use for the tilemap.
#define GPU_GFX_PALETTE_W (11+GPU_GFX_BASE_ID) // Writes 16-bit palette array ptr which points to the palettes in use for the tilemap.

#define GPU_GFX_TOP_OVERSCAN_COL_R (12+GPU_GFX_BASE_ID) // Reads top overscan color drawn on the screen.
#define GPU_GFX_TOP_OVERSCAN_COL_W (13+GPU_GFX_BASE_ID) // Writes top overscan color drawn on the screen.

#define GPU_GFX_BOT_OVERSCAN_COL_R (14+GPU_GFX_BASE_ID) // Reads top overscan color drawn on the screen.
#define GPU_GFX_BOT_OVERSCAN_COL_W (15+GPU_GFX_BASE_ID) // Writes top overscan color drawn on the screen.

#define GPU_GFX_HSCROLL_FINE_R (16+GPU_GFX_BASE_ID) // Reads current fine horizontal scroll register (0..7) NOTE: (NOT implemented yet)

#define GPU_GFX_HSCROLL_FINE_W (17+GPU_GFX_BASE_ID) // Writes current fine horizontal scroll register (0..7) NOTE: (NOT implemented yet)

#define GPU_GFX_VSCROLL_FINE_R (18+GPU_GFX_BASE_ID) // Reads current fine vertical scroll register (0..7)
#define GPU_GFX_VSCROLL_FINE_W (19+GPU_GFX_BASE_ID) // Writes current fine vertical scroll register (0..7)

#define GPU_GFX_SCREEN_WIDTH_R (20+GPU_GFX_BASE_ID) // Reads screen width value, 0=16 tiles, 1=32 tiles, 2=64 tiles, etc.
#define GPU_GFX_SCREEN_WIDTH_W (21+GPU_GFX_BASE_ID) // Writes screen width value, 0=16 tiles, 1=32 tiles, 2=64 tiles, etc.

#define GPU_GFX_SRC_ADDR_R (22+GPU_GFX_BASE_ID) // Reads 16-bit source address for GPU operations.
#define GPU_GFX_SRC_ADDR_W (23+GPU_GFX_BASE_ID) // Writes 16-bit source address for GPU operations.

#define GPU_GFX_DEST_ADDR_R (24+GPU_GFX_BASE_ID) // Reads 16-bit destination address for GPU operations.
#define GPU_GFX_DEST_ADDR_W (25+GPU_GFX_BASE_ID) // Writes 16-bit destination address for GPU operations.

#define GPU_GFX_NUM_BYTES_R (26+GPU_GFX_BASE_ID) // Reads 16-bit number representing the number of bytes for a GPU operation Sub-Function.
#define GPU_GFX_NUM_BYTES_W (27+GPU_GFX_BASE_ID) // Writes 16-bit number representing the number of bytes for a GPU operation Sub-Function.

#define GPU_GFX_DATA_R (28+GPU_GFX_BASE_ID) // Reads 16-bit data word uses for GPU operations or memory access operations.
#define GPU_GFX_DATA_W (29+GPU_GFX_BASE_ID) // Writes 16-bit data word uses for GPU operations or memory access operations.

#define GPU_GFX_RAM_PORT8_R (30+GPU_GFX_BASE_ID) // Reads 8-bit data pointed to by the currently addressed memory location in the GPU pointed to
 // by the src_addr_low|hi.
 // After the operation, the src_addr_ptr is incremented as per the GPU configuration.

#define GPU_GFX_RAM_PORT8_W (31+GPU_GFX_BASE_ID) // Writes 8-bit data pointed to by the currently addressed memory location in the GPU pointed
 // to by the src_addr_low|hi.
 // After the operation, the src_add_rptr are incremented as per the GPU configuration.

#define GPU_GFX_RAM_PORT16_R (32+GPU_GFX_BASE_ID) // Reads 16-bit data pointed to by the currently addressed memory location in the GPU pointed
 // to by the src_addr_low|hi.
 // After the operation, the src_addr_ptr is incremented as per the GPU configuration.

#define GPU_GFX_RAM_PORT16_W (33+GPU_GFX_BASE_ID) // Writes 16-bit data pointed to by the currently addressed memory location in the GPU pointed
 // to by the src_addr_low|hi.
 // After the operation, the src_add_rptr are incremented as per the GPU configuration.

#define GPU_GFX_RASTER_LINE_R (34+GPU_GFX_BASE_ID) // Reads the current raster line being drawn from 0..191, or whatever the GPU's line resolution
 // is set to.

// gpu configuration registers
#define GPU_GFX_SET_AUTO_INC_R (35+GPU_GFX_BASE_ID) // Reads current memory auto increment setting for read/write operations lower 4-bits (0..15),
 // default 0

#define GPU_GFX_SET_AUTO_INC_W (36+GPU_GFX_BASE_ID) // Writes the current memory auto increment setting for read/write operations lower 4-bits
 // (0..15), default 0

Each register is actually a message to the SPI driver, so we cleverly pass these register access requests right thru and
tunnel them thru the SPI interface. Now, there are a lot of registers (37 to be exact currently), but they are all more or less
self explanatory if you read the comments. To start, we see a couple lines at the top:

// advanced GFX commands for GFX tile engine
#define GPU_GFX_BASE_ID 192 // starting id for GFX commands to keep them away from normal command set
#define GPU_GFX_NUM_COMMANDS 37 // number of GFX commands

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 182

These are important since they give the base offset for these commands 192, and there are 37. So from 192 to (192+37-
1) we know are graphics commands. Thus, in the graphics driver, it will get these messages since the SPI message
dispatcher is looking for this range. If we open up the Default2 driver, we can see this as shown below:

' now process command to determine what user is client is requested via spi link
 case (g_cmd)

 GFX_CMD_NULL:

 ' GFX GPU TILE ENGINE COMMANDS
///

 ' catch all commands right here
 GPU_GFX_BASE_ID..(GPU_GFX_BASE_ID + GPU_GFX_NUM_COMMANDS - 1):

 ' call single processing function...
 g_spi_result := gfx_ntsc.GPU_GFX_Process_Command(g_cmd, g_data16)

 ' // NTSC GFX/TILE SPECIFIC COMMANDS

///
 ' we only expose a subset of the commands the driver supports, you can add/subtract more commands as desired
 ' some commands like PRINTCHAR for example internally support a number of sub-commands that we don't
 ' need to expose at this level unless we want to add funcitonality
 GFX_CMD_NTSC_PRINTCHAR:
 ' this command pipes right to the out() function of the driver which supports the following
 ' sub-commands already
 '
 ' $00 = clear screen
 ' $01 = home
 ' $08 = backspace
 ' $09 = tab (8 spaces per)
 ' $0A = set X position (X follows)
 ' $0B = set Y position (Y follows)
 ' $0C = set color (color follows)
 ' $0D = return
 ' anything else, prints the character to terminal

 gfx_ntsc.Out_Term(g_data)
.
.
.
.

The yellow highlighted code is in the Default2 SPI message dispatcher, as you can see this highlighted section “catches”
all the graphics function calls/messages and pipes them to yet another function call inside
CHAM_GFX_DRV_001_TB_001.SPIN which is the actual graphics driver! Now, let’s take a quick peek into that:

PUB GPU_GFX_Process_Command(g_cmd, g_data16) : g_spi_result
 ' this function can be called with parameters to execute various commands to the register model of the GPU
 ' the SPI client running on the control COG with the virtual SPI interface will typically catch the GPU
 ' command and then pass it along here for effiecient processing.

 ' BEGIN REGISTER INTERFACE CASE
///

 ' process command with proper handler
 case (g_cmd)

 ' GPU
SUBFUNCTION/STATUS///

 GPU_GFX_SUBFUNC_STATUS_R: ' Reads the status of the GPU OR Writes the GPU Sub-Function register and
 ' issues a high level command like copy, fill, etc.

 GPU_GFX_SUBFUNC_STATUS_W:

 ' extract API subfunction and data
 GPU_GFX_subfunc := g_data16 & $FF ' lower 8-bits defines sub-function
 GPU_GFX_data := g_data16 >> 8 ' upper 8-bits defines data for sub-function

 case (GPU_GFX_subfunc)

 GPU_GFX_SUBFUNC_COPYMEM16: ' 0 - Copies numbytes from src -> dest in wordsize chunks
 wordmove(tile_dest_addr_parm, tile_src_addr_parm, tile_numbytes_parm)

 GPU_GFX_SUBFUNC_FILLMEM16: ' 1 - Fills memory with data16, 2 bytes at a time
 wordfill(tile_dest_addr_parm, tile_data16_parm, tile_numbytes_parm >> 1)

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 183

 GPU_GFX_SUBFUNC_COPYMEM8: ' 2 - Copies numbytes from src -> dest in byte size chunks
 bytemove(tile_dest_addr_parm, tile_src_addr_parm, tile_numbytes_parm >> 1)

 GPU_GFX_SUBFUNC_FILLMEM8: ' 3 - Fills memory with low byte of data16, 1 bytes at a time
 bytefill(tile_dest_addr_parm, tile_data16_parm & $FF, tile_numbytes_parm)

 ' END CASE GPU_GFX_subfunc
//

 ' TILE MAP POINTER
//

 GPU_GFX_TILE_MAP_R: ' Reads or Writes the 16-bit tile map ptr which points to the current tile map
 ' displayed.
 g_spi_result := tile_map_base_ptr_parm

 GPU_GFX_TILE_MAP_W:
 tile_map_base_ptr_parm := g_data16

 ' TILE DISPLAY POINTER
//

 GPU_GFX_DISPLAY_PTR_R: ' Reads or Writes the 16-bit tile display ptr which points to the location
 ' where low level printing is displayed
 g_spi_result := tile_display_ptr

 GPU_GFX_DISPLAY_PTR_W:
 tile_display_ptr := g_data16

 ' TILE TERMINAL POINTER
//

 GPU_GFX_TERM_PTR_R: ' Reads or Writes the 16-bit tile terminal ptr which points to the location where
 ' high level terminal mode printing is displayed
 g_spi_result := tile_term_ptr

 GPU_GFX_TERM_PTR_W:
 tile_term_ptr := g_data16

 ' BITMAP POINTER
//

 GPU_GFX_BITMAP_R: ' Reads or Writes the low byte of the 16-bit tile bitmaps ptr which points to the
 ' bitmaps indexed by the tilemap.
 g_spi_result := tile_bitmaps_base_ptr_parm

 GPU_GFX_BITMAP_W:
 tile_bitmaps_base_ptr_parm := g_data16
.
.
.

I have highlighted the register access code fragments at the top of each section. So the idea is the AVR/PIC sends the
GFX command message via SPI, the SPI message dispatcher catches these messages and passes all of them to the
function, then this function, cases on each possible register access message and processes it – viola! Of course, the
above code is a partial listing, the complete function is really long and you can look it yourself in the Propeller source file.

GPU Functions Overview

These functions deserve a bit of explanation. I am using the word “GPU” pretty freely here and its not meant to infer there
is a hidden GPU somewhere, but rather than indicate that the hardware or driver is capable of doing large operations via a
single command. Two things that we do a lot of in computer graphics is copying data and moving data. Copy, move, copy,
move, copy, move. 90% of operations are copy, move! So, one thing you want you GPU/graphics engine, software,
whatever to do is copy and move – fast!

Thus, one of the simple additions to the tile driver is the ability to copy and fill memory. So, I added some sub-functions
that I call “GPU functions” these are macro level functions that can fill and copy memory 8/16 bits at a time. If you take a
look at the listing above at the very top you will see the processing of GPU sub-functions. First, we use the SPI command
itself to identify a GPU function, the register messages are GPU_GFX_SUBFUNC_STATUS_R and
GPU_GFX_SUBFUNC_STATUS_W. The “R” or read message currently does nothing, but the “W” or write message
executes the GPU command which there are currently 4 of as shown in the header code below:

 ' extract API subfunction and data
 GPU_GFX_subfunc := g_data16 & $FF ' lower 8-bits defines sub-function
 GPU_GFX_data := g_data16 >> 8 ' upper 8-bits defines data for sub-function

 case (GPU_GFX_subfunc)

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 184

 GPU_GFX_SUBFUNC_COPYMEM16: ' 0 - Copies numbytes from src -> dest in wordsize chunks
 wordmove(tile_dest_addr_parm, tile_src_addr_parm, tile_numbytes_parm)

 GPU_GFX_SUBFUNC_FILLMEM16: ' 1 - Fills memory with data16, 2 bytes at a time
 wordfill(tile_dest_addr_parm, tile_data16_parm, tile_numbytes_parm >> 1)

 GPU_GFX_SUBFUNC_COPYMEM8: ' 2 - Copies numbytes from src -> dest in byte size chunks
 bytemove(tile_dest_addr_parm, tile_src_addr_parm, tile_numbytes_parm >> 1)

 GPU_GFX_SUBFUNC_FILLMEM8: ' 3 - Fills memory with low byte of data16, 1 bytes at a time
 bytefill(tile_dest_addr_parm, tile_data16_parm & $FF, tile_numbytes_parm)

We will see how to call all these in the API section below, but the point is, I want you to see the “big picture” and see how
all this stuff works, not so much, so you can use it, but so that you might use this template, model, or pattern to create
better, faster drivers. In any event, when a message is sent with GPU_GFX_SUBFUNC_STATUS_W then we assume
that a GPU command is being issued and the first data byte of the SPI message is used as the sub-function ID (lower 8-
bits) and the upper 8-bits or second byte is used as the operand or data.

Now, the GPU functions are too complex to request in a single SPI message, so we have to “set them up”. Thus, we have
to initialize pointers to the source, destination, and length of bytes or words to process then we call the GPU command to
actually do the work. For example, the sub-function GPU_GFX_SUBFUNC_FILLMEM16 requires a pointer to the
destination and the number of WORDS to write along with data WORD. So how do we set all those? Easy, we use other
GFX messages to set the destination address pointer, data WORD, and number of bytes for “operation”, then the GPU
sub-function uses those data for the operation! Simple!

At this point, you should have a good idea of how the enhanced NTSC tile engine works, and the entire communication
paths from the AVR/PIC to the Propeller driver itself. So, let’s move onto the API itself.

/* default baud rate */
#define UART_DEFAULT_BAUDRATE 115200 // slow down to 57600, 38400 if you have trouble

// transmit and receive buffer constants
#define UART_TX_BUFF_SIZE 32
#define UART_RX_BUFF_SIZE 32

The #defines are trivial; simply a constant for a convenient baud rate as well as the size of the circular buffers. You can
make these any size you wish, but memory is at a premium, so keep it in mind. If you are going to be using a lot of serial
communications and know you are going to send large strings or receive large strings and not be able to interrogate the
buffer functions then you might want to increase the buffers to 64, 128, 256 etc. But, for now 32/32 seems to work find in
all examples.

Next are all the global data structures and variables used by the API functions:

// global that holds UART current baud rate
extern int g_baudrate;

// receiver and transmitter head and tail indices for circular buffers
extern int g_uart_rx_head;
extern int g_uart_rx_tail;
extern int g_uart_tx_head;
extern int g_uart_tx_tail;

// buffers for uart interrupt driver
extern UCHAR g_uart_buffer_rx[UART_RX_BUFF_SIZE]; // receiver buffer for incoming characters
extern UCHAR g_uart_buffer_tx[UART_RX_BUFF_SIZE]; // transmit buffer for outgoing characters

First we have a global baudrate, pointers to the circular buffers, and finally the buffers themselves. These are all declared
in the C file of course, these are simply the external references.

22.3 API Listing Reference

The API listing for the “NTSC GFX” driver module CHAM_GFX_DRV_V010.c is listed in Table 22.2 categorized by
functionality.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 185

Table 22.2 – “GFX” module API functions listing.

Function Name Description

GPU sub-functions

int GFX_GPU_Fill_Mem16(unsigned int dest_ptr,unsigned int value, unsigned int num_bytes); Fills memory 16-bits at a time.

int GFX_GPU_Copy_Mem16(unsigned int dest_ptr, unsigned int src_ptr, unsigned int num_bytes); Copies memory 16-bits at a time.

int GFX_GPU_Fill_Mem8(unsigned int dest_ptr,unsigned int value, unsigned int num_bytes); Fills memory 8-bits at a time.

int GFX_GPU_Copy_Mem8(unsigned int dest_ptr, unsigned int src_ptr, unsigned int num_bytes); Copies memory 8-bits at a time.

Palette pointer access functions

unsigned int GFX_Read_Palette_Ptr(void); Reads the tile map palette pointer.
unsigned int GFX_Write_Palette_Ptr(unsigned int palette_ptr); Writes the tile map palette pointer.

Tilemap pointer access functions

unsigned int GFX_Read_Tilemap_Ptr(void); Reads the pointer to the top of tilemaps.
unsigned int GFX_Write_Tilemap_Ptr(unsigned int tilemap_ptr); Writes the pointer to the top of tilemaps.

Bitmap pointer access funtions

unsigned int GFX_Read_Bitmap_Ptr(void); Reads the pointer to tile bitmaps.
unsigned int GFX_Write_Bitmap_Ptr(unsigned int bitmap_ptr); Writes the pointer to the tile bitmaps.

Scrolling functions

int GFX_Get_HScroll(void); Not implemented.
int GFX_Get_VScroll(void); Retrieves the vertical smooth scroll value.
int GFX_Set_HScroll(void); Not implemented yet.
int GFX_Set_VScroll(int vscroll); Sets the vertical smooth scroll value.

Memory port functions

unsigned int GFX_Read_Mem_Port8(void); Reads Propeller memory 8-bit port.
int GFX_Write_Mem_Port8(unsigned int data); Writes to the Propeller memory 8-bit port.

unsigned int GFX_Read_Mem_Port16(void); Reads the Propeller memory 16-bit port.
unsigned int GFX_Write_Mem_Port16(unsigned int data); Writes the Propeller memory 16-bit port.

Source and destination pointer access

unsigned int GFX_Get_Src_Ptr(void); Retrieves the “source” GPU operation pointer.
unsigned int GFX_Get_Dest_Ptr(void); Retrieves the “destination” GPU operation pointer.

unsigned int GFX_Set_Src_Ptr(unsigned int src_ptr); Sets the “source” GPU operation pointer.
unsigned int GFX_Set_Dest_Ptr(unsigned int dest_ptr); Sets the “destination” GPU operation pointer.

Tilemap width functions

int GFX_Get_Tilemap_Width(void); Retrieves the width of the tilemap in encoded format.
int GFX_Set_Tilemap_Width(int width); Sets the width of the tilemap in encoded format.

Top and bottom overscan control functions

int GFX_Get_Bottom_Overscan_Color(void); Retrieves the bottom overscan color.
int GFX_Get_Top_Overscan_Color(void); Retrieves the top overscan color.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 186

int GFX_Set_Bottom_Overscan_Color(int col); Sets the bottom overscan color.
int GFX_Set_Top_Overscan_Color(int col); Sets the top overscan color.

22.4 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

__

Function Prototype:

int GFX_GPU_Fill_Mem16(unsigned int dest_ptr,unsigned int value, unsigned int num_bytes);

Description: GFX_GPU_Fill_Mem16(…) copies a number of bytes from source to destination in the GPU memory

space in WORD side chunks, or in other words in the Prop's local memory of 32K, you can use this to
overwrite SPIN code, so watch out! The parameters are the destination address of the fill dest_ptr, the
16-bit data value, and finally, the number of bytes (always a multiple of 2) num_bytes. Typically, you will
use this function to clear tile map, bitmap memory, and other repetitive operations that require the same
value to be written. Returns 1.

Example(s): Fill 100 WORDs starting at address $3456 with the value $AAFF.

GFX_GPU_Fill_Mem16(0x3456, 0xAAFF, 100*2);

Function Prototype:

int GFX_GPU_Copy_Mem16(unsigned int dest_ptr, unsigned int src_ptr, unsigned int num_bytes);

Description: GFX_GPU_Copy_Mem16(…) copies a number of bytes from source to destination in the GPU memory

space in WORD side chunks, or in other words in the Prop's local memory of 32K, you can use this to
overwrite SPIN code, so watch out! The parameters are the destination address to copy to dest_ptr, the
source address to copy from src_ptr, and finally, the number of bytes (always a multiple of 2) num_bytes
to copy. Typically, you will use this function to copy tile maps, scroll, page flip, perform various
animations, etc. Returns 1.

Example(s): Assuming that the current tile map is 32x24 physically and virtually, and there are two tile maps, one

located at $1000 and the other at $2000, copy the later to the former.

GFX_GPU_Copy_Mem16(0x1000, 0x2000, 32*24*2);

Function Prototype:

int GFX_GPU_Fill_Mem8(unsigned int dest_ptr,unsigned int value, unsigned int num_bytes);

Description: GFX_GPU_Fill_Mem8(…) copies a number of bytes from source to destination in the GPU memory

space in BYTE side chunks, or in other words in the Prop's local memory of 32K, you can use this to
overwrite SPIN code, so watch out! The parameters are the destination address of the fill dest_ptr, the 8-
bit data value, and finally, the number of bytes num_bytes. Typically, you will use this function to clear
tile map, bitmap memory, and other repetitive operations that require the same value to be written.
Returns 1.

Example(s): Fill 100 BYTEs starting at address $3456 with the value $AF.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 187

GFX_GPU_Fill_Mem8(0x3456, 0xAF, 100);

Function Prototype:

int GFX_GPU_Copy_Mem8(unsigned int dest_ptr, unsigned int src_ptr, unsigned int num_bytes);

Description: GFX_GPU_Copy_Mem8(…) copies a number of bytes from source to destination in the GPU memory

space in BYTE side chunks, or in other words in the Prop's local memory of 32K, you can use this to
overwrite SPIN code, so watch out! The parameters are the destination address to copy to dest_ptr, the
source address to copy from src_ptr, and finally, the number of bytes num_bytes to copy. Typically, you
will use this function to copy tile maps, scroll, page flip, perform various animations, etc. Returns 1.

Example(s): Assuming that the current tile map is 32x24 physically and virtually, and there are two tile maps, one

located at $1000 and the other at $2000, copy the later to the former.

GFX_GPU_Copy_Mem8(0x1000, 0x2000, 32*24*2);

Function Prototype:

unsigned int GFX_Read_Palette_Ptr(void);

Description: GFX_Read_Palette_Ptr() reads the 16-bit palette pointer that points to the set of palettes referred to by

the palette index in each tile entry. This pointer is of course relative to the Propeller’s 32K memory space
and an absolute address. Each palette entry is a single 32-bit long that represents 4 colors in the format:
[color 3 | color 2 | color 1 | color 0] that are represented by the bitmaps as each 2-bit pair indexing as
color 0,1,2,3. Returns the 16-bit pointer value/address.

Example(s): Read the palette pointer.

unsigned int palette_ptr_prop;

palette_ptr_prop = GFX_Read_Palette_Ptr();

Function Prototype:

unsigned int GFX_Write_Palette_Ptr(unsigned int palette_ptr);

Description: GFX_Write_Palette_Ptr(…) writes the 16-bit palette pointer palette_ptr that points to the set of palettes

referred to by the palette index in each tile entry each palette entry is a single 32-bit long that represents
4 colors [color 3 | color 2 | color 1 | color 0] that are represented by the bitmaps as each 2-bit pair
indexing as color 0,1,2,3. When this operation is performed, the palettes pointed to must be valid colors,
otherwise sync issues could occur since the color words can represent both color and sync. So make
sure that when you do alter the palette pointer you have built up value palette entries and that all potential
palette indices in your tile map are represented by a palette. Returns 1.

Example(s): Read the palette pointer and then shift it by 4-bytes, in essence by a single palette of 4 colors down the

list.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 188

GFX_Write_Paltte_Ptr(GFX_Read_Palette_Ptr() + 4);

Function Prototype:

unsigned int GFX_Read_Tilemap_Ptr(void);

Description: GFX_Read_Tilemap_Ptr() reads the 16-bit tilemap pointer that points to the current tile map data

displayed. Each tile map entry is 2 bytes [palette index | character index], and the current tile map
width decides the pitch per row. The tile map pointer is of course relative to the Propeller’s 32K memory
space and an absolute address. Returns the 16-bit pointer value/address.

Example(s): Read the tile map pointer.

unsigned int tilemap_ptr;

tilemap_ptr = GFX_Read_Tilemap_Ptr() ;

Function Prototype:

unsigned int GFX_Write_Tilemap_Ptr(unsigned int tilemap_ptr);

Description: GFX_Write_Tilemap_Ptr(…) writes the 16-bit tilemap pointer that points to the current tile map data

displayed. Each tile map entry is 2 bytes [palette index | character index], and the current tile map
width decides the pitch. The pointer must be a valid address and within open memory or part of memory
declared for the driver itself, otherwise you could crash the Propeller, so watch out. Scrolling, page
flipping, and other memory effects can be achieved by changing the pointer. For example, say you want
to scroll the tilemap one row down? Assuming the current tilemap is 32x24 then we know there are 32
tiles per row and each tile is 2-bytes, thus 64 bytes per row. Therefore to scroll down a single row, we
simply need to add 64 to the current tile map pointer. The example that follows will show this. Returns 1.

Example(s): Scroll down a line. Assumes 32x24 tile map (important thing is the row pitch, this defines how many bytes
per row).

GFX_Write_Tilemap_Ptr(GFX_Read_Tilemap_Ptr() + 32*2) ;

Function Prototype:

unsigned int GFX_Read_Bitmap_Ptr(void);

Description: GFX_Read_Bitmap_Ptr() reads the 16-bit bitmap pointer that points to the first bitmap indexed by tile 0.

Each bitmap is 8x8 pixels, 2-bits per pixel, 16-bytes each. The bitmap pointer is of course relative to the
Propeller’s 32K memory space and an absolute address. Returns the 16-bit pointer value/address.

Example(s): Read the current bitmap pointer.

unsigned int bitmap_ptr;

bitmap_ptr = GFX_Read_Bitmap_Ptr() ;

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 189

Function Prototype:

unsigned int GFX_Write_Bitmap_Ptr(unsigned int bitmap_ptr);

Description: GFX_Write_Bitmap_Ptr(…) writes the 16-bit bitmap pointer bitmap_ptr that points to the first bitmap

indexed by tile 0. Each bitmap is 8x8 pixels, 2-bits per pixel, 16-bytes each. The pointer must be a valid
address and within open memory or part of memory declared for the driver itself, otherwise you could
crash the Propeller, so watch out. Typically, you will adjust the bitmap pointer by one or more bitmaps to
create animation effects of the tiles on screen or to swap out character sets on the fly. Returns 1.

Example(s): Adjust the bitmap pointer down by 16 bitmap tiles (16 * 16 = 256 bytes).

GFX_Write_Bitmap_Ptr(GFX_Read_Bitmap_Ptr() + 256);

Function Prototype:

int GFX_Get_VScroll(void);

Description: GFX_Get_VScroll() returns the current fine vertical scroll value from 0..7. The tile engine supports

smooth vertical scrolling via the vertical fine scroll register. This function reads that register.

Example(s): Read the vertical scroll register.

int fine_scroll ;

fine_scroll = GFX_Get_Vscroll() ;

Function Prototype:

int GFX_Set_VScroll(int vscroll);

Description: GFX_Set_VScroll(…) sets the vertical fine scroll register with the sent value vscroll (0..7). Use this

function and register to control smooth scrolling. Each tile is 8 pixels high, thus you can scroll the tilemap
up and down a single pixel at a time with this register/call. To perform continuous smooth scrolling, first
fine scroll 0..7 then reset to 0, and course scroll a single row. Returns 1.

Example(s): Fine scroll 8 times in about a second from 0..7, a tile height.

for (int scroll = 0; scroll < 8; scroll++)
 {
 GFX_Set_VScroll(scroll);
 _delay_ms(100);
 } // end for scroll

Function Prototype:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 190

unsigned int GFX_Read_Mem_Port8(void);

Description: GFX_Read_Mem_Port8() reads a 8-bit value from prop_memory[source_ptr] , note source pointer is

always used for memory port operations (read or write). In the Propeller driver source_ptr is the variable
tile_src_addr_parm and is set using GFX_Set_Src_Ptr(unsigned int src_ptr) defined below. The idea
of this function is that it provides a simple mechanism to access the Propeller’s RAM. Returns the 8-bit
value read directly from the Propeller’s 32K RAM. This function also updates the source pointer
automatically anticipating another read or write. The actual code looks like:

 ' update src pointer based on auto increment value
 tile_src_addr_parm += tile_mem_autoinc_parm

Thus, the variable tile_mem_autoinc_parm is used as the memory increment stride each read/write
operation. This comes in handy and reduces address updates when you access continuous memory.
There is of course a function to change tile_mem_autoinc_parm.

Example(s): Read the byte of memory currently pointed to by the source memory pointer.

data = GFX_Read_Mem_Port8() ;

Function Prototype:

int GFX_Write_Mem_Port8(unsigned int data);

Description: GFX_Write_Mem_Port8() writes a 8-bit value to prop_memory[source_ptr] = data, note source

pointer is always used for memory port operations (read or write). In the Propeller driver source_ptr is
the variable tile_src_addr_parm and is set using GFX_Set_Src_Ptr(unsigned int src_ptr) defined
below. The idea of this function is that it provides a simple mechanism to access the Propeller’s RAM.
This function also updates the source pointer automatically anticipating another read or write. The actual
code looks like:

 ' update src pointer based on auto increment value
 tile_src_addr_parm += tile_mem_autoinc_parm

Thus, the variable tile_mem_autoinc_parm is used as the memory increment stride each read/write
operation. This comes in handy and reduces address updates when you access continuous memory.
There is of course a function to change tile_mem_autoinc_parm.

Finally, the function always returns 1.

Example(s): Write $FF to the byte of memory currently pointed to by the source memory pointer.

GFX_Write_Mem_Port8(0xFF) ;

Function Prototype:

unsigned int GFX_Read_Mem_Port16(void);

Description: GFX_Read_Mem_Port16() reads a 16-bit value from prop_memory[source_ptr] , note source pointer

is always used for memory port operations. In the Propeller driver source_ptr is the variable
tile_src_addr_parm and is set using GFX_Set_Src_Ptr(unsigned int src_ptr) defined below. The idea
of this function is that it provides a simple mechanism to access the Propeller’s RAM. Returns the 16-bit

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 191

value read directly from the Propeller’s 32K RAM. This function also updates the source pointer
automatically anticipating another read or write. The actual code looks like:

 ' update src pointer based on auto increment value
 tile_src_addr_parm += tile_mem_autoinc_parm

Thus, the variable tile_mem_autoinc_parm is used as the memory increment stride each read/write
operation. This comes in handy and reduces address updates when you access continuous memory.
There is of course a function to change tile_mem_autoinc_parm.

Example(s): Read the 16-bit WORD of memory currently pointed to by the source memory pointer.

data16 = GFX_Read_Mem_Port16() ;

Function Prototype:

unsigned int GFX_Write_Mem_Port16(unsigned int data);

Description: GFX_Write_Mem_Port16() writes a 16-bit value to prop_memory[source_ptr] = data, note source

pointer is always used for memory port operations (read or write). In the Propeller driver source_ptr is
the variable tile_src_addr_parm and is set using GFX_Set_Src_Ptr(unsigned int src_ptr) defined
below. The idea of this function is that it provides a simple mechanism to access the Propeller’s RAM.
This function also updates the source pointer automatically anticipating another read or write. The actual
code looks like:

 ' update src pointer based on auto increment value
 tile_src_addr_parm += tile_mem_autoinc_parm

Thus, the variable tile_mem_autoinc_parm is used as the memory increment stride each read/write
operation. This comes in handy and reduces address updates when you access continuous memory.
There is of course a function to change tile_mem_autoinc_parm.

Finally, the function always returns 1.

Example(s): Write $1234 to the 16-bit WORD of memory currently pointed to by the source memory pointer.

GFX_Write_Mem_Port16(0x1234) ;

Function Prototype:

unsigned int GFX_Get_Src_Ptr(void);

Description: GFX_Get_Src_Ptr() retrieves the 16-bit source pointer in the tile GPU for memory transfer and fill

operations. This address is absolute in the Propeller’s main RAM memory. Returns the pointer.

Example(s): Retrieve the source pointer.

unsigned int src_ptr;

src_ptr = GFX_Get_Src_Ptr();

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 192

Function Prototype:

unsigned int GFX_Get_Dest_Ptr(void);

Description: GFX_Get_Dest_Ptr() retrieves the 16-bit destination pointer in the tile GPU for memory transfer and fill

operations. This address is absolute in the Propeller’s main RAM memory. Returns the pointer.

Example(s): Retrieve the destination pointer.

unsigned int dest_ptr;

dest_ptr = GFX_Get_Dest_Ptr();

Function Prototype:

unsigned int GFX_Set_Src_Ptr(unsigned int src_ptr);

Description: GFX_Set_Src_Ptr(…) sets the 16-bit source pointer for tile GPU fill and memory operations. This is an

absolute address in Propeller RAM memory. Returns 1.

Example(s): Read the source pointer and add 4 to it and write it back.

GFX_Set_Src_Ptr(GFX_Get_Src_Ptr() + 4);

Function Prototype:

unsigned int GFX_Set_Dest_Ptr(unsigned int dest_ptr);

Description: GFX_Set_Dest_Ptr(…) sets the 16-bit destination pointer for tile GPU fill and memory operations. This is

an absolute address in Propeller RAM memory. Returns 1.

Example(s): Read the destination pointer and add 4 to it and write it back.

GFX_Set_Dest_Ptr(GFX_Get_Dest_Ptr() + 4);

Function Prototype:

int GFX_Get_Tilemap_Width(void);

Description: GFX_Get_Tilemap_Width() retrieves the 8-bit the tile map width encoded as 0,1,2,3 which means (32,

64, 128, 256) tiles.

Example(s): Read the tilemap width and store it.

int tilemap_width = GFX_Get_Tilemap_Width();

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 193

Function Prototype:

int GFX_Set_Tilemap_Width(int width);

Description: GFX_Set_Tilemap_Width(…) sets the width of the tile map to 32, 64, 128 or 256 which are

encoded as 0,1,2,3 with the parameter width. The idea of this function call is to set the virtual playfield of
the tilemap to large than its physical size which is always 32 tiles. Doing so allows for horizontal scrolling
(course). Returns 1.

Example(s): Set the tilemap width to 128 tiles which is 4 complete screenfull's of tiles for horizontal scrolling.

GFX_Set_Tilemap_Width(2);

Function Prototype:

int GFX_Get_Bottom_Overscan_Color(void);

Description: GFX_Get_Bottom_Overscan_Color() retrieves the bottom overscan color of the NTSC driver. The

bottom overscan is a few lines at the bottom of the screen that no tiles are drawn into. Usually this area is
black on normal broadcasts of TV programs, but the driver allows you to change the color. The returned
color value will be in Propeller color format [chroma 4-bit | chroma enable 1-bit | luma 3-bit].

Example(s): Retrieve the current bottom overscan color.

int bottom_overscan_color = GFX_Get_Bottom_Overscan_color();

Function Prototype:

int GFX_Get_Top_Overscan_Color(void);

Description: GFX_Get_Top_Overscan_Color() retrieves the top overscan color of the NTSC driver. The

top overscan is a few lines at the top of the screen that no tiles are drawn into. Usually this area is black
on normal broadcasts of TV programs, but the driver allows you to change the color. The returned color
value will be in Propeller color format [chroma 4-bit | chroma enable 1-bit | luma 3-bit].

Example(s): Retrieve the current top overscan color.

int top_overscan_color = GFX_Get_Top_Overscan_color();

Function Prototype:

int GFX_Set_Bottom_Overscan_Color(int col);

Description: GFX_Set_Bottom_Overscan_Color(…) sets the bottom overscan color to col where col is in normal

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 194

Propeller color format [chroma 4-bit | chroma enable 1-bit | luma 3-bit]. Returns 1.

Example(s): Read the current color and increment the chroma portion of the color (upper 4 bits).

// retrieve the color
int color = GFX_Get_Bottom_Overscan_Color();

// now add 1 to the upper 4 bit nibble, allow wrap around rather than clamp on color so 15 -> 0
color = color + (1 << 4);

// finally write it back
GFX_Set_Bottom_Overscan_Color(color);

Function Prototype:

int GFX_Set_Top_Overscan_Color(int col);

Description: GFX_Set_Top_Overscan_Color(…) sets the top overscan color to col where col is in normal

Propeller color format [chroma 4-bit | chroma enable 1-bit | luma 3-bit]. Returns 1.

Example(s): Read the current color and increment the chroma portion of the color (upper 4 bits).

// retrieve the color
int color = GFX_Get_Bottom_Overscan_Color();

// now add 1 to the upper 4 bit nibble, allow wrap around rather than clamp on color so 15 -> 0
color = color + (1 << 4);

// finally write it back
GFX_Set_Bottom_Overscan_Color(color);

23.0 Sound Library Module Primer

The basic premise of the Chameleon design is that it leverages drivers running on the Propeller chip to do all the media
and graphics. Thus, whatever features the particular driver running on the Propeller side is the only features we can
access via the AVR side. That doesn’t mean we can’t abstract functionality and add higher level functions that build on the
sub-functions, however, this probably isn’t productive since you will want to change drivers, re-write the Propeller driver
and so forth. Thus, for the majority of the “media” drivers all the API functions do (including the sound) is expose some of
the base functionality in nice function calls so you don’t have to send SPI messages yourself.

For sound, we decided to re-use a driver from the HYDRA development that was designed for both PWM and PCM
(samples) with multiple channels. The same sound driver is used in both Default1 and Default2, so the same idea apply to
either driver you load on the Propeller (CHAM_DEFAULT1_DRV_112.SPIN or CHAM_DEFAULT2_DRV_112.SPIN). The
actual driver object used for sound is:

NS_sound_drv_052_11khz_16bit.spin – This is an 11Khz, 16bit sound driver with 9 independent audio channels! It’s

pretty cool.

However, I only exposed a portion of its abilities thru the current SPI messages since sound is something that you will
probably want either a little or a lot, no need to waste messages. You can always add more. Therefore, the abilities you
see exposed in the following API are just a taste of what it can do. For example, to save commands, I mashed sound
commands into a single SPI packet, so you only can control 4 channels with limited frequency and control. In other words,
if you need more than simple 4 channel sound, then you will have to add messages to the SPI driver and add them
yourself.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 195

With that in mind, if you want to use the sound driver then you need the following files added to your project:

CHAM_AVR_SOUND_DRV_V010.c - Main C file source for “Sound” module.
CHAM_AVR_SOUND_DRV_V010.h - Header file for “Sound” module.

23.1 Header File Contents Overview

The “Sound” module header CHAM_AVR_SOUND_DRV_V010.h has nothing in it except the prototypes for the handful of
functions. Rather, it makes more sense to show you the SPI header messages relating to the sound driver:

// sound commands
#define SND_CMD_PLAYSOUNDFM 40 // plays a sound on a channel with the sent frequency at 90% volume
#define SND_CMD_STOPSOUND 41 // stops the sound of the sent channel
#define SND_CMD_STOPALLSOUNDS 42 // stops all channels
#define SND_CMD_SETFREQ 43 // sets the frequency of a playing sound channel
#define SND_CMD_SETVOLUME 44 // sets the volume of the playing sound channel
#define SND_CMD_RELEASESOUND 45 // for sounds with infinite duration, releases the sound and it enters
 // the "release" portion of ADSR envelope

The above messages are located in CHAM_AVR_TWI_SPI_DRV_V010.H as well as in the main SPI driver running on
the Propeller CHAM_DEFAULT2_DRV_V112.spin or CHAM_DEFAULT1_DRV_V112.spin. The above messages only
expose rudimentary abilities of the sound driver, but they are enough to start and stop sounds, play music, sound fx, etc.

23.2 API Listing Reference

The API listing for the “Sound” module CHAM_SOUND_DRV_V010.c is listed in Table 23.1 categorized by functionality.

Table 23.1 – “Sound” module API functions listing.

Function Name Description

Playing a Sound

int Sound_Play(int channel, int frequency, int duration); Plays a sound on one of the 4 channels.

Stopping Sounds

int Sound_Stop(int channel); Stops a sound and silences the channel.
int Sound_StopAll(void); Stops all sound channels and silences them.

Updating a Sound

int Sound_Update(int channel, int frequency, int volume); Updates a currently playing sound.

23.3 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

Function Prototype:

int Sound_Play(int channel, int frequency, int duration);

Description: Sound_Play(...) instructs the driver to play a single tone on one of the sound channels. The parameters

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 196

are channel (0..3), frequency (0...2000) Hz, duration (0..7) seconds where 0 means to play forever.
Returns 1.

Example(s): Instruct sound channel 0 to play 440hz for 3 seconds.

Sound_Play(0, 440, 3);

Function Prototype:

int Sound_Stop(int channel);

Description: Sound_Stop(...) stops the sound playing on channel. Returns 1.

Example(s): Stop all channels manually.

for (int ch = 0; ch < 4; ch++)
 Sound_Stop(ch);

Function Prototype:

int Sound_StopAll(void);

Description: Sound_StopAll() stops all sound channels and silences them. Returns 1.

Example(s): Stop all playing sounds.

Sound_StopAll();

Function Prototype:

int Sound_Update(int channel, int frequency, int volume);

Description: Sound_Update(...) allows you to update a sound channel (0..3) “on the fly” without interrupting it. You

can modify channel’s current frequency and volume. Of course, the parameters must be in range;
frequency (0...2000) and volume (0..255), where 0 means to leave as is. Returns 1.

Example(s): Start channel 0 at 100 Hz and sweep to 1000 Hz, at 10 msec intervals.

Sound_Play(0, 100, 0);

for (int f = 100; f < 1000; f++)
 {
 Sound_Update(0, f, 200);
 _delay_ms(10);
 } // end for

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 197

24.0 Keyboard Library Module Primer

The basic premise of the Chameleon design is that it leverages drivers running on the Propeller chip to do all the media
and graphics. Thus, whatever features the particular driver running on the Propeller side is the only features we can
access via the AVR side. That doesn’t mean we can’t abstract functionality and add higher level functions that build on the
sub-functions, however, this probably isn’t productive since you will want to change drivers, re-write the Propeller driver
and so forth. Thus, for the majority of the “media/IO” drivers all the API functions do (including the Keyboard) is expose
some of the base functionality in nice function calls so you don’t have to send SPI messages yourself. Now, the one thing
about keyboards (and mice) is they are really SLOW, thus its typically a problem reading them, since your CPU has to
slow down to do so; therefore, its really nice for a core on the Propeller to completely handle the keyboard and queue up
key presses for you.

For the keyboard, we decided to use a base driver from the original Propeller objects development that was designed to
communicate to a standard PS/2 keyboard, nothing fancy. The same driver is used in both Default1 and Default2, so the
same idea apply to either driver you load on the Propeller (CHAM_DEFAULT1_DRV_112.SPIN or
CHAM_DEFAULT2_DRV_112.SPIN). The actual driver object used for the keyboard is:

keyboard_010.spin – Basic PS/2 keyboard driver originally written by Parallax.

However, I only exposed a portion of its abilities thru the current SPI messages, no need to waste messages. You can
always add more. Therefore, the abilities you see exposed in the following API are just a taste of what it can do. In other
words, if you need more functions that the driver supports then you will have to add messages to the SPI driver and add
them yourself.

With that in mind, if you want to use the keyboard driver then you need the following files added to your project:

CHAM_AVR_KEYBOARD_DRV_V010.c - Main C file source for “Keyboard” module.
CHAM_AVR_KEYBOARD_DRV_V010.h - Header file for “Keyboard” module.

24.1 Header File Contents Overview

The “Keyboard” module header CHAM_KEYBOARD_DRV_V010.h has no #defines or globals itself since it literally
nothing more than wrapper functions that call thru to the Propeller side driver. But, its worth while to take a look at some of
the constants in the actual Spin/ASM code keyboard driver – KEYBOARD_010.spin. There are two very large tables at
the end of the driver that define the keys in terms of scan codes and ASCII codes. The tables are too long to list, but
here’s a excerpt from the first table:

' Lookup table
' ascii scan extkey regkey ()=keypad
'
table word $0000 '00
 word $00D8 '01 F9
 word $0000 '02
 word $00D4 '03 F5
 word $00D2 '04 F3
 word $00D0 '05 F1
 word $00D1 '06 F2
 word $00DB '07 F12
 word $0000 '08
 word $00D9 '09 F10
 word $00D7 '0A F8
 word $00D5 '0B F6
 word $00D3 '0C F4
 word $0009 '0D Tab
 word $0060 '0E `
 word $0000 '0F
 word $0000 '10
 word $F5F4 '11 Alt-R Alt-L
 word $00F0 '12 Shift-L
 word $0000 '13
 word $F3F2 '14 Ctrl-R Ctrl-L
 word $0071 '15 q
 word $0031 '16 1
 word $0000 '17
 word $0000 '18
 word $0000 '19
 word $007A '1A z
 word $0073 '1B s

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 198

 word $0061 '1C a
 word $0077 '1D w
 word $0032 '1E 2
 word $F600 '1F Win-L
 word $0000 '20
 word $0063 '21 c
 word $0078 '22 x
 word $0064 '23 d
 word $0065 '24 e
 word $0034 '25 4
 word $0033 '26 3
 word $F700 '27 Win-R
 .
 .
 .

Then the next table shows the relationship between ASCII keys and keycodes in a more easy to access method:

'' _________
'' Key Codes
''
'' 00..DF = keypress and keystate
'' E0..FF = keystate only
''
''
'' 09 Tab
'' 0D Enter
'' 20 Space
'' 21 !
'' 22 "
'' 23 #
'' 24 $
'' 25 %
'' 26 &
'' 27 '
'' 28 (
'' 29)
'' 2A *
'' 2B +
'' 2C ,
'' 2D -
'' 2E .
'' 2F /
'' 30 0..9
'' 3A :
'' 3B ;
'' 3C <
'' 3D =
'' 3E >
'' 3F ?
'' 40 @
'' 41..5A A..Z
'' 5B [
'' 5C \
'' 5D]
'' 5E ^
'' 5F _
'' 60 `
'' 61..7A a..z
'' 7B {
'' 7C |
'' 7D }
'' 7E ~
.
.
.

So, when you read a key from the keyboard driver, its these keycodes that are going to be translated for you into ASCII.

24.2 API Listing Reference

The API listing for the “Keyboard” module CHAM_KEYBOARD_DRV_V010.c is listed in Table 24.1 categorized by
functionality.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 199

Table 24.1 – “Keyboard” module API functions listing.

Function Name Description

Keyboard Driver Control

int Keyboard_Unload(void); Unloads the keyboard driver on the Propeller.
int Keyboard_Load(void); Loads the keyboard driver on the Propeller.

Keyboard Reading Functions

int Keyboard_GotKey(void); Tests if a key is queued up.
int Keyboard_Key(void); Reads the next key from the queue.
int Keyboard_State(int key); Tests if a particular key is down.

24.3 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

Function Prototype:

int Keyboard_Unload(void);

Description: Keyboard_Unload() unloads the keyboard driver on the Propeller and frees up a processing core.

Typically, you will make this call before loading the mouse driver or to simply free a core for another
process. Returns 1.

Example(s): Unload the keyboard driver to save power.

Keyboard_Unload();

Function Prototype:

int Keyboard_Load(void);

Description: Keyboard_Load() simply loads the keyboard driver into a core on the Propeller. If a keyboard driver is

already running, this function will have no effect. Returns 1.

Example(s): Start the keyboard driver.

Keyboard_Load();

Function Prototype:

int Keyboard_GotKey(void);

Description: Keyboard_GotKey() tests if a key is available for reading, returns 1 (key ready) 0 (no key ready).

Example(s): Test if a key has been pressed?

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 200

if (Keyboard_GotKey()==1)
 {
 // do something…
 } // end if

Function Prototype:

int Keyboard_Key(void);

Description: Keyboard_Key() reads the next keycode out of the keyboard buffer, returns 0 if no key is available.

Example(s): Read the key out of the queue and do something

if (Keyboard_GotKey())
 {
 // read key
 key = Keyboard_Key();

 // do something with hey

 } // end if key ready

Function Prototype:

int Keyboard_State(int key);

Description: Keyboard_State(…) tests if keycode key is depressed (1) or released (0) and returns the values.

Example(s): Test if right arrow is down?

// test for scancode right arrow
if (Keyboard_State(0xC1E6))
 {
 // do something…
 } // end if

25.0 Mouse Library Module Primer

The basic premise of the Chameleon design is that it leverages drivers running on the Propeller chip to do all the media
and graphics. Thus, whatever features the particular driver running on the Propeller side is the only features we can
access via the AVR side. That doesn’t mean we can’t abstract functionality and add higher level functions that build on the
sub-functions, however, this probably isn’t productive since you will want to change drivers, re-write the Propeller driver
and so forth. Thus, for the majority of the “media/IO” drivers all the API functions do (including the Mouse) is expose some
of the base functionality in nice function calls so you don’t have to send SPI messages yourself. Now, the one thing about
mice (and keyboards) is they are really SLOW, thus its typically a problem reading them, since your CPU has to slow
down to do so; therefore, its really nice for a core on the Propeller to completely handle the mouse for you.

For the mouse, we decided to use a base driver from the original Propeller objects development that was designed to
communicate to a standard PS/2 mouse, nothing fancy. The same driver is used in both Default1 and Default2, so the
same idea apply to either driver you load on the Propeller (CHAM_DEFAULT1_DRV_112.SPIN or
CHAM_DEFAULT2_DRV_112.SPIN). The actual driver object used for the mouse is:

mouse_010.spin – Basic PS/2 mouse driver originally written by Parallax.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 201

However, I only exposed a portion of its abilities thru the current SPI messages, no need to waste messages. You can
always add more. Therefore, the abilities you see exposed in the following API are just a taste of what it can do. In other
words, if you need more functions that the driver supports then you will have to add messages to the SPI driver and add
them yourself.

With that in mind, if you want to use the mouse driver then you need the following files added to your project:

CHAM_AVR_MOUSE_DRV_V010.c - Main C file source for “Mouse” module.
CHAM_AVR_MOUSE_DRV_V010.h - Header file for “Mouse” module.

25.1 A Brief Mouse Primer

Mice typically have two axes and a number of buttons. The two axes (X and Y) are decoded as they move either
mechanically (roller mice) or optically. Inside the mouse is a microprocessor that actually handles all the decoding and
sending of the information. There are two ways that mice send messages; absolute and relative. In absolute mode, the X-
Y position is accumulated, and in relative mode, the mouse sends the current change from the last positions. Additionally,
mouse have “sensitivity” settings that you can control that slow or speed the relative mouse message values to the
surface they are moving on. Finally, some mice have a “Z-axis” which is usually the scrub wheel, this is just like the X-Y.

Finally, the mice have a number of buttons, these are encoded by the mouse as simple switches. There is a whole mouse
message API that most mice respond to, but for our purposes we will let the Propeller driver deal with it. All our API needs
to do is call the driver over the SPI link, get absolute, relative, position and the buttons – simple.

25.2 Header File Contents Overview

The “Mouse” module header CHAM_MOUSE_DRV_V010.h actually has nothing in it once again (I told you this stuff was
easy!). However, the mouse does use a data structure located in the global system file CHAM_AVR_SYSTEM_V010.h,
the data structure is shown below:

// generic input device data record type, helps get back data from various multidata calls
typedef struct gid_event_type
 {

 int x,y,z; // position data
 int buttons; // buttons, bit encoded
 // bit4 = right-side button
 // bit3 = left-side button
 // bit2 = center/scrollwheel button
 // bit1 = right button
 // bit0 = left button

 } gid_event, *gid_event_ptr;

Its nice to think of input devices in all the same way and thus wrap a “container” around them. This data structure was
created with that in mind for future expansion. So all mouse messages use this container. The first ints are the x,y
position, the 3

rd
 (Z) is usually the scrub wheel. The next int, buttons is a bit encoded representation of all the buttons on

the mouse up to 5 different standard buttons.

25.3 API Listing Reference

The API listing for the “Mouse” module CHAM_MOUSE_DRV_V010.c is listed in Table 25.1 categorized by functionality.

Table 25.1 – “Mouse” module API functions listing.

Function Name Description

Mouse Driver Control

int Mouse_Load(void); Loads the mouse driver.
int Mouse_Unload(void); Unloads the mouse driver.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 202

Mouse Reading

int Mouse_Read(gid_event_ptr mouse); Reads the mouse message.

25.3 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

Function Prototype:

int Mouse_Load(void);

Description: Mouse_Load() loads the mouse driver up on a free Propeller core. If the driver is already loaded this

function has no effect. Returns 1.

Example(s): Load the mouse driver.

Mouse_Load();

Function Prototype:

int Mouse_Unload(void);

Description: Mouse_Unload() unloads the mouse driver freeing a core on the Propeller. Typically, you will do this

when you want to load the keyboard driver. Returns 1.

Example(s): Load the mouse driver.

Mouse_Load();

Function Prototype:

int Mouse_Read(gid_event_ptr mouse);

Description: Mouse_Read(…) reads the current mouse event from the driver. In this case, it only reads “relative”

events and thus the data is in delta format. You send a pointer to a gid_event structure and the function
will write the latest mouse deltas and button states into the structure. Returns 1.

Example(s): Read the mouse position and test if left button is down.

gid_event mouse;

Mouse_Read(&mouse);

// test bit 3, left button?
if (mouse.buttons & (0b01000))
 {
 // do stuff…
 } // end if

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 203

26.0 Propeller Local I/O Port Module Primer

The Propeller chip on the Chameleon is more or less “peripheraless” if that’s a word? In other words, if you want serial,
SPI, A/D, D/A, etc. you use a core and write one yourself using software. Thus, the philosophy of the Propeller chip is a lot
of I/O pins and a lot of processors, what you do with them is up to you. The Chameleon uses most of the I/O pins for the
video, audio, VGA, and PS/2 port, but we were able to tuck 8 I/O pins away and export them out to what is called the
“Propeller Local Port”. With this you can hook up devices that are designed to interface to the Propeller, us it for switches,
a D/A, A/D, even another video or VGA port! That said, what I decided to do was write a very rudimentary interface to it,
so you can control the direction of each port bit (input or output) and then write/read data to and from the port from the
AVR. So, if you run out of digital I/Os on the AVR headers you can use the Propeller port, or if you just want to connect
something to the Propeller that takes 8 or less I/O pins that someone has developed a Propeller object for. Either way, in
this section, we will see the API for the Propeller Local Port.

One detail before we begin, the Propeller Port does NOT have a driver object running on another core. It’s so simple that
we wrote the code right into the master control dispatch program object. There is a complete listing of the code below
excerpted from CHAM_DEFAULT2_DRV_112.spin.

' // Propeller local port specific commands ///
' these are handled locally in SPIN on the interface driver's COG

 PORT_CMD_SETDIR: ' sets the 8-bit I/O pin directions for the port 1=output, 0=input
 DIRA[7..0] := g_data

 PORT_CMD_READ: ' reads the 8-bit port pins, outputs are don't cares
 g_spi_result := (INA[7..0] & $FF) ' data is now in g_spi_result,
 ‘ client must perform a general READ_CMD to get it back

 PORT_CMD_WRITE: ' writes the 8-bit port pins, port pins set to input ignore data
 OUTA[7..0] := g_data

As you can see, there are 3 commands; set direction, read, and write. These are directly interfaced to SPIN native
functions and port I/O control. The AVR side API is nothing more than 3 commands to set the direction, read, and write.

The name of the API file is:

CHAM_AVR_PROP_PORT_DRV_V010.c – Contains the API functions for the Propeller local port functionality.

And once again, this functionality is available in all versions of the main Propeller driver Default1 and 2.

26.1 Header File Contents Overview

The “Propeller Local Port” module header CHAM_AVR_PROP_PORT_DRV_V010.h has nothing in it, but the prototypes
for the API functions, so nothing to show you there.

26.2 API Listing Reference

The API listing for the “Propeller Local Port” module CHAM_AVR_PROP_PORT_DRV_V010.c is listed in Table 26.1
categorized by functionality.

Table 26.1 – “Propeller Local Port” module API functions listing.

Function Name Description

int PropPort_SetDir(int dirbits); Sets the port bit direction bits individually.
int PropPort_Read(void); Read the port input buffer.
int PropPort_Write(int data8); Writes to the port output buffer.

Note: When reading or writing, I/O pins that aren’t set the proper direction will have invalid data on them, thus if you have
set the lower 4-bits as inputs and read the port, only count on the lower 4-bits having valid data. Similarly when writing
data, only pins that are outputs will drive current. The only will sink it as inputs. Thus, any data written to them is ignored
(as is should be).

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 204

26.3 API Functional Declarations

The following lists each function, a description, comments, and example usage of the function.

Function Prototype:

int PropPort_SetDir(int dirbits);

Description: PropPort_SetDir(…) sets the direction of the 8 I/O bits on the Propeller local port. 1=output, 0=input, eg:

11110000 = out, out, out, out, in, in, in, in. Physically on the port header bit 0 is on the right, bit 7 on the
left, so its LSB to MSB right to left. Returns 1.

Example(s): Set the lower 4-bits to outputs, upper 4-bits to inputs.

PropPort_SetDir(0x0F);

Function Prototype:

int PropPort_Read(void);

Description: PropPort_Read() reads the pins of the input port that are set as inputs, pins set as outputs are invalid.

Returns the pin data.

Example(s): Set the port to all input and read the port.

PropPort_SetDir(0x00);

inputs = PropPort_Read();

Function Prototype:

int PropPort_Write(int data8);

Description: PropPort_Write(…) writes data8 to the port. I/Os that are set as inputs ignore the bits in those positions.

Returns 1.

Example(s): Write the binary patterns for 0..255 on the port at 10 millisecond intervals.

PropPort_SetDir(0xFF);

for (data = 0; data <= 255; data++)
 {

 PropPort_Write(data);
 _delay_ms(10);

 } // end for data

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 205

27.0 Chameleon Hands-On Programming Tutorials and Demos

Either you spent the past couple days reading up to this section or you cheated and skipped here! No matter how you got
here, finally it’s time to see some actual code and the Chameleon AVR 8-bit in action! First, some ground rules.

� Every tutorial was designed to show off some aspect of the Chameleon AVR’s hardware or a particular library.

� Tutorials are not designed to be mind blowing or amazing, they are designed to show you how to use each
system and are very simple to get you started.

� The Chameleon’s AVR’s API is far from bug free. There are probably lots of little bugs that I haven’t found, so

beware. However, the APIs don’t really do much, but send messages to the objects running on the Propeller chip,
so ultimately if something doesn’t work its probably the driver!

� Each tutorial demo follows the same outline; the demo will be introduced, a screen shot (if applicable),

compilation instructions for both the Arduino mode of operation and straight AVRStudio.

� Finally, the tutorials are organized in order of various sub-systems like keyboard, sound, graphics, etc. And each

demo might have a couple versions with different video drivers and/or VGA/NTSC support. I will tend to review
only one version of the demo since the others are usually variants. However, compilation files for each demo
version will be included.

After experimenting with all the tutorial demos you will have a command of all the sub-systems of the Chameleon AVR 8-
bit as well as be able to use the provided APIs to get things done. Then I suggest you start with the demos as templates
to get your own programs up and running before trying to do things from scratch.

27.1 Setup to Compile the Demos and Tutorials

To compile and run any of the tutorial demos you will need to have one of two things setup:

1. An AVRStudio project open and ready to go along with an AVRISP MKII programmer to directly download to the
Chameleon’s AVR programming port.

2. An Arduino “Sketch” project along with the Arduino bootloader previously FLASHED into the AVR 328P processor (this
is how the Chameleon AVR ships).

In a nutshell, if you just got your Chameleon AVR, it comes pre-FLASHED with a the Arduino bootloader and you can use
method 2 to run all the experiments. If on the other hand, you prefer a more robust tool like the Atmel AVRStudio IDE and
you have purchases the AVR ISPMKII programmer (or similar) then you can compile and program the Chameleon AVR
via the 6-pin ISP port. Both methods and setups were covered earlier in the manual. But, let’s briefly review a couple
details about the differences between the AVRStudio and Arduino version of each demo.

27.1.1 Differences Between the AVRStudio and Arduino Demos and General Porting Strategies

Before we get into the pre-setup of AVRStudio and the Arduino tool, let’s take a step back and discuss the differences
between the two tools and software as you write it.

First off, with AVRStudio and the Arduino tool, you program in C/C++. Technically, AVRStudio you can program in straight
C while the Arduino tool you can use C/C++. That said, we made all programs C, so they work on both tool chains. So
assuming we start with a simple C program on AVRStudio then porting it to Arduino requires only a few changes relating a
number of topic areas that we will cover below:

Include Files

The Arduino tool isn’t as flexible as AVRStudio. The whole point of the Arduino tool is to insulate the user from the
complexities of compilers, linkers, make files, etc. Thus, you have to code in the “template” that Arduino provides, to this
end, the search paths are a little different. When programming in AVRStudio, your header files will typically be included
like this:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 206

AVRStudio Include Example

#include “myfile.h”

The quotes indicate to the compiler to look in the working directory of the project for the header. However, with the
Arduino tool, there really aren’t “header” files for your projects anymore that aren’t part of an official Arduino “library” file.
And library files are located in the hardware \ libraries \ directory of your Arduino install directory. In other words, the
location of your library C/C++ code and the header are in the search path of the compiler not the project; therefore, like
any system header stdio.h, etc. you use angle brackets to include your header files:

Arduino Include Example

#include <myfile.h>

But, usually the only reason you include your own header file is that you have created an Arduino library called, “myfile”
and therefore there is a MYFILE\ directory inside the hardware \ libraries \ and there is a myheader.c/cpp file along with
a myfile.h.

Now, sometimes, you just want to add a header file to your sketch, but you don’t want to create a library with C/C++ code,
nor do you need it. You just want a header maybe with some macros, defines, data, whatever. There is a trick to doing
this.

Step 1: Add the header file to your sketch headers with the following syntax (notice the “../”) and that quotes are used to
enclose the header file this time:

#include “../headerfile.h”

Step 2: Copy the header file into your sketch directory.

You can learn more about include files, libraries and the Arduino environment here:

http://arduino.cc/en/Reference/Libraries

Renaming the main() Function and setup()

The Arduino “environment” builds a final C/C++ program with your source “sketch” along with a number of other files. In
fact, your program does need a main(). The Arduino build provides a main() and inside of it calls a couple functions; one
as a setup, the other as the main loop which more or less replaces main().

This is best illustrated with an example, below are two complete programs for “Hello World”. One will compile with
AVRStudio, the other will compile with the Arduino tool.

AVRStudio Version

///
// INCLUDES ///
///

#define __AVR_ATmega328P__

// include everything
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <avr/eeprom.h>
#include <avr/io.h>
#include <avr/sleep.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <inttypes.h>
#include <compat/twi.h>
#include <avr/wdt.h>

// include headers required for demo

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 207

#include "CHAM_AVR_SYSTEM_V010.h" // you need this one always
#include "CHAM_AVR_TWI_SPI_DRV_V010.h" // you need this always
#include "CHAM_AVR_NTSC_DRV_V010.h" // needed for NTSC driver
#include "CHAM_AVR_VGA_DRV_V010.h" // needed for VGA driver

//
// DEFINES AND MACROS //
//

// define CPU frequency in MHz here if not defined in Makefile or other includes,
// compiler will throw a warning, ignore
#ifndef F_CPU
#define F_CPU 16000000UL // 28636360UL, 14318180UL, 21477270 UL
#endif

///
// MAIN ///
///

int main(void)
{
// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// clear screens
NTSC_ClearScreen();
VGA_ClearScreen();

// enter infinite loop...
while(1)
 {
 // print on NTSC terminal screen
 NTSC_Color(0);
 NTSC_Term_Print("Hello World! ");

 // print on VGA terminal screen
 VGA_Color(0);
 VGA_Term_Print("Hello World! ");

 // slow things down a bit, so we can read the text!
 _delay_ms(10);

 } // end while

} // end main

Take note of the highlight header files and the main() function, now take a look at the Arduino version, its nearly the same
with a slight syntactic change to the header files and main() has been replaced with setup() and loop():

Arduino Sketch Version

//
// INCLUDES //
//

#define __AVR_ATmega328P__

// include everything
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <avr/eeprom.h>
#include <avr/io.h>
#include <avr/sleep.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <inttypes.h>
#include <compat/twi.h>
#include <avr/wdt.h>

// include headers required for demo, notice the use of <> brackets for the ardunio version
// since it searches for headers
// differently than AVRStudio
#include <CHAM_AVR_SYSTEM_V010.h> // you need this one always
#include <CHAM_AVR_TWI_SPI_DRV_V010.h> // you need this always
#include <CHAM_AVR_NTSC_DRV_V010.h> // needed for NTSC driver
#include <CHAM_AVR_VGA_DRV_V010.h> // needed for VGA driver

//
// DEFINES AND MACROS //
//

// define CPU frequency in MHz here if not defined in Makefile or other includes,

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 208

// compiler will throw a warning, ignore
#ifndef F_CPU
#define F_CPU 16000000UL // 28636360UL, 14318180UL, 21477270 UL
#endif

//
// MAIN //
//

//
// SETUP CALL (ARDUINO SPECIFIC: initialization call)
//

void setup() // run once, when the sketch starts
{

} // end setup

//
// LOOP CALL (ARDUINO SPECIFIC: main entry point) //
//

void loop() // run over and over again
{
// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// clear screens
NTSC_ClearScreen();
VGA_ClearScreen();

// enter infinite loop...
while(1)
 {
 // print on NTSC terminal screen
 NTSC_Color(0);
 NTSC_Term_Print("Hello World! ");

 // print on VGA terminal screen
 VGA_Color(0);
 VGA_Term_Print("Hello World! ");

 // slow things down a bit, so we can read the text!
 _delay_ms(10);

 } // end while

} // end main

Reviewing both files, 90% of porting all programs from AVRStudio to Arduino is simply making sure header files have
angle brackets <> and that main() is replaced with loop() and that a function setup() is added to your program. The
setup() function can be empty, but will be called before loop() is, thus it’s a nice place to put initialization code.
Personally, I just think of loop() as main() and leave it at that.

Serial I/O Libraries

The last little porting tip has to do with serial communications. We wrote serial UART libraries for the Chameleon AVR that
are stored in CHAM_AVR_UART_DRV_V010.C|H. You have seen these in the API overview section. However, Arduino
has a built in serial class that you can review here:

http://arduino.cc/en/Reference/Serial

Thus, you can use our library or the Arduino library, if you decide to use one or the other then porting is a simple matter of
changing a couple function calls, below in Table 27.1 is a quick list of the function call mappings for the serial calls.

Table 27.1 – Chameleon AVR vs. Arduino Serial UART Library Mapping.

CHAM_AVR_UART_DRV_V010.C Arduino Serial Library Version

Function Name Function Name

int UART_Init(long baudrate) Serial.begin(baudrate);

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 209

void UART_Print_String(char *string) Serial.print(data);
 Serial.println(data);
int UART_putc(unsigned char ch) Serial.print(data);
int UART_getc(void); Serial.read()

You will notice that on the right side (Arduino functions) that there are no data types as the parameters. This is because
this is an overloaded C++ class with overloaded data types. Thus, you can send characters, strings, numbers, etc. to the
print and println functions. Therefore, to port in either direction, you just replace the functions with their counterparts and
maybe a cast or two and you’re done!

27.1.2 Setup for AVRStudio Version of Demos

The AVRStudio of the demos are relatively straightforward to setup. We have already covered how to setup AVRStudio,
to compile, build a FLASH image and download with the AVRISP MKII programmer. Thus, for each of the demos, all you
need to do is add the source C files to the project along with the main program and build the program and download.

All the source API libraries for the demos and the demos themselves are located on the DVD ROM in the usual directory:

DVD-ROM:\ CHAM_AVR \ SOURCE \ *.*

During initial setup of the tool you should have copied this entire directory to your hard drive.

27.1.3 Setup for Arduino Version of Demos

The setup for the Arduino version of the demos is a little different than the AVRStudio version since Arduino deals with
“libraries” and “sketches” rather than straight C/C++ files. Thus, there is a little setup. The first thing is that you should
have already copied all the Libraries from the DVD ROM into your Arduino installation directory. If you recall, after you
install the Arduino tool it creates a number of directories from the root installation directory. They looks something like
Figure 27.1.

Figure 27.1 – The root Arduino installation directory.

Then if you drill down into the \HARDWARE sub-directory, you will find the \LIBRARIES sub-directory, the contents of
that directory are shown in Figure 27.2

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 210

Figure 27.2 – The Libraries directory which contains both the default Arduino libraries as well as our custom
libraries.

If you haven’t copied the new libraries into this directory then you should do so now. They are located on the DVD ROM in
the following location:

DVD-ROM:\ CHAM_AVR \ TOOLS \ ARDUINO \ LIBRARIES

TIP

If the Arduino tool is running make sure to quit the application and restart, so the tool
can scan the Libraries directory and add them to the IDE’s <Sketch → Import Library>
menu option.

Assuming, you have the libraries directory setup with all the new Chameleon specific libraries for NTSC, VGA, sound,
FLASH, serial, keyboard, mouse, etc. The next thing we need to do is actually copy the pre-made “Sketches” into your
local sketch directory, so you don’t have to build each sketch yourself.

Copying the Sketches from DVD

To save you time for each demo construction, I have pre-built a sketch for each demo. In essence, I took the program as I
developed it in AVRStudio, then create a sketch with the same root name, then saved it. Of course, I performed any
porting operations like changing header include syntax, changing main() to loop() etc. But, more or less just a couple
minutes each to port each program in most cases. All the ported sketches are located on the DVD here:

DVD-ROM: \ CHAM_AVR \ TOOLS \ ARDUINO \ SKETCHES \ *.*

Simply copy the contents of this directory (which contains a number of sub-directories, each representing a sketch) into
your local hard drive where you installed the Arduino tool and its Sketches\ directory. After copying, re-start the Arduino
tool to make sure they are scanned.

Now, you are ready to go for the Arduino versions as well.

27.1.3 Setting the Chameleon Hardware Up

Finally, let’s take a brief moment to remind ourselves what’s going on with the hardware. If you are using AVRStudio, then
you are going to build a project for each demo, or change a single project, re-build and FLASH the file to the Chameleon
AVR with the AVR ISP MKII programmer. If you don’t own a programmer, then you will use the Chameleon in Arduino
mode, and thus, you need the bootlooder on the Chameleon (which we deliver the unit with). In this case, make sure you

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 211

have the serial select switch on the Chameleon in the down position, so the PC can get to the serial port of the AVR since
this is how the bootloader works via serial.

28.1 Graphics Demos

The following graphics demos illustrate examples in both NTSC and VGA modes as well as use of the advanced tile
modes of the NTSC driver.

Each example will typically consist of the primary source file for the demo as well as:

� The System API library module CHAM_AVR_SYSTEM_V010.c|h.
� The main SPI API library module CHAM_AVR_TWI_SPI_DRV_V010.c|h.
� The NTSC, VGA, GFX driver or all of them.

And any other ancillary drivers for sound, keyboard, etc.

All the required files can of course be found in the \Source directory on the DVD (which you should have already copied
onto your hard drive) located here:

DVD-ROM:\ CHAM_AVR \ SOURCE \

AVRStudio
TIP

In general, you will include all the sources in your project (.C files) and make sure all the
.H header files are in the same working directory, so the compiler can find them. You do
NOT include the .H header files in the compilation list of source files, the compiler will do
this for you. Only include .C and .S files in your source file link list in your project file list
to the left of the tool.

The Arduino version will be in “Sketch” form already, so all you need to do is load the Sketch in and upload and you’re in
business!

28.1.1 NTSC Printing Demo

This demo simply uses the NTSC terminal API to print “Hello World” to the NTSC screen. Figure 28.1 shows the demo in
action.

Figure 28.1 – NTSC terminal printing demo.

Compiling and Running the AVRStudio Version

Demo Version Description: NTSC version prints “Hello World” to screen.

Main Source File: CHAM_AVR_NTSC_PRINT_DEMO_01.C

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 212

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h

General Requirements: Video port connected to NTSC TV monitor.

Controls Required: None.

Compiling and Running the Arduino Version

Demo Version Description: NTSC version prints “Hello World” to screen.

Main Sketch Source File: CHAM_AVR_NTSC_PRINT_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_NTSC_DRV_V010

General Requirements: Video port connected to NTSC TV monitor.

Controls Required: None.

Technical Overview

The demo simply uses the NTSC API to print “Hello World” on the screen. When the printing reaches the bottom of the
screen the terminal scrolls the screen image up one line. The program is so short, let’s take a quick peek at only the
contents of the main() or loop() in the Arduino version:

///
// MAIN ///
///

int main(void)
{
// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// give Prop a moment before sending it commands, the boot process is about a second
// if you like you can speed it up, by removing the Prop driver's "LED blink" sequence in the driver
// or speed it up, but commands that are sent before the Prop driver is done booting will be ignored.
// therefore, if you have a lot of set up work to do, then you don't require a delay, but if you jump right
// into commands, then you need a good 1.5 - 2 second delay
_delay_ms(2500);

// clear screens
NTSC_ClearScreen();

// enter infinite loop...
while(1)
 {
 // print on NTSC terminal screen
 NTSC_Color(0);
 NTSC_Term_Print("Hello World! ");

 // slow things down a bit, so we can read the text!
 _delay_ms(10);

 } // end while

} // end main

First, it should be amazing to you that in a few lines of code you are generating a NTSC color text display! Reviewing the
code, the program starts, waits for the Propeller to boot (don’t forget to do this), then the call to clear the screen, and we
enter the main while loop. Here a redundant call to set the color is made and the text is printed to the NTSC terminal with
NTSC_Term_Print(…) – that’s it!

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 213

Summary

This demo shows how easy it is to get NTSC terminal like text output going on the Chameleon.

28.1.2 NTSC Glowing Top/Bottom Overscan Demo

This demo simply uses the NTSC tile graphics engine extensions to glow the top and bottom overscan colors on the
display. The default2 driver uses a high performance tile engine that we developed that supports scrolling, 4 colors per
tile, large playfields and a lot of more. One of its simple features is the ability to control the top and bottom over scan
colors on the screen. This demo simply cycles thru those colors and shows you how to make calls to update the overscan
color registers in the tile engine running on the Propeller chip. Figure 28.2 shows the demo in action.

Figure 28.2 – NTSC overscan color animation program demo.

Compiling and Running the AVRStudio Version

Demo Version Description: NTSC version prints animates overscan colors.

Main Source File: CHAM_AVR_NTSC_GLOW_DEMO_01.C

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h
� CHAM_AVR_GFX_DRV_V010.c|h

General Requirements: Video port connected to NTSC TV monitor.

Controls Required: None.

Compiling and Running the Arduino Version

Demo Version Description: NTSC version animates overscan colors.

Main Sketch Source File: CHAM_AVR_NTSC_GLOW_DEMO_01

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 214

� CHAM_AVR_NTSC_DRV_V010
� CHAM_AVR_GFX_DRV_V010

General Requirements: Video port connected to NTSC TV monitor.

Controls Required: None.

Technical Overview

The demo simply uses the NTSC GFX to animate the top and bottom overscan colors (this is only supported with the
default2 version of the driver and the NTSC system). Below is an excerpt of the code from the main while loop that
performs the animation.

// enter infinite loop...glowing the top and bottom overscan, tile engine functions required for this
while(1)
 {
 // glow thru every color, every brightness
 for (col = 0; col <= 15 ; col++)
 {
 for (bright = 2; bright < 6; bright++)
 {

 // build up Propeller compatible color [chroma:4 | chroma bit:1 | luma:3]
 color = (col << 4) | (0b00001000) | (bright);

 // set top overscan
 GFX_Set_Top_Overscan_Color(color & 0xFF);

 // set bottom overscan
 GFX_Set_Bottom_Overscan_Color(color & 0xFF);

 // slow things down a bit, so we can read the text!
 _delay_ms(100);

 } // end for bright

 } // end for color

 } // end while

The code simply formats a Propeller compliant color and then calls the API function to change the top and bottom
overscan color, that’s it.

Summary

This demo shows how easy it is to use the advanced GFX tile engine API functions, in particular to animate the overscan
color on the NTSC display.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 215

28.1.3 NTSC Smooth Scrolling Tilemap Demo

This demo illustrates the smooth scrolling feature of the default2 versions of the Propeller driver. The NTSC tile engine
supports course horizontal and vertical scrolling simply by changing the tile map base pointer. However, the engine also
supports pixel smooth scrolling in the vertical direction. The allows you to smoothly scroll the tile map any number of rows
you wish. First, you smooth scroll 0…7 pixels then you reset the smooth scroll register and course scroll and repeat. To
the user this will look like one continuous scrolling action. Figure 28.3 shows the demo in action.

Figure 28.3 – NTSC smooth scrolling tilemap demo.

Compiling and Running the AVRStudio Version

Demo Version Description: NTSC version smooth scrolls array of space invaders.

Main Source File: CHAM_AVR_NTSC_SMOOTH_SCROLL_DEMO_01.C

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h
� CHAM_AVR_GFX_DRV_V010.c|h

General Requirements: Video port connected to NTSC TV monitor.

Controls Required: None.

Compiling and Running the Arduino Version

Demo Version Description: NTSC version smooth scrolls array of space invaders.

Main Sketch Source File: CHAM_AVR_NTSC_SMOOTH_SCROLL_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_NTSC_DRV_V010
� CHAM_AVR_GFX_DRV_V010

General Requirements: Video port connected to NTSC TV monitor.

Controls Required: None.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 216

Technical Overview

This demo uses the vertical scroll register to scroll an array of tiles (space invader characters) up and down. If we wanted
to we could scroll the image continuously by course scrolling after each smooth scroll thru the scanlines 0..7 of each
character. Below is an excerpt that shows the space invader rendering code and the smooth scrolling main loop:

NTSC_ClearScreen();

// basic white
NTSC_Color(0);

// draw a matrix of space invaders with extended characters
for (y = 0; y < 6; y++)
 {
 for (x = 0; x < NUM_SPACE_INVADERS_PER_ROW; x++)
 {
 // position next invader
 NTSC_SetXY(x*2 + SPACE_INVADERS_ORIGIN_X , y*2 + SPACE_INVADERS_ORIGIN_Y);

 // draw next invader
 NTSC_Term_Char(SPACE_INVADERS_CHAR_OFFSET + (y % 3));
 } // end for x
 } // end for y

// enter infinite loop...
while(1)
 {
 // set smooth scroll vertical position register 0..7
 GFX_Set_VScroll(scroll_y);

 // change scroll position
 scroll_y += scroll_dy;

 // test for limit
 if ((scroll_y > 7) || (scroll_y < 0))
 {
 scroll_dy = -scroll_dy;
 scroll_y += scroll_dy;
 } // end if

 // slow things down a bit, so we can read the text!
 _delay_ms(50);

 } // end while

I have highlighted the single API call that sets the smooth scrolling register, that’s all there is to it!

Summary

This demo shows how easy it is to smooth scroll vertically. Additionally, it shows some of the hidden / special characters
in our little character set to help make games!

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 217

28.1.4 VGA Printing Demo

This demo simply uses the VGA terminal API to print “Hello World” to the VGA screen. Figure 28.4 shows the demo in
action.

Figure 28.4 – VGA terminal printing demo.

Compiling and Running the AVRStudio Version

Demo Version Description: VGA version prints “Hello World” to screen.

Main Source File: CHAM_AVR_VGA_PRINT_DEMO_01.C

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_VGA_DRV_V010.c|h

General Requirements: VGA port connected to VGA monitor.

Controls Required: None.

Compiling and Running the Arduino Version

Demo Version Description: VGA version prints “Hello World” to screen.

Main Sketch Source File: CHAM_AVR_VGA_PRINT_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_VGA_DRV_V010

General Requirements: VGA port connected to VGA monitor.

Controls Required: None.

Technical Overview

The demo simply uses the VGA API to print “Hello World” on the screen. When the printing reaches the bottom of the
screen the terminal scrolls the screen image up one line. The program is so short, let’s take a quick peek at only the
contents of the main() or loop() in the Arduino version:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 218

///
// MAIN ///
///

int main(void)
{
// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// give Prop a moment before sending it commands, the boot process is about a second
// if you like you can speed it up, by removing the Prop driver's "LED blink" sequence in the driver
// or speed it up, but commands that are sent before the Prop driver is done booting will be ignored.
// therefore, if you have a lot of set up work to do, then you don't require a delay, but if you jump right
// into commands, then you need a good 1.5 - 2 second delay
_delay_ms(2500);

// clear screens
VGA_ClearScreen();

// enter infinite loop...
while(1)
 {
 // print on VGA terminal screen
 VGA_Color(0);
 VGA_Term_Print("Hello World! ");

 // slow things down a bit, so we can read the text!
 _delay_ms(10);

 } // end while

} // end main

First, it should be amazing to you that in a few lines of code you are generating a VGA color text display! Reviewing the
code, the program starts, waits for the Propeller to boot (don’t forget to do this), then the call to clear the screen, and we
enter the main while loop. Here a redundant call to set the color is made and the text is printed to the VGA terminal with
VGA_Term_Print(…) – that’s it!

Summary

This demo shows how easy it is to get VGA terminal like text output going on the Chameleon.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 219

28.1.5 Dual NTSC / VGA Printing Demo

One of the cool things about the NTSC and VGA terminal tile drivers is they have the exact same base features. Which
means that porting your code to work on NTSC or VGA is usually a matter of changing API prefix function names with
from “NTSC” to “VGA” and vice versa. Of course, the advanced “gaming” tile engine support is only for the NTSC driver;
however, no one is stopping you from using or making a more advanced VGA drivers on the Propeller. I simply choose
not to this time around. In any case, this demo is just a “Hello World” demo that prints both on the NTSC and VGA
monitors at the same time to show you how easy this is. Figure 28.5 shows the demo in action.

Figure 28.5 – Dual NTSC / VGA terminal printing demo.

Compiling and Running the AVRStudio Version

Demo Version Description: Prints “Hello World” to both NTSC and VGA displays.

Main Source File: CHAM_AVR_NTSC_VGA_PRINT_DEMO_01.C

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_VGA_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h

General Requirements: NTSC port connect to NTSC TV monitor and VGA port connected to VGA monitor.

Controls Required: None.

Compiling and Running the Arduino Version

Demo Version Description: Prints “Hello World” to both NTSC and VGA displays.

Main Sketch Source File: CHAM_AVR_NTSC_VGA_PRINT_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_VGA_DRV_V010
� CHAM_AVR_NTSC_DRV_V010

General Requirements: NTSC port connect to NTSC TV monitor and VGA port connected to VGA monitor.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 220

Controls Required: None.

Technical Overview

The demo simply uses both the NTSC and VGA terminal API functions to print “Hello World” on both screens and scroll.
Here’s just the main() / loop() excerpt since this demo is nothing more than a copy of the NTSC and VGA versions
respectively and merged.

int main(void) // run over and over again
{
// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// clear screens
NTSC_ClearScreen();
VGA_ClearScreen();

// enter infinite loop...
while(1)
 {
 // print on NTSC terminal screen
 NTSC_Color(0);
 NTSC_Term_Print("Hello World! ");

 // print on VGA terminal screen
 VGA_Color(0);
 VGA_Term_Print("Hello World! ");

 // slow things down a bit, so we can read the text!
 _delay_ms(10);

 } // end while

} // end main

The demo simply uses the same basic commands, but send them to both the NTSC and VGA monitors.

Summary

This demo shows how easy it is to get both NTSC and VGA terminal like text output going on the Chameleon.

28.1.6 VGA Star Field Demo

The default2 VGA driver isn’t as impressive as the NTSC driver. In fact, its pretty boring. Its good for displaying text and
acting as a terminal output, but that’s about it. However, with a little ingenuity we can make it do some cool things! This
little demo, draw stars on the VGA screen on the last display line, this causes the screen to scroll and presto – animated
star field! Then on top of the star field a little character based ship is drawn. Figure 28.6 shows the demo in action.

Figure 28.6 – VGA terminal text graphics demo – Star Field.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 221

Compiling and Running the AVRStudio Version

Demo Version Description: Vertically scrolls a star field and draws a little ASCII character space ship.

Main Source File: CHAM_AVR_VGA_STARS_DEMO_01.C
Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_VGA_DRV_V010.c|h

General Requirements: VGA port connected to VGA monitor.

Controls Required: None.

Compiling and Running the Arduino Version

Demo Version Description: Vertically scrolls a star field and draws a little ASCII character space ship.

Main Sketch Source File: CHAM_AVR_VGA_STARS_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_VGA_DRV_V010

General Requirements: VGA port connected to VGA monitor.

Controls Required: None.

Technical Overview

Here’s just the main() / loop() excerpt which shows the entire star field generator:

int main(void) // run over and over again
{
int ship_x = 12, ship_y = 0;

// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// give Prop a moment before sending it commands, the boot process is about a second
// if you like you can speed it up, by removing the Prop driver's "LED blink" sequence in the driver
// or speed it up, but commands that are sent before the Prop driver is done booting will be ignored.
// therefore, if you have a lot of set up work to do, then you don't require a delay, but if you jump right
// into commands, then you need a good 1.5 - 2 second delay
_delay_ms(2500);

// clear screens
VGA_ClearScreen();

// enter infinite loop...
while(1)
 {
 // draw next star

 // set color
 VGA_Color(0);

 // position star at bottom to cause scroll
 VGA_SetXY(rand() % 32, 14);
 VGA_Term_Print(". ");

 // draw our little ship at top

 // set color to green (with a little forcefield :)
 VGA_Color(4);

 // position at top of screen and draw with ASCII art
 VGA_SetXY(ship_x, ship_y);

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 222

 VGA_Term_Print("<-#->");

 // add some logic here to move the ship!

 // slow things down a bit
 _delay_ms(10);

 } // end while

} // end main

This demo should bring back memories of BASIC programming on your C64 / Atari 800 / Apple][, if you ever did any text
only games and had to resort to things like “<-#->” as your space ship!

Summary

This demo shows that with a little creativity even the vanilla VGA terminal driver can be used for games.

29.1 Sound Demos

The following sound demo(s) illustrate how to make calls to the sound driver on the Chameleon (running on the Propeller
of course). The output of the demo displays on both the NTSC and VGA monitors.

The examples typically consist of the primary source file for the demo as well as:

� The System API library module CHAM_AVR_SYSTEM_V010.c|h.
� The main SPI API library module CHAM_AVR_TWI_SPI_DRV_V010.c|h.
� The Sound driver API library module CHAM_AVR_SOUND_DRV_V010.c|h.
� The NTSC, VGA, GFX driver or all of them.

And any other ancillary drivers keyboard, mouse, etc.

All the required files can of course be found in the \Source directory on the DVD (which you should have already copied
onto your hard drive) located here:

DVD-ROM:\ CHAM_AVR \ SOURCE \

AVRStudio
TIP

In general, you will include all the sources in your project (.C files) and make sure all the
.H header files are in the same working directory, so the compiler can find them. You do
NOT include the .H header files in the compilation list of source files, the compiler will do
this for you. Only include .C and .S files in your source file link list in your project file list
to the left of the tool.

The Arduino version will be in “Sketch” form already, so all you need to do is load the Sketch in and upload and you’re in
business!

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 223

29.1.1 Sound Demo

This demo uses the Sound API and driver to play some chords up and down. The chord frequencies are displayed on
both the NTSC and VGA displays. Figure 29.1 shows the demo in action.

Figure 29.1 – Sound demo VGA output.

Compiling and Running the AVRStudio Version

Demo Version Description: Plays sounds on the speaker.

Main Source File: CHAM_AVR_SOUND_DEMO_01.C

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h
� CHAM_AVR_VGA_DRV_V010.c|h
� CHAM_AVR_SOUND_DRV_V010.c|h

General Requirements: Video port connected to NTSC or VGA monitors, RCA audio connected to an amplifier or

the TV’s audio input.

Controls Required: None.

Compiling and Running the Arduino Version

Demo Version Description: Plays sounds on the speaker.

Main Sketch Source File: CHAM_AVR_SOUND_DEMO_01.C

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_NTSC_DRV_V010
� CHAM_AVR_VGA_DRV_V010
� CHAM_AVR_SOUND_DRV_V010

General Requirements: Video port connected to NTSC TV monitor.

Controls Required: None.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 224

Technical Overview

This demos uses the Sound API to plays tones on the speaker. You need to hook up the Chameleon’s audio out port to
the an amplifier or the TV’s audio in. However, the program outputs to both the NTSC and VGA display for its text output.
This program is the most complex yet since it deals with sound. First off, we need a scale of frequencies which is at the
top of the program and shown below:

float adjacent_note = 1.059463094; // 2^(1/12) ratio between adjacent keys

// scale from middle A to one octave above A
int scale[] = {440, 466, 494, 523, 554, 587, 622, 659, 698, 740, 784, 831, 880 };

/*
A 440
B flat 466
B 494
C 523
C sharp 554
D 587
D sharp 622
E 659
F 698
F sharp 740
G 784
A flat 831
A 880
*/

The array scale[] holds the scale from middle A at 440Hz then from this we can compute any octave or half notes, etc.
which are used to generate chords. There are all kinds of chords and all kinds of theory about what sounds good and
doesn’t. One method of computing chords is to play 2-3 notes that are related to each other by adjacent notes from the
base note. There are formulas you can use to calculate these notes and simply experiment to see what sounds “good”,
“dissonant”, “resonant” or just plain bad. The program plays a number of chords in an increasing fashion, then in
decreasing. Below is a copy of the increasing code, so you can see the computation of the chord frequencies as well as
the sound API calls to play the actual chord.

 NTSC_Term_Print("Going up...");
 NTSC_Term_Char(0x0D);

 // play the scale up
 for (note = 0; note < NUM_NOTES; note++)
 {
 // compute chord to play
 chord_freq_1 = scale[note]/2 * pow (adjacent_note, 4);

 // play these an octave above
 chord_freq_2 = scale[note] * pow (adjacent_note, 5);
 chord_freq_3 = scale[note] * pow (adjacent_note, 6);

 sprintf(sbuffer,"Playing Chord [%d, %d, %d]", (int)chord_freq_1, (int)chord_freq_2, (int)chord_freq_3);

 // play the notes (we have a freq limit of 2049 Hz with the current API interface,
 // the driver can do whatever you want though
 // so you will have to create new messages and a 16-bit format if you want to play higher frequencies
 Sound_Play(0, (int)chord_freq_1, 1);
 Sound_Play(1, (int)chord_freq_2, 1);
 Sound_Play(2, (int)chord_freq_3, 1);

 // print on NTSC terminal screen
 NTSC_Term_Print(sbuffer);
 NTSC_Term_Char(0x0D);

 // print on VGA terminal screen
 VGA_Term_Print(sbuffer);
 VGA_Term_Char(0x0D);

 // slow things down a bit, so we can read the text!
 _delay_ms(500);

 } // end for index

The comments should explain everything that is going on, but make sure to pay attention to the highlighted lines of code
that compute frequencies using the pow(…) function. Basically, to compute the nth adjacent note on a standard diatonic
scale you multiply the key/note frequency by 2

(1/12)
 taken to the nth power. Once the chord frequencies are computed they

are issued to the sound driver to play on 3 different channels (leaving one left).

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 225

Summary

This demo shows how to play
music using the sound API.
However, be aware the sound
driver running on the
Chameleon’s Propeller chip can
do a lot more than we expose
with the API, so if you want more
features you can add them by
modifying the Propeller’s master
driver.

30.1 Input Device Demos

The following demos illustrate the input devices supported on the Chameleon; the keyboard and mouse. The demos drive
either the NTSC, VGA or both. But, if you want to add support for the other, its simply a matter of adding a couple lines of
code.

The examples typically consist of the primary source file for the demo as well as:

� The System API library module CHAM_AVR_SYSTEM_V010.c|h.
� The main SPI API library module CHAM_AVR_TWI_SPI_DRV_V010.c|h.
� The keyboard API library module CHAM_AVR_KEYBOARD_DRV_V010.c|h.
� The mouse API library module CHAM_AVR_MOUSE_DRV_V010.c|h.
� The NTSC, VGA, GFX driver or all of them.

And any other ancillary drivers keyboard, mouse, etc.

All the required files can of course be found in the \Source directory on the DVD (which you should have already copied
onto your hard drive) located here:

DVD-ROM:\ CHAM_AVR \ SOURCE \

AVRStudio
TIP

In general, you will include all the sources in your project (.C files) and make sure all the
.H header files are in the same working directory, so the compiler can find them. You do
NOT include the .H header files in the compilation list of source files, the compiler will do
this for you. Only include .C and .S files in your source file link list in your project file list
to the left of the tool.

The Arduino version will be in “Sketch” form already, so all you need to do is load the Sketch in and upload and you’re in
business!

30.1.1 Keyboard Demo

This demo uses the keyboard API to communicate with a local PS/2 keyboard plugged into the PS/2 port via the
Propeller’s keyboard driver. Make sure to plug your keyboard into the Chameleon and get a good connection and make
sure the <NUM-LOCK> etc. keys are released and not in the down position. The demo prints keys on the screen as you
hit them along with their codes.

Also, the demo has a little bit of fun code, it has a little password finder. The program has a state machine that is hunting
for the token “morpheous” from the movie “The Matrix”, if you type this in (lower case) the program will print something
out. Figure 30.1 shows the demo in action.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 226

Figure 30.1 – Keyboard demo in action.

Compiling and Running the AVRStudio Version

Demo Version Description: Echoes the local PS/2 Chameleon keyboard to the displays.

Main Source File: CHAM_AVR_KEYBOARD_DEMO_01.C

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h
� CHAM_AVR_VGA_DRV_V010.c|h
� CHAM_AVR_KEYBOARD_DRV_V010.h

General Requirements: Video ports connected to NTSC or VGA monitors.

Controls Required: PS/2 keyboard plugged into Chameleon, simply type into the keyboard and watch the

output on the NTSC/VGA displays.

Compiling and Running the Arduino Version

Demo Version Description: Echoes the local PS/2 Chameleon keyboard to the displays.

Main Sketch Source File: CHAM_AVR_KEYBOARD_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_NTSC_DRV_V010
� CHAM_AVR_VGA_DRV_V010
� CHAM_AVR_KEYBOARD_DRV_V010

General Requirements: Video ports connected to NTSC or VGA monitors.

Controls Required: PS/2 keyboard plugged into Chameleon, simply type into the keyboard and watch the

output on the NTSC/VGA displays.

Technical Overview

This demo uses the single keyboard API call Keyboard_Key() to read the keyboard. It then displays the key both integer
as well as ASCII format. The listing below is an excerpt of the main() program:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 227

int main() // run over and over again
{
int key; // key that keyboard returns
char sbuffer[64]; // printing buffer

// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// give Propeller driver time to boot
_delay_ms(2500);

// clear screens
NTSC_ClearScreen();
VGA_ClearScreen();

// set NTSC color
NTSC_Color(0);
NTSC_Term_Print(" PS/2 Keyboard Demo");
NTSC_Term_Char(0x0D);
NTSC_Term_Print(" Press keys on local keyboard.");
NTSC_Term_Char(0x0D);

// set VGA color
VGA_Color(0);
VGA_Term_Char(0x0D);
VGA_Term_Print(" Press keys on local keyboard.");
VGA_Term_Char(0x0D);

// load keyboard driver (this driver is already loaded by default, but this call can't hurt)
Keyboard_Load();

// enter infinite loop...
while(1)
 {
 // read next key, return 0 (null if no key), wait for key press
 while ((key = Keyboard_Key()) == 0);

 // build display string
 if (key >= 32)
 sprintf(sbuffer, "Key Code = %d [%c] ", (int)key, (char)key);
 else
 sprintf(sbuffer, "Key Code = %d [non-printable] ", (int)key);

 // position cursor
 NTSC_SetXY(1, 4);

 // print on NTSC terminal screen
 NTSC_Term_Print(sbuffer);
 NTSC_Term_Char(0x0D);

 // position cursor
 VGA_SetXY(1, 4);

 // print on VGA terminal screen
 VGA_Term_Print(sbuffer);
 VGA_Term_Char(0x0D);

 //
 // little string compare state machine for fun, when user types in access code
 // it displays a little message at bottom
 if (key == access_code[access_code_index])
 {
 // consume character, test for match?
 if (++access_code_index == strlen(access_code))
 {
 NTSC_SetXY(1, 22);
 NTSC_Term_Print("Welcome NEO...Access Granted.");

 VGA_SetXY(1, 14);
 VGA_Term_Print("Welcome NEO...Access Granted.");

 access_code_index = 0;

 } // end if match

 } // end if
 else // reset access code, start over
 access_code_index = 0;
 //

 // slow things down a bit, so we can read the text!
 _delay_ms(10);

 } // end while

} // end main

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 228

I have highlighted the little scanner that looks for the sequence “morpheous”. Try typing it in and see if it works!

Summary

This demos shows off how easy it is to access the PS/2 keyboard. If you have done
work with embedded systems, reading a PS/2 keyboard is always a challenge since its
such a slow device. Thus, the best solution is to use interrupts to detect bits sent by the
keyboard. However, this usually means that any other processes that are running on a
high speed interrupt will be interrupted which is tricky. However, with the Propeller
doing all the work on a separate processing core, reading the keyboard is trivial and
requires no processing load at the master’s end.

30.1.2 Mouse “ASCII Paint” Demo

This demo uses the mouse API to communicate with a local PS/2 mouse plugged into the PS/2 port via the Propeller’s
mouse. Make sure to plug your mouse into the Chameleon and get a good connection. This crude “ASCII Paint” demo
allows you to draw with the mouse. The right mouse button changes the ASCII drawing character and the left mouse
button clears the screen. The program displays simultaneously on both the NTSC and VGA displays. Figure 30.2 shows
the demo in action.

Figure 30.2 – Mouse “ASCII Paint” demo in action.

Compiling and Running the AVRStudio Version

Demo Version Description: Draws on the screen with the mouse using ASCII art.

Main Source File: CHAM_AVR_MOUSE_DEMO_01.C

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h
� CHAM_AVR_VGA_DRV_V010.c|h
� CHAM_AVR_MOUSE_DRV_V010.h

General Requirements: Video ports connected to NTSC or VGA monitors.

Controls Required: PS/2 mouse plugged into Chameleon, draw ASCII art with the mouse. Left button to clear

the screen, right button to cycle thru different drawing characters.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 229

Compiling and Running the Arduino Version

Demo Version Description: Draws on the screen with the mouse using ASCII art.

Main Sketch Source File: CHAM_AVR_MOUSE_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_NTSC_DRV_V010
� CHAM_AVR_VGA_DRV_V010
� CHAM_AVR_MOUSE_DRV_V010

General Requirements: Video ports connected to NTSC or VGA monitors.

Controls Required: PS/2 mouse plugged into Chameleon, draw ASCII art with the mouse. Left button to clear

the screen, right button to cycle thru different drawing characters.

Technical Overview

This demo uses the Mouse_Read(...) API call to read the state of the mouse, it uses this to allow you to draw on the
NTSC/VGA screen with ASCII art characters. The main while() loop within the main() itself is shown below, this is where
all the action happens.

// main event loop
while(1)
 {
 // read the mouse event (if one)
 Mouse_Read(&event);

 // compute position
 event.x = event.x / 10;
 event.y = event.y / 10;

 // left button hit? Clear screen?
 if (event.buttons == 0X01)
 {
 // clear the surface
 NTSC_ClearScreen();
 VGA_ClearScreen();
 } // end if

 // right button hit? update cursor character?
 if (event.buttons == 0X02)
 {
 // update the cursor character
 if (++cursor >= (32+144))
 cursor = 33;

 } // end if

 // motion clamping
 if (event.x < -2)
 event.x = -2;
 else
 if (event.x > 2)
 event.x = 2;

 if (event.y < -2)
 event.y = -2;
 else
 if (event.y > 2)
 event.y = 2;

 // update position
 x += event.x;
 y -= event.y;

 // draw on both screens
 NTSC_SetXY(x, y);
 NTSC_Term_Char(cursor);

 VGA_SetXY(x, y/2);
 VGA_Term_Char(cursor);

 // slow things down a bit

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 230

 _delay_ms(5);
 } // end while

I have highlighted the single call to the mouse read function. One thing to note is that the mouse read function takes a
pointer to an gid_event structure, this is a generic structure that can potentially be used for other input devices such as
game controllers, track balls etc.

Summary

This demo once again shows how easy it is to interface peripherals to
the Chameleon with the Propeller doing all the work. Something that
might be fun to do is add a bitmap NTSC or VGA driver to the master
Propeller driver and then create a true paint program that allows pixel
level painting, filling, etc. and create something like the famous DPaint
that we used to use to make games in the 80’s and 90’s!

31.1 Serial, FLASH, and Port I/O Device Demos

The next group of demos illustrate the Serial port, FLASH memory, and Propeller Port I/O functionality. As usual, the
demos try to do something graphical, so they always support NTSC output and some might support VGA output as well.
But, they all usually use nothing more than text terminal graphics, so added VGA support is a couple lines of code.

The examples typically consist of the primary source file for the demo as well as:

� The System API library module CHAM_AVR_SYSTEM_V010.c|h.
� The main SPI API library module CHAM_AVR_TWI_SPI_DRV_V010.c|h.
� The serial API library module CHAM_UART_DRV_V010.c|h.
� The FLASH API library module CHAM_FLASH_DRV_V010.c|h.
� The Propeller local 8-bit port API library module CHAM_PROP_PORT_DRV_V010.c|h.
� The NTSC, VGA, GFX driver or all of them.

And any other ancillary drivers keyboard, mouse, etc.

All the required files can of course be found in the \Source directory on the DVD (which you should have already copied
onto your hard drive) located here:

DVD-ROM:\ CHAM_AVR \ SOURCE \

AVRStudio
TIP

In general, you will include all the sources in your project (.C files) and make sure all the
.H header files are in the same working directory, so the compiler can find them. You do
NOT include the .H header files in the compilation list of source files, the compiler will do
this for you. Only include .C and .S files in your source file link list in your project file list
to the left of the tool.

The Arduino version will be in “Sketch” form already, so all you need to do is load the Sketch in and upload and you’re in
business!

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 231

31.1.1 Propeller Local Port LED Blinker Demo

The Propeller chip on the Chameleon had 8 free I/O pins, so we decided to add an 8-bit port to it. With this, you can
interface SD cards, SPI memory, control servos, whatever. Of course, the AVR itself has all its I/O headers. But, give the
Propeller a direct port itself allows drivers running on the Propeller to do more stuff. Anyway, that’s what the Propeller 8-bit
port is all about. And this simple demo shows how to set the I/O pin directions and blink and LED. All we need is the
Propeller Port API library and an LED to plug into the Propeller port – which we happen to supply with your Chameleon.
Now, you might have a red, green, blue, or bi-color LED. Doesn’t matter which, just plug it into the 2-left most pin headers
of the Propeller Port as shown in Figure 31.1 below.

EE
TIP

If you are into electronics, you might be concerned that we are plugging the LED directly
into two I/O ports and it might burn the LED out? This is a valid concern, but luckily, the
forward voltage of the LED is about 2.2 – 2.5V, so the 3.3V outputs of the Propeller are
just enough to turn it on and the LED will draw a limited amount of current. Moreover,
the Propeller I/O ports can actually source or sink 40ma, so you can even drive little
light bulbs. Your second concern might be there is no ground on the 8-bit port, so how
does this work? Well, when we set an I/O to digital 0, it’s at a virtual ground and being
pulled to GROUND by a transistor switch, so as long as the amount of current your draw
thru the circuit isn’t too much, the virtual ground will remain very close to 0. If you draw a
lot of current then the ground will “rise” or “float” up due to the voltage drop over the
transistor switch pulling the pin LOW.

Figure 31.1 – A screen shot of the NTSC output (left) and the actual LED blinking on the Chameleon (right).

Compiling and Running the AVRStudio Version

Demo Version Description: Blinks and LED on the Propeller Port.

Main Source File: CHAM_AVR_PROPPORT_DEMO_01.C

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h
� CHAM_AVR_PROP_PORT_DRV_V010.h

General Requirements: Video port connected to NTSC TV monitors, LED plugged into the Propeller Port, leftmost

2-pins, orientation doesn’t matter.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 232

Controls Required: None.

Compiling and Running the Arduino Version

Demo Version Description: Blinks and LED on the Propeller Port.

Main Sketch Source File: CHAM_AVR_PROPPORT_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_NTSC_DRV_V010
� CHAM_AVR_PROP_PORT_DRV_V010

General Requirements: Video port connected to NTSC TV monitors, LED plugged into the Propeller Port, leftmost

2-pins, orientation doesn’t matter.

Controls Required: None.

Technical Overview

This demo uses the Propeller Port API library to control the pins of the 8-bit local Propeller Port and blink an LED. A
couple cool things about the demo is that it toggles the pins on the I/O header +- in pairs then -+, thus no matter which
way you have the LED nor what pins you have it plugged into, it will actually blink or go bi-color (if you were lucky and got
a bi-color LED in your kit). Below is the entire main() loop of the program.

void main() // run over and over again
{
// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// give Prop a moment before sending it commands, the boot process is about a second
// if you like you can speed it up, by removing the Prop driver's "LED blink" sequence in the driver
// or speed it up, but commands that are sent before the Prop driver is done booting will be ignored.
// therefore, if you have a lot of set up work to do, then you don't require a delay, but if you jump right
// into commands, then you need a good 1.5 - 2 second delay
_delay_ms(2500);

// clear screens
NTSC_ClearScreen();
NTSC_Color(0);

// set direction of prop port so we have all bits output
PropPort_SetDir(0b11111111); // 1 is output, 0 input

// enter infinite loop...
while(1)
 {
 // print on NTSC terminal screen
 NTSC_Term_Print("Port Data ON [+ - + - + - + -]");
 NTSC_Term_Char(0x0D);

 // turn on the LED pin 7 = HIGH, pin 6 = LOW, repeat pattern down port.
 PropPort_Write(0b10101010);

 // slow things down a bit, so we can read the text!
 _delay_ms(250);

 // print on NTSC terminal screen
 NTSC_Term_Print("Port Data OFF[- + - + - + - +]");
 NTSC_Term_Char(0x0D);

 // turn off the LED pin 7 = LOW, pin 6 = HIGH, repeat pattern down port.
 PropPort_Write(0b01010101);

 // slow things down a bit, so we can read the text!
 _delay_ms(250);

 } // end while

} // end main

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 233

I have highlighted the port I/O commands. The program starts by setting the direction bits to all 1’s which mean output.
Then the program immediately enters into the main loop and starts toggling the I/O pins on a 500ms total cycle. The
output is mimicked to the NTSC screen, you can add VGA support yourself with a few lines of code. Just don’t forget to
add the library and header files to your program.

Now, once thing you might wonder is “how fast can I control these pins?”. This is a good question since you might
want to do something like talk to a SPI or I2C device. So, the real bottleneck is the SPI interface from the AVR/PIC chip to
the Propeller, we can only send commands and thus toggle the I/O pins as fast as this interface. Thus, if you want to do
something more complex, then I suggest that you add commands and messages to control the Propeller’s onboard
counters – then you can route them to the I/O pins and generate any signal you want via control from the master AVR/PIC
chip.

Summary

This demos shows off a really simple way to control some of the I/O pins of the Propeller chip.
Also, the code is so simple there is no processing core for it on the Propeller, it runs right on the
main message dispatcher loop and just does the pin I/O on demand. Something you should try
is hooking up a SPI, I2C, or other device to the port and see if you can remotely control it all the
way from the AVR/PIC chip!

31.1.2 Serial RS-232 Communications Demo

This demo shows off the serial communications of the Chameleon. There are three components to this:

� The hardware UART in the AVR 328P.
� The FTDI USB to Serial UART converter.
� The software driver running on the AVR.

Considering these three elements; to get serial from the PC’s USB port to the Chameleon, first we need the FTDI USB to
serial UART which we have been using. Secondly, to communicate with the AVR, we need to use its internal UART (the
328P has only a single UART by the way). And finally, we need to write software to control the AVR’s UART and set it up.
This is what the CHAM_AVR_UART_DRV_V010 library module is for.

TIP

Although, we have been using the USB to serial connection to the Chameleon, we don’t
have to use the USB port, the serial TX/RX pins from the AVR are exported to the
expansion headers where you can directly connect them to a TTL level serial device.
However, in most cases, the only serial device you need to connect to the Chameleon is
the PC, and thus the USB to serial connection suffices for most applications.

Setting up the Terminal Program

If you are an expert at setting up serial terminals and connecting serial devices then you can skim this section, but if
you’re not then follow along. There are two parts to this demo:

� The physical connection from the Chameleon AVR’s serial port to the PC’s serial port.
� Running a VT100 serial terminal program on the PC with settings N81, 115,200 baud.

The first problem is fairly straightforward, simply connect your Chameleon AVR to your PC with the mini-USB serial cable.
The FTDI driver on the PC’s side virtualizes the COM port, so from the PC’s point of view its just another serial port.

Once you have the physical connection made then the next step is to get a terminal program up and running on your PC.
There are literally dozens if not hundreds of serial communications programs that you can find on internet, 99% of them
are free for a reason -- they are junk. There are a few that are actually very good such as:

� PuTTY - http://www.chiark.greenend.org.uk/~sgtatham/putty/
� Zoc - http://www.emtec.com/zoc/

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 234

� Absolute Telnet - http://www.celestialsoftware.net/telnet/

You can also find them on DVD located here :

 DVD-ROM:\ CHAM_AVR \ TOOLS

VT100 terminal running, the Chameleon’s serial port connected to the PC with the following settings on your terminal:

� Data Format: "N81", no parity, 8 data bits, 1 stop bit.
� Baud Rate: 115,200.
� Handshaking: None.
� Terminal Mode: VT100.
� Screen Size: 80x24 or larger, 120x50 is a good choice.
� Local Echo: Off.
� Make sure that you have the serial selection switch in the DOWN position on the Chameleon (AVR mode).

What we are going to focus on here is taking full advantage of the serial UART code and making a little “Guess My
Number” game that runs on the Chameleon AVR, but communicates via serial to a VT100 terminal running on the PC.
Figure 31.2 shows the demo program running.

Figure 31.2 – “Guess My Number” running on the PC terminal (need new image)

The screen shot doesn’t do the demo justice since there are sound effects and ASCII animation that occur. When you run
the demo, you might have to hit RESET on the Chameleon a couple times to really appreciate the “retro” feel of the
demo.

What I did was play a bit on the 1980’s classic “WarGames” starring Mathew Broderick. It’s
one of my favorite movies, and if you haven’t seen it, definitely fun to watch. The movie’s plot
was a teenage kid tried to hack into some Silicon Valley computer game company, but instead
modem’ed into the “WOPR” which stood for “War Operations Planned Response” which was
a computer running the entire USA missile system. The computer wants to play a game and the
story begins from there. The whole point of this stroll down memory lane is that computers used
to be magical devices that opened up whole worlds to people in a much more personal way
than they do today. And text based games used to be the conduit of much of this interaction
with computers. So even with a simple terminal program you can create something with the
serial port that’s kinda cool If you’re interested in the computer used in the movie, its too is very
famous – the IMSAI, only a few left in operation. Here’s a link to more information:

http://www.imsai.net/movies/wargames.htm

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 235

Compiling and Running the Demo(s)

There are two demos in this group; the AVRStudio version and the Arduino version. They are nearly identical except that
for the AVRStudio version serial communications uses the CHAM_AVR_UART_DRV_V010.c|h driver that we created,
but the Arduino version uses the Arduino serial class. Nearly, the same and I could have used the Chameleon serial driver
in the Arduino version, but wanted to show you two fairly complex programs that use serial communications using each
driver respectively.

Compiling and Running the AVRStudio Version

Demo Version Description: Serial UART demo, illustrates text output and input using a game as the platform.

Main Source File: CHAM_AVR_GUESS_NUMBER_01.c
Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_UART_DRV_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_SOUND_DRV_V010.c|h

General Requirements: Serial port connection from Chameleon AVR to PC over the USB cable, terminal

programming running, RCA sound output connected to speaker or TV audio.

Controls Required: None, uses PC keyboard via terminal program.

Compiling and Running the Arduino Version

Demo Version Description: Serial UART demo, illustrates text output and input using a game as the platform.

Main Sketch Source File: CHAM_AVR_GUESS_NUMBER

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_UART_DRV_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_SOUND_DRV_V010.c|h

General Requirements: Serial port connection from Chameleon AVR to PC over the USB cable, terminal

programming running, RCA sound output connected to speaker or TV audio.

Controls Required: None, uses PC keyboard via terminal program.

The game starts by asking you if you wish to play, you can answer “yes” or “no”, each has its consequences. If you do
decide to play, then the computer selects a random number from 1 to 100 and asks you to guess it. Just play along and
see if you can guess. Each guess you type in and hit <RETURN>.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 236

Technical Overview

This demo really shows off the UART and bi-directional communications. Not only are we printing to the UART for display
on the terminal on the PC, but we are getting input from the terminal and processing it, so it’s a very complete two way
communications demo. Also, there are some animations and fun techniques that are used to display the logon logo and
other effects to “sell” the game. For example, the intro logo is an array of data that is used to print out “WarGames”:

// the title screen bitmap as a matrix of byte, stored in FLASH for fun, then to render we will convert to
// characters: BLOCK and SPACE
// notice the use of "const" and "PROGMEM", also to access the array, we must use "pgm_read_byte(addr)"
// size of banner 52x5
const unsigned char title_string_flash[] PROGMEMPROGMEMPROGMEMPROGMEM = {

0,1,0,0,0,1,0,1,1,1,1,1,0,1,1,1,1,1,0,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,
0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,
0,1,0,0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,0,
0,1,0,1,0,1,0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,
0,1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,1,1,1,1,0,1,1,1,1,1,0,
};

The interesting thing about this array is that its defined in FLASH memory rather than SRAM, so this demo shows how
you do that. Notice the keyword PROGMEM after the array declaration? This instructs the compiler to place the array in
FLASH rather than SRAM. However, this isn’t without side effects. Now that the data is in FLASH, you have to use special
functions and techniques to access the FLASH data, but this is more of an inconvenience that anything else. For example,
later in the code when the logo is displayed, the following function reads the data, displays it on the terminal, and makes
some sounds:

// draw "WAR GAMES" with characters from FLASH
for (index = 0; index < 52*5; index++)
 {
 // read the image from FLASH memory with special function call that uses
 // "LPM" ASM instruction to read FLASH
 c = pgm_read_byte(&title_s c = pgm_read_byte(&title_s c = pgm_read_byte(&title_s c = pgm_read_byte(&title_string_flash[index]);tring_flash[index]);tring_flash[index]);tring_flash[index]);

 // based on data convert to character and send to UART
 if (c == 0)
 {
 Sound_Play(0);
 UART_Print_String(" ");
 }
 else
 if (c == 1)
 {
 Sound_Play(2000);
 UART_Print_String("#");
 } // end if

 if ((index % 52) == 0)
 UART_Print_String("\n");

 _delay_ms(50);

 } // end for

I have highlighted the special function needed to access FLASH based storage, the pgm_read_byte(…) function. This is
all you need to get to the bytes of the FLASH with a pointer.

The remainder of the main program is more or less printing strings with timing and a bit of conditional logic; however,
there is one function that is the workhorse of the program and that’s the Get_String(…) function. When programming,
most programmers are completely oblivious to the underlying code in printf(…) or scanf(…) and so forth, but in
embedded systems we can’t use these calls since they usually have no meaning and we need to write them ourselves!
Alas, in this case, we need some kind of simple single line text editor, so the user can type on the screen, backspace, etc.
and do a few reasonable “edit” related keystrokes. The terminal program has no idea about this and nor does the UART,
the UART just receives ASCII characters, thus we need to write a single line text processor to make this work. The
function listing of this code is below.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 237

int Get_String(char *cmd_buff, char **tokens)
{
///
// this function waits for the user to input a string on from the UART, it supports some
// editing such as backspace. When the user hits "return" the string is tokenized into an array
// of strings **tokens. The number of tokens extracted are returned by the function
// INPUTS:
// *buffer = pointer to string storage where the raw ASCII string from the UART is placed
// **tokens = an array of pointers where the function puts the tokenized strings
//
// OUTPUTS:
// returns the number of tokens.
///

int c;
char token_buff[64];
int num_tokens = 0;
int next_token = 0;
int cmd_buff_index = -1;
char *token_ptr = NULL;
char *result_ptr;

// enter infinite while until valid string is entered
while(1)
{
// process next character
if ((c = UART_getc()) != -1)
 {
 // special characters
 switch (c)
 {
 case 0x0D: // carriage return
 case 0x0A: // line feed
 {
 cmd_buff[++cmd_buff_index] = 0;

 // any command to process?
 if (cmd_buff_index > 0)
 {
 // process command...
 // upcase the string to normalize tokens
 strupr(cmd_buff);

 // copy cmd_buffer to token_buffer for processing
 memcpy(token_buff, cmd_buff, strlen(cmd_buff) + 1);

 // initialize command processor
 num_tokens = 0;

 // initialize token processor
 token_ptr = strtok_r(token_buff, "=, ", &result_ptr);

 while(token_ptr)
 {
 // insert token into token array and inc number of tokens found
 tokens[num_tokens++] = token_ptr;
 token_ptr = strtok_r(NULL, "=, ", &result_ptr);
 } // end while

 // string has been entered and tokenized, now return number of tokens
 return(num_tokens);
 } // end if

 // empty string
 return (-1);

 } break;

 case 0x08: // back space
 {
 if (cmd_buff_index >=0)
 {
 UART_putc(c);
 cmd_buff_index--;
 } // end if
 } break;
 default: // otherwise normal character, insert into command string and echo
 {
 UART_putc(c);
 cmd_buff[++cmd_buff_index] = c;
 } break;
 } // end switch
 } // end if

} // end while

} // end Get_String

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 238

This function is a bit overkill since its designed to parse the string into “tokens” that you might need later, but it’s a good
starting point for you if you want to break strings apart that come in via the UART. The bottom line is text parsing isn’t as
easy as you would think and when you have to write editors that run over terminal programs there are a lot of issues you
need to resolve.

Summary

Hopefully, you have a good command of the serial driver now and you can use it to communicate with the PC or any other
serial based device. There are all kinds of interesting things you can do with a serial port and the Chameleon AVR, for
example you could get an external serial modem and write a simple BBS (bulletin board system) on the Chameleon AVR.
How cool would that be? For example, the "TRENDnet 56k (V.92) High Speed Voice/Fax Modem” has a standard RS-
232 DB9 connector on it, so you can connect quite easily to the Chameleon AVR and send standard HAYES AT
commands at it. Can you imagine running a BBS on your little Chameleon and then dialing in from a friends house?
Here’s a link to the product:

http://www.tigerdirect.com/applications/SearchTools/item-details.asp?EdpNo=671884&CatId=564

31.1.3 FLASH Memory Demo (with X-Modem Protocol Bonus Example)

This demo illustrates how to use the onboard 1MB SPI FLASH memory (Atmel part #T26DF081A). This is not to be
confused with the Propeller chip’s 64K EEPROM. The EEPROM is for the Propeller’s boot image and only directly
accessible by the Propeller chip. The 1 MB FLASH is accessible by the AVR chip via the SPI mux interface. With that in
mind, you might want review the Chameleon API as well as the data sheet for the FLASH memory located on the DVD
here:

DVD-ROM:\ CHAM_AVR \ DOCS \ DATASHEETS \ Atmel_AT26DF081A_FLASH_doc3600.pdf

To use the FLASH API is relatively easy, you open the FLASH memory up, then read or write, then close it. Basically, four
API calls to do everything. However, that’s pretty boring, so we decided to do something a little more interesting. We were
concerned that many newbies would have a hard time putting the FLASH to use since there isn’t a direct way to access it
from the PC. For example, if you could read and write files to it over the USB port that would be ideal. Moreover, if the
Chameleon could act like a FLASH FAT drive that would be great. But, no one has written software to do that, and that’s a
good 1-2 weeks work, so if you’re up to it please do – However, as a conciliation prize, we developed a little “X-Modem”
protocol driver that allows you to download files (of any type) from the PC to the Chameleon into a RAM buffer. Then you
can do what you want with the RAM buffer like write it to the FLASH memory! Figure 31.3 shows a flow diagram of what’s
going on.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 239

Figure 31.3 – The various elements in an X-Modem file transfer.

X-Modem Protocol

If you have never heard about X-modem protocol, its probably the most widely used modem to modem download protocol
on the planet and still widely used. There are a number of variants that have been developed over the years such as X-
modem 1K, X-Modem CRC, Y-Modem, Z-Modem and so forth, but fundamentally they all work the same way; the
“uploader” sends packets (usually 128-256 bytes) to the “downloader” until the entire file has been sent. The uploader
is typically the PC and the downloader is typically another PC that needs the file or a stand alone device.

X-Modem protocol is rather simple, but a bit tricky to implement robustly since there are lots of potential forks in the
communications logic that have to do with packets being lost, errors, resending, timeouts, etc. If you have ever written and
communications protocols you really understand how complex getting them to work robustly it. You can read about X-
Modem protocol by Googling for it, but here are a couple good references online:

http://en.wikipedia.org/wiki/XMODEM

http://www.techheap.com/communication/modems/xmodem.html

So, what we did was take the protocol and make a simple downloader / receive function that initiates an X-Modem
transfer download over the serial port. The function assumes that the uploader is already running and waiting for the
downloader (the Chameleon) to initiate the transfer. This is a very important part of X-Modem transfer protocol; the
uploader is started and it simply waits for the downloader to start requesting packets. There is actually a timeout that it will
give up (in the minutes), but usually the idea is you start the uploader and leave it THEN go run the downloader and it
controls the flow of information or the rate of data reception. Additionally, the downloader checks each block of information
against a sent checksum (all of these is covered in the links above). But, briefly here’s the packet format (or block as they
like to call it):

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 240

ASCII Control Codes

 <soh> 01H
 <eot> 04H
 <ack> 06H
 <nak> 15H
 <can> 18H

Each block of the transfer looks like:

 <SOH><blk #><255-blk #><--128 data bytes--><cksum>
 in which:

 <SOH> = 01 hex
 <blk #> = binary number, starts at 01 increments by 1, and
 wraps 0FFH to 00H (not to 01)
 <255-blk #> = blk # after going thru 8080 "CMA" instr.
 Formally, this is the "ones complement".
 <cksum> = the sum of the data bytes only. Toss any carry.

Considering the block format outlined above, the downloader needs to check the checksum against the received data and
can request a packet be resent if its not correct. Also, if packets are late, etc. the downloader can time out, and the
downloader can simply stop the transfer if it wishes – thus, the protocol is receiver driven. Please review the web links
above to get a better handle on this protocol.

Now, the implementation we made was quick and dirty, no checksum checking, no timeouts, etc. it simply hopes that
nothing goes wrong. On the other hand, its very easy to add things to the function to make it more robust, we purposely
wrote it this way, so that you could understand the function and add to it if you wanted. Implementing the complete X-
Modem protocol with all error handling cases, makes the code look like spaghetti! With that in mind, here’s the function
itself that does the downloading:

int XModem_Receive(char *file_buffer, int buffer_size)
{
// receives file from an xmodem sender, standard "XMODEM" protocal as shown here:
// http://en.wikipedia.org/wiki/XMODEM
// http://www.techheap.com/communication/modems/xmodem.html
//
// function takes a pointer to the storage area of file along with the maximum size of the buffer
// if the file exceeds the buffer, the funtion WILL read the file and compute its lenght, but only the
// first buffer_size number of bytes will be written to the file_buffer.

// function returns the length of the file in bytes
//
// This is a "receiver" oriented protocal, so when you want to receive a file from the PC, start the
// transmission on the PC end FIRST, THEN run your xmodem download on this side. The PC will wait a min or 2
// before timing out, but this funtion will immediately start sending NAKs and expect the sender to respond
// I leave it to you to make this function more "robust", I wrote it in about an hour :)
//
// note: debug information only prints to NTSC currently

// xmodem protocal defines

// state machine
#define XSTATE_INIT 0
#define XSTATE_SEND_NAK 1
#define XSTATE_RECEIVE_PACKET 2
#define XSTATE_SEND_ACK 3
#define XSTATE_EOT 4

// control characters used in xmodem protocal
#define CHR_SOH 1
#define CHR_EOT 4
#define CHR_ACK 6
#define CHR_NAK 21
#define CHR_CAN 24
#define CHR_CTRLZ 26

// control debug output to NTSC screen, this is handy if you try to add more features to the function
#define DEBUG_XMODEM 1 // 0 - no output at all, 1 - display file data and file size, 2 - display
everything

int xstate, xstate_running, xbytes_read = 0, ch, index;
unsigned char xchecksum, xchecksum_computed, xpacketnum, xpacketnumn;

// start off in initialization state
xstate = XSTATE_INIT;
xstate_running = 1;

// main loop
while(xstate_running)

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 241

{
// begin x-mode state machine
switch(xstate)
 {
 case XSTATE_INIT: // initialize all the variables and data structures for the xmodem transmission
 {

#if DEBUG_XMODEM >= 2

 NTSC_Term_Print("XSTATE_INIT");
 NTSC_Term_Char(0x0D);
#endif

 // reset bytes read counter, etc.
 xbytes_read = 0;

 // transition to NAK state to initiate xmode transfer
 xstate = XSTATE_SEND_NAK;

 } break;

 case XSTATE_SEND_NAK: // start the transmission, or resend current packet
 {
#if DEBUG_XMODEM >= 2
 NTSC_Term_Print("XSTATE_SEND_NAK");
 NTSC_Term_Char(0x0D);

 NTSC_Term_Print("S:NAK");
 NTSC_Term_Char(0x0D);
#endif
 // send NAK and wait
 UART_putc(CHR_NAK);

 // wait for a packet..
 xstate = XSTATE_RECEIVE_PACKET;

 } break;

 case XSTATE_RECEIVE_PACKET: // receives the packet
 {
#if DEBUG_XMODEM >= 2
 NTSC_Term_Print("XSTATE_RECEIVE_PACKET");
 NTSC_Term_Char(0x0D);
#endif
 // wait for result
 while (1) { ch = UART_getc(); if (ch == CHR_SOH || ch == CHR_EOT) break; } // end while

#if DEBUG_XMODEM >= 2
 sprintf(sbuffer,"Looking for SOT/EOT: %d %c",ch, 0x0D);
 NTSC_Term_Print(sbuffer);
#endif

 // we have the first byte, test for SOH or EOT
 if (ch == CHR_SOH)
 {
#if DEBUG_XMODEM >= 2
 NTSC_Term_Print("R:SOH");
 NTSC_Term_Char(0x0D);
#endif
 } // end if SOH
 else if (ch == CHR_EOT)
 {
#if DEBUG_XMODEM >= 2
 NTSC_Term_Print("R:EOT");
 NTSC_Term_Char(0x0D);
#endif
 xstate = XSTATE_EOT;
 break;

 } // end if

 // get packet number
 while (1) { ch = UART_getc(); if (ch != -1 || ch == CHR_CTRLZ) break; } // end while

 xpacketnum = ch;

#if DEBUG_XMODEM >= 2
 sprintf(sbuffer,"Packet # %d\r",xpacketnum);
 NTSC_Term_Print(sbuffer);
#endif

 // get packet number complement
 while (1) { ch = UART_getc(); if (ch != -1 || ch == CHR_CTRLZ) break; } // end while
 xpacketnumn = ch;

#if DEBUG_XMODEM >= 2
 sprintf(sbuffer,"Packetn (255-packet)# %d\r",xpacketnumn);
 NTSC_Term_Print(sbuffer);
#endif
 // now get the packet

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 242

 xchecksum_computed = 0;

#if DEBUG_XMODEM >= 2
 NTSC_Term_Print("DATA:");
 NTSC_Term_Char(0x0D);
#endif
 for (index = 0; index < 128; index++)
 {
 // wait for next byte
 while (1) { ch = UART_getc(); if (ch != -1 || ch == CHR_CTRLZ) break; } // end while

 // insert into buffer (if still room?)
 if ((index + (xpacketnum-1)*128) < buffer_size)
 file_buffer[index + (xpacketnum-1)*128] = ch;

 // update checksum
 xchecksum_computed += ch;

#if DEBUG_XMODEM >= 1
 // test for printable
 if ((ch >= 32 && ch <= 127) || ch==0x0D)
 {
 NTSC_Term_Char(ch);
 VGA_Term_Char(ch);
 } // end if printable
 else // non-printable character
 {
 // print something for place holder?
 //NTSC_Term_Char('.');
 //VGA_Term_Char('.');
 } // end else non-printable
#endif

 } // end for index

 // add bytes read
 xbytes_read += 128;

 // read the checksum
 while (1) { ch = UART_getc(); if (ch != -1 || ch == CHR_CTRLZ) break; } // end while
 xchecksum = ch;

#if DEBUG_XMODEM >= 2
 NTSC_Term_Char(0x0D);
 sprintf(sbuffer,"Checksum: Sent=%d, Calc=%d\r",xchecksum, xchecksum_computed);
 NTSC_Term_Print(sbuffer);
 NTSC_Term_Char(0x0D);
#endif

 // send the ACK (test if packet was good later)
 xstate = XSTATE_SEND_ACK;

 } break;

 case XSTATE_SEND_ACK: // packet was good, please send another?
 {
#if DEBUG_XMODEM >= 2
 NTSC_Term_Print("XSTATE_SEND_ACK");
 NTSC_Term_Char(0x0D);

 NTSC_Term_Print("S:ACK");
 NTSC_Term_Char(0x0D);
#endif
 _delay_ms (100);

 // send ACK and wait
 UART_putc(CHR_ACK);

 _delay_ms (100);

 // wait for a packet..
 xstate = XSTATE_RECEIVE_PACKET;

 } break;

 case XSTATE_EOT: // possible end of transmission
 {
#if DEBUG_XMODEM >= 2
 NTSC_Term_Print("XSTATE_EOT");
 NTSC_Term_Char(0x0D);

 NTSC_Term_Print("S:NAK");
 NTSC_Term_Char(0x0D);
#endif
 // send NAK, wait for another EOT
 UART_putc(CHR_NAK);

 // wait for result
 while (1) { ch = UART_getc(); if (ch != -1 || ch == CHR_CTRLZ) break; } // end while

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 243

 // test for final EOT
 if (ch == CHR_EOT)
 {
 // final EOT, send ACK, finish
 UART_putc (CHR_ACK);

#if DEBUG_XMODEM >= 2
 NTSC_Term_Print("S:ACK");
 NTSC_Term_Char(0x0D);
#endif
 // exit state machine
 xstate_running = 0;

 } // end if

 } break;

 default: break;

 } // end switch

} // end while

#if DEBUG_XMODEM >= 1
sprintf(sbuffer,"\rDownload Complete.\r%d Blocks.\rFile Size = %d.\r", xbytes_read/128, xbytes_read);
NTSC_Term_Print(sbuffer);
VGA_Term_Print(sbuffer);
#endif

// return bytes read
return (xbytes_read);

} // end XModem_Receive

All that conditionally compilation code is to help you modify the function to add features to it since this is really the only
way to get “data” from the PC into the FLASH memory at the moment (unless you make something yourself).

Alright, now that you have an idea about X-Modem protocol, let’s take a step back and see how we are going to send X-
Modem files from the PC?

Sending X-Modem Files from the PC

Sending X-Modem files from the PC is almost the same as setting it up for serial communications, that is, you need a
program capable of X-Modem file transfer. Luckily, there many of them available, but once again I suggest that you use
two of my favorites Absolute Telnet and ZOC which you can find online here:

Zoc http://www.emtec.com/zoc/
Absolute Telnet http://www.celestialsoftware.net/telnet/

Copies of them are also on the DVD-ROM here :

DVD-ROM:\ CHAM_AVR \ TOOLS \ COMMUNICATIONS \ *.*

For this example, let’s use Absolute Telnet. Similarly, you need to install the program, then create a communications
profile for your USB serial COM port, but this time there is a difference, instead of 115,200 baud that we have been
communicating at, we are going to slow things down to 2400 baud. This is to reduce the potential error rate to near zero.

So your final setup should look something like the dialog shown in Figure 31.4 below.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 244

Figure 31.4 – Setting up Absolute Telnet for X-Modem transfers.

The settings should be:

� Data Format: "N81", no parity, 8 data bits, 1 stop bit.
� Baud Rate: 2400.
� Handshaking: None.
� Terminal Mode: VT100 (doesn’t really matter though since we aren’t using the terminal).
� Screen Size: 80x24 or larger, 120x50 is a good choice.
� Local Echo: Off.
� Make sure that you have the serial selection switch in the DOWN position on the Chameleon (AVR mode).

Notice, the terminal mode VT100, etc. doesn’t really matter, nor does echo really, since we aren’t going to type anything.
The PC is going to do the transfer itself in an automated fashion. Moving on, once you have Absolute Telnet setup, then
you are going to make the connection to the Chameleon (once we have the FLASH demo loaded). To do this you simply
click the lighting bolt or connection icon on the Absolute Telnet interface. Then once we want to initiate the X-Modem
transfer you are going to access the main menu and access the <Transfer → Send → XModem> menu item (as shown
in Figure 31.5 below), select a file and download to the Chameleon. But, we are getting ahead of ourselves right now. Just
remember this process, and keep it in the back of your mind, lets switch gears to setting up the demo on the Chameleon
and getting that ready to receive files.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 245

Figure 31.5 – Sending an XModem file with Absolute Telnet.

Compiling and Running the Demo(s)

There are two demos in this group; the AVRStudio version and the Arduino version. They are nearly identical except that
for the AVRStudio version has been ported to work on the Arduino with the usually porting tactics discussed previously in
the manual. The main file that we introduce to access the FLASH API is CHAM_AVR_FLASH_DRV_V010.C|H. Once you
compile and FLASH the Chameleon with the demo, it displays a menu on both the NTSC and VGA displays, this is shown
in Figure 31.6 below.

Figure 31.6 – The FLASH demo main menu.

Referring to Figure 31.6 , there are two menu options:

1. Xmodem receive to FLASH.
2. Dump FLASH to screen.

You control the menu with the local keyboard plugged into the Chameleon’s PS/2 port.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 246

Option 1, starts a 3 second countdown and then starts the X-Modem download. Thus, the PC side better already have
the XModem file transfer program ready and waiting. Moreover, the programs dumps the data to the screen in ASCII
format, so I suggest that what your transfer its human readable. Also, make it short, maybe a few hundred bytes to a
couple K. The AVR only has enough room for a 1K receive buffer in the X-Modem function, thus it only buffer 1K of the
data and writes it to the FLASH memory everything else is shown on the screen as its received, but lost. Option 1 is
shown in Figure 31.7 below.

Figure 31.7 – The FLASH demo receiving a file.

Of course, you can alter the XModem receive function to write files directly to the FLASH as they are received block by
block, and you probably will need to.

Option 2, lists out the first 1K of the FLASH memory, so you can see what’s in it. Point, being you want to boot the
program, see what’s in the FLASH it, then download something, see if it changes, reset, re-boot, try again. And example
of Option 2 running is shown in Figure 31.8 below.

Figure 31.8 – The FLASH demo displaying a file.

Thus, the usual order of operations will be to boot the Chameleon with the FLASH demo, then you might hit Option 2 to
see what’s in the FLASH’s first 1K of memory. Then you might decide to overwrite it with something, so you go to your
PC, set up the X-Modem download, start the file transfer and the PC program will wait…

Then you go back to the Chameleon’s local keyboard and press Option 1, then you will see a 3 second countdown and
the program will start downloading – as it downloads you will see the test stream across the screen.

Finally, I have created a few files for you to download with X-Modem that have short famous poems all located in the
Source directory here:

DVD-ROM:\ CHAM_AVR \ SOURCE \

“The Road Not Taken” by Robert Frost - xmodem_test_file_road_not_taken.txt
“O Captain! My Captain!” by Walt Whitman - xmodem_test_file_o_captain.txt
“All the World's a Stage” by William Shakespeare - xmodem_test_file_all_the_worlds_stage.txt

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 247

They are better than using random .TXT files or data files and if you are over 21 years old and haven’t read these at least
once in your life, its worth doing so, they are very powerful and very true.

Compiling and Running the AVRStudio Version

Demo Version Description: FLASH memory demo that receives files via X-Modem protocol.

Main Source File: CHAM_AVR_FLASH_DEMO_01.c

Additional Files Required:

� CHAM_AVR_SYSTEM_V010.c|h
� CHAM_AVR_TWI_SPI_DRV_V010.c|h
� CHAM_AVR_UART_DRV_V010.c|h
� CHAM_AVR_NTSC_DRV_V010.c|h
� CHAM_AVR_VGA_DRV_V010.c|h
� CHAM_AVR_KEYBOARD_DRV_V010.c|h
� CHAM_AVR_FLASH_DRV_V010.c|h

General Requirements: NTSC or VGA display connected, local PS/2 keyboard connected, X-Modem download

program running on PC, N81, 2400 baud.

Controls Required: Local PS/2 keyboard, simply use menu, also PC running X-Modem uploader.

Compiling and Running the Arduino Version

Demo Version Description: FLASH memory demo that receives files via X-Modem protocol.

Main Sketch Source File: CHAM_AVR_FLASH_DEMO

Additional Library Files Required (imported automatically by sketch)

� CHAM_AVR_SYSTEM_V010
� CHAM_AVR_TWI_SPI_DRV_V010
� CHAM_AVR_UART_DRV_V010
� CHAM_AVR_NTSC_DRV_V010
� CHAM_AVR_VGA_DRV_V010
� CHAM_AVR_KEYBOARD_DRV_V010
� CHAM_AVR_FLASH_DRV_V010

General Requirements: NTSC or VGA display connected, local PS/2 keyboard connected, X-Modem download

program running on PC, N81, 2400 baud.

Controls Required: Local PS/2 keyboard, simply use menu, also PC running X-Modem uploader.

Technical Overview

The program is probably the most complex of all since it has to do so much. We need a NTSC/VGA menuing system that
allows the user to enter menu options, then we needed the X-Modem function to receive files which a project in itself, and
finally, the FLASH memory call to display and save the FLASH data. So a lot of parts, but with a little imagination, you can
use this program as the basis of a MP3 or video player. You can download files into the FLASH with the X-Modem
function, then write code that decompresses video or audio and presto!

Anyway, we have already seen the X-Modem receive file listing earlier in the overview and the complete program is rather
long, too long to list. Therefore, I am just going to verbalize the FLASH aspect of it the program. Forgetting about the X-
Modem support, accessing the FLASH memory is trivial with the API, all you need to do is call Flash_Open(), then you
can read data with the Flash_Read(…) function. When you’re done, call Flash_Close() and that’s it! If you want to write
to the flash memory, then in addition to the Flash_Open() call you must make sure that the blocks or sectors you want to
write to have been erased first, once they are erased you can write to them. The erase function is Flash_Erase(…) and

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 248

as long as you have done that once before writing (or know that the FLASH is already erased) then you call
Flash_Write(…) and write one or more bytes anywhere in the FLASH, once again, call Flash_Close() when you’re done.

TIP

There is also a “chip erase” function supported by the FLASH memory that erases the
whole chip. We removed this from the API since we were having trouble with it, the
datasheets are always a little buggy, and might have something incorrect, so check it
out – It’s a simple command, but first you need to unprotect the chip and of course write
enable then erase. It worked on some other versions of the FLASH chip, but these
version it doesn’t seem reliable. It WORKS – trust me, but there are some missing
details in the data sheet possibly, a step that we are omitting with these new chips, so
we deleted the function this time around.

Summary

In this chapter, you not only learned about the cool 1 MB Flash memory the Chameleon has, but got a taste of file transfer
protocols. Hopefully, you can take our 30 minute X-Modem file transfer function and spend a good day on it and really
make it robust!

32.1 Native Mode / Bootloader mode

Currently, there are two ways to use the Chameleon AVR:

� Bootloader Mode: with the Arduino bootloader pre-loaded into FLASH memory.
� Native Mode: with AVRStudio generating a complete FLASH image.

The bootloader mode is convenient since the Arduino tool can download to the Chameleon (or Arduino) with nothing more
than a serial port. The native mode is nice since you have full control and you can write large complex programs that take
up all the space of the AVR, download them into the AVR and not worry about the bootloader section getting corrupted,
etc.

However, you do not have to use the Arduino bootloader alone… There are a number of bootloaders, in fact, the Arduino
bootloader is nothing more than the Atmel standard application note bootloader slightly modified. Thus, you can make
your own bootloader, use Atmel’s, and so forth along with your own copy of the GNU GCC AVR tools and then program
on Linux, Windows, Mac, or any other operating system the GNU GCC tools are available on. The bottom line is that all
the bootloader does for us, is allow a “serial protocol” to communicate to the AVR chip and FLASH its memory with a
program. This saves you the $29-39 of a AVR MKII ISP programmer, that’s about it.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 249

33.1 Developing Your Own Propeller Drivers

Well, the last burning question in your mind should be, “how do I add more functions to the Propeller driver?”. This is a
multistep process, but very easy. As an example, we are going to add a couple messages that allow the client/master
application running on the AVR to control the status LED on the Chameleon (next to the Propeller Local 8-bit port).
Before, we begin, let’s take a quick look at the flow of messages from the AVR to the Propeller once again to review all
the components, take a look at Figure 33.1 below.

Figure 33.1 – The flow of messages from the AVR (or PIC) to the Propeller.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 250

Referring to the figure, the client/master processor issues commands over the SPI interface which the master control
program running on the Propeller chip, processes in a large message dispatching loop to the proper driver object. Thus, to
add messages or functionality we have to consider the following things:

1. Will the Propeller driver need another object or driver? If so, we need to add this and then add code to the main
message dispatcher loop that passes messages from the client to the new Propeller object.

2. If we add messages to the system, we need to make sure they are unique and don’t overlap any other messages. Its
good practice to not use message ids we have already used since you want to be as compatible as possible. Both the
Propeller driver cham_default2_drv_112.spin and cham_twi_spi_drv_v010.h contain the master message id lists
(copies) and the various library API files have functions that wrap the use of the messages in higher level functions.

3. There are three classes of messages we can add;

� Class 1: (Same object more functionality). There is already a driver for the messages, the driver supports some
extra functionality that we haven’t exposed yet and wish to. The sound driver for example falls under this
category. I barely exposed its true power, so you might want to add more messages. In this case, you have to add
the messages to the .H file as well as the SPIN file. In addition to this you need to add more cases to process and
dispatch the messages in the SPIN driver and then on the AVR C/C++ side you might want to add more API
functions.

� Class 2: (New object new functionality). The second case is when you want to add a completely new driver object

and run it on another processor on the Propeller. In this case, you will load the object in at the top of the main
driver, start it up, and then add messages along with message handlers to the main message dispatcher loop.
This is the most complex case.

� Class 3: (Simple messages that can be processed in place). Finally, the last case is the easiest and the one we

will illustrate. This is the case, where we want to add some functionality to the main Propeller driver, but we can
run that functionality right on the main processor that is running the message loop. Examples of this are the
Propeller local port driver. Messages run right on the main SPIN interpreter, there is no need to add another
processor.

33.1.1 Adding SPIN Driver Support for the Status LED

As we designed the Chameleon we added a status LED to it. The idea of this LED was for the Propeller to use it to
indicate status, state, etc. For example, when the Propeller boots our driver it blinks 3 times to indicate that everything is
good to go, driver is ready to receive messages from the client/master. However, after the we were all done designing
everything and the drivers were written. We left out messages to control the LED from the client/master, but I thought,
hmmm, I will hold off on this and later us it as the perfect example of adding some messages to do something useful.

Thus, this example was born of that motivation. With that in mind, this is a good exercise since at first you will want to
make small changes to the master driver, but not re-write it. Anyway, so the first thing you need to do is decide what new
functionality you need. In this case, all I needed was to control the LED, turn it on and off. So, the first thing you need to
do is copy the Propeller driver and re-name it something else. In this case, I made a copy of:

cham_default2_drv_112.spin

and renamed it to:

cham_default2_drv_112_modified.spin

This way if I mess something up, I can go back to my original. Then I reviewed the messages at the top of the code and
found where new messages can go and added two new commands 100 and 101, here’s a snippet of what the constants
looked like before and after:

Before
.
.
.
 REG_CMD_WRITE = 56 ' performs a 32-bit write to the addressed register [0..F] from the output register buffer
 REG_CMD_READ = 57 ' performs a 32-bit read from the addressed register [0..F] and stores in the input register buffer

 REG_CMD_WRITE_BYTE = 58 ' write byte 0..3 of output register g_reg_out_buffer.byte[0..3]

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 251

 REG_CMD_READ_BYTE = 59 ' read byte 0..3 of input register g_reg_in_buffer.byte[0..3]

 ' system commands
 SYS_RESET = 64 ' resets the prop

 ' ///
 ' this range of commands for future expansion...
 ' ///

 ' advanced GFX commands for GFX tile engine
 GPU_GFX_BASE_ID = 192 ' starting id for GFX commands to keep them away from normal command set
 GPU_GFX_NUM_COMMANDS = 37 ' number of GFX commands

 GPU_GFX_SUBFUNC_STATUS_R = (0+GPU_GFX_BASE_ID) ' Reads the status of the GPU, Writes the GPU Sub-Function register and issues
 ' a high level command like copy, fill, etc.
 GPU_GFX_SUBFUNC_STATUS_W = (1+GPU_GFX_BASE_ID) ' Writes status of the GPU, Writes the GPU Sub-Function register and issues
 ' a high level command like copy, fill, etc.
.
.
.

After Adding New Messages
.
.
.
 REG_CMD_WRITE = 56 ' performs a 32-bit write to the addressed register [0..F] from the output register buffer
 REG_CMD_READ = 57 ' performs a 32-bit read from the addressed register [0..F] and stores in the input register buffer

 REG_CMD_WRITE_BYTE = 58 ' write byte 0..3 of output register g_reg_out_buffer.byte[0..3]

 REG_CMD_READ_BYTE = 59 ' read byte 0..3 of input register g_reg_in_buffer.byte[0..3]

 ' system commands
 SYS_RESET = 64 ' resets the prop

 ' ///
 ' this range of commands for future expansion...
 ' ///

 ' added status LED commands added for example in manual "Developing Your Own Propeller Drivers".
 STATUS_LED_ON = 100
 STATUS_LED_OFF = 101

 ' advanced GFX commands for GFX tile engine
 GPU_GFX_BASE_ID = 192 ' starting id for GFX commands to keep them away from normal command set
 GPU_GFX_NUM_COMMANDS = 37 ' number of GFX commands

 GPU_GFX_SUBFUNC_STATUS_R = (0+GPU_GFX_BASE_ID) ' Reads the status of the GPU, Writes the GPU Sub-Function register and issues
 ' a high level command like copy, fill, etc.
 GPU_GFX_SUBFUNC_STATUS_W = (1+GPU_GFX_BASE_ID) ' Writes status of the GPU, Writes the GPU Sub-Function register and issues
 ' a high level command like copy, fill, etc.
.
.
.

I have highlighted the two new message id’s. That’s all there is to it. The selection of 100,101 are a bit random, I could
have used 65,66, or I could have used a single id and then used one of the data bytes to control on/off. But, I thought this
would be a little more illustrative.

Now that we have the message ids, we need to process the messages and do something. A bit of investigation of the
schematic and the boot code shows that I/O P25 is connected to the status LED. In fact, the boot code that blinks the LED
3 times during boot looks like this:

 ' blink the status LED 3 times to show board is "alive"
 DIRA[25] := 1 ' set to output
 OUTA[25] := 0

 repeat 6
 OUTA[25] := !OUTA[25]
 repeat 25_000

Therefore, this code already sets up the I/O direction of the port bit, all we need to do is add the two messages that set
the port bit LOW and HIGH. Reviewing the main message dispatcher loop, we simple find the last message processed
and add a couple more messages. Here’s that section before and after again:

Before
.
.
.
 REG_CMD_WRITE_BYTE: ' write byte 0..3 of output register g_reg_out_buffer.byte[0..3]
 ' byte address to write 0..3 is in g_data while data to write is in g_data2
 g_reg_out_buffer.byte[g_data] := g_data2

 ' read command from byte registers of 32-bit buffer register

 REG_CMD_READ_BYTE: ' read byte 0..3 of input register g_reg_in_buffer.byte[0..3]
 ' this data is then placed into spi buffer for transport back to client
 ' byte address to read 0..3 is in g_data

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 252

 g_spi_result := g_reg_in_buffer.byte[g_data]

 SYS_RESET: ' resets the prop
 reboot

 ' end case commands

 ' set result and set dispatcher to idle
 spi.finishcmd(g_spi_result)

 ' // end main loop
 ' //
.
.
.

After Adding New Message Handlers
.
.
.
 REG_CMD_WRITE_BYTE: ' write byte 0..3 of output register g_reg_out_buffer.byte[0..3]
 ' byte address to write 0..3 is in g_data while data to write is in g_data2
 g_reg_out_buffer.byte[g_data] := g_data2

 ' read command from byte registers of 32-bit buffer register

 REG_CMD_READ_BYTE: ' read byte 0..3 of input register g_reg_in_buffer.byte[0..3]
 ' this data is then placed into spi buffer for transport back to client
 ' byte address to read 0..3 is in g_data
 g_spi_result := g_reg_in_buffer.byte[g_data]

 SYS_RESET: ' resets the prop
 reboot

 ' // Propeller status LED commands book example on how to modify the driver
 STATUS_LED_ON:
 OUTA[25] := 1

 STATUS_LED_OFF:
 OUTA[25] := 0
 ' // end added code for status LED control

 ' end case commands

 ' set result and set dispatcher to idle
 spi.finishcmd(g_spi_result)

 ' // end main loop
 ' //
.
.
.

That’s it! Save the file as cham_default2_drv_112_modified.spin and we are done with this portion. In fact, you can
flash it down to the Propeller and every single program will still work the same. We have added messages and features,
but we have NOT made anything incompatible or re-used message ids for something else. This is very important to keep
in mind, so you do not damage a driver and make it incompatible with other software.

31.1.2 Adding AVR Support at the Client/Master Side

At this point, we have new messages added to the Propeller driver along with the message handler code. If you haven’t
done so, compile and download the new driver to the Propeller chip on the Chameleon, whatever application you have
running on the Chameleon should work exactly the same.

Now, what we need is to add support on the client/master side or write a program that sends the messages to the
Propeller. Rather than go into the SPI driver code header, I decided to just write a stand alone program that blinks the
LED. I started with the port blinking demo and then modified it to directly send the new messages. Here’s the entire
program (AVRStudio straight C version):

//
// INCLUDES //
//

// __AVR_ATmega328P__ , __AVR_ATmega168__

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 253

#define __AVR_ATmega328P__

// include everything
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <avr/eeprom.h>
#include <avr/io.h>
#include <avr/sleep.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <inttypes.h>
#include <compat/twi.h>
#include <avr/wdt.h>

// include headers required for demo
#include "CHAM_AVR_SYSTEM_V010.h" // you need this one always
#include "CHAM_AVR_TWI_SPI_DRV_V010.h" // you need this always
#include "CHAM_AVR_NTSC_DRV_V010.h" // needed for NTSC driver

//
// DEFINES AND MACROS //
//

// define CPU frequency in MHz here if not defined in Makefile or other includes, compiler will throw a warning,
ignore
#ifndef F_CPU
#define F_CPU 16000000UL // 28636360UL, 14318180UL, 21477270 UL
#endif

// new commands for status LED control
#define STATUS_LED_ON 100
#define STATUS_LED_OFF 101

///
// MAIN ///
///

int main(void)
{
// initialize and set SPI rate
SPI_Init(SPI_DEFAULT_RATE);

// give Prop a moment before sending it commands, the boot process is about a second
// if you like you can speed it up, by removing the Prop driver's "LED blink" sequence in the driver
// or speed it up, but commands that are sent before the Prop driver is done booting will be ignored.
// therefore, if you have a lot of set up work to do, then you don't require a delay, but if you jump right
// into commands, then you need a good 1.5 - 2 second delay
_delay_ms(2500);

// clear screens
NTSC_ClearScreen();
NTSC_Color(0);

// enter infinite loop...
while(1)
 {
 // print on NTSC terminal screen
 NTSC_Term_Print(" Status LED ON");
 NTSC_Term_Char(0x0D);

 // send command to turn on LED
 SPI_Prop_Send_Cmd(STATUS_LED_ON, 0,0);

 // slow things down a bit, so we can read the text!
 _delay_ms(250);

 NTSC_Term_Print(" Status LED OFF");
 NTSC_Term_Char(0x0D);

 // send command to turn off LED
 SPI_Prop_Send_Cmd(STATUS_LED_OFF, 0,0);

 // slow things down a bit, so we can read the text!
 _delay_ms(250);

 } // end while

} // end main

The Arduino version simply has loop() instead of main() and the extra setup function, as well as the different header file
syntax. The name of the AVRStudio version is CHAM_AVR_STATUS_LED_DEMO_01.c and is located on the DVD here:

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 254

DVD-ROM:\ CHAM_AVR \ SOURCE \ CHAM_AVR_STATUS_LED_DEMO_01.c

There is also the Arduino version “sketch” which is located on the DVD here:

DVD-ROM:\ CHAM_AVR \ TOOLS \ ARDUINO \ SKETCHES \ CHAM_AVR_STATUS_LED_DEMO

Which you should have copied all these files to your hard drive already. Compiling and building these programs should be
old hat to you now, so I won’t waste time with that. Let’s just look at the code. Referring back to the source listing above,
there are 2 things that make this program really

First, the addition of the message ids, show here:

// new commands for status LED control
#define STATUS_LED_ON 100
#define STATUS_LED_OFF 101

And secondly, the actual messages to the Propeller to turn the LED on and off (the on message for example):

 // send command to turn on LED
 SPI_Prop_Send_Cmd(STATUS_LED_ON, 0,0);

And that’s it! It just works – If you compile and run this program you will see the status LED blink on and off as well as the
NTSC monitor display messages.

As you can see, its very simple to add new functionality to the driver and if you are careful and make sure not to re-use
message ids then you can deploy your new driver for other Chameleon users (both AVR and PIC) and they can use the
driver without change in their Chameleons and all their old programs will still work, but you new functionality will be at
their finger tips.

34.1 Advanced Concepts and Ideas

There is so much you can do with the Chameleon, I don’t even know where to begin. But, some of the things you might
want to try are:

� Using the Propeller as the Master and writing a driver on the AVR chip, so the Propeller can use its resources,
peripherals, etc.

� The Propeller has a local 8-bit port, you can use this for anything. One idea that is really easy to implement is

adding a micro SD card adapter to it. Sparkfun sells a little adapter that is mounted on a right angle header, that
will plug right into the 8-bit Propeller port. You can then get a SD card object, add some messages to the master
control program driver, and presto you have a FLASH hard drive you can access from the AVR chip.

� Networking the Chameleons together. The Chameleons are so small and powerful, a cool idea would be to

network 4-8 of them together each generating video, VGA, but being controlled by a “super-master” unit to do
something in unison.

� Creating a Arduino Shield adapter board. The Chameleon (both AVR and PIC) have similar I/O headers to the

Arduino, but due to physical constraints they are different. A cool piece of add on hardware would be a daughter
board that mounts on top of the Chameleon to make it 100% I/O compatible with Arduino shields.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 255

35.1 Demo Coder Applications, Games, and Languages

When developing any product we always like to give a select few master programmers the hardware early to see what
they come up with. Not only is this a good way to find potential bugs in the hardware, but its interesting to see what some
of the best programmers in the world can do with it. For this release of the Chameleons we have a couple applications
that will be very useful to you.

35.1.1 Chameleon BASIC by David Betz

Figure 35.1 – A BASIC “Life” program running on the Chameleon.

The Chameleon BASIC is a complete compiled BASIC that runs on both the Chameleon AVR and PIC platforms (Figure
35.1 shows an example of a “Life” cellular automata running written in BASIC. You write your programs on the PC with
and editor then download to the Chameleon. The Chameleon runs a VM (virtual machine) that executes the compiled
byte-codes. You can find the latest copy of BASIC on the DVD here:

DVD-ROM:\ CHAM_AVR \ SOURCE \ BASIC

Simple locate the newest directory version and everything you need to get BASIC up and running is in there including
documentation, the compiler, examples, etc.

35.1.2 Crate-It! by JT Cook

Figure 35.2 – Crate-it! running on the Chameleon AVR.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 256

Crate-It! (shown in Figure 35.2) is used for the Chameleons as the Quick Start demo that is pre-loaded on each unit. To
compile it, you follow the same process as you would for all the other examples. There are two versions; one for the
native AVRStudio mode and a Arduino based Sketch. You can find the files for the AVRStudio version on the DVD here:

DVD-ROM:\ CHAM_AVR \ SOURCE \ DEMO_CODERS \ CRATE_IT \ *.*

The Arduino sketch version is located on the DVD here:

DVD-ROM:\ CHAM_AVR \ TOOLS \ ARDUINO \ CHAM_AVR_CRATE_IT

You should have already copied this on your hard drive during the installation process earlier in the manual.

Any other newer demos will be located in the \DEMO_CODER directory, so take a look there in case we don’t update this
manual to match. Similarly, always check the product web pages on www.xgamestation.com as well as
www.chameleon-dev.com .

Epilog - From Intel 4004 to the Multiprocessing/Multicore Chameleon

Well, you made it! If you got this far then you should be a quite comfortable with the Chameleon AVR 8-Bit and see the
true power of multiprocessing and the synergy between the Atmel AVR and the Parallax Propeller chip. Hopefully, you
can use the Chameleons in many of your projects now and in the future. I am really excited about these little machines
and I haven’t had this much fun programming something in a long time – they just work and allow me to solve problems
very quickly and get software done for real world applications.

It always amazes me to think about how far we have
come in such a short time. The Chameleons push 180-
200MIPs depending on the version; AVR/PIC. Literally,
100-200x more powerful that the 8-bit computers of
the 1980’s, but yet are the size of credit cards.

The first “official” processor was the 4-Bit Intel 4004
(shown to the left) created in 1971. It contained about
2300 transistors and executed instructions at a rate of
92,000 per second. Comparing this to our simple
Chameleon AVR that runs about 180 million
instructions per second, that’s about 2000 times more
powerful. But, if we look at cutting edge GPU cores
that perform computation in the trillions per second
then that’s 10 million times more powerful! Then go
head and parallel up 10, 100, 1000 of those
processing cores and the amount of computation is
astonishing!!!

Bottom line, our little brains are easily going to be matched and surpassed by computers VERY soon. So, cherish these
last days while humans are still the dominant species on the planet! Good luck and please help us build the Chameleon
community, you can visit our forums at:

http://www.xgamestation.com/phpbb/index.php

and

http://www.chameleon-dev.com

Discuss and show off your demos, applications, drivers, and games with other Chameleon programmers. Also, if you have
any questions, comments, or remarks please email us at support@nurve.net.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 257

Part III – Appendices

Appendix A: Schematics

This appendix contains the master schematic of the Chameleon AVR 8-Bit and all its sub-systems.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 258

Figure A.1 –Chameleon AVR 8-Bit schematic.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 259

Appendix B: Atmel AVR 328P Pinout

These images show the Atmel AVR644P DIP and QFP packages.

Figure B.1 – Atmel AVR 328P pinouts.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 260

Appendix C – Board Layout and I/O Headers

This appendix has a high resolution grayscale image of the Chameleon AVR’s PCB, so you can identify the header I/O
pins easily for your projects.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 261

Appendix D - Using the AVR in "Stand-Alone" Mode.

The nice thing about the Chameleon is that its two systems in one. You are free to use the AVR as you wish and not
worry about the Propeller chip. However, whatever driver that is on the Propeller will run and function independently even
though, you aren’t sending it commands over the SPI channel. Thus, if you truly want to turn off the Propeller, you might
want to load a NULL program that does absolutely nothing such as:

CON

 ' These settings are for 5 MHZ XTALS
 _clkmode = xtal1 + pll16x ' enable external clock and pll times 16
 _xinfreq = 5_000_000 ' set frequency to 5 MHZ

PUB Main

 repeat ‘ forever loop

This will start up a single processor, and just sit and do nothing. Of course, without the Propeller, you have no access to
the physical peripheral headers such as the A/V headers, VGA, or the PS/2 header. But, you still have access to the USB
serial port as well as the FLASH memory. And of course, all the headers connected to the AVR around the board you still
have access to. Just make sure to keep the serial select switch in the DOWN position, so the AVR has access to the
USB serial port.

Appendix E - Using the Propeller in "Stand-Alone" Mode.

The Propeller in stand alone mode is much more interesting that the AVR. The Propeller in stand alone mode allows you
to more or less run anything you would run on a HYDRA or Propeller Development kit still. You have the VGA connector,
PS/2, A/V connectors as well as an 8-bit port for expansion. You might have to do some “porting” of apps since the
HYDRA and Propeller development kits use slightly different pin I/O connections for various devices, but those are literally
1-2 line changes in your code.

The only thing you loose in Propeller stand alone mode is the use of the onboard FLASH since the Propeller can’t get to it,
but the EEPROM for the Propeller is 64K, 2x the amount needed for the boot image, so that’s a conciliation prize in the
design, if you need more assets. Just make sure to keep the serial select switch in the UP position, so the Propeller has
access to the USB serial port.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 262

Appendix F – Porting HYDRA and Parallax Development Board
Applications to the Chameleon

There really isn’t much to say here other that porting from the HYDRA or Propeller Development board is usually a few
lines of code that needs to be changed. The things to watch out for are:

� Make sure that you are using the same clocking and XTAL – If the HYDRA/Dev Board application you are
trying to port uses a 10MHz XTAL and the 8x mode, then make sure you change it to 5MHz and 16X mode in the
source code.

� I/O port assignments – The Chameleon’s Propeller interfaces are almost the same as the HYDRA and Propeller

Development boards, but there are differences for example in what pin bank is used for the NTSC video or what
pin for audio, etc. so when porting something, make sure you look at the pinouts of the source, and change them
to match the Chameleon’s.

� Peripheral devices – The Chameleon does not have a NES game port for example, so any game or program on

the HYDRA that you want to port, you will need to delete that peripheral code, or swap it for something else. Of
course, you can always hack a connector to the Propeller Local port and connect the controller there and switch
the pins in the source code. Also, the Chameleon’s uses a 2 line version of the keyboard and mouse drivers, the
HYDRA and other Propeller development boards might use a 4 signal version, so watch out for that. And lastly,
the Chameleon has a single sound PWM sound pin that routes to the RCA header, some Propeller dev boards
use stereo sound, so in those cases you will want to route one of those pins to the Chameleon pin and leave the
other dead or maybe out to the local 8-bit port.

Other than those 3 areas, I find that it takes a few mins to port anything from the HYDRA or a Propeller Development
board to the Chameleon and use it in Stand-Alone mode, so pretty cool!

Appendix G - Running on the Mac and Linux.

AVRStudio is currently only available for the Windows operating system. Although, many people love their Macs and
Linux, 90% of engineering development is still on Windows machines and will likely stay there for a time to come.
However, that said there are 3

rd
 party tools that run on Mac and Linux for the AVR processor. Companies such as IAR,

Green Hills, and others have complete tool chains that run on Mac and Linux.

That said, the funny thing is that the AVR compiler used by AVRStudio is a Linux based GNU GCC compiler! But, Atmel
hasn’t had a reason to port it to Mac and Linux. However, you can develop 100% on a Mac or Linux machine and then
use programs like AVRDude to download to the AVR using ISP.

But, the Arduino tool does all this for you, thus for Mac and Linux enthusiasts I suggest simply using the Chameleon in
Arduino mode, installing the Mac/Linux version of the tool on your PC and then copying the Chameleon Libraries and
Sketches just as you did (would have) for the Windows version. On the DVD in this location:

DVD-ROM :\ CHAM_AVR \ TOOLS \ ARDUINO \

Are all the files you need to get started; there is a directory for the Library files that you need to add to the Mac\Linux
installation of the Arduino tool as well as the Sketches for all the demos. Additionally, I have downloaded the Linux and
Mac versions of the Arduino tool and put them in the respective directories \Mac and \Linux to save you downloading
time.

The cool thing about using the Arduino tool is that the exact same Chameleon software for Arduino mode works on all
three operating systems without change. You simple install the Arduino tool, make sure you have the bootloader on the
AVR chip, and then use the tool, from your perspective the experience on Windows, Linux, and Mac should be identical.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 263

Appendix H – Overclocking the AVR and Propeller

As with any TTL or CMOS device you can always overclock them. Typically, 10% overclocking will work 99% of the time,
anything higher than 10% you have to take a few things into consideration such as power dissipation, memory response
times, and overall timing of the chips. However, both the AVR and Propeller can be over clocked if you want to get more
performance and are willing to potentially damage the chips.

H.1 Overclocking the Propeller Microcontroller

The Propeller uses an external clock or xtal that is then spun up by an internall PLL. The PLL has a number of power of 2
clock multiplier rates, but typically a 5-10MHZ clock (xtal) is used and then the clock multiplier is set at 8x or 16. For
example, the Default2 driver clock directives look like this:

CON

 ' These settings are for 5 MHZ XTALS
 _clkmode = xtal1 + pll16x ' enable external clock and pll times 16
 _xinfreq = 5_000_000 ' set frequency to 5 MHZ

This instructs the compiler to generate an object with settings that assume a 5MHz input clock and then the processor
scales this by 16X resulting in the nominal 80MHZ that the Propeller chip needs to operate. The 80 MHz clock drives each
processor clock and each processor executes one instruction per (4) clocks, thus 20 MIPs on average.

Now, if we want to go a little faster, we could use a 6MHZ XTAL and then use the pll16x directive once again, this results
in a clock rate of 96 MHz and 24 MIPS per processor. Depending on your Propeller chip, this might work as is; however,
the transitions are so fast that the noise margins, etc. of the signals become small, and the capacitive loading too much
for the 3.3V supply, this you might need to increase the power supply voltage to 3.6+ volts to get this speed to work. But,
point is if you need a little bit more, you can increase you oscillator (xtal) a bit and then see if it works.

Also, the Propeller will get hotter as you overclock it, thus you might have to heat sink it.

H.2 Overclocking the AVR328P Microcontroller

The AVR is a little bit different than the Propeller chip, a little more forgiving, plus its already running at 5V. The AVR is
spec’ed to max out at 20 MHz, but we are running a 16MHz xtal for Arduino compatibility. However, if you do not want to
use Arduino mode, or the bootloader, then go ahead and pop in a 20 MHz parallel resonant mode Xtal and you get 4
MIPs for the taking. However, if you want more than you can do it as well. The max overclock of the AVRs is about 35
MHz before they simply fall apart and stop working. I find that 8xNTSC or 28.636636MHz is a nice compromise. I tested
over 1000 units and they all can sustain this speed. The timings on some of the peripherals become tight for example, the
serial I/O and SPI might error more often and the rate of bit errors with the FLASH memory increases, but 28.636 MHz is
a solid overclocking rate.

The chip will get a little hotter, but not much, the interesting thing though is the chip doesn’t stop malfunctioning due to
overheating, but simply that certain parts of the chip can’t go any faster. For example, the internal SRAM/FLASH has
more limits than say the glue logic inside. So even though most of the chip might run at 40 MHz, it doesn’t matter since
the SRAM and FLASH won’t read correctly.

In conclusion, the AVR will go 28.636 MHz no problem without any changes to the Vcc voltage, or heatsinking needed.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 264

Appendix I: ASCII / Binary / Hex / Octal Universal Lookup Tables

ASCII – Hex Table

ASCII

Hex

Symbol

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

TAB
LF
VT
FF
CR
SO
SI

ASCII

Hex

Symbol

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM

SUB
ESC
FS
GS
RS
US

ASCII

Hex

Symbol

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

(space)
!
"

$
%
&
'
(
)
*
+
,
-
.
/

ASCII

Hex

Symbol

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

ASCII

Hex

Symbol

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

ASCII

Hex

Symbol

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

ASCII

Hex

Symbol

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

`
a
b
c
d
e
f
g
h
i
j
k
l

m
n
o

ASCII

Hex

Symbol

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

Decimal – Hex – Octal – Binary Table

Dec

Hex

Oct

Bin

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111

Dec

Hex

Oct

Bin

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111

Dec

Hex

Oct

Bin

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111

Dec

Hex

Oct

Bin

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111

Dec

Hex

Oct

Bin

64
65
66
67
68
69
70
71

40
41
42
43
44
45
46
47

100
101
102
103
104
105
106
107

01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111

Dec

Hex

Oct

Bin

80
81
82
83
84
85
86
87

50
51
52
53
54
55
56
57

120
121
122
123
124
125
126
127

01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111

Dec

Hex

Oct

Bin

96
97
98
99
100
101
102
103

60
61
62
63
64
65
66
67

140
141
142
143
144
145
146
147

01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111

Dec

Hex

Oct

Bin

112
113
114
115
116
117
118
119

70
71
72
73
74
75
76
77

160
161
162
163
164
165
166
167

01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 265

72
73
74
75
76
77
78
79

48
49
4A
4B
4C
4D
4E
4F

110
111
112
113
114
115
116
117

01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111

88
89
90
91
92
93
94
95

58
59
5A
5B
5C
5D
5E
5F

130
131
132
133
134
135
136
137

01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111

104
105
106
107
108
109
110
111

68
69
6A
6B
6C
6D
6E
6F

150
151
152
153
154
155
156
157

01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111

120
121
122
123
124
125
126
127

78
79
7A
7B
7C
7D
7E
7F

170
171
172
173
174
175
176
177

01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111

Dec

Hex

Oct

Bin

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217

10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111

Dec

Hex

Oct

Bin

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237

10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111

Dec

Hex

Oct

Bin

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257

10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111

Dec

Hex

Oct

Bin

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277

10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111

Dec

Hex

Oct

Bin

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317

11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111

Dec

Hex

Oct

Bin

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337

11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111

Dec

Hex

Oct

Bin

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357

11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111

Dec

Hex

Oct

Bin

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 266

Appendix J: ANSI Terminal Codes

This appendix lists some of the more popular ANSI X3.64 terminal codes used to control graphically terminals and make
really cool graphics on 8-bit computers! The majority of ANSI codes start off with the ANSI escape sequence which is the
characters ESC (ASCII decimal 27 / hex 0x1B) and [(left bracket), in other words:

“ESC [“

Where “ESC” is actually the decimal value 27. This sequence is called CSI for Control Sequence Introducer (or Control
Sequence Initiator). There is a single-character CSI value = 155 or 0x9B hexl. The “ESC [“ two-character sequence is
more often used than the single-character alternatives. Devices supporting only ASCII (7-bits), or which implement 8-bit
code pages which use the 0x80–0x9F control character range for other purposes will recognize only the two-character
sequence. Though some encodings use multiple bytes per character, in this topic all characters are single-byte. You can
run a terminal program on the PC in ANSI mode and then send these commands to it from the Chameleon.

ANSI Codes (Most Popular)
Code Name Effect

CSI n A CUU
CSI n B CUD
CSI n C CUF
CSI n D CUB

Moves the cursor n (default 1) cells in the given direction. If the cursor is already at the edge of
the screen, this has no effect.
CUU: Up; CUD: Down; CUF: Forward; CUB: Back;

CSI n E CNL Moves cursor to beginning of the line n (default 1) lines down (next line).
CSI n F CPL Moves cursor to beginning of the line n (default 1) lines up (previous line).
CSI n G CHA Moves the cursor to column n.
CSI n ; m H CUP Moves the cursor to row n, column m. The values are 1-based, and default to 1 (top left corner)

if omitted. A sequence such as CSI ;5H is a synonym for CSI 1;5H as well as CSI 17;H is the
same as CSI 17H and CSI 17;1H

CSI n J ED Clears part of the screen. If n is zero (or missing), clear from cursor to end of screen. If n is one,
clear from cursor to beginning of the screen. If n is two, clear entire screen (and moves cursor
to upper left on MS-DOS ANSI.SYS).

CSI n K EL Erases part of the line. If n is zero (or missing), clear from cursor to the end of the line. If n is
one, clear from cursor to beginning of the line. If n is two, clear entire line. Cursor position does
not change.

CSI n S SU Scroll whole page up by n (default 1) lines. New lines are added at the bottom. (not ANSI.SYS)
CSI n T SD Scroll whole page down by n (default 1) lines. New lines are added at the top. (not ANSI.SYS)
CSI n ; m f HVP Moves the cursor to row n, column m. Both default to 1 if omitted. Same as CUP
CSI n [;k] m SGR Sets SGR (Select Graphic Rendition) parameters. After CSI can be zero or more parameters

separated with ;. With no parameters, CSI m is treated as CSI 0 m (reset / normal), which is
typical of most of the ANSI codes.

CSI 6 n DSR Reports the cursor position to the application as (as though typed at the keyboard) ESC[n;mR,
where n is the row and m is the column. (May not work on MS-DOS.)

CSI s SCP Saves the cursor position.
CSI u RCP Restores the cursor position.
CSI ?25l DECTC

EM
Hides the cursor.

CSI ?25h DECTC
EM

Shows the cursor.

Color Table for Select Graphics Rendition “SGR” Commands

Intensity 0 1 2 3 4 5 6 7 9

Normal Black Red Green Yellow[5] Blue Magenta Cyan White reset

Bright Black Red Green Yellow Blue Magenta Cyan White

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 267

SGR (Select Graphic Rendition) Parameters

Code Effect Note

0 Reset / Normal all attributes off

1 Intensity: Bold

2 Intensity: Faint not widely supported

3 Italic: on not widely supported. Sometimes treated as inverse.

4 Underline: Single not widely supported

5 Blink: Slow less than 150 per minute

6 Blink: Rapid MS-DOS ANSI.SYS; 150 per minute or more

7 Image: Negative inverse or reverse; swap foreground and background

8 Conceal not widely supported

21 Underline: Double

22 Intensity: Normal not bold and not faint

24 Underline: None

25 Blink: off

27 Image: Positive

28 Reveal conceal off

30–39
Set foreground color, normal
intensity

3x, where x is from the color table above

40–49
Set background color, normal
intensity

4x, where x is from the color table above

Examples

CSI 2 J This clears the screen and sets the cursor to (0,0) or (1,1) (upper left corner).
CSI 32 m This makes text green.

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

 268

NOTES

