Version 1.0

HYDRA XTREME 512K
MEMORY CARD

PrROGRAMMING AND LISER MANUAL

Andre’ LaMothe

Nurve Networks LLC

HYDRA™ XTREME 512K Memory Card User Manual v1.0
Copyright © 2007 Nurve Networks LLC

Author
Andre’ LaMothe

Editor/Technical Reviewer
The “Collective”

Printing
0001

ISBN
Pending

All rights reserved. No part of this user manual shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the user of the information contained herein. Although every precaution has been taken in
the preparation of this user manual, the publisher and authors assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information contained herein.

Trademarks

All terms mentioned in this user manual that are known to be trademarks or service marks have been appropriately
capitalized. Nurve Networks LLC cannot attest to the accuracy of this information. Use of a term in this user manual should
not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this user manual as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor any
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this user
manual.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

eBook License

This electronic user manual may be printed for personal use and (1) copy may be made for archival purposes, but may not be
distributed by any means whatsoever, sold, resold, in any form, in whole, or in parts. Additionally, the contents of the CD this
electronic user manual came on relating to the design, development, imagery, or any and all related subject matter pertaining
to the HYDRA™ are copyrighted as well and may not be distributed in any way whatsoever in whole or in part. Individual
programs are copyrighted by their respective owners and may require separate licensing.

NURVE NETWORKS LLC, . END-USER LICENSE AGREEMENT FOR HYDRA HARDWARE, SOFTWARE , EBOOKS, AND USER MANUALS

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PRODUCT. IT CONTAINS SOFTWARE, THE USE OF WHICH IS LICENSED BY
NURVE NETWORKS LLC, INC., TO ITS CUSTOMERS FOR THEIR USE ONLY AS SET FORTH BELOW. IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS OF THIS AGREEMENT,
DO NOT USE THE SOFTWARE OR HARDWARE. USING ANY PART OF THE SOFTWARE OR HARDWARE INDICATES THAT YOU ACCEPT THESE TERMS.

GRANT OF LICENSE: NURVE NETWORKS LLC (the "Licensor") grants to you this personal, limited, non-exclusive, non-transferable, non-assignable license solely to use in a single copy of the Licensed
‘Works on a single computer for use by a single concurrent user only, and solely provided that you adhere to all of the terms and conditions of this Agreement. The foregoing is an express limited use license
and not an assignment, sale, or other transfer of the Licensed Works or any Intellectual Property Rights of Licensor.

ASSENT: By opening the files and or packaging containing this software and or hardware, you agree that this Agreement is a legally binding and valid contract, agree to abide by the intellectual property laws
and all of the terms and conditions of this Agreement, and further agree to take all necessary steps to ensure that the terms and conditions of this Agreement are not violated by any person or entity under your
control or in your service.

OWNERSHIP OF SOFTWARE AND HARDWARE: The Licensor and/or its affiliates or subsidiaries own certain rights that may exist from time to time in this or any other jurisdiction, whether foreign or
domestic, under patent law, copyright law, publicity rights law, moral rights law, trade secret law, trademark law, unfair competition law or other similar protections, regardless of whether or not such rights or
protections are registered or perfected (the "Intellectual Property Rights"), in the computer software and hardware, together with any related documentation (including design, systems and user) and other
materials for use in connection with such computer software and hardware in this package (collectively, the "Licensed Works"). ALL INTELLECTUAL PROPERTY RIGHTS IN AND TO THE LICENSED
WORKS ARE AND SHALL REMAIN IN LICENSOR.

RESTRICTIONS:

(a) You are expressly prohibited from copying, modifying, merging, selling, leasing, redistributing, assigning, or transferring in any matter, Licensed Works or any portion thereof.

(b) You may make a single copy of software materials within the package or otherwise related to Licensed Works only as required for backup purposes.

(c) You are also expressly prohibited from reverse engineering, decompiling, translating, disassembling, deciphering, decrypting, or otherwise attempting to discover the source code of the Licensed Works as
the Licensed Works contain proprietary material of Licensor. You may not otherwise modify, alter, adapt, port, or merge the Licensed Works.

(d) You may not remove, alter, deface, overprint or otherwise obscure Licensor patent, trademark, service mark or copyright notices.

(e) You agree that the Licensed Works will not be shipped, transferred or exported into any other country, or used in any manner prohibited by any government agency or any export laws, restrictions or
regulations.

(f) You may not publish or distribute in any form of electronic or printed communication the materials within or otherwise related to Licensed Works, including but not limited to the object code,
documentation, help files, examples, and benchmarks.

TERM: This Agreement is effective until terminated. You may terminate this Agreement at any time by uninstalling the Licensed Works and destroying all copies of the Licensed Works both HARDWARE
and SOFTWARE. Upon any termination, you agree to uninstall the Licensed Works and return or destroy all copies of the Licensed Works, any accompanying documentation, and all other associated
materials.

WARRANTIES AND DISCLAIMER: EXCEPT AS EXPRESSLY PROVIDED OTHERWISE IN A WRITTEN AGREEMENT BETWEEN LICENSOR AND YOU, THE LICENSED WORKS ARE NOW
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE, OR THE WARRANTY OF NON-INFRINGEMENT. WITHOUT LIMITING THE FOREGOING, LICENSOR MAKES NO WARRANTY THAT (i) THE
LICENSED WORKS WILL MEET YOUR REQUIREMENTS, (ii) THE USE OF THE LICENSED WORKS WILL BE UNINTERRUPTED, TIMELY, SECURE, OR ERROR-FREE, (iii) THE RESULTS
THAT MAY BE OBTAINED FROM THE USE OF THE LICENSED WORKS WILL BE ACCURATE OR RELIABLE, (iv) THE QUALITY OF THE LICENSED WORKS WILL MEET YOUR
EXPECTATIONS, (v) ANY ERRORS IN THE LICENSED WORKS WILL BE CORRECTED, AND/OR (vi) YOU MAY USE, PRACTICE, EXECUTE, OR ACCESS THE LICENSED WORKS
WITHOUT VIOLATING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES OR
LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY MAY LAST, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. IF CALIFORNIA LAW IS NOT HELD TO APPLY TO THIS
AGREEMENT FOR ANY REASON, THEN IN JURISDICTIONS WHERE WARRANTIES, GUARANTEES, REPRESENTATIONS, AND/OR CONDITIONS OF ANY TYPE MAY NOT BE
DISCLAIMED, ANY SUCH WARRANTY, GUARANTEE, REPRESENATION AND/OR WARRANTY IS: (1) HEREBY LIMITED TO THE PERIOD OF EITHER (A) Five (5) DAYS FROM THE DATE
OF OPENING THE PACKAGE CONTAINING THE LICENSED WORKS OR (B) THE SHORTEST PERIOD ALLOWED BY LAW IN THE APPLICABLE JURISDICTION IF A FIVE (5) DAY
LIMITATION WOULD BE UNENFORCEABLE; AND (2) LICENSOR'S SOLE LIABILITY FOR ANY BREACH OF ANY SUCH WARRANTY, GUARANTEE, REPRESENTATION, AND/OR
CONDITION SHALL BE TO PROVIDE YOU WITH A NEW COPY OF THE LICENSED WORKS. IN NO EVENT SHALL LICENSOR OR ITS SUPPLIERS BE LIABLE TO YOU OR ANY THIRD
PARTY FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THOSE
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT LICENSOR HAD BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE LICENSED WORKS. SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE
OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

SEVERABILITY: In the event any provision of this License Agreement is found to be invalid, illegal or unenforceable, the validity, legality and enforceability of any of the remaining provisions shall not in
any way be affected or impaired and a valid, legal and enforceable provision of similar intent and economic impact shall be substituted therefore.

ENTIRE AGREEMENT: This License Agreement sets forth the entire understanding and agreement between you and NURVE NETWORKS LLC, supersedes all prior agreements, whether written or oral,
with respect to the Software, and may be amended only in a writing signed by both parties.

NURVE NETWORKS LLC
1112 Nancy Lane
San Ramon, CA 94582

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

This document is valid with the following hardware, software and firmware versions:
e HYDRA Game Console Revision A. or greater.

e Propeller Tool 1.0 or greater.

The information herein will usually apply to newer versions but may not apply to older versions. Please contact Nurve
Networks LLC for any questions you may have.

Visit www.xgamestation.com for downloads, support and access to the XGameStation/HYDRA user community and
more!

For technical support, sales, general questions, share feedback, please contact Nurve Networks LLC at:

support@nurve.net / nurve_help@yahoo.com

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

HYDRA XTREME 512K SRAM Card
(HX512)
User Manual

1.0 HYDRA XTREME 512K Card User Manual Overview

Welcome to the user manual for the HYDRA XTREME 512K SRAM Card (HX512). This manual covers the design,
operation, and programming of the memory card for use with your HYDRA™ Game Console. Please read the entire
manual carefully. The following outlines the various topics in the manual for your convenience:

Table of Contents

Main Sections Page
1.1 Product Contents 6
1.2 Introduction and Quick Start 7
1.3 Printed Circuit Board Annotation and 1/O Interface Description 11
1.4 Architectural Description and SRAM Operation 13
1.5 Programming Techniques and Driver API Listing 17
1.6 Advanced Programming Concepts and Graphics 35
1.7 Re-programming the HX512’s CPLD (Complex Programmable Logic Device) 37
1.8 Summary 61

Appendices
A. HX512 Circuit Schematics 62
B. Lattice ispMach 4064 Details and Signal Descriptions 64
C. Building Your Own Lattice ISP Programmer 68
D. Using the HX512 without the HYDRA 72

E. HX512 API Driver Sources 73

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 1.0 — Product Contents.

XTREME 512K Memory Ca
User Manual
Drivers & Demos support@nurve.net

HX512 Drivers, Test Suite, T
API, Demos & Tutorials www.xgamestation.com
Copyright © 2007
Nur

rve Networks LLC. Allrights reserved.

To view manual, Insert CD

1BM PC Compatible CD-ROM
DISC10F1

1.1 Product Contents

The HYDRA XTREME 512K Card kit consists of the following items as shown in Figure 1.0

1. The HYDRA XTREME 512K card itself.
2. A PC compatible CD-ROM with this document on it.
3. Printed Quick Start Sheet (not shown).

1.1.1 CD-ROM Contents

The CD-ROM contains the documentation, drivers, demos, and all source code for the HX512. Additionally, there is a
bonus sub-directory with the latest HYDRA demos and software that are user submitted. The CD-ROM layout is as
follows:

CD_ROOT:\ README.TXT
AUTORUN.SYS
LICENSE. TXT
SOURCES\
SCHEMATICS\
DOCS\

\DATASHEETS

TOOLS\
GOODIES\

Where “CD_ROQOT” is your CD-ROM drive letter; “D:”, “E:”, etc.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 2.0 — The HYDRA XTREME 512K Card up Close and Personal..

[l

]
i
i
i
£ol
- <
eEl
3
H
91
¥
8o
z2
L]
[]
o
‘

1.2 Introduction and Quick Start

The HYDRA XTREME 512K Card or “HX512” for short completes the HYDRA system giving it a full 512K of Static RAM
(SRAM) and 128K BYTE EEPROM for program storage (shown in Figure 2.0). Additionally, there is a Lattice ispMach
4064 Complex Programmable Logic Device (CPLD) onboard which acts as the memory controller and “glue” logic
interfacing the HYDRA and the HX512K. The CPLD is used to address the large 512K memory as well as act as a simple
memory controller that is capable of auto increment and decrement functionality to help accelerate your code. The HX512
has the following features:

Supports 512K of SRAM thru a single BYTE wide bus and a handful of control lines.

Directly addressable lower 64K of SRAM.

Upper 64-512K accessible thru block reads/writes.

Programmable post increment/decrement after reads/writes allowing for high speed block access.

Most operations can be performed in a few ASM instructions.

SRAM can be accessed as fast as global (HUB) memory in many cases from within a COG.

Built in 128K EEPROM on board, so firmware can be loaded onto EEPROM rather than HYDRA main board.
Lots of LEDs for status and debugging uses!

With this exciting addition to your HYDRA, it literally transforms the HYDRA into a full featured 32-bit computer that can
host large programs, operating systems, interpreters, compilers, and more advanced games and graphics applications.
Additionally, the Lattice CPLD can be re-programmed with an 3¢ party programmer or one you build (instructions included
in Appendix C) . By re-programming the CPLD, you can literally change the “personality” and behavior of the HX512
altering it to suit your needs as well as using the HX512 as “poor mans” CPLD development kit. The HX512 has a
number of LED indicators on that can be used as indicators to help with debugging your experiments as well. Figure 3.0
shows a block diagram of the HX512 and its relationship to the HYDRA expansions port interface.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 3.0 — HX512 System Diagram.

HX512

SRANM

Control IAddms Data

Bus Bus Bus

[Eaittice
CPLD EEPROM

 S—

ANSIENIROR

INTERFACIE
10_7.10 0,
USB_RXD, RESn, —> R
NET RX_CLK,
NET_TX_DATA v SCK_CART, SDA_CART

Propeller:

HYDRA CONSOLE

Referring to Figure 3.0, once the HX512 card is inserted into the HYDRA, the HYDRA will boot off the 128K EEPROM on
the card and load the first 32K image into the Propeller. You do not need to use the memory functions if you don’t want to;
however, the HX512 does multiplex control and clock information on the following interface lines shown in Table 1.0.

Table 1.0 — Important HX512 Control Lines.

HYDRA Function HX512 Function Expansion Interface Pin Propeller Pin
NET_RX_CLK SRAM_CO (control) 10 1
NET_TX_DATA SRAM_C1 (control) 9 2
USB_RXD SRAM_CLK (clock strobe) 19 30
RESnN SRAM_RESn (reset) 11 11
I0_0..10_7 SRAM_DO0..SRAM_D7 (data bus) 1..8 16..23

From the HX512’s point of view the three control lines above are all inputs, so the HX512 never
drives them, thus you won’t have a contingency. Nonetheless, once the HYDRA boots and the
USB_RXD line is quiet then if its clocked by any COG other than the one communicating with the
HX512 then you run the risk of instructing the HX512 to load addresses, read or write which would
be unintentional. This is a side-effect since the USB_RXD line doubles for the SRAM_CLK line on
the HX512 which is more or less the “execute command” strobe line. Thus, the HX512 when
inserted disallows the serial communications from the PC for all intent purposes. This has nothing to
do with programming of course, this issue only comes into play after the programming of the
EEPROM or Propeller is complete by the Propeller tool.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Thus, you can still use the HYDRA networking port, but the outgoing serial communications will clock the SRAM if you're
not careful. These topics will be discussed in more detail in later sections of the manual, now let’s plug the HX512 card in
and see if it works!

Figure 4.0(a) — Inserting and Powering up the HX512 Card.

QUICKSTART GUIDE

With the first release of the HX512 card there isn’t much software or demos to go along with the card -- only drivers.
Nonetheless, you can verify everything is working by inserting the HX512 card into your HYDRA and watching the pre-
programmed self-test suite run to confirm the board is working. Make sure your HYDRA is connected to the TV and follow
these steps:

v' Step 1. With the HYDRA hooked up to power, TV and the PC, simply insert the HX512 into the expansion slot
facing the front of HYDRA, be careful not to force it. The HYDRA can be on or off.

v' Step 2. Turn the HYDRA on and/or reset it and the card should reset and boot up the test suite. You will see the
top 4 LEDs on the top-right of the card light up as shown in Figure 4.0(a). If the HX512 doesn’t boot, leave the
power on and simply remove and re-insert the card to get a better insertion connection.

v' Step 3. As the tests run, they will display a PASSED/FAIL on the screen. If everything goes well, you should see
something like that shown in Figure 4.0(b).

v' (Optional) Step 4. Launch the Propeller Tool and load in the test suite program as the top level source file from
the CD located in CD_ROOT:\SOURCES\HX512KSRAM_TEST_010.spin. Compile and download to the HYDRA
by pressing <F11> in the Propeller Tool (to program the EEPROM as well), the results should be the same as the
pre-loaded test demo on the EEPROM.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 4.0(b) — HX512 Running the Memory Test Suite.

HYDRA XTREME S12K SRAM Cord Test Suite
{C] Hurve Networks LLC 2007, ¥1.0

Test 1 - 11111111 s fill:
Test 2 — 00000000's fill:

Test 3 - 10101010°s fill:
Test 4 — Random fill:
Test 5 - Increment fill:

Memory Card PASSED

If you do not see the 4 LEDs at the top right of the HX512 turn on then the card simply didn’t boot.
Try hitting reset, and/or turn the HYDRA on/off and that should do it. Also, pull the card and re-insert
it, you might have a bad insert. All 20 pins needs to make a good connection. Also, sometimes the
USB connection to the Propeller gets hung, try removing the USB cable from the HYDRA power the
HYDRA down, re-insert the USB, power up.

Once you see the test suite running and you see “PASSED” on all tests (which you should) you are in business and
everything is working perfectly. You are now ready to start using and programming your HYDRA XTREME 512K Card!

All the chips on the HX512 have static discharge protection; however, when handling the card,
make sure to hold it by its edges and please don’t press on the large CPLD chip. Additionally, try
not to touch the edge connector. Not only will you potentially static discharge into the connector,
but you want to minimize the amount of dirt, oil, and grime you get on the contact fingers.

WARNING!

Figure 5.0 - HYDRA XTREME 512K Card with Detailed Annotation.

CPLD Programming Port — Configuration Bits LEDs

Power LED =5 XTREME 572K CARD

512K SRAM + u-x EEFROM

512K x 8 SRAM
MEM;D

u:uw-m

Current Operation LEDs f g

> Bypass Caps

Lattice ispMACH 4064
128K Serial EEPROM

077 SHAOMLIN IANMNN A8 a34073A30

Slew Rate Limiter Cap

HYDRA Plug-in Interface

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Referring to Figure 5.0, the important functional blocks on the PCB are annotated for your reference. Starting at the top
left corner of the card is the programming interface (and right under it the RED power LED). This interfaces with a Lattice
ISP (In System Programmer) standard 2x5 header which you can build (based on the schematics later in the manual) or
buy separately from Lattice Semiconductor at these links:

ISP Download Cables for PCs
http://www.latticesemi.com/products/developmenthardware/programmingcables.cfm
The specific part #'s for the parallel port version and USB version are as follows:

= ispDOWNLOAD Cable Parallel Port (HW-DLN-3C) - $65.00
= ispDOWNLOAD Cable USB (HW-USBN-2A) - $149.00 (recommended if you can afford it)

And here’s a link to the online store where you can buy either:
http://www.latticesemi.com/store/hardware.cfm

With the ISP interface on the HX512 you can re-program the CPLD if you wish and change the behavior of the CPLD (of
course you need a programmer to do this).

Continuing with the annotation, the top right has (6) LEDs labeled P5..P0. These are the “configuration or program”
LEDs and indicate the control bits loaded into the HX512K on boot. In this revision of the board only (4) of the control bits
are used P3..P0. They indicate the up/down post increment/decrement behavior of the HX512K. This will be discussed in
more detail later. For now, just note that P3..P0 all ON mean “after each read or write operation automatically
increment the address latch by 1.

The large chip at the top of the board is the asynchronous 512Kx8 static RAM otherwise known as a SRAM. It is a 36-pin
SOJ (Small Outline J-leaded) package manufactured by Cypress Semiconductor, Alliance, or ISSI depending on the build
batch. Under the SRAM is the Lattice ispMach 4064 CPLD. It's a 100 pin PQFP (Plastic Quad Flat Pack). To its
immediate upper left hand corner you should see (3) LEDs, these are “current operation” indicators and indicate memory
READ, WRITE, and LATCH operations respectively in real-time (of course if you re-program the CPLD then they are just
lights).

Finally, to the immediate bottom left of the PCB is a 128Kx8 serial (I°C) EEPROM. This EEPROM overrides the HYDRA'’s
onboard EEPROM when the HX512K card is inserted. Thus, you can deploy your SRAM based applications with firmware
on the same card, rather than first inserting the card and then loading the software into the HYDRA’'s EEPROM. This way
you can potentially write games, languages, or other applications and then resell the HX512K card with your application
onit. You can contact Nurve Networks LLC at support@nurve.net for bulk pricing of the HX512K cards if you're
interested.

The remaining components on the board are mostly bypass/filter capacitors and resistors for dampening high frequency
reflections and current limiting allowing the HX512 to run as fast as humanly possible without a single error.
1.3.1 I/O Interface Description

The electrical interface between the HX512K and the HYDRA is facilitated thru the HYDRA'’s 20-pin expansion interface.
The detailed pinouts and relationships are shown back in Table 1.0, the HX512K’s interface consists of the following
signals in the following detailed groups:

Control
Signal(s): SRAM_C1, SRAM_CO (Propeller Pin 2,1)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

These two lines form a 2-bit control word which selects the operation of the CPLD when clocked. The CPLD then
executes the command by communicating with the SRAM; reading, writing, and updating its internal state. The bit
encoding are shown in Table 2.0.

Table 2.0 - SRAM Control Line Bit Encodings.

SRAM_Ct1 SRAM_CO0 Operation

Write SRAM

Read SRAM

Latch lower 8-bits into 19-bit address counter

Latch upper 8-bits into 19-bit address counter and zero upper 3-bits.

0 0
0 1
1 0
1 1

The SRAM data bus is 8-bits wide, so when you issue a read or write, 8-bits or a single BYTE is transferred at once.
However, there isn’t enough room on the expansion interface for an address bus, thus the data bus is multiplexed and
doubles as the address bus via writing to the memory controller. The 512K SRAM needs 19 address bits to address all
512K. Thus the CPLD has an internal 19-bit address latch/counter, but this address must be latched a BYTE at a time
since the expansion interface only has a BYTE wide bus. The controller gives you the ability to directly latch address bits
15..8, and 7..0 at any time. However, the upper 3-bits (18..16) can’t be accessed directly. The workaround is that when
you write the upper address latch it zeros these bits in its internal buffer. Then through auto-increment or decrement
operations you can sequence thru the memory. More on this later in the functional description.

Clock
Signal(s): SRAM_CLK (Propeller Pin 30)

This signal is an active HIGH edge triggered clock that controls the execution of all commands on the HX512K. The
HX512K uses a dual edged clocking scheme meaning that things happen on both the rising and falling edges of the clock.
Thus, under normal circumstances you hold the clock line low, then when you want to execute a command, you strobe the
clock line by bringing it high then low again. The HX512K is much faster than the Propeller chip, so as fast as you can
clock it, the HX512K will respond.

Although, none of the demos use the following trick, it's possible to use one of the Propeller’s
counters to toggle the SRAM_CLK line. If the SRAM_C1, SRAM_CO lines are in read/write mode and
the HX512K is set for auto increment/decrement after read/write then this trick can be used to
sequence thru memory very quickly with dummy reads for example simply to update the 19-bit
internal address counter in the CPLD. Even at 128 MHz, the CPLD will be able to keep up. The
SRAM is rated at 10-12 ns, so safely you can access it at 50-80 MHz. However, the fastest the
Propeller can ever execute instructions is at about 20 MIPs, so the SRAM is well within operating
limits of the Propeller even if you overclock it by a factor of 2.

Data

Signal(s): SRAM_DO0..SRAM_D?7 (Propeller Pin 16..23)

This is the parallel BYTE wide data bus used by the HX512K. The data lines from the expansion interface run to the

SRAM itself as well as into the CPLD. They are bi-directional and care must be taken when reading and writing to the
SRAM and the HX512K. In general, the Propeller I/O lines must be set to the correct direction (input or output) before
executing the respective read/write commands. But, you can’t damage the lines if you drive the buses the wrong way.

Reset
Signal(s): SRAM_RESn (Propeller Pin 11)

This signal is the standard reset signal that is generated from the USB serial interface as well as the hard reset via the
RESET button on the front of the HYDRA. When SRAM_RESn goes low it resets the HX512K and the CPLD more
importantly. Then the CPLD resets to “program” mode and waits for a single BYTE to be placed on the data bus and the

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

SRAM_CLK to be strobed. Once this is done, this BYTE (lower 4-bits only) becomes the “program” or behavioral control
for the CPLD. In this case, all it does is indicate whether or not the address counter in the CPLD should be incremented,
decremented or left alone after each read and write operation.

Figure 6.0 - HYDRA XTREME 512K Card Detailed Functional Block Diagram.

HX512

SIRVAVLY

TComrol Address Data

ABEL CPLD Driver

Bus Bus Bus

Fostaonk
mom_jedeak ek

kgl somboadonl o b bitons Wk, e, M o mapped
Tyl b n il

i3 4. o0

ot rmes, Focsemer e e

Faittice
AR CPLD EEPR OI}II

e o o e, 1) (128K

ot b o move 2 Yoo st
e whon o =) o mov.Jods = Jod, ok, o o, o, 5}
e { move_Jod = e Jod }

TSCK_CART. SDA_CART

v

EXERANSI @N POIRT

SPIN/ASM SRAM INTEREACE
Driver 10_7..10_0,

W EERROIVI
(2]

USB RXD RESn,
NET_RX_CLK,
%"“ NET_TX_DATA SCK_CART, SDA_CART
4 VARIABLES BECTION IHMMMHHMMMAHHHMMAHAHASY
o':'f.‘.:;"**
--_'-H’ m_’
e < PI‘Opeuer
F—hl-ul—’.--_““ wed o
[-
o Propeller boots from HX512's
_W’mem") 128K EEPROM

HYDRA CONSOLE

1.4 Architectural Description and SRAM Operation

The Propeller chip doesn’t have a large onboard RAM memory nor does it have the address space to support one since
the Propeller’'s address space is limited to 64K internally (32K RAM + 32K ROM) and that’s that. So the goal of the HX512
was to add a large amount of SRAM to the HYDRA and interface to the Propeller thru the external expansion interface
and then come up with a sane method to communicate with the memory, so it integrates well with the Propeller’'s memory
and is as fast as possible for graphics applications. Figure 6.0 shows the final architecture of the HX512 at a block
diagram level.

During the design process there were a number of options to accomplish the goals set out for the HX512. An extremely
slow serial interface with very few 1/O lines could be implemented or an extremely fast interface by using a complete
external address, data, and control bus. For a moment, let’s analyze the latter option, since serial memory isn’'t even worth
talking about considering the Propeller only runs at 20 MIPs.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Let's assume that you want to interface a 512K x 8 SRAM to the Propeller chip via an external bus. Setting aside how the
communication protocol will work on a software level, let’s just look at the electrical interface:

Address Bus Requirements: 19 address lines for 512K addresses.
Data Bus Requirements: 8 data lines (bi-directional).
Control Bus Requirements: 3 (Read/Write, Chip Select, Output Enable)

Total: 30 I/O lines are required

Of course, you could shave maybe one line off the control bus, with a little logic, so you might be able to pull off a totally
parallel 512Kx8 memory interface with 29 lines. If you were just running the Propeller for flat out speed, this is what you
could do if you have the I/O capacity, but in our case all we have is the HYDRA expansion port to work with, so another
strategy must be derived.

1.4.1 The Memory Controller

The strategy is to use a “memory controller” to interface the Propeller via the expansion port to the actually SRAM
memory. In the case of the HX512 this is of course the Lattice ispMACH 4064 which has been programmed to serve this
function. The memory controller has a full parallel interface to the SRAM, but the Propeller only has a
“command/data/clock” interface with the memory controller. The trick is that inside the memory controller is a full 19-bit
address counter that acts as the address bus to the SRAM electrically and logically. Then the Propeller can load the 19-bit
address in chunks a BYTE at a time rather than all 19-bits at a time. Of course this isn’t as fast as directly controlling all
19-address lines. But, it's not bad if you add some automatic addressing features such as auto increment/decrement after
reads and writes anticipating what common memory operations are; write contiguous bytes, read contiguous BYTEs, etc.

Additionally, if you let the memory controller completely control the SRAMs control interface then you can abstract the
memory controller’s interface from the HYDRA'’s side to a set of very simple commands (as shown in Table 2.0):

Read memory

Write memory

Latch lower 8-bits (7..0)

Latch upper 8-bits (15..8) and zero bits (18..16)

So the idea is we need a black box (the Lattice CPLD) that is powerful enough to support the interface from the HYDRA
as well as to the SRAM, as well as be able to handle the internal address counter and any kind of automatic behaviors
such as post increment/decrement. Figure 7.0 shows a block diagram of the memory controller itself, we will refer to this
later in this section, but take a look now for reference.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 7.0 — Block Diagram of the Memory Controller Internally.

A A A
Data Bus | Address Bus Control Bus

; ; (+1, +0, -1)
i) Configuration
Don't Bits
Care P3..PO

S | 4 ALU /o A
M8.A16 | A15.A8 A7.A0 Operation Select Latch
Indirect Direct Access Direct Access <
Reset Latch Low/High
1 A 1 A 1 Reset
Memory
> Controller
State A
Machine
NET_RX_CLK,
NET_TX_DATA,
107..100 RESn,
USB RXD,
{from HYDRA) {from HYDRA)

With all that in mind then the next decision is how will the interface work? | think you can already tell from the commands
listed previously in Table 2.0, we are going to take the approach where we have an address pointer in the memory
controller that is used to read or write from. When we want to manually write to the pointer, we must somehow update all
19-bits of it. There are a number of strategies to do this, but the method that gives the most flexibility and the most speed
is the one chosen for the HX512. Of course, if you don't like it, then you can always change it by re-programming the
CPLD.

As shown in Figure 7.0, the memory controller is rather simple from a block diagram perspective. It has a 19-bit address
latch which is accessed via two 8-bit ports addressing bits 15..8 and 7..0 respectively. Also, when the upper 8-bits 15...8
are written the controller always resets the upper 3-bits 18..16 to 0. That said, there is some extra interesting logic on the
address latch/counter that is shown in the block diagram and this is of course the post increment/decrement logic.

When the memory controller boots initially via a reset from the HYDRA, the address pointer is loaded with $0_0000, if you
request a read or write operation, the address bus into the SRAM will have $0_0000 on it. Now, however, if you want to
address another memory location then the address pointer latch must be updated manually (or via automation). This is
done by writing to the lower and upper address bits. However, this only gives you access to the first 64K of memory
directly, that is, when you update the lower and upper 8-bits of the address latch the upper 3-bits are inaccessible directly,
thus, some kind of automation or logic must be used to gain access to them which is outlined next.

1.4.2 Memory Latching Side Effects

Referring to Figure 7.0, if you write to the lower 8-bits of the address, that is, the lower 8-bits 7..0 then those bits are
updated and nothing else happens. This way you can very quickly modify any BYTE in any 256 BYTE page that is
currently addressed by the upper address bits with a single latch.

If however, you update the upper 8-bit latch, it will update address bits 15..8 with the data you latch then it will
automatically zero out bits 18..16 (which you can think of as the 64K segment if you will that is currently addressed).

Then you might ask the question, “How can I ever access memory above 64K?”. This is where the post
increment/decrement logic comes into play...

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

1.4.3 Post Increment / Decrement Logic

The address latch is really a counter as well and can count up or down depending on the initial “program behavior” that is
loaded into the memory controller on boot from the HYDRA. The program behavior or control bits/flags consist of a single
BYTE that is placed on the data bus immediately after reset. The lower 4-bits of the BYTE are used to indicate the
behavior that the memory controller should take after each read and write operation. The encoding of the bits are shown
in Figure 8.0.

Figure 8.0 - Memory Controller Program Bits

71654 3] 2 | 1|0
0|0 (0|0 sr r0 sw [w0

Referring to the figure, the program bits are referred to PGM3..PGMO, the upper 4 bits of the program word are unused at
this time, and always set to 0. The program bits PGM3..PRMO tell the memory controller how you want to handle the post
operation for read and write. Moreover, both operations are independent. For example, you can set both to do nothing, or
you can set increment after read, but decrement after write and so forth. However, in most cases, programming the
controller with 00001111, which means post increment on both read and write is most commonly used. Each 2-bit pair
represents the sign and magnitude of the post operation for read and write respectively. This is shown below:

SW - sign bit for write post increment/decrement (1=add, O=subtract).
w0 - 1 bit magnitude for write post increment/decrement.

sr - sign bit for read post increment/decrement (1=add, O=subtract).
r0 - 1 bit magnitude for read post increment/decrement.

Note: that the “sign” bits use “1” to represent addition, and “0” to represent subtraction.

Thus, if you wanted to program the controller to do nothing 0000_0000, would work, as would 0000_1010,, since a “1” in
the sign bit will have no effect for a “0” in the magnitude bit. If you wanted the controller to perform a post increment on
write, but a post decrement on read then the program bits would be 0000_1101,. Finally, as the counter increments or
decrements it simply wraps around, thus incrementing past 0x3_FFFF (512K-1) results in 0x0_0000, decrementing
0x0_0000 results in 0x3_FFFF (512K-1).

More details about programming later in the API section of the manual.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 9.0 — Graphical Relationship of HX512 Drivers.

HX512KSRAM_SPIN_DRV_010.spin HX512KSRAM_ASM_DRV_010.spin HX512KSRAM_UNIFIED_DRV_010.spin

SPIN API ASIVITAPI

SPIN APl "_S" Suffix

10 Configuration
Programming
Read

Write

Block Functions

SPIN API Wrapper Functions
Make Calls to ASM Driver
via Shared Global Memory.

Write
Block Functions T Init done by ASM!

_ Global Shared Memory
ASM APl " A" Suffix

Responses

Initialization
Programming
Read

Driver Communicates with

HX512 via SPIN only LOW Level ASM Driver SPIN APl Wrapper Functions
Waits for Commands in Make Calls to ASM Driver
Global Shared Memory. via Shared Global Memory.
Always Runs on S .

COG

ASM
coG

LOW Level ASM Driver
Waits for Commands in
Global Shared Memory.
Always Runs on Sep

COG
ASM

1.5 Programming Techniques and Driver API Listing

In this section, the programming of the HX512 will be discussed as well as the API interface explained in detail. Let’s
begin with outlining the drivers and test programs and what they do, then discuss the entire flow chart of the HX512
booting and accessing memory, and then finally review examples of reading, writing, latching, and finish up with the
formal API listing for the HX512 drivers (both SPIN and ASM will be covered). To begin, take a look at Figure 9.0, it
depicts the three drivers we have to choose from; SPIN, ASM, and the unified driver (SPASM™) that has both SPIN and
ASM drivers within it. All drivers are located in the \SOURCE directory on the CD:

= HX512KSRAM_ASM_DRV_010.spin
= HX512KSRAM_SPIN_DRV_010.spin
= HX512KSRAM_UNIFIED_DRV_010.spin

The reason for all three drivers is to give you the maximum amount of flexibility with your code. For example, if the ASM
driver does everything you need and speed is your first and foremost concern then you are all set. If on the other hand,
you need to be able to make modifications to some of the functions, but aren’t an ASM guru then you can use the SPIN
only driver if speed isn’t a concern. Finally, if you want to modify some SPIN functions, but still want to be able to call the
ASM drivers and don’t mind the bloat of having both drivers source then the unified driver is the way to go.

Namespace collisions are avoided by appending the suffix “_S” to all the SPIN driver API calls and “_A” to all the ASM
driver API calls. Thus, you can have both functions used in the same program, but not name collide at the function name
level. If you were to import both drivers at an object level then this wouldn’t matter since each object’'s API functions are
resolved with “ObjectName.FunctionName”, thus the “ObjectName” creates and artificial namespace, but this further
suffix syntax gives another level of security, so you don’t have to worry about mixing functions in the same source if you
like to cut and paste.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

The best approach when you are starting to experiment is to use the SPIN or unified driver, since the SPIN code is
relatively easy to understand and follow while the ASM driver code is rather complex and highly optimized making it hard
to follow and hard to modify for newbie’s to ASM.

The one thing you have to keep in mind is that when you use the SPIN driver functions you
SPIN code must set up the I/O initially on the Propeller for proper communications since the
SPIN code is running on an interpreter loaded into the current COG. Additionally; however, if
you start the ASM driver it runs on another COG and thus it also needs to initialize the 1/0O
hardware, so it can access the HX512 as well. Thus, if both drivers run then you have to make
sure they can both access the HX512 without bus conflict. Moreover, there is an additional
stipulation that only one driver the SPIN or ASM can initially program the HX512’s memory
controller program bits. That is, if you use the SPIN driver’s call to program the 4-bit
configuration program of the memory controller, then you can’t use the ASM driver since the
ASM driver always needs to initialize the memory controller itself. Thus, if you want to use SPIN
only, you have nothing to worry about, but if you want to use the unified driver, you will always
start the ASM driver up and let it initialize the memory controller, you do not want to make
another superfluous call to initialize the controller with SPIN code. Not only will it not have any
affect, but it might write erroneous data or latch an address to the memory controller
unintentionally.

Lastly, the goals of the drivers are simply to be able to access the external memory as if it were internal. Since we can’t
modify the SPIN interpreter itself and add features to it to transparently access the memory, the interface must be done
thru API calls. However, the goal was to make the API calls as painless and easy as possible. And to create an API of the
most commonly used functions such as a read BYTE, write BYTE, memory copy, etc. Also, the drivers take advantage of
the memory controller’s built in ability to auto-increment (or decrement) the current address pointer, so that you can
initially set the address once with lengthy latch operations and then as long as you are working with contiguous memory
simply read or write without updating the address latch/counter. This saves a huge amount of bus traffic with time
sensitive algorithms such as graphics and DSP.

1.5.1 Driver Familiarization: Running the Test Suite

The test program suite runs a series of tests on the HX512 to verify the SRAM, the memory controller and in general to
exercise everything on the card to make sure things are in order (even the LEDs). The test program is also a very good
tutorial on how to initialize the HX512 as well as make many of the API calls. The test program is located on the CD in the
\SOURCE directory with the following name:

HX512KSRAM_TEST_010.spin
Simply load it into the Propeller Tool, compile and download to the HYDRA (with the HX512 inserted of course) and after
downloading, the Propeller will reset and the program will begin testing the HX512. You should see the exact same results

as you did with the pre-loaded test program.

Take a few moments to peruse the code, you will notice in the OBJ section of the code, the following objects are included:

OBJ
tv : "tv_drv_010.spin" . ' instantiate a tv object
gr : "graphics_drv_010.spin" . ' instantiate a graphics object
sr : "HX512KSRAM_ASM_DRV_010.spin" ' instantiate ASM SRAM driver

The only entry of interest is the HX512 driver itself (highlighted) which in this case is the ASM only driver. The ASM driver
is very fast and necessary for the test suite since using the SPIN driver would take minutes to hours for each of the tests
to run!

Immediately following the object declaration the main program starts, graphics, and various other variables are initialized
and finally on line 160 roughly the call to start the ASM driver up is made with this line:

sr.SRAM_Start_ASM_Driver(%000_11_11)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

This calls a SPIN function which passes the 4-bit program code to the ASM driver among other things (which we will get
into shortly). Once the call is made, another COG is started with the ASM driver and you are free to make calls to it via a
simple SPIN API client interface. The APl interface more or less passes variables into a global shared memory that the
ASM driver is always watching for commands (more on this later) and the ASM driver responds to these commands, thus
the ASM driver waits for data in a certain memory location and when something is there, the driver acts. You do not need
to interface with the ASM driver with SPIN, you can use another ASM program as well, since the interface is all thru global
shared memory, but to make things easier a SPIN interface was elected.

After the HX512 is initialized and ready to go the test suite begins and each test runs in sequence, when the tests are
complete they repeat, and that’s it.

Figure 10.0 — HX512’s Memory Controller State Machine.

Power Up

State 0
"PROGRAM"

1.5.2 HX512 Start-Up Behavior and Program Configuration Bits Programming

Referring to Figure 10.0, when the HX512 is first reset by the HYDRA the CPLD is in the “PROGRAM?” state. In this
mode, the memory controller is waiting to be programmed/configured and sits in a loop. The memory controller accepts
the first piece of data written to storing it into the internal program/configuration bits then transitions into the normal
“RUN” state. Once in the RUN state you can issue the normal commands like read, write, load low latch and load high
latch.

The trick is to make sure that the memory controller doesn’t accidentally get programmed during reset since many of the
I/O lines are potentially pulsed with spurious data, thus the memory controller’s logic and CPLD program will only respond
to a binary “00” on (SRAM_C1, SRAM_C0), thus you must place both of these lines into output mode, set the data bus
I/0 to outputs as well as the SRAM_CLK to an output. During all this I/O juggling, the HX512 shouldn’t be erroneously
clocked and will remain in the “PROGRAM?” state until you actually want to program it. Thus drivers aside, to initialize the
HX512 after a reset (hard or soft) if you were going to code from scratch you would need to following these steps:

Step 1: Set the /O lines for (SRAM_C1, SRAM_CO0), SRAM_CLK, and all the data lines (msb)
(SRAM_D7..SRAM_DO) (Isb) all to outputs while making sure that the output values were set to 0.

Step 2: Write binary 00 to (SRAM_C1, SRAM_CO0).

Step 3: Place the 8-bit data on the data bus lines (SRAM_D7..SRAM_D0), only the lower 4-bits matter which map
to (PGM3..PGMO0); however, always set the upper nibble to binary 0000 just to be safe.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Step 4: Strobe the clock line as follows; SRAM_CLK = 0, SRAM_CLK = 1, SRAM_CLK = 0.

Step 5: (Optional) Place the data bus back into read or input mode. This is necessary since if another processor
wants to read from the data bus, if the interpreter running on the current COG sets the I/O to output then no other
COG can set it to input! Thus, always exit functions by setting the data bus to an input. The control lines
SRAM_C1, SRAM_CO0, SRAM_CLK are always outputs, so they don’t matter as much, leave them as outputs. Of
course, this optional step only matters if more than one COG will try to access the HX512.

After performing all 5 steps, the memory controller will transition from the PROGRAM state to the RUN state and you will
see the 4-bit configuration word you just loaded into the program bits reflected on the program LEDs to the top right of the
card (in most cases you should write binary 0000_1111, which means post increment after read and write).

Do not get “programming the CPLD” with “programming/configuring the memory
controller” confused. Programming the CPLD means using a Lattice compatible
programmer, writing Verilog or ABEL code, compiling it with a silicon compiler, and
flashing it to the CPLD (which we will discuss later). Programming the memory controller
or setting the configuration bits on the other hand is completely abstract and simply the
action of writing a single BYTE to the controller where the lower 4-bits represent the
“behavior” to be performed after reads and writes.

That completes the start up behavior of the HX512. The most important thing to remember is that when the HYDRA re-
boots (caused by a reset, power cycling, or the PC downloading code), the HX512 starts in the PROGRAM state waiting
for a single BYTE to be written. The BYTE must be placed on the data bus, the SRAM_CLK line strobed LOW-HIGH-
LOW and that completes the initialization process, at this point, the HX512 memory controller transitions into the RUN
state.

After the initial programming/configuration operation, the 19-bit address latch/counter will be set to all zero’s ($0_0000)
and the memory controller is ready to go and awaits your command(s).

1.5.3 SPIN Driver APl Overview

The SPIN driver APl is a good segue into the ASM driver since we can focus on functionality rather than how the code
works since the ASM is much harder to follow. However, as you will see as the drivers are discussed the functionality of
the drivers are nearly identical, and literally only differ in a suffix to differentiate the function calls from an API perspective.
Other than that internally they more or less do the same, the ASM drivers just do it hundreds of times faster! So, we will
start with the SPIN driver then finish with the ASM driver.

The SPIN driver consists of a little over a dozen function calls. The calls give you the maximum flexibility in
communicating with the HX512 to facilitate basic SRAM operations. Of course, the drivers aren’t as fast as the ASM
drivers, so you won’t be doing crazy bitmapped graphics with them since SPIN runs in the thousands or tens of thousands
of lines of code a second, not millions of instructions per second needed to do graphics. For higher speed access you will
use the ASM drivers (or write your own). But, starting with the SPIN drivers is better since we can look inside functions
and see what'’s going on. The driver source is listed in Appendix E., so we won’t cover it here in detail, just the APl itself
from a functional view; however, some of the constants and data structures are worth reviewing in the header section of
the driver to give you a frame of reference for the API listing.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

The code begins with a CON section with the following constants:

CON
' SRAM bus interface pin constants
SRAM_CTRL_0 = 1 ' NET_RX_CLK (expansion pin 10)
SRAM_CTRL_1 = 2 " NET_TX_DATA (expansion pin 9)
SRAM_STROBE = 30 ' USB_RXD (Prop TX ----> USB_RXD Host) (expansion pin 19)
SRAM_IO_7 = 23 ' 1I0_7 (pin 28)
SRAM_IO_6 = 22
SRAM_IO_5 = 21
SRAM_IO_4 = 20
SRAM_IO_3 = 19
SRAM_IO_2 = 18
SRAM_IO_1 = 17
SRAM_IO_0 = 16 ' I0_0 (pin 21)

' sram commands
SRAM_CMD_WRITE = %000000_00
SRAM_CMD_READ = %000000_01
SRAM_CMD_LOADLO = %000000_10
SRAM_CMD_LOADHI = %000000_11

size of spin based Tocal memory cache in bytes used for sram copying etc. to speed up process
LOCAL_MEM_CACHE_SIZE = 256

These constants identify the 1/0 port pins and the SRAM command codes for ease of programming. If you were to
interface the HX512 to non-HYDRA hardware, then here’s where you would want to make changes to the I/O interface
pins.

Also, notice the constant highlighted at the end of the code LOCAL_MEM_CACHE_SIZE this is the size of the local buffer
for memory copies with both source and destination inside the SRAM itself. Since the SRAM is a BYTE device, it
becomes very inefficient to move large amounts of memory around within the SRAM itself a BYTE at a time, a better
strategy would be to copy blocks or pages of memory back to the Propeller then move the entire block at a time. With a
larger CPLD it would possible to actually perform memory copies with the CPLD itself acting as a DMA controller, but this
CPLD just doesn’t have enough logic to pull that off.

Moving on, the next section contains a few global working variables for general SRAM state tracking and debugging:

VAR

SRAM Spin driver working variables
Tong sram_addr
byte sram_ctrl
byte sram_data

Finally, at the end of the source listing is the memory cache storage itself. The cache didn’t need to be defined as data
statements, but could have easily been modeled with an array up top in the VAR section; however, with this format, you
can initialize the data and values can be placed into the cache for special purposes and testing.

DAT

—+

[elololelololala)]
Q.
o

OCOOOOOO0OM

' local memory cache used for s
local_mem_cache byte
byte
byte
byte
byte
byte
byte
byte

R

=}

OOOOOOOOQ

OO0 OOOO =

e e e e w0

OOOOOOOOa
=

OOOOOOOO%

OOOOOOOOS

)]

[elelolololaolalaiy)

=

OCOOOOOOOh
=

o

OOOOOOOOMm
1]

[eleololelolelelalV)]

<
o
[olelololololalaly]
=}
o
=

—

OCOOOOOOO

OOOOOOOOE
OOOOOOOO_h
OCOOOO0COOOC
OOOOOOOOS'
[eleololelolelala)e]
OCOOOOOOOUT
- e W w e W w e -
[elololelolelala)V)]
[ofeolololololeloks]
OOOOOOOOT
[ofofolololeololal
OCOOOOOOO-h

. e o ow ow ow ow ow o~

OO OOOOOOo
OO OOOOOO
OO OOOOOOo
OO OOOOOON
e e e - - - -1
[elelololelelele)e))

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

1.5.5 SPIN Driver API Listing
The SPIN API has five major classes of function as shown in Table 3.0. Along with each class of function are the

associated functions listed to the right. After the table, the API functions will be listed one by one along with a short
example.

Table 3.0 — SPIN Driver API Function Classes at a Glance.

Functional Class Function(s)

Initialization SRAM _|InitalizelO_S
SRAM_WriteControl_S(_data8)

Latching SRAM_ LoadAddr64K S (_addr16)
SRAM LoadAddr512K

(_
_ S (_addr19)
SRAM_LoadAddrLow S (addr8)
SRAM_LoadAddrHi S (_addr8)

Reading SRAM_Read64K S(_ addri16)
SRAM ReadAuto S

Writing SRAM_ Write64K S (_addr16, data8)
SRAM_WriteAuto_ S (_data8)

Block Operations SRAM_MemSet_S(_dest addr, data8, num_bytes)
SRAM_MemCopy S(_dest _addr, src_addr, _num_bytes)

MM_Copyto SRAM_S(_dest addr19, src_addr16, _num_bytes)
SRAM_Copyto MM_S(_dest_addr16, src_addr19, num_bytes)

Note: All functions have the suffix “_S” to help separate them from the ASM versions in the case that source modules are mixed.

Function Prototype: SRAM_InitalizelO_S

Description: Initializes the COG’s I/O in preparation for interfacing to the HX512. Must be called first before
making any other SPIN API calls.

Parameters: None.

Example(s): Initialize 1/0 for COG running interpreter to interface with HX512.

OBJ
sr : "HX512KSRAM_SPIN_DRV_010.spin" ' instantiate spin SRAM driver

pub start
‘ initialize the 10 for this COG, so its setup for the SPIN driver<-> HX512 interface
SRAM_InitializeIO_S

Function Prototype: @SRAM_WriteControl_S(_data8)

Description: Writes the configuration bits to the HX512’s memory controller. This function must be called
before any API functions are called. Additionally, if the ASM driver is used in conjunction with the
SPIN driver either at the source level or with the unified driver then do not call this function,
rather, let the ASM driver initialization call handle the configuration of the HX512.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Parameters: _data8 : 8-bit data that configures the memory controller’'s post read/write behavior. Only bits 3..0
are used, bits 7..4 are ignored and should be set to 0’s. The format of the bits are as follows:

716|543 2 | 1] 0
X| x| x| x|[sr]| r0O | sw| w0

sw - sign bit for write post increment/decrement (1=add, O=subtract).
w0 - 1 bit magnitude for write post increment/decrement.

sr - sign bit for read post increment/decrement (1=add, O=subtract).
r0 -1 bit magnitude for read post increment/decrement.

Example(s): Configure HX512 to increment after read and increment after write (most common configuration).

OBJ
sr : "HX512KSRAM_SPIN_DRV_010.spin" ' instantiate spin SRAM driver

pub start
‘ initialize the 10 for this COG, so its setup for the SPIN driver<-> HX512 interface
Sr.SRAM_InitializeIO_S

‘ now configure HX512
Ssr.SRAM_WriteControl_s(%0000_1111)

Function Prototype: #SRAM_LoadAddr64K_S (_addr16)

Description: Loads the HX512’s address latch/counter’s lower 16-bits with the sent address (zero’s the upper
3-bits). This function is the fastest way to set an arbitrary address when accessing only the first
64K of the SRAM.

Parameters: _addr16 : 16-bit address to set the HX512’s internal address counter to.

Example(s): Load the address of $1FFO0 into the HX512 (assumes HX512 has been initialized etc.)

‘ set HX512’s address to $1FFO
sr.SRAM_LoadAddr64K_s($1FF0)

Function Prototype: SRAM_LoadAddr512K_S (_addr19)

Description: Loads the HX512’s address latch/counter’s full 19-bit address with the lower 19-bits of the sent
address. This function assumes that the memory is in post read increment mode since the
function achieves the final target address by “walking” to it via dummy reads. Thus, it's very slow
the farther out in memory you go. The ASM version is much faster of course. The bottom line is
random access beyond 64K is very slow. But, random access in the first 64K is very fast.
Additionally, the function is smart enough to use fast direct access to the lower 64K, but there is
conditional logic to test for this and since SPIN is interpreted any extra cycles accessing memory
that can be avoided should. Hence, if you only need access to the lower 64K make sure to use
the 64K version of the function even though this one will work.

Parameters: _addr19 : 19-bit address to set the HX512’s internal address counter to.

Example(s): Load the address of $10000 into the HX512 (assumes HX512 has been initialized etc.)

‘ set HX512’s address to $10000 (128k)
sr.SRAM_LoadAddr512K_s($10000)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Function Prototype: #SRAM_LoadAddrLow_S (_addr8)

Description: Loads the lower 8-bits of the HX512’s address latch/counter’s the lower 8-bits of the sent
address. This function is good if you want to jump around in a 256 BYTE “page” that is already
defined by the upper address bits, but you don’t need/want to update the entire 16-bit address
(since it costs two latch operations). Bits [a7..a0] are updated while bits [a18..a8] are left
untouched.

Parameters: _addr8 : 8-bit address to set the HX512’s lower 8-bits of the internal address counter to.

Example(s): Walk thru addresses 0-255 of the currently address “page” defined by the upper 10-bits of the address latch
by only changing the lower 8-bits (assumes HX512 has been initialized etc.)

walk thru the 256 bytes on the current page defined by address latch [al8..a8 | xxxxxxxx]
repeat index from 0 to 255
sr.SRAM_LoadAddrLow_S (index)

‘ doesn’t do much since there 1is no read or write operation!

Function Prototype: SRAM_LoadAddrHi_S (_addr8)

Description: Loads the upper 8-bits of the HX512's address latch/counter (bits 15..8) with the lower 8-bits of
the sent address. This function is good if you want to jump around accessing the same BYTE in
multiple “pages”, but you don’t need to update the entire 16-bit address (since it costs two latch
operations).

Parameters: _addr8 : 8-bit address to set the HX512’s upper 8-bits of the internal address counter to, bits
[a15..a8] are updated, bits [a7..a0] are left untouched while bits [a18..a16] are zeroed.

Example(s): Access the same BYTE in 256 pages by only changing the upper 8-bits (assumes HX512 has been
initialized etc.)

walk thru the same byte on 256 pages, updates latch [000 | xxxxxxxx | a7..a0]
repeat page from 0 to 255
sr.SRAM_LoadAddrHi_s(page)

‘ doesn’t do much since there is no read or write operation!

Function Prototype: @SRAM_Read64K_S(_addr16)

Description: Reads a single BYTE from the lower 64K address space of the HX512. Is very fast for random
access. After the BYTE is read and returned to caller the HX512 post increments or decrements
the internal address pointer (or does nothing) depending on the configuration bits.

Parameters: _addr16 : 16-bit address of BYTE to read from HX512.

Example(s): Find the integer average of the first 1000 BYTEs in the HX512.

sum := 0
‘ sum data up
repeat index from 0 to 999

sum += Sr.SRAM_Read64K_S(index)

¢ compute average
sum /= 1000

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Function Prototype: @SRAM_ReadAuto_S

Description: Reads a single BYTE from the HX512’s current address. The idea of this function is to first set
the address latch of the HX512 with a call to another function then very quickly iterate thru
memory without the need for sending the latch address each time. However, for this function to
be useful the HX512’s configuration bits should be programmed for post increment or decrement
after read operations.

Parameters: None (implied as the current address).

Example(s): Find the integer average of the 1024 bytes from address $2000 to $23FF in the HX512.

sum := 0

‘ first set address latch to starting address

sr.SRAM_LoadAddr64K_s($2000)

‘ sum data up

repeat index from 0 to 1023
sum += sr.SRAM_ReadAuto_S

¢ compute average
sum /= 1024

Function Prototype: nSRAM_Write64K_S(_addr16, _data8)

Description: Writes a single BYTE from to the lower 64K address space of the HX512. |Is very fast for random
access write. After the BYTE is written the HX512 post increments or decrements the internal
address pointer (or does nothing) depending on the configuration bits.

Parameters: _addr16 : 16-bit address to write BYTE to.
_data8 : 8-bit data BYTE to write (simply uses the lower 8-bits of 32-bit parameter).

Example(s): Write the integers 0..255 starting at address $8000.

value := 0

‘ write bytes
repeat addr from $8000 to $80FF
sr.SRAM_Write64K_S(addr, value++)

Function Prototype: @SRAM_WriteAuto_S(_data8)

Description: Writes a single BYTE to the HX512’s current address. The idea of this function is to first set the
address latch of the HX512 with a call to another function then very quickly iterate thru memory
without the need for sending the latch address each time. However, for this function to be useful
the HX512’s configuration bits should be programmed for post increment or decrement after write
operations.

Parameters: _data8 : 8-bit data BYTE to write (simply uses the lower 8-bits of 32-bit parameter).

Example(s): Write the integers 255..0 starting at address $8000.

value := 0

‘ first set address latch to starting address

sr.SRAM_LoadAddr64K_s ($8000)

‘ write bytes with auto increment after write

repeat value from 255 to 0
sr.SRAM_WriteAuto_S(value)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Function Prototype: SRAM_MemSet_S(_dest_addr, _data8, _num_bytes)

Description: Sets a number of BYTEs in the SRAM to a specific value. Similar to memset() in C/C++.
Assumes configuration bits set for auto increment.

Parameters: dest addr : 19-bit destination address in SRAM to start BYTE fill.

_data8 : 8-bit data BYTE to write (simply uses the lower 8-bits of 32-bit parameter).
_num_bytes : Number of BYTEs to set/fill, 0..512K.

Example(s): Fill the first 20K BYTEs of memory with $57.

sr.SRAM_MemSet_S($0_0000, $57, 20%1024)

Function Prototype: SRAM_MemCopy_S(_dest_addr, _src_addr, _num_bytes)

Description: Copies a number of BYTEs internally in SRAM from one location to another. This function uses a
local memory buffer within the Propeller to “cache” blocks of memory to speed up the process.
The cache is defined in the CON section and the DAT section and is recommended to be at least
128 BYTEs in size. Similar to memcpy/() in C/C++. Doesn’t handle overlapping copies properly
unless the number of BYTEs copied is smaller than the cache size then an overlapping copy will
work since the data is cached all at once and not destroyed during the copy process. Assumes
configuration bits set for auto increment.

Parameters: _dest_addr : 19-bit destination address in SRAM to copy BYTEs to.
_src_addr : 19-bit source address in SRAM to copy BYTEs from.
_hum_bytes : Number of BYTEs to copy 0..512K.

Example(s): Copy the first 64K in SRAM to destination address $2_0000 (128K) in SRAM.
sr.SRAM_MemCopy_S($2_0000, $0_0000, 64+*1024)
This concludes the SPIN API overview, next the ASM API will be discussed. In most cases, its nearly identical, only the

start up and the addition of a couple more functions are where it differs. Also, the data flow in the ASM driver from SPIN
client to the driver is interesting and will be discussed.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 11.0 — ASM Driver Communication Architecture.

AS|VI" API

SPIN APl Wrapper Functions
Make Calls to ASM Driver
via Shared Global Memory.

LOW Level ASM Driver
Waits for Commands in
Global Shared Memory.
Always Runs on Seperate

COG
ASM
coG

1.5.6 ASM Driver API Overview

The ASM driver is much faster than the SPIN driver; hundreds of times faster in fact. The driver’s architecture and
communications interplay is shown in Figure 11.0. When writing code for the Propeller where you want SPIN to interact
with ASM there is a problem of communicating with the ASM driver once its running. The problem is once you launch the
ASM driver on another COG there is no direct way to send “messages” to the COG. Thus, more creative shared memory
strategies much be employed. This is the common technique used in multiprocessor architectures that do not have
message passing mechanisms. You will find that all the drivers written in ASM that need interplay from SPIN (or ASM for
that matter) use this architecture which is from the 1950’s! In any event, the HX512’s ASM driver is no exception. The
driver is located on the CD in the \SOURCES directory with the following filename:

CD_ROOT:\SOURCES\HX512KSRAM_ASM_DRV_010.spin

Referring to Figure 11.0, the client’s SPIN code running on COG(n) simply makes a call to the ASM driver’s start method
which is listed below:

PUB SRAM_Start_ASM_Driver(sram_init_program)

' this function starts the ASM SRAM dr1ver up and sends the 4-bit initialization program code to it as well as initializes the IO pins for

' proper operation the control word or "program" instructs the SRAM controller to either post inc/dec on reads/write or neither

' Parameters: sram_init_program - this data word (lower 4-bits only) is used to program the behavior of the controller, see below

4-bit format

| 3 2 | 1 0

| sr r0O | sw w0

i3 cooanonnnn pgm0

swo - s1gn bit for write post increment/decrement (l=add, O=subtract).

w0 - 1 bit magnitude for write post increment/decrement (wl ignored in this version).
sr - s1gn bit for read post increment/decrement (l=add, O=subtract).

r0 - 1 bit magnitude for read post increment/decrement (rl ignored in this version).

In most cases, its recommended that controller is initialized with both post increment on read/write
which is the value %0000_1111, these program bits will show up on the LEDs to the top right of the SRAM card

' if the driver_is running kill it, however, there is no way to reset the controller, so the program loaded into the program
' from RESET will remain there until another reset
SRAM_Stop_ASM_Driver

' set command in global shared variable

sram_command 1= sram_init_program . L . . i . . . i

: ﬁet starting address of parameters passed to sub-functions, this is a pointer to pointer, in this case NULL since this operation
as no parms

sram_parameter_list_ptr := 0
' start the driver, return status, set up cog id variables
return (cogon := (cog := cognew(@SRAM_Driver_Entry, @sram_command)) > 0)

The start method makes a couple global memory assignments (which we will get to shortly) and simply makes a call to
cognew(...) and starts the ASM driver running. The only parameter sent to cognew(...) is the starting address of the

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

global parameter passing area. This is the key to making the communication scheme work. The SPIN interpreter running
on the master COG needs a way to get to the ASM driver in real-time. Thus, a set of variables are defined in the global
memory space, so the SPIN helper functions can access the memory while at the same time the starting address of this
region is sent to the ASM driver, thus both parties the client and server know where data will be passed.

Figure 12.0 — The SPIN / ASM Driver Functional Call Interaction Diagram.

SPIN Client Program ASM Driver
Cane “start function from Hrver. SPIN "ASM "Wrapper" API

sram.SRAM_Start ASM_Driver(config_bits) = «|- -
Makes calls to driver's SPIN based cognew (@SRAM_Driver_Entry,
"helper” functions.c. sram_command)

: -------------------- k- SRAM_ReadAuto A
s *I'| SRAM WriteAuto A (data8)
Tt *I'l SRAM LoadAddr512K A (addr19)

. Helper function in SPIN =
. initialize global parameters .
- to function command, -
- parameter, address, etc.
= ASM driver "listens" to
= global memory.

= Waits for sram_command ' ASM Driver Entry
" to be non-zero. ORG $0

' Initialization
' 10 Setup
oo ' Parm area = @sram_command
—
Global :‘j‘iw GCommand; :'IJ'!AMU_;JJLJ" '_'J'fui!_!.w;)
Shared Memory coceccscecen ceccssssecsecses 500000 : | 2)

SHANMBHeturnivaiae;

" pmps S12K8
ReadAuto_ {entry}

cod :
j{mp :\L.RAM_Cmd_Walt_Loop Pt
WiriteAuto_ {entry}

{cod;g 0
jmp #SRAM_Cmd_Wait_Loop |- =
LoadAddr512K {entry} :

{code .
jmp #SRAM_Cmd_Wait_Loop |-

ASM Driver COG

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

1.5.7 The ASM Driver’s Global Memory Passing Area

Conceptually how SPIN communicates with the ASM driver is straight forward. A number of parameters are defined in
SPIN at the top of the driver program in the VAR section:

VAR
long cogon, cog
' sram parameter passing area for AsM driver, this starting address always holds, the command, parameter ptr, and return value, in that order
long sram_command ' holds command to SRAM driver, also the starting address of this LONG is assumed to be the start of all parms

long sram_parameter_list_ptr ' holds pointer to parameter 1ist to driver
long sram_return_value ' holds result of sub-function (if there is one)

The parameters consist of 3 LONGs; the first is always the command, the second a pointer to the parameters, and the
third is used as a place holder for return values. Thus, as long as the ASM driver knows where these are, the ASM driver
can “watch” the command variable. When it detects a command loaded into this variable, then it jumps to the requested
command, queries the parameters by inspecting the pointer and finally returning any data via the return value.

The entire process is graphically depicted in Figure 12.0. Once the ASM driver is running, it sits in a waiting loop
inspecting the global memory location which is supposed to hold the next command for the driver to execute. As long as
this command is NULL, the driver does nothing. The ASM code that does this is very short:

SRAM_Cmd_wait_Loop
enter into command loop waiting for command
rdlong sram_cmd, sram_parms_base_ptr wz ' read command from MM in global shared variable
if_z jmp #SRAM_Cmd_wait_Loop ' if non-zero then execute command, else continue to loop

Once a non-zero value is detected by the waiting loop, the command is used as an index into a command lookup table
and the function requested is vectored to. This code looks like this:

ok now we basically need to do case (sram_cmd) and for each value execute the code body

mov r0, #SRAM_Jump_Table r0 = base address of jump table

add rO, sram_cmd ''r0 =r0 + cmd

movs :Read_Jumpvec, r0 ' access vector address in jump table at [r0 + cmd] -> destination of jmp (self modify code)
nop ' wait a second for pre-fetch, let self modifying code complete downstream

:Read_Jumpvec mov rl, 0 ' dummy O value has been overwritten with jump vector above
jmp ril ' jump to sub-function starting address
' this is an inline jump table, more or less implements an assembly language "case" statement .
SRAM_Jump_Table ' to save memory convert to words or bytes later, but means more code above to perform select Togic
' table holds starting address of each sub-function

Tong wait_

0 , do nothing command (DONE)

long Write64K_ '= 1, write byte to lower 64K fast mode (DONE)
Tong Read64K_ ! , read byte from Tower 64K fast mode (DONE)

Tong write512K_ =
‘£
Tong Read512K_ =

write byte anywhere in 512K memory, slower (not implemented),
stead load the address with LoadAddr5i2k_ then use ReadAuto/wWriteAuto
, read byte from anywhere in memory, slower (not implemented)

Tong ReadAuto_ , writes to the current address sram controller is set to, then auto inc/dec executes if programmed (DONE)
Tong LoadAddr64K_ = , loads a 16-bit address (0..64K-1) directly into the low and high address latches,
also clears the upper 3-bits of address (DONE)

, loads a 19-bit address (0..512K-1) into address buffer, by advancing if necessary using dummy reads (DONE)

2
3
n
4
long writeAuto_ '= 5, writes to the current address sram controller is set to, then auto inc/dec executes if programmed (DONE)
6
7
1
8

Tong LoadAddr512K_ =

9 , Toads only the lower 8-bits of address into address buffer (DONE)
10 , load only the uppper 8-bits of address into address buffer,
also clears upper 3-bits, good to select 256 bytes "pages" (DONE)

Tong LoadAddrLow_
Tong LoadAddrHi_

Tong MemSet_

11 , fills memory anywhere in the 512K region with a byte value (DONE)
Tong MemCopy_

12 , copies a number of bytes in the SRAM from source to destination, doesn't support overlapping copies (DONE)

Tong MM_Copyto_SRAM_
Tong SRAM_Copyto_MM_

13 , copies bytes from the Propeller's main memory to the SRAM's 512K space (DONE)
14 , copies bytes from the SRAMs 512K to the Propeller's main memory (DONE

Tong ReadAddr_ '= 15 , returns the current value of the 19-bit address buffer in the SRAM controller (not implemented)

Tong MemSum_ ' =16 ' sum a region of memory and returns the 32-bit result, helps with diagnostics and DSP stuff

The appropriate sub-function is called and the code executes, upon completion the sub-function clears the global

command out and the driver is ready to process another command. As an example, here’s the code that loads a 64K
address into the HX512:

LoadAddr64k_ ' = 7 ' loads a 16-bit address (0..64K-1) directly into the Tow and high address latches, clears the upper 3-bits of address

' this sub-function sets the SRAMs' 16-bit latch, Tow and high address Tlatches are written to with the sent 64K
' parameters: one long, starting address: sram_cmd_parms_ptr
' parm 0 (32-bit): address to set latches to (lower 16-bit used)

' retrieve long holding 16-bit address
rdlong sram_parmQ, sram_cmd_parms_ptr
' call set address routing, exprext sram_parm0 = 16-bit address
mov_r7, sram_parmO

call #SetAddr64K_Proc

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

' reset data bus to input before Teaving

mov outa, #0

and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0

wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done

Now, the final part of the system is the SPIN “wrapper” that sets the call up for you. These are all contained within the
source file for the ASM driver as well for your convenience. Moreover, there is a wrapper for every one of the ASM
functions to set them up. Continuing with our example, here’s the wrapper for the above ASM function:

PUB SRAM_LoadAddr64K_A(addrl6)

: this function sets the SRAM controllers address latch to the sent 16-bit address, clears the upper 3-bits of the address as well

' Parameters: addrl6 - 16-bit address to set the SRAM address latch to, upper 3-bits is zero'ed

sram_parameter_list_ptr := @addrl6
sram_command 1= _LoadAddr64Kk ' always set command last, so command doesn't start before parameter addresses are in

repeat while sram_command

return sram_return_value

The wrapper is trivial, more or less just automates the setup of the command and parameter pointer for you. Of course,
you do not need to use the wrappers. You are free to call the driver yourself from you own code directly just by assigning
the command global to the appropriate function number, but before this always make sure the parameters are set first
since the instant you set the command the ASM driver will execute thus the parameters need to be set up before the
command is issued. The commands are listed in the jump vector table code above and in the driver source itself of course
(which is listed for convenience in the appendices).

1.5.8 ASM Driver API Listing
The ASM API has six major classes of function as shown in Table 4.0. Along with each class of function are the

associated functions listed to the right. After the table, the API functions will be listed one by one along with a short
example.

Table 4.0 — ASM Driver API Function Classes at a Glance.

Functional Class Function(s)

Initialization SRAM_Start ASM_Driver(sram_init_program)
SRAM_Stop_ ASM_Driver

Latching SRAM_LoadAddr64K_A (addr16)
SRAM LoadAddr512K A (addr19)
SRAM LoadAddrLow A (addr8)
SRAM LoadAddrHi A (addr8)

Reading SRAM_Read64K_A (addr16)
SRAM_ ReadAuto A

Writing SRAM_Write64K_A (addr16, data8)
SRAM_ WriteAuto A (data8)

Block Operations SRAM_MemSet_A (dest_addr, _data8, num_bytes)
SRAM_MemCopy A (dest_addr, src_addr, num_bytes)

MM_Copyto SRAM_A (dest_addr19, src_addr16, num_bytes)
SRAM_Copyto MM_A (dest_addr16, src_addr19, num_bytes)

DSP Operations SRAM_MemSum_A (addr19, num_bytes)

Note: All functions have the suffix “_A” to help separate them from the SPIN versions in the case that source modules are mixed.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Function Prototype: @SRAM_Start ASM_Driver(sram_init_program)

Description: Starts another COG with the ASM driver and initializes I/O on that COG for interoperability with
the HX512 and finally writes the configuration bits to the HX512’s memory controller. This
function must be called before any API functions are called. Additionally, if the ASM driver is used
in conjunction with the SPIN driver either at the source level or with the unified driver then do not
call the SPIN function SRAM_WeriteControl_S(..), rather, let the ASM driver initialization call
handle the configuration of the HX512.

Parameters: sram_init_program : 8-bit data that configures the memory controller’s post read/write behavior.
Only bits 3..0 are used, bits 7..4 are ignored and should be set to 0’s. The format of the bits are
as follows:

716|543 2 | 1] 0
X| x| x| x|[sr]| r0O | sw| w0

sw - sign bit for write post increment/decrement (1=add, O=subtract).
w0 - 1 bit magnitude for write post increment/decrement.

sr - sign bit for read post increment/decrement (1=add, O=subtract).
rO -1 bit magnitude for read post increment/decrement.

Example(s): Start the ASM driver and Configure HX512 to increment after read and increment after write (most common
configuration).

OBJ
sr : "HX512KSRAM_ASM_DRV_010.spin" ' instantiate ASM SRAM driver

pub start

‘ start ASM drier, configure I/0 and configure HX512 all in one shot
sr.SRAM_Start_ASM_Driver(%0000_1111)

Function Prototype: SRAM_LoadAddr64K_A (_addr16)

Description: Loads the HX512’s address latch/counter’s lower 16-bits with the sent address (zero’s the upper
3-bits). This function is the fastest way to set an arbitrary address when accessing only the first
64K of the SRAM.

Parameters: addr16 : 16-bit address to set the HX512’s internal address counter to.

Example(s): Load the address of $1FFO0 into the HX512 (assumes HX512 has been initialized etc.)

¢ set HX512’s address to $1FFO
sr.SRAM_LoadAddr64K_A($1FFO)

Function Prototype: SRAM_LoadAddr512K_A (_addr19)

Description: Loads the HX512’s address latch/counter’s full 19-bit address with the lower 19-bits of the sent
address. This function assumes that the memory is in post read increment mode since the
function achieves the final target address by “walking” to it via dummy reads. Thus, this is slower
that accessing the first 64K. However, the ASM version is much faster of course. The bottom line
is random access beyond 64K is very slow. But, random access in the first 64K is very fast.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Parameters: addr19 : 19-bit address to set the HX512’s internal address counter to.

Example(s): Load the address of $10000 into the HX512 (assumes HX512 has been initialized etc.)

¢ set HX512’s address to $10000 (128K)
sr.SRAM_LoadAddr512K_A($10000)

Function Prototype: #SRAM_LoadAddrLow_A (addr8)

Description: Loads the lower 8-bits of the HX512’s address latch/counter with the lower 8-bits of the sent
address. This function is good if you want to jump around in a 256 BYTE “page” that is already
defined by the upper address bits, but you don’t need to update the entire 16-bit address (since it
costs two latch operations).

Parameters: addr8 : 8-bit address to set the HX512’s lower 8-bits of the internal address counter to, bits
[a7..a0] are updated, bits [a18..a8] are left untouched.

Example(s): Walk through addresses 0-255 of the currently address “page” defined by the upper 10-bits of the address
latch by only changing the lower 8-bits (assumes HX512 has been initialized etc.)

“ walk thru the 256 bytes on the current page defined by address latch [al8..a8 | xxxxxxxx]
repeat index from 0 to 255
sr.SRAM_LoadAddrLow_A(index)

‘ doesn’t do much since there is no read or write operation!

Function Prototype: @SRAM_LoadAddrHi_A (addr8)

Description: Loads the upper 8-bits of the HX512’s address latch/counter (bits 15..8) with the lower 8-bits of
the sent address. This function is good if you want to jump around accessing the same BYTE in
multiple “pages”, but you don’t need to update the entire 16-bit address (since it costs two latch
operations).

Parameters: addr8 : 8-bit address to set the HX512’s upper 8-bits of the internal address counter to, bits
[a15..a8] are updated, bits [a7..a0] are left untouched while bits [a18..a16] are zero’ed.

Example(s): Access the same byte in 256 pages by only changing the upper 8-bits (assumes HX512 has been initialized
etc.)

“ walk thru the same byte on 256 pages, updates Tatch [000 | xxxxxxxx | a7..a0]
repeat page from 0 to 255
sr.SRAM_LoadAddrHi_A(page)

‘ doesn’t do much since there is no read or write operation!

Function Prototype: @SRAM_Read64K_A (addr16)

Description: Reads a single BYTE from the lower 64K address space of the HX512. Is very fast for random
access. After the BYTE is read and returned to caller the HX512 post increments or decrements
the internal address pointer (or does nothing) depending on the configuration bits.

Parameters: addr16 : 16-bit address of BYTE to read from HX512.

Example(s): Find the integer average of the first 1000 BYTEs in the HX512.

sum := 0
‘ sum data up
repeat index from 0 to 999

sum += sr.SRAM_Read64K_A(index)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

compute average
sum /= 1000

Function Prototype: @SRAM_ReadAuto_A

Description: Reads a single BYTE from the HX512’s current address. The idea of this function is to first set
the address latch of the HX512 with a call to another function then very quickly iterate thru
memory without the need for sending the latch address each time. However, for this function to
be useful the HX512’s configuration bits should have programmed it for post increment or
decrement after read operations.

Parameters: None (implied as the current address).

Example(s): Find the integer average of the 1024 bytes from address $2000 to $23FF in the HX512.

sum := 0

‘ first set address latch to starting address

sr.SRAM_LoadAddr64K_A($2000)

‘ sum data up

repeat index from 0 to 1023
sum += sr.SRAM_ReadAuto_A

‘ compute average

sum /= 1024

Function Prototype: #SRAM_Write64K_A (addr16, data8)

Description: Writes a single BYTE from to the lower 64K address space of the HX512. Is very fast for random
access write. After the BYTE is written the HX512 post increments or decrements the internal
address pointer (or does nothing) depending on the configuration bits.

Parameters: addr16 : 16-bit address to write BYTE to.
data8 : 8-bit data BYTE to write (simply uses the lower 8-bits of 32-bit parameter).

Example(s): Write the integers 0..255 starting at address $8000.

value := 0

‘ write bytes

repeat addr from $8000 to $80FF
sr.SRAM_Write64K_A(addr, value++)

Function Prototype: @SRAM_WriteAuto_A (data8)

Description: Writes a single BYTE to the HX512’s current address. The idea of this function is to first set the
address latch of the HX512 with a call to another function then very quickly iterate thru memory
without the need for sending the latch address each time. However, for this function to be useful
the HX512’s configuration bits should have programmed it for post increment or decrement after
write operations.

Parameters: data8 : 8-bit data BYTE to write (simply uses the lower 8-bits of 32-bit parameter).

Example(s): Write the integers 255..0 starting at address $8000.

value := 0

‘ first set address latch to starting address
sr.SRAM_LoadAddr64K_A($8000)

write bytes with auto increment after write

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

repeat value from 255 to 0
sr.SRAM_WriteAuto_A(value)

Function Prototype: #SRAM_MemSet_A (dest_addr, data8, num_bytes)

Description: Sets a number of BYTEs in the SRAM to a specific value. Similar to memset() in C/C++.

Parameters: dest addr : 19-bit destination address in SRAM to start BYTE fill.
_data8 : 8-bit data BYTE to write (simply uses the lower 8-bits of 32-bit parameter).
_num_bytes : Number of BYTEs to set/fill, 0..512K.

Example(s): Fill the first 20K BYTEs of memory with $57.

sr.SRAM_MemSet_A($0_0000, $57, 20%1024)

Function Prototype: SRAM_MemCopy A (dest_addr, src_addr, num_bytes)

Description: Copies a number of BYTEs internally in SRAM from one location to another. This function uses a
local memory buffer within COG’s 512 LONG memory to “cache” blocks of memory to speed up
the process. The cache is defined in the CON section and the DAT section and is recommended
to be at least 128 BYTEs in size. Similar to memcpy() in C/C++. Doesn’t handle overlapping
copies properly unless the number of BYTEs copied is smaller than the cache size then an
overlapping copy will work since the data is cached all at once and not destroyed during the copy
process. Note: The cache right now is nearly as large as it can be since it eats into program
space and there is only 512 LONGs for the program. If you find you need more cache size then
comment out functions in the driver you don’t need and increase the size of the cache to suit your

needs.
Parameters: dest_addr : 19-bit destination address in SRAM to copy BYTEs to.
src_addr : 19-bit source address in SRAM to copy BYTEs from.

num_bytes : Number of BYTEs to set/fill, 0..512K.

Example(s): Copy the first 64K in SRAM to destination address $2_0000 (128K) in SRAM.

sr.SRAM_MemCopy_A($2_0000, $0_0000, 64*1024)

Function Prototype: SRAM_MemSum_A (addr19, num_bytes)

Description: Performs a summation on a contiguous block of positive 8-bit integers and returns the 32-bit
positive sum. Good for fast summation of memory blocks for DSP and graphics algorithms.
Shows what can be done with the HX512 on the driver side, other useful functions would be a
MAC (Multiply and Accumulate) function and a large vector dot product etc. This function is a
model of how to implement them in ASM.

Parameters: addr19 : 19-bit source address in SRAM of BYTEs to sum.
num_bytes : Number of BYTEs to sum.
Returns: 32-bit positive sum.

Example(s): Sum the entire 512K memory up.

sr.SRAM_MemSum_A($0_0000, 512%1024)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

1.5.9 Working with the Unified Driver API

The unified driver contains both the ASM and SPIN drivers at the source level, thus the ASM helper functions can name
collide with the SPIN function, hence, the use of the suffixes “* S” and “_A”. The unified driver is in the \SOURCES
directory with the name:

CD_ROOT:\SOURCES\HX512KSRAM_UNIFIED_DRV_010.spin

As noted previously the driver is more or less a source file level merge and is identical in functionality to the SPIN and
ASM drivers, thus refer to the ASM and SPIN driver APIs for the interfaces. The only thing about using the driver is that
you must not call both of the HX512 configuration calls from the unified driver. The proper way to initialize the unified
driver is as follows:

First, you need to import the object and create an instance of it:

OBJ
sr : "HX512KSRAM_UNIFIED_DRV_010.spin" ' instantiate unified SRAM driver

Next, you need to initialize the 1/O for the COG that the interpreter is running on and at start up the ASM driver which in-
turn configures the HX512 for both drivers:

' initialize current COG's IO as not to conflict with ASM SRAM driver's (if its started)
sr.SRAM_InitalizeIO_S

' initialize ASM driver version of SRAM controller . .

“ (will work with calls to SPIN version as long as above call is made to SPIN driver)
sr.SRAM_Start_ASM_Driver(%000_11_11)

Then you are ready to make calls to either the SPIN or ASM API.

There is the potential for conflict if you make a call to the ASM driver with your own code
that doesn’t wait for the command to clear. For example, you may be tempted to write
you own ASM wrapper functions, but if you forget to wait for the command global to
clear then the following series of events can wreak disaster; you call the ASM driver to
do something that takes a long time, like sum 512K, then immediately after you make a
call to the SPIN API, but the ASM function hasn't finished! Thus, always make sure
when you set a command in the global for the ASM driver you block on the global until
the driver has consumed the global and cleared the variable out. This way you know the
ASM function is complete.

The HX512 gives the HYDRA enormous capabilities, but to take full advantage of them one must use assembly language
to access the SRAM at rates that are comparable with the Propeller’s internal 32K shared memory. The first thing to
accept is no external memory will ever run as fast as in the internal memory since the sheer act of communicating with
any external device via the I/O lines takes extra steps as does the extraction of the data itself from the 1/O read. Thus, the
best one can hope for is to make each memory access only a few instructions, thus considering that any COG can only
access main memory every 16 clocks due to the HUB rotation then its reasonable to think that with very tight loops and
control using 3-5 instructions to access an external memory is almost as fast as accessing global memory from a COG in
assembly language.

For example, when the HX512 is in post increment read, reading BYTEs of memory consists of nothing more than
strobing the clock line to the HX512 (assuming that the address pointer is already set to the starting location of the
memory read). However, after every pulse, the I/O lines still must be read, so the general steps to read a BYTE is are:

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Step 1: Set the clock strobe line HIGH.
Step 2: Read the data on the data bus.
Step 3: Set the clock strobe line LOW.
Step 4: (Optional) Read another BYTE; GOTO Step 1.

This is about as fast as is possible. The setting of clock bit can be done by logically OR’ing the /O, the reading of the data
bus can be done with a simple read, and finally the resetting of the clock strobe can be done with a logical AND’ing of a
mask with 1/0. So 3 ASM instructions can in theory achieve all this with the right set up. However, the challenge is
extracting the data from the 32-bit I/O read which requires shifting and masking (2-3 instructions), and so forth. Thus, the
actual reading of data is very fast, but the data has to be extracted and positioned to work with.

On the other hand, with proper algorithms and data structures, one can design the code, so that the least amount of post
processing to massage the data into position is needed. This way, a short code fragment of 3-4 instructions can be used
to read data from the HX512. Considering this, in some cases with proper planning, the HX512 can be as fast as the
internal 32K global memory as accessed from a COG.

Considering this, all kinds of possibilities are available. Even if the SRAM was 2x as slow as the internal 32K to access, it
doesn’t matter since more than one COG can be used to process the data and read the data if need be.

One of the most exciting possibilities (which will be included in the next software release of the HX512) is full bitmapped
graphics drivers using the HX512 as a frame buffer. Frame buffers are linear regions of memory used to hold bitmapped
graphics, the HX512 has more than enough room to hold large high resolution NTSC or even VGA frame buffers. The
question is can the HX512 be accessed fast enough to render the graphics in real-time? The answer is absolutely! Here’s
an example.

Let’'s say we want to implement the standard 2-bit per pixel graphics mode that the Propeller chip is used to working with,
thus one 32-bit value represents 16 pixels on the screen. With a mode like this and a resolution of 256x192, the memory
requirements are:

256x192 * 2 bits per pixel = 12,288 BYTEs per frame buffer.

Assuming, two frame buffer’s; one for active display buffer and one for the inactive back buffer that is being rendered into.
Then the memory requirements are 2x12,288 = 24,576 BYTEs which easily fits within the first 64K of the HX512 (which is
the fastest to access randomly).

Now, the next question is can we access the HX512 fast enough to feed the Propeller’s VSU in real-time? Let's generalize
a bit and assume that we want 256 pixels during the active scan of the screen which is roughly 52.5uS (the total NTSC is
64.5uS roughly), hence, that means that for every pixel we need to access that pixel at the following rate:

52.5uS / 256 = 205 nS.

Astute readers will realize that the color burst bandwidth is 3.58 MHz; therefore, driving the NTSC at

anything higher than that which is 279 nS is superfluous. The color transitions will take 1-2 color

clocks no matter what, thus the highest number of unique colored pixels during the active scan is

only 160 roughly. Nonetheless, we can still drive the NTSC at 256 pixels if we wish, it just ignores

many of them and there will be “color artifacting”. The point is that this example is an extreme case
and in reality the memory requirements and bandwidth will be less.

And we already decided that we need 3-4 instructions to read a BYTE, so at system clock 80 MHZ that translates to, 20
MIPs for COG (at 4 clocks per instruction), or each instruction takes 50 ns. Thus, assuming a 4 instruction average to
read a BYTE from the external HX512 it will take the following amount of time:

(4 instructions per read) * (50 ns per instruction) = 200 nS per BYTE read from external memory.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

However, each BYTE read doesn’t have one, but 4 pixels, since we are using 2-bits per pixel which is 4 pixels per packed
BYTE. Alas, we can read data at 400% the required bandwidth to successfully pull off the external frame buffer.

Of course, this is ideal, so we might cut our estimate in half and say that we can read data at 2x the rate. Thus, we can
expand our bitmap driver to 4-bits per pixel and still sustain the 256x192, but in 16-colors if we wished! These rough
calculations should show you that’s it's possible indeed to use the HX512 as a frame buffer. Moreover, if we loosen the
resolution requirements up to 160-224 pixels per line and stick with 2-4 bits per pixel, there will be no problem with writing
a single COG driver without jumping thru many optimization hoops.

One of the features of the HX512 is the ability to re-program the host CPLD to give the HX512 a completely different
“personality” or to enhance the current functionality. The Lattice ispMach 4064 is based on FLASH memory technology,
S0 you can re-program the chip as long as you have a programmer to do so. The “program” you download to the chip
describes a fuse map of sorts that controls the interplay and interconnection of all the logic elements and I/O within the
chip. The chip itself is nothing more than a 2D array of similar “logic blocks”. The logic blocks are generic computational
elements that when wired together can create very complex logical structures. Typically these “blocks” consist of one or
more flip flops, feedback networks, and a lookup table. The bigger brother of the CPLD is the FPGA or Field
Programmable Gate Array. FPGAs typically need external program EEPROMs and are many times larger than CPLDs.
But, the idea is the same; use a generic array of logic blocks to implement any complex logical functions in the hardware.

If you have never used a CPLD or FPGA then you might be asking, “How do you program them?”. Well, they are
programmed in what’s called a Hardware Description Language or HDL. HDLs allow a programmer to describe the high
level functionality of a digital circuit (as well as its structure if needed), thus one can code something like:

output_1 = (input1 AND input2)

Now, looking at this, we have no idea what the final structural implementation of this will be nor do we care. As the
hardware engineer all we care about is the functionality of the description. Additionally, there are many HDLs just like with
software programming there are “camps” and “factions” that think one is better than the other. The two most popular HDLs
are Verilog and VHDL. Verilog is similar to C, VHDL is similar to Ada (if you have ever heard of it, probably not if you're
under 25 years old). Also, there are offshoots of Verilog called SystemC and SystemVerilog which are much more
advanced and feature rich.

Here’s an example of some Verilog code that tests two push buttons and if one is on activates an LED:

Verilog Code to Test Buttons and Activate an LED:

Module Let_There_Be_Light(buttonl, button2, Tedl)

input buttonl, button2; // each is a 1-bit input
output ledl; // 1-bit output

// assign the ouput a logical combination of the inputs
assign ledl = buttonl || button2;

endmodule

VHDL Code to Test Buttons and Activate an LED:

LIBRARY IEEE; -- use this Tibrary
USE IEEE.STD_LOGIC_1164.all;

-- define the I/0 structure of the design; inputs, outputs, etc.

ENTITY Let_There_Be_Light IS
PORT (buttonl, button2 : IN STD_LOGIC;
ledl : OUT STD_LOGIC);
END Let_Their_Be_Light

-- now define the architecture, that is, the actual implementation of the design
ARCHITECTURE design OF Let_There_Be_Light
BEGIN

ledl <= (buttonl OR button2)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

END design;

As you can see the VHDL is definitely a little more long winded and its harder to understand. While the Verilog version
looks like a C program.

In any case, | have programmed in both and hands down | like Verilog better, its simpler, easier to learn and very C like,
s0 most programmers can pick it up immediately. On the other hand, VHDL is a more high level system and allows for
more modular design (in some cases) and libraries. However, the problem is it takes a long time to master VHDL. So |
suggest you learn both and make your own decisions.

There are also all kinds of other HDLs that translate popular programming languages into Verilog or VHDL, for example,
there is a Python HDL that translates into Verilog when you are ready to implement, its called “MyHDL”, here’s a link if
you’re interested:

http://myhdl.jandecaluwe.com/doku.php

Verilog and VHDL are great, but they are designed for really large projects. CPLDs on the other hand are usually for
simple tasks like glue logic or to combine a few logic chips, counters, etc. into one chip. Thus, there are some other
simpler HDL languages that have no where near the capabilities of Verilog or VHDL, but are more than enough to get the
job done for simple tasks. Two of these languages that you will see commonly used are CUPL (Cornell Universal
Programming Language) and ABEL (Advanced Boolean Expression Language). CUPL is very old and was initially a
proprietary language for logic equation descriptions for PAL (Programmable Array Logic) which are the forerunners of
CPLDs, basically PALs are AND/OR arrays that you could program the interconnects. ABEL is a more recent language
that is much more capable than CUPL and what was used to develop the software for the HX512’s CPLD. We are going
to cover ABEL links and programming later in the manual, but if you are interested, here’s a good tutorial and overview on
ABEL:

ABEL Tutorial

http://www.ese.upenn.edu/rca/software/abel/abel.primer.htmi
And similarly, here’s one for CUPL.:
CUPL Tutorial

http://www.rexfisher.com/Downloads/CUPL%20Tutorial.htm
Lastly, its very important to understand that with any HDL, they are intrinsically different from normal programming since
when designing hardware the description of hardware is totally parallel, that is the lines of code in a HDL program are
concurrent, this is one of the biggest hurdles for software engineers learning HDLs and hardware to grasp since they are
used to sequential execution. But, with HDLs, everything happens at the same time, or at very least on a clock edge.
So returning back to our simple example of a generic HDL line of code:

output_1 = (input1 AND input2)

How do you get from the line of code above to the CPLD? This is where the magic comes in a lot of really complex
compiler design. Take a look at Figure 13.0 below for a flow chart.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 13.0 — Flowchart of HDL to Final CPLD.

. Design Doesn't Fit?

>

Referring to Figure 13.0, the first step after design is the parsing and analysis of the program and its meaning. Once the
logical meaning of the program is understood then the program is converted into various intermediate forms and the
circuit synthesis phase begins. In this phase, the circuit design is synthesized from the description into an actual gate level
description. But, this isn’t the final step, once the synthesis is complete, now its time for what’s called “targeting” or
“fitting” the design into the target device you have selected based on what it offers in the form of physical hardware. That
is, if the chip has only NAND gates then everything needs to be converted to NAND gates!

For example, your program might need a simple AND gate. In a CPLD or PAL there are AND gates available since the
chips are fairly simple, but in a FPGA, AND gates are buried within larger logic blocks, so an entire logic block or macro
cell will be used for the single AND gate, thus potentially wasting space. Either way, the design is fit into the target
technology and finally a program file is generated for the device which is usually of the file format JEDEC which stands for
Joint Electron Device Engineering Council. This council has developed program formats for all these devices, thus the
final program is in a standard format of sorts ready for the programming stage.

This final JEDEC program is then downloaded into you PAL, GAL, CPLD, or FPGA and you are off and running! Of
course, in the real world after the program has been synthesized, a designer may verify, or optimize the design iteratively
with special tools to see if it actually does what its supposed to do. This phase is called verification and optimization
and is very important. Once the designer is happy with the design then he/she can go ahead and target, program it, and
try the real part out.

1.7.1 Pseudo Code for CPLD

The CPLD used for the HX512 is a 100-pin 64 I/O device with 64 logic blocks. It’s a bit difficult to put this into terms of a
gate equivalent since not all gates can be used individually, rather | prefer to think in terms of how many bits can the
device store and manipulate? In this case, there are 64 logic blocks and each block has a single flip flop, thus you can
work with a single 64-bit number or with four 16-bit numbers and so forth. But, in reality the combinational logic needed to
perform logic and state control will eat up your logic blocks just as well and the flip flops may be orphaned. Thus, if you
can get 70-90% utilization of the chip you are doing really well.

In the case of the HX512’s memory controller implementation, the entire chip was used, even though there was only a 19-
bit counter in it. However, the various states, conditional logic, math operations for addition and subtraction quickly

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

consumed the chip’s silicon. So even though the chip has 64 logic blocks and 64 flip flops, the memory controller behavior
barely fit into the chip. Moreover, the final fitting process is also constrained by the final location on the package pins
where you want your inputs and outputs. The more you constrain the design, the worse it will fit, or it won't fit at all.
However, you must constrain the design’s package I/O because if you don’t then your final inputs and outputs are at the
will of the fitter and can move all over the place. Thus, once you have a PCB designed and you make a single change to
your HDL code then the chip changes! And this is not good. Thus, a technique that | use is to constrain as much of the
design’s I/O to certain pins as | can and then let other I/O free to fit where it wants. Then after a few synthesis runs, | see
where 1/Os are ending up. Then | take those values and constrain the 1/Os to where they end up in most cases. Thus, | let
the fitter tell me where it wants things most of the time, then I turn off auto fit and tell it to always fit that way (so it likes
what | tell it). Then once my package 1/Os are stable | can design the PCB and not worry about making changes to the
CPLD code in the future since | am confident the design will still synthesize and fit into the same 1/O pins. Bottom line, lots
to worry about.

However, right now, let’s just talk about the general functionality of the CPLD and then we will look at the actual ABEL
code that implements it. Assuming you have read the previous documentation and APl interface then you know what the
memory controller does (implemented in the CPLD), transcribing this to a pseudo-code/algorithmic description we have
the following tasks:

CPLD Algorithmic Description for Memory Controller Behavior

Task 1: Assign all input and output pins to the appropriate package pins on the 100-pin package.
Task 2: Generate all combinatorial logic outputs and set up flip flop clocks, resets, etc.

Task 3: Start memory controller in configuration PROGRAM state and wait for programming, store 4-bit program into
configuration bits.

Task 4: Once programming is complete transition memory controller into RUN state.
Task 5: While in RUN state test the following conditions and execute the appropriate code:
Condition 1: Latch operation being requested.

Sub-Condition 1: Latch low 8-bits of address, continue back to RUN state.
Sub-Condition 2: Latch upper 8-bits of address, clear high 3-bits, continue back to RUN state.

Condition 2: Read operation being requested.

Sub-Condition 1: Read byte from memory, request read from SRAM via bus interface, auto
increment address counter based on previously programmed configuration bits.

Sub-Condition 2: Read byte from memory, request read from SRAM via bus interface, auto
decrement address counter based on previously programmed configuration bits.

Condition 3: Write operation being requested.
Sub-Condition 1: Write byte to memory on data bus, request write from SRAM via bus interface, auto
increment address counter based on previously programmed configuration bits.
Sub-Condition 2: Write byte to memory on data bus, request write from SRAM via bus interface, auto

decrement address counter based on previously programmed configuration bits.

Task 6: Continue in RUN state.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Now, let’s briefly describe these tasks one by one.

Task 1 is very specific to HDLs and the hardware. When writing HDL code, if you only want to simulate then you don’t
care about any physical chip or package, but in the case of the HX512, it uses a real part, the ispMach 4064 100-pin
package specifically, so we must assign pins to signal names, this is the idea behind this task in the code. This doesn’t
really happen at real-time, but still part of the program.

Task 2 is a concurrent task or process for the memory controller. The idea here is that we need to generate signals that
are simply combinatorial combinations of various inputs. For example, the SRAM has a “control interface” consisting of
read/write line, chip select, etc. and many of these lines are simple ANDs and Ors of the control lines coming from the
HYDRA, thus we can assign them in a couple lines of code each. Lastly, the design also has clocked logic or sequential
logic specifically the internal state machine and the counter that is used as the address latch, thus, we need to tell the
synthesizer exactly which signals are going to clock these components.

Task 3 is the state machine starting point for the memory controller, it waits for a single clock strobe on the clock line,
when it receives this clock strobe whatever the data is on the data bus, the first 4-bits are used as the configuration
program for the memory controller.

Task 4 is really a finishing step for Task 3, when Task 3 is complete, the controller needs to transition to the RUN state.

Task 5 is more or less where all the action takes place. In this task, the control inputs are resolved and used to determine
what logical path and what operation (latch, read, write) is being requested. Furthermore, within each operation the
configuration bits play a role since they control the auto increment/decrement operation after each read and write.

Finally, Task 6 just makes sure the system loops, but again the concept of loop infers sequential operation and HDLs are
more concurrent programming languages which reflects how the hardware works. Thus, Task 6 just forces the RUN state
always.

1.7.2 ABEL Driver Code

The ABEL driver code for the HX512’s memory controller behavior is listed below. Although, some of the syntax will look
alien, much of it is easy to follow at least in the abstract. The devil is in the details though when it comes to HDLs and you
need to know exactly what every line does since side affects are disastrous if they aren’t intended. The latest driver
source code is located on the CD in the \SOURCES directory in the following location:

CD_ROOT:\SOURCES\hydra_sram_controller_03.abl

Listing 1.0 below is the source for reference; however, some of the extraneous commented out code etc. has been
omitted to save space.

Listing 1.0 — Memory Controller ABEL Code.

MODULE hydra_sram_controller_03
TITLE 'hydra_sram_controller_03"'

// Vversion 3.0 - Last modified 2.3.07

/ Comments:

/ Support up to 512K SRAMs, directly addressable up to 64K, 128K, 256K, 512K must be accessed via autoincrementing.
/ Needs 4064 or better to fit.

NN

this is the controller register that generates the control signals for the Tow and high address latches
command codes are 2-bit cl and cO

cl cO | Function

write byte to memory

read byte from memory

1 0 | load low address into address latches
1 1 | Toad high address into address latches

ARRRRREE
NN
S

o

// Command format program(sent low to high)
// 4-bit format

// 1 3 2 | 1 0

//

| sr r0O | sw w0

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

A/ DS cooocnonnoaa pgm0
// sw - sign bit for write post increment/decrement (l=add, O=subtract).
// w0 - 1 bit magnitude for write post increment/decrement (wl ignored in this version).
// sr - sign bit for read post increment/decrement (1=add, O=subtract).
// r0 - 1 bit magnitude for read post increment/decrement (rl ignored in this version).
DECLARATIONS

// inputs

I'sram_clk pin 38 ; // general system clock

Isram_resn pin 8 ; // hydra reset line (active low)

sram_c0 pin 9 ; // hydra control line 0

sram_cl pin 10 ; // hydra control line 1

d7..do pin 15..17,19..23 ; // data bus

sram_data = [d7..d0];

// outputs

sram_cOn pin 3 istype 'com'; // control Tine 0 out inverted

sram_cln pin 4 istype 'com'; // control Tine 1 out inverted

I'sram_csn pin 5 istype 'com'; // sram cs output

sram_read_Tled pin 78 istype 'com';
sram_write_led pin 79 istype 'com';
sram_latch_led pin 80 1istype 'com';

// registers

al8..al pin 28..31, 41..44, 53..56, 64..67, 70, 71, 72 istype 'reg'; // 19-bit address register 0..512K address space
sram_addr = [al8..a0]; // full sram address
// memory controller "firmware", consists of 6-bit program that describes post read/write behavior
pgm3..pgm0 pin 14,35, 36, 37 1istype 'reg'; // holds sram controller program bits
sram_pgm = [pgm3..pgm0];
// state register used to control flow from programing mode and final "run" mode
sram_state state_register;
s0, sl state;
EQUATIONS

end

// sram chip select needed for srams with only /CE, rather than CE1l, /CE2, that is duel high/low enables
sram_csn = (!sram_cl & !sram_clk);

// command bit(s) inverted
sram_cOn = !sram_cO;
sram_cln = !sram_cl;
// assign clock register and resets
sram_addr.clk = sram_clk;
sram_addr.ar = sram_resn;

sram_state.clk = sram_clk;

sram_pgm.clk
sram_pgm.ar

= sram_clk;

= sram_resn;

// begin state machine, after reset, s0, begin programming mode, bits d5..d0 are used as program and latched
state_diagram sram_state

state sO0: // load program bits into controller, looks for cl, cO0 = {0,0}, then reads data on next clock into controller

if (!sram_cl & !sram_c0) then sl with {sram_pgm := [d3..d0];}
else s0O

state sl: // run mode, Tatch Tow, latch high, read, write, etc.
sram_pgm := sram_pgm;

// latch operations
when (sram_cl & !sram_c0) then { sram_addr

[al18..a8, d7..d0]; sram_latch_led = 1;
else when (sram_cl & sram_c0) then { sram_addr

1
[0,0,0, d7..d0, a7..a0]; sram_latch_led = 1;}

// read operation with post add/sub
else when (!sram_cl & sram_cO & pgm3) then
{ sram_addr := sram_addr + [O0,0,0, ©0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0, pgm2]; sram_read_led = 1;}

else when (!sram_cl & sram_cO & !pgm3) then
{ sram_addr := sram_addr - [O,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0, pgm2]; sram_read_led = 1;}

// write operation with post add/sub
else when (!sram_cl & !sram_cO & pgml) then

{ sram_addr := sram_addr + [O0,0,0, ©0,0,0,0,0,0,0,0, 0,0,0,0,0,0, O, pgmO]; sram_write_led = 1;}

else when (!sram_cl & !sram_cO & !pgml) then
{ sram_addr := sram_addr - [O0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0, O, pgmO]; sram_write_led = 1;}

else { sram_addr := sram_addr; }
goto s1;

async_reset s0 : (sram_resn);

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Teaching ABEL is beyond the scope of this user manual, if you’re interested please make sure to read the Lattice ABEL
manuals and the various web links provided. A good introduction to ABEL programming (the Lattice ABEL Design
Manual) is located on the CD here:

CD_ROOT:\DOCS\ABEL_DESIGN.PDF

Nevertheless, let’s take a brief look at the code and see if we can map the tasks we outlined in the pseudo-code with the
actual program. The program begins with the MODULE name and optional TITLE string. The title string is for commenting
purposes, while the module name is the actual name of the module and typically used as the same name of the file when
saved. The next section is the DECLARATIONS section and is where all input and output pins are defined and mapped to
the final package if desired. If a pin is declared without a pin mapping then this can be done later in the tool chain with the
constraint editor and the package tool. Thus, when writing generic ABEL code for reuse by other engineers, its best to not
assign pin numbers, this way the code is as reusable as possible. In the declarations area you will see the general syntax
to define a pin or group of pins is:

For outputs:
name PIN nn ‘ISTYPE’ { ‘COM’| ‘REG’} ;
where nn is a number that indicated the package pin. N

There are other variants of this definition, but COM and REG are the most common. They stand for COMbinatorial and
REGistered. They simply tell the compiler that a particular pin is an output and is a simple combinatorial combination of
other signals, or that the pin needs to retain state and thus needs to be sent thru a flip-flip, in other words “registered”.

For inputs the syntax is a little easier:
name PIN nn;

Only the name and the pin number are needed. Furthermore, the DECLARATIONS section of the code is where all the
pin definitions for inputs and outputs are made. Also, you will see groupings of pins to create easier to work with aliases,
for example the data bus is defined as:

sram_data = [d7..d0];

Thus, instead of individually naming d7, d6,...d1,d0 all the time in code, sram_data can be used instead. The ABEL
Design Manual has more detail on these kinds of short cuts.

After all the inputs and outputs are defined, then its time for the EQUATIONS section of the code, this is where all the
action takes place. Moreover, this part of the code is parallel or concurrent, everything more or less happens at the same
time, so you have to think in parallel. The first chunk of code before the state machine definitions maps to Tasks 1 and 2
more or less. In this code fragment, the simple continuous combinatorial logic statements are made that related outputs to
inputs as well as the clocks, resets, and other control signals are assigned for all the clocked logic aspects of the system.
That is, you have to tell ABEL what you want clocking your flip flops for your registered outputs, as well as how you want
them reset.

Next up, is the state machine that makes the CPLD look like a memory controller from the outside world. The first state is
the reset state and here the logic loops waiting for a “00,” binary code on the control inputs, once it sees it then if you
clock the system then the data on the data bus is loaded into 4 flip flops which store the configuration bits, then the state
machine transitions into the RUN state. Thus, the first state maps to Task 3. The remaining tasks are handled at once by
a conditional logic tree that branches for latch, read, write and then sub-branches for addition or subtraction operations to
implement the post increment / decrement for reads’ and writes'. And that concludes the general overview of the ABEL
driver code.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

1.7.3 Installing and Running the Lattice Tool Chain

The Lattice tool chain is like any other CPLD/FPGA tool chain — complicated. However, | can tell you that after working
with Xilinx and Altera tools (the two top FPGA companies in the world), the Lattice tools are a little easier to work with for
beginners. The following sections will get you started with the tools, but you really do have to read all the Lattice
documentation, buy a programmer (or build one), and spend a good deal of time to learn to work with CPLDs.

In any event, to start with you are going to need to download and install the Lattice tool chain. Luckily you can get a free
6-month trial of “ispLEVER” which is Lattice’s main tool. Here’s the web page to download the application and all of its
components:

http://www.latticesemi.com/products/designsoftware/isplever/ispleverstarter/index.cfm

Open the page up and you will see three steps outlined in a table;

Step 1 — Is the downloads area. You can download anything you want, but all you need is the “Primary Module .exe,
(220MB)”, and the “Help and User Guides Module .exe (50MB)”. You can find these files on the CD located in
the \TOOLS\LATTICE directory, but they may not be the latest, so you might want to download the latest files if
you have broadband (however, the files on the CD will work just fine).

Step 2 — Install the Primary Module and the Help module. They are .exe’s, so simply launch each and follow
instructions.

Step 3 — Licensing the software. You need a license to run ispLEVER starter kit, you can do that at this page:

http://www.latticesemi.com/licensing/fleximlicense.cfm

Lattice simply needs your email address and they will send you a key.

You are free to download the other modules for FPGAs including the FPGA Module,
Precision RTL Synthesis Module, and the Synplify Synthesis Module. All of these are for
more advanced functionality such as FPGA and Verilog/VHDL support and synthesis.
But, since we only need ABEL to work with CPLDs the Primary Module will do the trick.

Now that you have the software installed and licensed, the next step is to re-program the CPLD with the original firmware
if you want to experiment. Of course, | suggest that you read the online docs for ispLEVER cover to cover as well as the
ABEL Design Manual. And of course you will need a download cable/programmer. You can either buy the USB or parallel
cable or make one of your own (instructions shown in Appendix C).

1.7.4 Re-Programming the CPLD with the Standard Firmware for the HX512

After you have installed and licensed ispLEVER, go ahead and launch the application, so we can run thru a few general
steps of how to get things going. These are only hints though, your experience may vary due to setup or other changes.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 14.0 — ispLEVER after Launch.
ispLEVER Project Navigator g@
File “iew Source Process Options Tools Window Help

Do &AW wom|EEE6E QM TN

Sources in Projeck: Processes for current source:

lalx

1|\ Automake Log 4 »
KILT)N S Tl [
Ready

You should be presented with the very friendly ispLEVER project management system which should look something like

that shown in Figure 14.0. Next, let’s create a test project; select <FILE—-NEW PROJECT> from the main menu bar, you
should the new project dialog as shown in Figure 15.0.

Figure 15.0 — ispLEVER Project Wizard.

Project Mame:

Location:

D:hdevelopmentitermph J

Design Entry Type: Sunthesis Tools:

Schematic/4BEL

SchematicAYHDL Precizion
WHDOL

Schematic/ferlog HOL

Wenlog HOL

EDIF

GDF

| Meust » | Finish Cahcel Help

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

First, you need to give the project a name, | suggest “CPLD_TEST_01", then browse and store the project somewhere
where you can get to it, but you can delete it fairly easily if you make mistakes. In this case, | have selected my
development drive D:\\DEVELOPMENT\TEMP for fun. We are interested in creating a SCHEMATIC/ABEL design, so
select that on the left side pane. On the right side pane, you shouldn’t have the Synplify, Precision entries unless you
installed the other modules. If you do have them, select either, since its irrelevant for ABEL design. Only if you pick
Verilog, VHDL, etc. do you need these more advanced synthesizers. Go ahead and click <NEXT> when you are done
with this dialog.

Figure 16.0 — ispLEVER Device Selection Dialog.

Project Wizard - Select Device

Select Device: Device Information;
Eamily: e Statusz: Froduction
zpMACH 4000 LC40644 DEnSil}': 2500
ispLS| SICIVE s tgig%g& | Logic cells: B4
isphACH 403 LC403Z7C 120 cells G4
izptACH 445 LC40R4B)
isphdACH 50008 LCA064C 140 pins: 64
ispMALH 5000V v [LCanedzr + | | Dedicated input: 10
Output enable:
Speed grade: [hs) Package type:
lee: 11.5 méd
7.5 ~| [1ooTaFR =l
Dperating conditions:
Industnal -
Part Mame:
|LCA0B4y-75T 1001 |
B [Show Obsalete Devices

| Mext > | Firizh Cancel Help

Next up is the device selection dialog which allows you to select the chip you want to target. Figure 16.0 shows the dialog
after its been filled out completely. Make sure to select “ispMACH” for Family, “LC4064V” for Device, “7.5ns” for Speed
Grade, “100 TQFP” for Package Type, “Industrial” for Operating Conditions, and finally the dialog should select the part
for you based on all that data -- Part Name “LC4064V-75T1001”. If it doesn’t select properly then activate the drop down
on Part Name and make sure you select the “LC4064V-75T1001”. When you have filled the form out, take a look at the
right pane to see some of the characteristics of the chip, when you are done press <FINISH> since the remaining dialogs
aren’t needed.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 17.0 — ispLEVER Project Manager with the New Project Loaded in.

ispLEVER Project Navigator - [D:\development\temp\cpld_test_01.syn] E”Elg‘
Eile Wew Source Process Options Tools Window Help

DEE &5y nw BRE@H W | FHOE =80kl

Sources in Project: Processes for current source: BE
[cpid_test_o1 &, Optimization Constraint [Revision Cantrols (OFF)
3 Documents & Constraint Editor
V&2 Lcansav-75T1001 3 Fit Desion

[Z) Pre-Fit Equatians
[Z]) signal Cross Reference
[E] Fitter Report (Text)
) Fitter Report ¢HTMLY
Post-Fit Pinouts
¥, Post-Fit Re-Compile
8 JEDECFile
B 15C-1532 File
&, Timing Analysis
[2) Timing Report
¥ Generate Timing Simulation Files
[2) ReportFie
¥ Generate Board-lewel Stamp Model
[2) Starnp Moded File
I8 Stamp Model Data File

ispLEVER Auto-Hake Log File -

lalx

Starting: 'D:“downloadshlatticsnisplever\ispopldibinscheckini exe —srr=automaks srr 'D:>downlosds\latticenisplevers

Done: completed successfully.

T Automake Log / | v

Ready |ABELjSchematic

After clicking <FINISH> the system will pause for a moment and build the project, then you should see something like that
shown in Figure 17.0. There should be three panes; to the left, the sources, the center pane shows the operations that
have been completed as well as numerous tools, and finally on the right pane is the revision panel which we aren’t too
interested in.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 18.0 — Add a Source File to the Project.

B ispLEVER Project Navigator. - [D:1developmentitempicpld_test_01.syn]

File View Source Process Options Tools ‘window Help

DM & 5@ ® vwin DEEkEQ M 28 | ofHMm| =80

Sources in Project; Processes for current source: e

[9) cpld_test_o1 & Optimization Constraint [Z revision Controls (OFF)
Documents ¥, Constraint Editor
3 TR X7} Fit Design
Select Mew Device. .. [E) Pre-Fit Equations
[2) signal cross Reference
Bew... [5) Fitter Report {Text)
Import... [E]) Fitter Report (HTML)
Fost-Fit Pinodts
View Constraint/Preference file & Post-Fit Re-Compils
gl JEDEC File
B 15C-1532 File

& Timing Analysis
[Timing Report

¥} Generate Timing Simulation Files
@ Report File

¥ Generate Board-level Stamp Mods!
[2) stamp Model File
Il Stamp Model Data File

i=spLEVER Auto-Make Log File -

lalx

Starting: 'D:“~downloads:latticerisplever~ispcpld~bin~checkini. exe -esrr=automake err "D:~downloads-lattice isplever>

Done: completed successfully

<7 Automake Log / < v

Import a copy of fils from anather project ABELISchematic

Let’s load in the memory controller firmware that was pre-loaded in the CPLD already, and re-program the CPLD with the
same software. Thus, we need to load the source file into the project in the appropriate place. Referring to Figure 18.0,
the left sources pane, select the little yellow chip icon that is labeled “LC4064-75T1001”, right click, and select the
“Import” item. This will launch a file browse dialog. Browse to your CD (or where you copied the CD) and find the file:

CD_ROOT:\SOURCES\hydra_sram_controller_03.abl

and select it. This will load the file into the project. After you load the file, ispLEVER may take from a few seconds to a
moment to load the file and process it. This is unavoidable when dealing with silicon compilers, they are very complex and
a few hundred lines of HDL can take moments to hours to compile and fit into a chip! Luckily, the memory controller
program isn’t too complex, so the worst delays you should see on a P3/P4 are in the seconds to maybe 1-2 minutes for
various operations.

Anyway, the bottom output window should show the ABEL-HDL processor executed successfully without any problems.
Next, we are going to build the project and get ready to load it into the chip. In the middle pane of the tool “Processes for
Current Source”, go ahead and double click “Fit Design”, this will take a moment to process, so keep an eye on the
bottom information pane as it works...there is a percent complete at the very bottom. Usually takes 2-5 minutes to build.

If everything goes well, you will see a “Import Source Constraints” dialog open. Its asking how you want to handle
“Constraints” for now, tell it to “IMPORT” them. Constraints simply control the pins, the 1/O types, and other physical,
and timing constraints you might want/need to meet. For now we will use the constraints in the source file along with the
system defaults.

In a moment, the process should complete and you will see an information message box that tells you the process is
complete, but warnings were generated -- this is normal, click <OK>.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 19.0 — The Post-Fit Pinouts Constraint Editor (Read-Only Mode).

Post-Fit Pinouts(read only) - [D:\development\templcpld_test_01.lco] E@E|
e Edit PinAtbribute Device Yiew Window Help NI
= & [& e F =
[= Wl hydra_sram_contraller_03 Type | signaliGroup Hame Group Members |GLB |Ma:rncall |P|r\ |Bar\k ‘IO Types ‘Sbwrate Fastbypass | Opbypass | Input registers | Register powerup
- 4 Input Pins 1 |Clo... |sram_ck 38 L¥CMOS16 Mone:
= # Output Pins 2 [Tnput | sram_resn & 3 L¥CMOS1E Nane
B ets 3 |Input |sram_co & 9 L¥CMOS18 Mone:
4 |Input | sram_c1 A 10 LWCMOS 18 Mone
5 |Input |d7 8 15 LYCMOS18 Mone:
6 | Input |dé B 1 LYCMOS18 Mone
7 |Input |ds] 17 LVCMOS18 None
& | Input |d4 B 19 LYCMOS18 Mome:
@ |Input |d3 B 20 LVCMOS18 None
10 | Input | d2 B 21 LYCMOS18 Mome:
11 |Input | di B 22 L¥CMOS18 Mone
12 |Input | do 23 LYCMOS18 Mome:
13 |Out... | sram_cOn A 3 L¥CMOS18 | Fast Nane Mane MONE
14 |Out... |sram_cin A 4 LYCMOS16 Fast hone Mone HONE
15 |Out... | sram_csn A s L¥CMOS15 Fast Nane Mane MONE
16 |Out... | sram_read_led o 78 LYCMOS16 Fast hione Mone MONE
17 [Out... |sram_vrite_led o] 79 L¥CMOS15 Fast Nane Mane MONE
18 | Out... | sram_latch_led o a0 LYCMOS16 Fast hione Mone MONE
19 |Out... |al8 B 28 LYCMOS1E Fast Nane Mane MONE
20 |Out... [al? [29 LYCMOS18 Fast Hone Mone MONE
21 (Out... |al6 B 30 LYCMOS15 Fast Nane Mane MONE
2z |Out... |al5] 31 LVCMOS18 Fast hone Mone NONE
23 [Out. atd [« 41 L¥CMOS18 Fast Nore Mane MONE
24 [Out... |al3 [42 L¥CMOS18 Fast Nane Mane MONE
25 |Out... [al2 c 43 LYCMOS16 Fast hione Mone MONE
26 |Out... |all [« 44 LYCMOS1E Fast Nane Mane MONE
27 |out... [al0 c 3 LYCMOS18 Fast Hone Mone MONE
28 |[Out... |a9 [« 54 LYCMOS1E Fast Nare Mane MONE
29 (Out... |&8 [55 L¥CMOS18 Fast Nane Mane MONE
30 |Out... |a? [« 56 L¥CMOS18 Fast Nore Mane MONE
31 |Out... |&6 o] 64 LWCMOS15 Fast Nane Mane MONE
32 |Out... |as o 5 LYCMOS16 Fast hione Mone MONE
33 [Out... |a¢ o] 66 LYCMOS1E Fast Nare Mane MONE
34 |Out... |a3 D 67 LVCMOS18 Fast hone Mone NONE
35 | Out. az o} 70 L¥CMOS18 Fast Nore Mane MONE
36 [Out... |al o 1 L¥CMOS18 Fast Nane Mane MONE
37 |Out... [a0 o 72 LYCMOS16 Fast hione Mone MONE
36 | Out... |pgm3 B 14 LYCMOS1E Fast Nane Mane MONE
33 |Out... [pgmz] 5 LYCMOS18 Fast Hone Mone MONE
40 | Out. pgm1 B ki L¥CMOS18 Fast Nore Mane MONE
41 | Out... |pgmid B 37 L¥CMOS18 Fast Nane Mane MONE
42 |Node |alg 0 A 13 Mone Mone: MONE
43 |Node |50 B 1 Mane Mane MONE
44 |Node |s1 B 2 Mone Mone: MNONE
|« » |, Pin Attributes £ Global Constraints) Resource Resenation } Timing Constraints / —
Ready

Now, under “Fit Design” double click, “Post-Fit Pinouts” and you will see a window open that looks like Figure 19.0.
This is one of the constraint editors that allow you to change pin numbers if you wish, change I/O types and all kinds of
other things; however, this version of it is read-only, so we can’t mess anything up as we explore for now.

Go ahead and take a minute to see what'’s there. For example, try expanding the “Inputs”, “Outputs”, and “Nets” trees
on the left pane. You will see the mapping of every single input, output, and internal working “nets” that are in the design.
The right side of the window is much more complex and you want to be careful what you do here, since there isn’t much
of an undo with these kinds of CAD tools, so watch out! The columns represent different things relating to the architecture
of the chip, the only thing we are interested is the “lO Types” and the “Slew Rate” columns. The IO Types column
indicates the type of input/output that the pin is. As you can see everything defaulted to “LVCMOS18” which means 1.8V
CMOS technology. We need to change all these to 3.3V technology since the Propeller runs at 3.3V, as well as the SRAM
and the HYDRA expansion port. So, we need the I/O pads of CPLD to run at 3.3V to interface properly.

In reference to the “undo” comment in the paragraph above, you should make it a habit
of hitting <CTRL+S> constantly when working on complex projects that you don’t’ want
to lose. Also, | personally keep a backup version of the project | am working on with the
letter “B” appended to the file name, every 20-30 mins, | resave both the primary and
the backup. This way if | crash the computer while the project is open, | have the backup
to fall back to and lose only 20-30 mins of work.

Next, you see the “Slew Rate” column. This has two settings; fast and slow. Fast slew rate makes the signals change
faster, but can induce noise on the lines. Thus, it's a good idea to slow the slew rate down to minimize noise unless you
absolutely need the faster slew rate. We will see how to do this in a moment. Lastly, you will see tabs on the bottom of the

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

right window, right now we are looking at the “Pin Attributes” tab by default, go ahead and click the other tabs to see
what they are. Again, they contain more constraint and performance information.

Figure 20.0 — Package View.

= Post-Fit Pinouts(read only)

Ele Edt Wew Iook Window Help

QA | *
Package View LC4064Y-75T1001 ; D:\developmentitemplcpld._test_01.lco [E)EJE) = b:rdevelopmentitempicpld_test_01.Ico [B9](=0]E39]
LCA4064V-75T100I (Top View) = ’ra stam_c Type signal Hame

@ Tpupins

100] 99|98 |97 [@B]88] 94 [93] 92| o1 [B0] 89] 83 87 86 5] 04 [BB[82 81 80797877.I

ouput|aw7
B » S o
n ; 10 utput 15
L€ 11 | Qutput 14
B T Z[oup |a13
L 13 | Gutput iz
n 70 [ouput [a11
- i [Cuput|a10
69 16| cupa a9
17 | Output 5
13 | Qutput 3
67 20 Cuput__| %
= 21| Cutput 4
66 22 Output 3
m (65| 23 Cutput 2
il 24 Cutput 1
m 64 5 Cutput | a0
2| Cutput
. 7| owr
28 Cutput
62 25 Cutput
— 30| ClockTnput_| =
61 3 | Toput
1 32| nput
60 33 | Toput X
(zal 34 Tnput
59 35 nput d
(58] 36 nput &
a7 | gt de
. 38 | Ioput @
| 39 tnput [
56 0] nput dt
— 41 Tnput @
85 42 | Node als 0
— 43| ode El
54 44| ade s

53

2728293031-343536374142|4344-474849|50F

«| » |\ Pin Attributes £Global Constr:

Finally, there are a lot of cool options in this tool view, but one of my favorite is the “Package View” which actually shows
a top view of the chip package with the pins that are used (with highlighting), its great for planning layout and chip
resource allocation. To get this view, select <Device — Package View> from the main menu and you will see the 100-pin
QFP fill into the left pane. It will be too big, so zoom it out with the zoom tool (yellow buttons above the view). When you’re
done, you should see something like that shown in Figure 20.0.

1.7.4.1 Changing the I/0 Types and Slew Rate

In the previous section we experimented with the Post-Fit Pinouts in read-only mode, now we are going to go ahead and
launch the full blown constraint editor that allows changes to be made. To do this, make sure you have closed the Post-Fit
Pinouts window and then locate the “Constraint Editor” link in the middle pane (“Processes for current source”), its right
above the “Fit Design” link. Go ahead and click the Constraint Editor link and you should see something identical to
what you saw before, take a moment to resize the windows and get everything into view. Also, make sure the “Pin
Attributes” tab is selected at the bottom of the window.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

onstraint Editor,

File Edit PinAttrbute Device Yiew Window Help

|# @ & &= % @ © & X |® poloeop © fw|res Ao a8

D:Adevelopmentitempicpld, test_01.Ict
Type SignalfGroup Name | Group Members | GLB | Macrocell I0Types |Skewrate |Fastbypass |Orphypass | Inputregisters | Register powerup
Clock Input | sram_ck. TifA LUCHOS18 |11/% i 1j HONE A
Input sram_resn it LUCMOS15 3 1/ iR
Input sram_c0 3 LVCMOS18 |11/% 3 /A WA
Input sram_c1 s LUCMOS18 |1/ A A
Input a7 D LUCMOS18 A 1ja WA
Input & TifA LUCMOS18 |11/ WA A
Input s s LUCHOS18 TjA)
Input 4 [LVCMOS18 /A A
5 Input. a3 [y LWCMOS18 ey NjA
& sram_ck @38 Input a A LUCMOS18
& sram resn @8 Input di D A LUCMOS18
o s Tnput [A WA LucHos1a
gaer Output sram_con iR HiA LVCMOS 15
Haen
B zon Output sram_cin s A LUCMOS18
D ao@s? Output sram_csn D A LUCMOS18
Daoes Output sram_read_led HiA LVCMOS18
Sses Oupr | sram_write_ed i HIA LUCHos1e
= 2 @64 OutpLt sram_Jatch_led WA LVCHOS18
g Z; g 22 Outpit e A LUCMOS18
Lses Output A HfA LUCHOS 18
8 aness Output i HiA LVCHOS18
-~ sl @as OutpUE TP HJA LYCMOS13
33' alz@ 43 Output Ui HfA LYCMOS18
g :j g :f Output T HiA LUCMoS 18
B s 001 Output D A LUCMOS18
B =Lk Outpue it A LUCMOS18
aarees Output A HfA LVCMOS18
:Cl al8 @28 Output A HJA LUCMOS18
O pgmo @37 Output) NI& LUCMOS18
& pgm1 @36
5 o2 @ 3 Outpue it A LUCMOS18
B pgma@ 14 Output T A LVCMOS18
-9 sram_cOn @ 3 Output A Hia LUCMOS18
§:| sram_cln @ 4 output A HfA LVCMOS15
9 sram_csn @5 OutpLt TUfA iR LUCHOS18
g :;::;i::j:: g:g Output A HfA LWCMOS18
5 sram_wiite_led @ 73 Output (D A LUCMOS18
Output D A LUCMOS15
Outpue pam3 it A LUCMOS18
Output pgmz2. NiB NfA LYCMOS18
Output pami (D A LUCMOS18
Output pam D A LUCMOS15

—
Pin Attributes £ Nodal Constraints 3 Global Constraints) Resource Reservation)\T\mmg Constraints / —

Ready I

When you have everything set up and sized right, you should be able to see all 48 pins listed in each row as shown in
Figure 21.0. Also, the two columns of interest are highlighted for reference. So, what we want to do is change both 1/0
Type to “LVCMOS33” and the Slew rate to “SLOW?”. Let’s do this one step at a time.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 22.0 — Changing the I/O Type to LVCMOS33 in the Constraint Editor.

== Constraint Editor

File Edit PnAtrbute Device View Window Help

B R

Fc | Loc Grp 10 Pur | Res PLL HE Def ‘ 8l 2w

D:\developmentitemplcpld_test_0 =]
= B hycka_sram_controller 03 Type SignalfGroup Name | Group Members | GLE |Macracel | Pin |Bark. |10 Types Slewrate |Fastbypass |Orpbypass |[nputregisters | Regiter powerup
& Eﬂuul Fins 1 [Clock In... [sram_clk. HA HA 38 [0 L : HfA NiA NONE A
dez 7 [Input e WA WA 8 0 [E ifh i A NONE e
S; g Z 3 [Input sram_c0 WA A 9 |0 L i HJA HjA HONE [
sen 4 |Tnput sram_c1 NIA NIA w0 [. WA WA NOME i
dt@19 5 |Input dz WA WA 50 7) A NONE D
E@17 6 | Input 3 WA WA 0 [7 [WA NONE A
@16 7 [Input ds Na A 7 |0 T A WA WA HONE i
o els & [Input F WA WA 19 [0 [r TfA WA A HONE A
sram_c0 @9
o0 9 [Input a3 WA 0 a0 [i, e WA NONE D
B sram_ck®38 10 [Input az NJA iR 21 0 |8 i WA WA NONE i
& sramresn @8 11 [Input a1 iR iR 2 0 i, WA WA NONE i
ouputpins 1Z [Input do IR B =D T iR IR WONE D
i 13[Output |sram_con A HIA G FAST HOME HONE /A NOKE
1 g :;g;é 14 |Output |sram_cin N WA + 0 FAST HONE HONE) NONE
Haee 15 [Output |sram_csn WA WA 5 |0 FAST NONE NONE WA NONE
o 16 Output |sram_read led /" iR 7 1 FasT NORE NORE WA NOKE
:2 :: g :3 17 | Output sram_y N{A NjA 7 |1 W HONE NA NONE
£ 18 [Output |sram _latch led 14 NIA 80 1 e HONE WA NOKE
= 19 [output |al® WA A % 0 HONE A NONE
aEess 10 Types Settin
= gy 20 [Output |17 WA WA R NONE WA NONE
Sa0g5 21 [Output |al6)) R NONE WA NOKE
Datlew 22 [Output als NA NA a1 0 NONE WA NONE
33 ale @43 23 [Output al+ WA WA a1 HONE MR NOWE
g eseda Z4[Output |al3 A A a2 1 L¥aMO525 HONE NIA NONE
Haded LUCMOS18
B s oo 25 [output [alz iR iR a1 NONE WA NONE
S ats@an 26 [Output |all A) 441 NONE () NOKE
Hares 27 [Output |a10)) 53 1 NONE WA NONE
:Cl alg @28 28 |Output a9 HIA HIA 54 1 HOWE A NONE
e pamd @37 29 Output |aB WA WA 5 |1 HONE A NONE
5 pom1 @36
= g 30 Output |7 iR iR S5 |1 NONE WA NONE
L @ 14 31 output |6 iR iR o4 1 NONE WA NONE
5 samcn@3 32 |Output a5)) 65 |1 NONE () NOKE
:cl sram_cin @ + 33 [output a1 NA NA [HONE HiA NONE
-l sram_csn @ 5 34 [Output |a3 NA NA & 1 HONE WA NONE
g sram Jatch Jed @ €0 35 Output |a2 WA WA EIE HONE A NONE
& sram_read_led @78
5 sram_wite_led @ 79 B[EEE @ HiA /A BN HOHE NjA NONE
B bets 37|output |a0 WA WA 72 |1 HONE A NONE
~Ela18 0 36 [Output |pam3 WA WA 0 NONE WA NONE
Elso 39 | Qutput pgm2 NA NA w0 MOME NiA NOKE
Els1 40 | Output pgm1 NA NA 36 0 MOME NiA NOKE
41 [Output | pgm0 B iR ¥ 0 HORE iR NOKE
_LI_PI Pin Attributes 4 Nodal Constraints A Global Canstraints j Resource Reservation ;T\mmg Constraints

(I

Referring to Figure 22.0, select the entire “I/O Types” column (select the top row then hold <SHIFT> and select the last
row) and then right click the mouse, and select “LVCMOS33”. Now, to be safe let’s slow the slew rate down.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 23.0 — Changing the Slew Rate to “SLOW?” in the Constraint Editor.

= Constraint Editor
File Edit PinAttrbute Device Yiew Window Help

= H & A& % s i Loc Gm 10 Res pef | 4l O % N2

=% D:\developmentltempicpld_test_01.Ict*

hydra_sram_controller_03 Type Signal/Group Name Group Members | GLE |Macrocell |Fin | Bark |10 Types |Slewrate Fastbypass |Crpbypass | Input registers Register powerup.
= ’{ﬂbut Pins 1| Clock Input | sram_clk] LVCMOS33 MORE
b wez 2| Input sram_resn 8 LUCMOS33 NOKE;
M dez 3 | Input 0] LVCMO333 HOME
— Pt npu sram_r
B den 4 | Input sram_cl 10 LYCMOS33 NOME
b dets S | Input d7 15 LVCMOS33 HOME
Ddser & | Input ds 16 [HONE
Bdate 7 | Input ds 17 LYCMOS33 MOME
b drats
= 13 LVCMOS33 MOME
B sam 0@y 2Tl o
B srem c1 @ 10 9 Input d3 i LUCMOs33 HONE
& sram_rk@ 38 10 | Input dz 21 LYCMOS33 NOME
& sram_rena@ s 11 | Input di 22 LUCMOS3E HOME
- Output Fins 12 |Input a0 23 LYCMOS33 NONE
O @7z g
s 13 | Output sram_cOn 3 LVCMOS33 Il HONE HOME
Saaen o i T
B aan 14 [Output | sram_cin 4 LUCMOS33 MONE HONE
5 az@er 15 [Output. sram_csn 5 LYCMOS33 HONE HONE
Bat@es 16 [Output | sram_read_led 7 [NONE [
’5:. a5 @es 17 |Output sram_write_led 79 LUCMOS33 NONE MORE
a "? S é; 18 [Output | sram_latch_led Eil LVCMOS33 NONE HORNE
g
B e 19 [Output |a18 % LUCMOS33 MONE HONE
Ha@se 20 |Qutput al7 29 LUCMOS33 MONE MOMNE
O aess 21 [Output ale 30 LVCMOS33 HONE MOME
Sane 22 [Output |al5 El LUCMOS33 MONE HONE
gazeda 23 |Output alt e LYCMOS33 HONE HONE
= i 24 [Output |al3 % LCNOSE [NONE HONE
Saied
= as@at 25 [Output al2 43 [t coccl FasT e ——— NONE
Bas@an 26 [Output all 44 LYCMOS33 NOME
aarem 27 [Output [al0 53 [HONE
Sasem 28 [Output |ad s4 LUCMOS33 (3
Q pgmo @37 29 [Output a8 55 LYCMOS33 O
2 pam @0 56 [HONE
) pamz @35 30 [Output a7 E
B pa @14 31 [Qutput a6 64 LUCMos33 HONE
B sram_con@ 3 32 [Output a5 65 LVCMOS33 MOME
5 sram_cin@ 4 33 [Output |at 66 LUCMOS33 HONE
L] sram_cen @5 34 [Output [a3 67 LuCMOS33 HONE
Q sram Jateh Jed @20 35 | Output 12 70 LVCMOS33 HOME
9 sram_read_led @78 utpu! &
B sram_write_led @ 79 36 |Output al 7 LYCMOS33 MONE
5 2 Nets 37 |Output a0 72 LYCMOS33 NOME
= a18_0 38 [Output |pgm3 14 LUCMESE3 HONE
Elso 39 [Output |pgm2 3 LUCMOS33 (3
s 40 [Output |pgm1 3 LICMOS33 HORE
41 [Output | pgm0 £ [MONE MONE [
«| v | Pin Attributes 4 Nadal Constraints } Glabal Constraints A Resource Reservation) Tiring Constraints /
—_——————

Now, we need to change the slew rate; however, if you refer to Figure 23.0, you will notice in the Slew rate column inputs
do not have the slew rate option, this is because for inputs, it makes no sense to control slew rate, only for outputs does it
make sense. Considering that, select all the outputs in the Slew rate column as shown in Figure 23.0, and then change
them to “Slow” with a right click.

Save the constraint file with <CTRL+S> and then close the Constraint Editor window.

1.7.4.2 Generating the JEDEC File

The next step is to finally generate the JEDEC programming file which is used by yet another tool chain to actually
program the CPLD, but we will get to that in a moment, for now, let’'s simply generate the JEDEC file. To do this,
assuming you are looking back at the main ispLEVER Project Navigator MDI window, select “JEDEC File” in the
middle pane under “Processes for current source”, You will get yet another warning dialog when its complete, simply
click <OK>.

If you look in the directory that you built the project in, somewhere you should find the JEDEC file:
cpld_test_01.jed

Go ahead and open it with a text editor and look at the file, you will see a human readable file with pin definitions followed
by a large binary bitmap (or fuse file) consisting of 1’s and 0’s. These are the actual program bits for the CPLD. At this
point, you are finally ready to program your CPLD.

1.7.4.3 ispLEVER Setup for Programming the CPLD

To program any CPLD or FPGA there is a completely different tool needed that is totally external to ispLEVER, its
integrated into ispLEVER for you convenience, but can be launched externally. Let’'s go ahead and launch the program,
to do this navigate to the top menu bar on ispLEVER and select <TOOLS — ispVM Systems, this launches the
programming tool which is shown in Figure 24.0.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 24.0 — ispVM System Programming Tool.

If all goes well, you should see the simple window shown in Figure 24.0. This tool is the main programming tool for all
Lattice CPLDs/FPGAs, so it does far more than we need, thus the trick is to avoid as much as possible of it and just
download our code into the HX512’s CPLD. Therefore, there are a few steps to do this:

Step 1: Make sure that the programmer is physically connected to the PC and its driver is installed for either the
USB/Parallel Port programming cable.

Step 2: Create what'’s called a “Chain Configuration” for our device and JEDEC file which can be used over and over,
so that when you update the JEDEC file, you don’t have to re-create the “Chain Configuration” file. Chain configuration
is just a fancy name for programming file setup.

Step 3: Hook the programmer up to the HX512 (must be plugged into the HYDRA and the HYDRA powered) and
download the code. Of course, you need to make sure that the programming pins from the programmer are in the right
place on the HX512’s programming port. Figure 25.0 shows a close up of the programming port header pin outs (which is
identical to the standard 2x5 Lattice header configuration). You have to work a little to see the silk screen lettering, but its
all there. Pin 1 is at the bottom left. The pin count in a stagger fashion so the bottom row is (1, 3, 5, 7, 9) left to right and
the top row is (2, 4, 6, 8,10) left to right.

Figure 25.0 — The HX512’s Lattice Programmer Port Pinouts.

Now, we will cover these steps in every detail.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 26.0 — Locating the Magical Software Installing Menu Item.

1 LSC isp¥M® System (=1 3]
File View NEe=E Options Help

0 = ispM Editors v

BSCAN Canfig... »

! Modsl 300 Programmer...
Universal Fils Writer...
ispHM-DLx Connect

SVE Debugger...

s & 5 [

SUF Interpreter...
. VMEFrocessor...

i
B sean chain
= :

Scan Mixed Chain

| £ InstallfUninstall L5C Win98jwinT/2000/XF LSBjParallsl Pork Driver... |

<o. Application Specific BSDL File Generator...

Ly Convert Compostte to Jedec Flle. .

| AddiRemove Device. .

InstaljUninstall LSC Wings[WinhT/2000{%P Driver

Assuming that you have bought either a USB or parallel programming cable (or made the parallel cable outlined in the
appendix), you need to plug it into your computer of course. Then there is a second step where you must tell ispVM what
drivers to use. To do this select <ispTools — Install/Uninstall Win98/WinNT/2000/XP USB/Parallel Port Driver>, as
shown in Figure 26.0.

Figure 27.0 — The Lattice Semiconductor Driver Install/Uninstall Dialog.

LSC Drivers Install/Uninstall

Inztall

Lattice =

Semiconductor

Corporation Close

Diriver(z] Inzstallation Options:
™ LSC'WinNT /20004 Parallel Port Driver
™ LSC 'Win98/2000/+P USE Driver

Parallel Part Driver Installation O ptions:

+ Driver's service starts on demand only [Default
[Spstem Standby Mode Suppart |

" Driver's service starts during startup of the spstem,
[Backwards Compatible |

Immediately after clicking this menu item the driver install/uninstall dialog will display as shown in Figure 27.0. Simply
select both drivers, with “on-demand” start up and click <Install>. If all went well, you will see a “Installation
Complete/Successful” message box, click <OK> and continue.

Now, that the driver(s) are installed, its time to create the “Chain Configuration” file. This file is a mini-project that
describes the chip you are programming along with the JEDEC filename (created from your project). From the main menu
bar of the ispVM System tool select <File — New> and you will see a blank chain configuration window created in the
main view. The Chain Configuration window will have a line of text saying to “Add New Device...”, to do this press the
<Insert> key or from the main menu select <Edit — Add Device>, the “Device Information” dialog should open up
which is where you need to enter all the pertinent information.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 28.0 — Blank Device Information Dialog.

Device Information

Part Descrption:

il

Device: Lancel
Select... | Advanced...

Device Full Mame: Package:

Data File:

Browse |

|tstruction Fegister Length:
l—_| [Re-nitialize Part on Program Ermar
= [Emable Debug Mode
O peration:

|E raze, Program Werify j Expand

Referring to Figure 28.0, the Device Information Dialog needs to be filled out. There isn’t anything too complicated, most
of the stuff you have seen elsewhere. To start, the first thing that needs to be entered is the “Part Description”, you can
enter any string you wish, but to keep synchronized with the example, go ahead and enter the string “ispMach 4064 100-
pin QFP”. Next is the “Device” entry edit box, go ahead and press the <Select> button which will open yet another
dialog box that you can use to find the exact device string for our device.

Figure 29.0 — The Device Selection Dialog Box.

Select Device E|
Device Family Device
[isphdaCH4000 [LCaoses IL'
LatticeE CP2M A LC4064C-3210 4\
Mach<0 LCA0B4VE] _ Coresl |
LatticeSC CA0E
LatticeSC LA40E4Y
LatticexF LC4064E
LatticeEC LC4064C120C)
LatticeE CF LC4064C
ispPGA LC40642C
ispedPLD BO00R: LC41 2808 4
ispMACH4000 Package Type
ispACHE000E n
ispMACHEO00V G T =
ispGAL 220108, Device Description
ispGLR2 v | LC4064=:<T100 Advanced »»

Referring to Figure 29.0, select the “Family” as “ispMACH4000” and the “Device” as “LC4064V” and click <OK>. This
will transfer the information back to the Device Information Dialog for you. Now, we are almost done. In the “Data File”
area immediately below the “Device Full Name” field you need to locate the file you want to use to program the CPLD.
This is simple the JEDEC file that is generated by the ispLEVER tool which is named the root project name with .JED
appended to it. Go ahead and navigate with the <Browse> button and find the JEDEC file in your project working
directory, if you used all the same names as in the example we have been working with, then the JEDEC file should be
named “cpld_test_01.jed”.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 30.0 — Completed Device Information Dialog.

Device Information E
Part Desciiption: 0K
|ispMach 4064 100-pin QFF
Device: e

Select . |[LCADERV Advansed

Device Full Name: Package:
|LE4054V->¢(TWDD 100-pin TOFF

Diata File:

T Banie §|D “dewelopmentitemphepld_test_01 jed

Instruction Register Length:
| om R
| [Enable Debug Mode
Operation:

|E|ase,F|Dgram,Venly j Expand

Finally, at the very bottom of the Device Information Dialog is the “Operation” selection box, the default entry is “Erase,
Program, Verify”, this is what we want so leave it as is. Now compare your filled out dialog to the one in Figure 30.0, if
everything looks the same click <OK>, we are done with this dialog.

Now, before moving on, let’s save this configuration file -- press <CTRL+S> on the keyboard, or use <File — Save> from
the main menu and a file save dialog will open. | the dialog hasn’t dumped you into your project working directory,
navigate to your directory and then save the configuration file as “LC4064V.XCF” and click <OK>.

1.7.4.4 Programming the CPLD

At this point, if you have been following the example, ispVM should be ready to go and our JEDEC program is ready to be
downloaded into the CPLD; however, the most important thing to verify is that the programmer is connected to the HX512
properly. If you bought a Lattice programmer then you should have a 2x5 header or fly wire connector, You need to
connect the programming interface lines to the HX512’s programming port (they are labeled on the PCB). The signals that
are needed are shown in Table 5.0.

Table 5.0 — Programmer Interface Connection from Lattice Programmer to HX512 Programming Interface.

Lattice Programmer Signal (color) HX512 Programmer Port Signal (pin #)

TCK (White) SCLK (1) (bottom row, 1" pin from left)
TMS (Purple) TMS (3) (bottom row, 2™ pin from left)
TDI (Orange) SDI (5) (bottom row, 3™ pin from left)
TDO (Brown) SDO (7) (bottom row, 4™ pin from left)
VCC (Red) VCC (6) (top row, 3" pin from left)
GND (Black) GND (8) (top row, 4" pin from left)
Notes: Trst/ispEN are not used and VCC is 3.3V in this case.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 31.0 — A Close up of the Programming Lines Interfaced to the HX512’s Programming Port.

Figure 31.0 shows the programming lines inserted into the HX512’s programming port. Notice that the port is numbered
with the bottom row being the odd pins and the top row being the even pins, starting with pin 1 at the bottom left, thus, the
bottom pins left to right are 1,3,5,7,9, the top row left to right is 2,4,6,8,10. In this case, | am use the “fly wire” single signal
conductors from a Lattice programmer, notice the color coding and labels as well.

The HX512’s interface header is of course compatible with the Lattice 2x5 programming header specification. These files
on the CD explain the ispDownload cables (which you will get when you buy one):

CD_ROOT:\DOCS\docs\datasheets\lattice*.*

After you have made sure to interface the proper signals with the HX512 from your programming cable (purchased or
home made), then there is only one thing to do; download the code. Make sure your HYDRA is powered, it doesn't really
matter what program is running, the CPLD doesn't care.

To download the JEDEC file either press the green <GO> button on the top toolbar of the ispVM tool or you can press
<CTRL+G>, or you can select <Project — Download> from the main menu. If everything is connected, and your cable is
working, then a little programming dialog with pop up and you will see a progress bar and the programming should take 3-
4 seconds. When complete, you will see a “Pass” or “Fail” next to your configuration file entry in the ispVM window.
Hopefully, you see a “Pass”. If you see fail, check cabling, power, etc. retry, if fails again, review the steps from the
procedure, make sure you have the right chip and JEDEC file and try again.

That concludes re-programming the HX512 with the memory controller driver.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 32.0 — A Block Diagram of the Mouse CPLD Demo.

SPIN Program HX512

VIOUSEYVIOVEMENT:
P5..PO

Mouse Driver Mouse Buttons:
/IOUSECRSULLONS Oooooo

: Read *--- N
: Write o i
v Latch

Mouse demo program interfaces CPLDA‘giET '
with CPLD via 10_7..10 O by a:‘tllvavior for Eccoal

""" ' Mouse Driver

setting the bits inthe data | _|. »
to reflect motion and buttons.

1.7.5 Changing the Firmware — Mouse Light Show Demo

As a concrete, but simple demo of how to change the behavior of the CPLD and do something interesting, | have created
a simple CPLD program that allows you to move the mouse around and press the buttons and the actions are displayed
on the HX512 informational LEDs. Take a look at Figure 32.0 for a block diagram of what’s going on.

There are two pieces to this application; the ABEL code that is downloaded into the CPLD and the Propeller program that
runs on the HYDRA and interfaces to the HX512 board’s CPLD via the HYDRA expansion port. The idea of the demo is
simple; the demo boots up on the CPLD and watches the data bus bits (I/0_7...1/O_0), if bits I/O_1 or I1/0_0 are active
then it moves a little dot on the LEDs right/left (this is accomplished by a shift register in the CPLD program). Secondly, if
the mouse buttons are pressed (left, right, middle) they are instantly indicated by the read / write / latch LEDs on the
HX512.

These the demo program(s) show off how to create a new behavior and interface to it. This illustrates using CPLD for
experimentation and other things other than a memory controller. The two files you will need are the SPIN demo which is
located on the CD here:

CD_ROOT:\SOURCES\HX512K_MOUSE_DEMO_010.SPIN
and the ABEL program which is located on the CD here:

CD_ROOT:\SOURCES\mousetracker_01.abl

You can compile the program yourself as outlined in the previous sections, or you can just use the pre-compiled JEDEC
file I have provided here:

CD_ROOT:\SOURCES\mousetracker_01.jed

TIP If you compile the ABEL program and generate a JEDEC file, make sure to select the correct target
chip, and make sure to alter the constraint file for LVCMOS33 and SLOW slew rate.

The sources for both the CPLD driver and the SPIN demo are rather short and are listed below for convenience. First,
let's look at the ABLE CPLD driver shown in Listing 2.0 below:

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Listing 2.0 — The CPLD Driver for the Mouse Demo.

MODULE MouseTracker_01

TITLE 'Mouse Tracking Demo'

// This fun demo shows how to use the CPLD on the HX512 for things other than a memory controller.
// In this case, the HYDRA application is going to track the mouse buttons, right and left motion.
// The 6 program LEDs will track the right/left motion of the mouse, while the 3 operation leds
// will track the buttons.

// HYDRA Expansion interface signals

// 10_0 - Right (pin 23 on Propeller).

// 10_1 - Left (pin 22 on Propeller).

// 10_2 - Up (unused by CPLD in this demo) (pin 21 on Propeller).

// I0_3 - Down (unused by CPLD in this demo) (pin 20 on Propeller).

// I0_4 - Mouse Left Button (pin 19 on Propeller).

// I0_5 - Mouse Middle Button (pin 18 on Propeller).

// I0_6 - Mouse Right Button (pin 17 on Propeller).

// I0_7 - uUnused (pin 16 on Propeller).

// RESn - Reset Line (pin xx on Propeller).

// USB_RXD - Clock (pin 30 on Propeller).

DECLARATIONS
// inputs
clock pin 38; // genera1 system clock coming from USB_RXD on HYDRA
Ireset pin 8; // hydra RESn reset line (active low), notice inversion to make active high
jo7..i00 pin 15..17,19..23; // data bus lines from HYDRA, IO_7..I0_0

// outputs
ledS..led0 pin 85, 87, 14, 35, 36, 37 istype 'reg'; // the mouse tracking lights, use the program LEDs

// create a set for_the mouse direction leds
move_leds = [led5..led0];

// define leds for mouse buttons
led_read pin 78;
Ted_write pin 79;
led_Tlatch pin 80;

EQUATIONS

// set clock
move_leds.clk = clock;

// simple combinational logic for buttons left, middle, right, are mapped
// top to botton on the read, write, latch leds

led_read = io4;
led_write = i05;
led_latch = 106;

// test for reset, if so center the Tittle tracking led
when (move_leds == [0,0,0,0,0,0]) then { move_leds = [0,0,1,0,0,0]; }

// test for mouse move right? If so shift right
else when (io0 == 1) then { move_leds = [1ed0 Ted5, Ted4, Ted3, Ted2, ledl]; }

// test for mouse move Teft? If so shift left
else when (iol == 1) then { move_leds = [led4, led3, led2, ledl, led0, ledS5]; }

else { move_leds = move_leds; }

END

As you can see, barely a page long. Next, Listing 3.0 shows the SPIN based demo that makes calls to the CPLD via the
HYDRA expansion interface:

Listing 3.0 — SPIN Driver for Mouse Demo.

CON
_clkmode = xtal2 + pl14x ' enable external clock and pl1 times 4
_xinfreq = 10_000_000 + 0000 ' set frequency to 10 MHZ plus some error
' SRAM bus interface pin constants
SRAM_CTRL_0 = 1 ' NET_RX_CLK (expansion pin 10)
SRAM_CTRL_1 = 2 ' NET_TX_DATA (expansion pin 9)
SRAM_STROBE = 30 ' USB_RXD (Prop TX ----> USB_RXD Host) (expansion pin 19)
SRAM_IO_7 = 23 ' I0_7 (pin 28)
SRAM_IO_6 = 22
SRAM_IO_5 = 21
SRAM_IO_4 = 20
SRAM_IO_3 = 19
SRAM_IO_2 = 18
SRAM_IO_1 = 17
SRAM_IO_0 = 16 ' 10_0 (pin 21)

mouse buttons
MOUSE_MIDDLE
MOUSE_RIGHT
MOUSE_LEFT

o
OoN

OBJ
mouse : "mouse_iso_010.spin"

instantiate a mouse object
PUB Start

'start mouse on pingroup 2 (Hydra mouse port)
mouse.start(2)

' set the data bus and clock to outputs, so we can talk to CPLD
InitalizeIO

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

main Toop, track mouse and buttons and send to CPLD interface as agreed up in interface spec
repeat

' test for right/left movement
if (mouse.delta_x > 0
OUTA[SRAM_IO_0] :
OUTA[SRAM_IO_1] :
elseif (mouse.delta_x < 0)
OUTA[SRAM_IO_1]
OUTA[SRAM_IO_0]
else
OUTA[SRAM_IO_O]
OUTA[SRAM_IO_1]

(L} (L}
(=1

oo OR

' test for buttons
OUTA[SRAM_IO_4]
OUTA[SRAM_IO_5]
OUTA[SRAM_IO_6]

mouse. button(MOUSE_LEFT)
mouse. button(MOUSE_MIDDLE)
mouse. button(MOUSE_RIGHT)

' the CPLD needs a heartbeat for all the registered logic
Pulse_Clock

LTI 71111 777777777777777771777717717717777

PUB Pulse_Clock
' Pulses the clock Tine on the CPLD which is ultimately attached to pin 38 of the CPLD

OUTA[SRAM_STROBE] := $01
OUTA[SRAM_STROBE] := $00

LTI 7111 777777777777777777777717717717777

PUB InitalizeIO

' Initializes the I0 for HYDRA<->CPLD interface,

' in this case we just need to set the data bus to output as well as the clock strobe line
' set bus I/0 directions for data bus
OUTA[SRAM_IO_7..SRAM_IO_0] $00

DIRA[SRAM_IO_7..SRAM_IO_O] $FF ' $FF ouput, $00 input
' set strobe

OUTA[SRAM_STROBE] 1= %0000000_0 ' clear strobe

DIRA[SRAM_STROBE] = $01 ' set to output

The HX512 enhances the HYDRA'’s abilities substantially by allowing more complex applications to be developed.
Moreover, with re-programming of the CPLD other personalities and behaviors can be programmed such as crude bit
blitting, simple DSP algorithms and much more. We hope to see many amazing applications developed with the HYDRA
XTREME 512K SRAM Card!

The following appendices contain very useful information including schematics, drivers, re-programming the CPLD and
more.

A. HX512 Circuit Schematics

B. Lattice ispMach 4064 Details and Signal Descriptions
C. Building Your Own Lattice ISP Programmer

D. Using the HX512 without the HYDRA

E. HX512 API Driver sources

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Appendix A. HX512 Circuit Schematics

The HX512 consists of a number of passive components; resistors, capacitors, and LEDs as well as three primary VLSI
chips composed of the 512K SRAM, CPLD, and 128K EEPROM. The manufacturer of the 512K SRAM and 128K
EEPROM may very, but the CPLD will always be a Lattice ispMach 4064 100-pin QFP. For reference, the part numbers
for all three chips are:

= 512K SRAM — Cypress Semiconductor — CY7C1049DV33 10VXI, 36-pin SOJ (or drop in replacement 10-12 ns).
= 128K Serial EEPROM — Atmel Corp — 24C1024W SU27, 8-pin SOIC (or drop in replacement).
= CPLD - Lattice Semiconductor LC4064V-75T100-10l, 100-pin QFP (no substitutes).

Datasheets for all these parts can be found on the CD in the following location:

CD_ROOT:\DOCS\DATASHEETS*.*

Figure 33.0 is the complete design of the HYDRA XTREME 512K SRAM Memory Card. For closer inspection, a bitmap
version of the file is located on the CD here:

CD_ROOT:\SCHEMATICS\HX512CARD_schematic_01.png

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Figure 33.0 — Schematic for HYDRA XTREME 512K Memory Card.

Expansion Card Slot

1
savee

c2
owF
c3
e
¢ c4
1
X 1000
Usa R0
NN-H20 -
B D ———— R1 =
EAp D e— 0
saAl REsn <>
SRAM_CLK R12 R13[] R14 R15[] R16[] R R1{] R19
w0 || [[s0 || a0 || a0 || 0 || 2] | 320
c8 —c16 W D1
202207 10022055 Lo
= SRAM Dotaus
— SRAn_Do
SRANOT
Sran
SRAMLD
SRAIL
SRAN.Ds
SRAN.Do
SRANOT
Ces 33vee
A c26
e
c1
J2 o];
seuk Tow
& - - SRAM_PaS <T>—— ——————<I> sRAM_LATCH LD 32-128K EEPROM
MODE TS SRAM PO <> —————<I> SRAM_WRITE LED U3
] <> SRAMREAD.LED
soumo a0 o2 s oner
- ZTh oAl SOACART
s00_T00 savce awce avee 2w
|
n T ca%
SPENn_ENABLE_PROG c15
ComH10 1 =
T e
R2 PACKAGE=S0BN2
VCT=INGT
a7 = svee |
swves =
On next b, round he AT e s sfer thanting st
ce o o
-+ A 7
= o 1 c10
o]
soLTol > spo_moo U2
SRAMLCon -
SRAN I SRAM_AO 0 00
A SRAMCAT I o
<> SRANCA2 2 o2
< ks o [
SRAM_RESn <> Foe At 014
SR SRAM_AS hs 015
SRAMCH SRAMAE he 06
SRANCAS w o
<> SRANCAS he
4o
SRAM_PGM3 <> A10 33vCC
i1
'SRAM_D7 [A12 19
SRANDG M3 =
T o s
SRAND4 o Ais
SRAM_D3 cn <> SRAM_AT A16
SRAMD2 SRANAS ¥ w7 B
'SRAM_D1 (=3 'SRAM_A9 'SRAM_A18 A8 uf
SRANDO Nz & SRAM_ATO c6
SCLK_TOLK <> TEK 8 zz & ™S <T> MODE_TMS. . . |
SrAmDaBus Ve 8, z R srAvLosn voo |- |
LI soves 0l SBFS Thue
e 52588352885800285888535880 2 s oo >——oE Yo
SRAM_C0 <D>——-—
Tel [N [[olellelel = c7
M | 1 I'T 5paoed g SETLVETZEAL
= = 10,00
SRAM_LATCH LED swee =
SRANCWRITE LED c20 e
o i awee
v [c25
R3 = C|23
T
350 -
c24
- 1.00F| -
Ny D2 SRAM_PGM2 =
= SRANCPGAT SRAM 11
‘SRAM_PGMO SRAM_A12
SRAMCATS
SRAM_CLK SRAMCAT4
<T> sRAM_AtS
s pare SEava
SRANLPGI SR
RAM_PGM2 <> =
SRAM_FOMT T
SRANPGIO
R9 R10 R11
0 a0 30
D8 D9 D10
N LED N LET B LED

Note: All passive components are surface mount size 0603, except C7 which is 0805 size.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Appendix B. Lattice ispMach 4064 Details and Signal Descriptions

The Lattice CPLD used in the HX512 is a member of the ispMACH 4000 series part # LC4064V-75T100C. The part # is
decoded as follows:

“4064” - Means there are 64 logic blocks.

“75T” - Means there is a 7.5 ns propagation delay.

“V” - Means supports 3.3V/5V /O, but the core is always 3.3V.
“100” - Means the chip is a 100-pin TQFP.

There are numerous documents on the Lattice Semiconductor website at the following URL location:
http://www.latticesemi.com/products/cpldspld/ispmach4000bcv.cfm

However, to save you time, you can find the data sheets and other important documents on the CD in the following
location:

CD_ROOT:\DOCS\DATASHEETS\LATTICE

The most important document to read is the file ISPM4K.PDF, it describes in detail the architecture of the CPLD family
and how they work.

ispMach 4064 Signal Descriptions

The pinout of the 4064 is shown in the previous schematic figure, so no need to replicate that here. If you are interested in
the exact mechanical specifications of the 100-pin TQFP then refer to document LATTICE_PKG.PDF within the
aforementioned directory. It contains all of the mechanical specifications for all the chips in the family including the 100-pin
version used in the HX512. Figure 34.0 shows an abridged mechanical diagram for reference. The pins are labeled 1 to
100 in a counter clockwise fashion. The pin classes are; power, |/O, clock, and programming. Table 6.0 lists each pin on
the 100-pin 4064 (refer to the leftmost pane that is highlighted).

Figure 34.0 — The ispMach 4064 100-Pin Package Mechanical Drawing.

PIN 1 INDICATOR Ql 0.24 c | A-B | D| 100X

All Dimensions in Millimeters

SYMBOL MIN. NOM. MAX.

A - = 1.60

Al 0.05 - 0.15

A2 1.35 1.40 1.45

D 16.00 BSC

D1 14.00 BSC

E 16.00 BSC

== E1 14.00 BSC
=4 |:E:|
- E L 0.45 | 0.60 | 0.75
o N 100
; & e 0.50 BSC

b 0.17 0.22 0.27

bl 0.17 0.20 0.23

< 0.09 0.15 0.20

<l 0.09 0.13 0.16

TOP VIEW - E

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Table 6.0 — isp4064 100-pin QFP Pin Descriptions.

Bank ispMACH 4064V/B/C/Z ispMACH 2128V/B/CZ ispMACH 4256V/B/C/Z
PinNumber | Mumber | GLEMC/Pad ORP GLBMC/Pad ORP GLBMC/Pad ORP
1 - GND - GND - GND -
2 - O] - O - O -
e} 0 A8 Ang BO B0 12 3
4 0 gite] Ang B2 B [o3]] Cng
5 0 ikl A0 B4 B2] M
& 0 A Andd B& B3 c2 &)
7 0 GND (Bank 0) E GND (Bank 0) - GND (Bank 0) ;
a 0 A2 A2 Ba Brg D12 D3
9 0 A13 A3 B10 Brs [BR]] Dng
10 0 A4 Andd Bi2 B Dé [BIG3]
11 0 A5 A5 B13 Bz D4 [RE]
17 0 | - | - | -
13 0 VOGO (Bark 0) E VGO0 (Bank 0) - OGO (Bank 0) ;
14 0 Bi5 B8 Ci4 CH7 E4 E~0
15 0 Bi4 B4 12 GG Eé E™1
16 0 Bi3 B3 Ci0 G5 E1i0 E~2
17 0 Bi12 B2 a8 Chg E12 E~3
18 0 GND (Bank 0] - GND (Bank 0 - GND (Bank 0 ;
19 0 Bi1 B 11 6 C3 Fa Fr0
20 0 Bi0 B0 =33 cr2 Fé Fq
21 0 Ba Bra 4 oM Fio Fro
22 0 Ba Bra c2 (] Fi2 F3
25 0 | - | - | -
4 - TOK - TOK - TOK -
25 - e - VGO - VOO -
26 - GND - GND - GND -
27 0 | - | - | -
28 0 B7 BT 013 D7 G12 Ga
29 0 B = L2 L G0 G2
a0 0 Bs Brs 010 D5 G& G
a1 0 B4 Brg 0a g 52 G0
32 0 GND (Bank 0] - GND (Bank 0 - GND (Bank 0 ;
33 0 VOGO (Bark 0) i VGO0 ([Bank 0) = OGO (Bank 0) :
34 0 B3 B3 D& 03 Hiz2 H"3
35 0 B2 = D4 L2 H1io H~a
36 0 B B b2 [BES Hé H™M
37 0 B Bag 0o [H2 HM
38 0 CLET/] - CLK/] - CLET/] -
30 1 CLEZ/] - CLK2/] - CLEZ/] -
40 - ee - VOO - ee -
4 1 co [820)] ED E~D |2 [0

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Table 6.0 — isp4064 100-pin QFP Pin Descriptions (continued).

ispMACH 4064V/B/CfZ

ispMACH 4128V/B/CfZ

ispMACH 4256V/B/C/Z

Pin Number NE;an;r GLBMC/Pad ORP GLBMC/Pad ORP GLBMC/Pad ORP
42 1 |63 oM E2 EM |6 &
43 1 c2) E4 En2 Ho &)
44 1 C3 g E& En3 a2 (el
45 1 VCCO (Bank 1) N VCCO (Bank 1) N \VCCO (Bank 1) :
46 1 GND (Bank 1) - GND (Bank 1) N GND (Bank 1) -
47 1 C4 g Ea End Jz J0
48 1 CE [E10 = J& Jr
449 1 C& [Ei2 = J10 Jra
&0 1 7 [y E14 E~7 J12 J~3
51 N GND N GND N GND N
52 - TMS N TMS - TMS -
53 1 ca g Fo Fa0 K12 K3
54 1 o g Fa Fq K10 Kng
5153 1 C10 M0 F4 Fag K& K
5153 1 G M Fa Fr3 K2 K0
57 1 GND (Bank 1) e GND (Bank 1) = GND (Bank 1) 8
&8 1 12 oMz Fa Frag L12 L3
59 1 C13 M3 Fi0 F s L10 LA2
&0 1 C14 Mg Fi2 Fré L& L™
61 1 Ci15 M5 Fi3 Fr7 L4 L0
52 1 | N | - | -
63 1 WVCGO (Bank 1) H VGGO (Bank 1) 5 \VCCO (Bank 1) g
G54 1 Dis B Gi4 Gr7 hA4 [50]
G5 1 D14 [BESI G112 GG & Pt
1] 1 013 L3 G10 GhE O hie2
67 1 D12 DaM2 G8 G 12]
&8 1 GND (Bank 1) E GND (Barik 1) E GND (Bank 1) E
59 1 [BER 04 G4& GM3 M2 KB
70 1 Ci0 L0 G& G2 MG e
71 1 (B} D~g G4 G Mi0 NA2
72 1 Ca 0 g G2 G0 M12 MNA3
75 1 | N | - | -
74 - TOO N 70O - TOO -
75 - VOO N e - e -
76 - GND N GND - GND -
7 1 | N | - | -
73 1 o7 D~z Hia H»~7 012 (0751
79 1 D& D 6 Hi2 H"& 010 ong
B0 1 L& Dns Hio H#& o] 053
a1 1 C4 Dag Ha H4 02 [9200]
82 1 GND (Bank 1) E GND (Barik 1) E GND (Bank 1) E

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Table 6.0 — isp4064 100-pin QFP Pin Descriptions (continued).

ispMACH 4064V/B/CfZ

ispMACH 4128V/B/C/Z

ispMACH 4256V/B/C/Z

Pin Number NE;an;r GLBMC/Pad ORP GLBMCPad ORP GLBMC/Pad ORP
83 1 VGO0 (Bank 1) . VOGO (Bank 1) ; VOGO [Bank 1) 7
84 1 03 D~3 Hé H~3 Fi2 pag
B85 1 D2z Diag H4 H~a2 Fi0 P2
a6 1 [BR] RIS H2 H™M P& Py
87 1 DO/GOE T D0 HO/GOEA H0 P2i0E P
88 1 CLKaI - CLKa/] ; CLKS/] -
80 0 GLKOI - GLKO/] ; CLKO/] -
50 - VOO - ee } VOG -
91 0 AOIGOED AR AOIGOED A0 A2IGOED AR
a2 0 A A A2 A A& A
93 0 A2 Ang A4 AN Ad0 An2
94 0 A3 A3 AE A3 Ad2 ANG
o5 0 VGO (Bank 0) 8 VOGO (Bank 0) B VOGO [Bark 0) B
06 0 GND (Bank 0) E GND (Bank 0) ; GND (Bank 0) -
a7 0 A4 And AB And B2 B0
98 0 A Ang A0 AlG B& B
99 0 AE ANG A2 AG Bi0 B2
100 0 AT ANT A4 AAT Biz2 B3

*Thig pin is input only.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Appendix C. Building Your Own Lattice ISP Programmer

As mentioned before you can buy a Lattice ISP programmer from Lattice rather than build one. Here is the information
and links once again:

ISP Download Cables for PCs
http://www.latticesemi.com/products/developmenthardware/programmingcables.cfm
The specific part #'s for the parallel port version and USB version are as follows:

= ispDOWNLOAD Cable Parallel Port (HW-DLN-3C) - $65.00
= ispDOWNLOAD Cable USB (HW-USBN-2A) - $149.00 (recommended if you can afford it)

And here’s a link to the online store where you can buy either:
http://www.latticesemi.com/store/hardware.cfm

However, it’s a little cheaper to make one yourself if you have the time and patience. Plus, if you ever decide to do more
with CPLDs then its always good to learn how to build programmers since you can build them right into your designs. We
are going to cover the designs for two different parallel port based programmers (USB is much too complex). If you build
either of them then ispLEVER will detect them as if it would a real Lattice parallel port programmer and you will be in
business.

Lattice Reference Design

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

The first design is based on a Lattice Application Note. Figure 35.0 shows the general design for a DIY parallel port

programmer.

Figure 35.0 — Lattice Designed Parallel Port Programmer.

DB25 Parallel Port

Connector

DIS (pin 10)

DOO (pin 2)

DO1 (pin 3)

DO2 (pin 4)

DO3 {pin 5)

DO4 (pin 6)

DO5 (pin 7)

DI5 (pin 12)
Do6 (pin 8)
Dl4 (pin 13)
DI3 (pin 15)

74vhc244 JTAG /ISP Interface

o 1
0 1
L 1
i '
SDouUT . L TDO /SDOUT
1 ~d '
Vee i
g .
1
SDIN ° ; E : 100 ohm TDI/ SDIN
L
T o
Vee 1 v I
1
10 - [:l : 100 oh
0 1 ohm
SCLK E P g\ —s TCK/ SCLK
L]
vee | DT 100 pF
U 1
o 1
o 1
o 1
L]

10 1
100 ohm
MODE TMS / MODE
100 pF

1
vee i HE
1 1
10K i i
— : I\‘E ! 100 ohm
ispEN ¢ o l/ . N— ispEN
Vee i i 100 pF
L]
10 : ' !
. 1 100 ohm
RESET. d 1 RESET
i i 100 pF
VCcC VCC IN

AG %} — "

DL1 1D

ouT —e¢

DL2 ID
VCC sense

VvCC

You can build this programmer from a single 74HC244, AND gate, resistors, capacitors, and a couple connectors. The
actual application note is located on the CD here:

CD_ROOT:\DOCS\DATASHEETS\LATTICE\lattice_ispdownload.pdf

If you build this design, then you will need to make sure that the operating VCC of the circuit is the same as the

programming voltage of the CPLD (usually 3.3V). Thus, you would power the programmer from either the target board’s
VCC supply of 3.3V OR you would power the target board from the programmers 3.3V supply. Bottom line, is someone
has to provide power and it has to be the right voltage.

TIP

Usually the CPLD core operating voltage is the programming voltage.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

A Sample Detailed Design

Based on the Lattice design and my own research, | was able to remove the single AND gate and get the part count down
on the design. Figure 36.0 are the results of my design for yet another parallel port programmer that you can build.

Figure 36.0 — Detailed ISP Programmer with AND Gate Removed.

A c8
ISP Programming Header 2x5 Lattice Compatible Pinout i
J2 -
<T> SCLK_TCLK
o2
<T> MODE_TMS
(o,
W= o <T> SDI_TDI
L <> SDO_TDO
ch R12 o gl
vcc
10K CONN-H10 <> P em
:_\:(1 <> SDO_TDO
R2 []R3 []R4 []R5 []R6 svee
DB25 (male or female) Interface to PC Parallel Port 10K 10K 10K 10K 10K c6 R13
% oA I 1 .'_‘100 } <> SDL_TDI
OQ:Z R7 UTA -
|n A 2 18 R14
5 — rm VA
O 100 a1 i —1 <T> SCLK_TCLK
s R8 = [| o
7 1 s R15
05_‘ i €= — <T> MODE_TMS
O B R8 4HC244 100
(e vce=vee
5 100 —Lc1 —Lc2 —Lc3 R18
CO'_E ,&, 220pf 220pf 220pf H R
O 3 100
CO—— R10 U1:B
2 — 1 {no Yo [-2
0 e — 13 7 — —
CC 100 = Al Yi— -
= A2 Y2 =
O R11_ A vs |-
K 100 19 15
4HC244 R16
\,O'_' vce=vee 1 <> ISP_EN
CONN-D25 100
- R17
. — <> TRST
- L _L 100
——C4 C5

220pf | 220pf

A copy of the design in bitmap form is on the CD here:
CD_ROOT:\ SCHEMATICS\isp4064_programmer_schematic_01.png

The parts list or “Bill of Materials” (BOM) is shown in Table 7.0.

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Table 7.0 — Bill of Materials for Home Made Lattice ISP Programmer.

Reference ID Value/Type Description
Connectors
J1 DB25 DB25 Female (or male) Solder or PCB mount.
J2
Resistors
R1-R6, R12 10K Ohm 10K resistor 1/4™ watt, 5% tolerance.
R7-R11, R13-R17 100 Ohm 100 resistor 1/4" watt, 5% tolerance.
Capacitors
C1-C5 220pF 220 pico Farad, ceramic capacitor.
ICs
U1 74HC244 20-pin Octal tri-state buffer.

Final Construction Tips and Tricks

When building the design, you can use either a male or female DB25 connector. The important thing is to realize that the
PC’s parallel port is FEMALE, so you need to make sure you have a cable that can go from the PC to the programmer. |
have a lot of MALE-MALE cables, so | tend to design FEMALE DB25s onto everything.

The voltage issue was brought up in the previous section -- either the target board or the programmer has to supply the
power to the system. And that voltage must match the required programming voltage of the CPLD (which is usually the
core voltage of the CPLD, in our case 3.3V, but some cores run at 1.8V, an others at 5.0V). From what | can tell from
Lattice support and documentation, even if you have the 1/0 pads powered at 5.0V its irrelevant, the core voltage is what
the 1/0 pads on the programming pins TDI, TDO, CLK, TMS, etc. use.

Finally, the output header configuration is also always a question, so | suggest using a standard 2x5 header and connect
the programming signals to it exactly the same as Lattice does this way, its easy to bus the signals using a 2x5 ribbon
cable from your programmer to the HX512.. Figure 37.0 shows a top view of how the signals should be, this is consistent
with Lattice’s recommendation and the HX512’s header is laid out this way. So | suggest you use this configuration.

Figure 37.0 — Programming Header Pinout Top View.

If you use this 2x5 header configuration then you can buy a nice 2x5 header cable straight thru parallel from Digikey or
other vendors. For example, here’s a TYCO Electronics part that works perfectly that you can look up on
www.digikey.com:

Part # A3AAG-1018G-ND (18” model)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Appendix D. Using the HX512 without the HYDRA

There is absolutely no reason why you can’t use the HX512 with other devices or with other microcontroller based
products that you want to add external memory to. All you really need is the 20-pin edge card interface and you are up
and running. The HX512 card’s interface is mechanically 20-contacts with 10-contacts per side and 0.1” spacing between
contact centers. The depth the card inserts into the edge connector is approximately 5/16”. The pins are numbered from 1
to 10, right to left (pin 1 is on the far right with the card facing you), and pins 11-20 on the back side numbered left to right.
Figure 38.0 shows a top view of the expansion port on the HYDRA for reference and Figure 39.0 shows the simple circuit
diagram of the interface.

Figure 38.0 — Top View of the HYDRA Expansion Port Interface.

1 <

[T]
»a °

.‘;;
oot ma1 O L API2AH °
0 aamteR ¥ | MMZEHC us e
F . 26awm)
LR
a0

'y .
Bgeqssanad

v
e T 0L pin 20 4138
| -
GAME CARTRIDBE [Bt
. LR R R RN NN ?mg'mw‘

":m?ﬁﬂ
LEL R RN N R)
ol.- l':L"I
Pin 10 i

OSCILLATOIXTAL

Figure 39.0 — Circuit Diagram of the Expansion Port Signals.

Expansion Card Slot

Jo
10_0 q>—;—o
W cHE———
3 cHE———————
R <
O e ©)
O b ©)
WO b
Wiy A=
NET Tx_DATA < T
NET _R¥_CLK < 1<
RESn <« O
SCK_CART < 2|
SDA_CART < S L.
33vee < g
WCC_LOOP <] 2l
svcC <] g o
5VCC_LOOP < = O
USB_TXD < S O
USB_RXD <] > O
_0

| CONN-H20

The only thing about the card that is potentially wasteful is the EEPROM, but you can surely find a use for it on your other
projects. Thus, with a simple 20-pin edge connector you can interface the HX512 to your other projects and get a SRAM
interface with only a few lines, plus a CPLD!

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

Appendix E. HX512 API Driver sources

Listing 4.0 below is a complete listing of the ASM driver. The ASM driver is listed since its very complex, but worth the
time to understand it. It not only serves as the driver for the HX512, but shows many advanced techniques that you can
use to write your own drivers for other applications such as graphics, math, TV/VGA generation and more.

Listing 4.0 — The ASM HX512 Driver.

LI 70077717717711711777177/77/117/7/77/11/7/17//7/1/////
' CONSTANTS SECTION ///]///]
LTI TT71777 7777 7777777777777777777777777777777777777771777777777
CON

' SRAM bus interface pin constants

SRAM_CTRL_0 = 1 ' NET_RX_CLK (expansion pin 10)

SRAM_CTRL_1 = 2 ' NET_TX_DATA (expansion pin 9)

SRAM_STROBE = 30 ' USB_RXD (Prop TX ----> USB_RXD Host) (expansion pin 19)
SRAM_IO_7 = 23 ' 1I0_7 (pin 28)

SRAM_IO_6 = 22

SRAM_IO_5 = 21

SRAM_IO_4 = 20

SRAM_IO_3 = 19

SRAM_IO_2 = 18

SRAM_IO_1 = 17

1
SRAM_I0_0 = 16 ' I0_0 (pin 21)

sram commands

SRAM_CMD_WRITE = %000000_00
SRAM_CMD_READ = %000000_01
SRAM_CMD_LOADLO = %000000_10
SRAM_CMD_LOADHI = %000000_11

N A
' VARIABLES SECTION //////////////////////////////////////]//////////////////]]
I T 777777 7717777777777
VAR

long cogon, cog

' sram parameter passing area for ASM driver, this starting address always holds, the command, parameter ptr, and return value, in that order

long sram_command ' holds command to SRAM driver, also the starting address of this LONG is assumed to be the start of all parms
long sram_parameter_list_ptr ' holds pointer to parameter list to driver
long sram_return_value ' holds result of sub-function (if there is one)

I 11117717 711777117/7771771717117//7/////117//7//7/////////
! OBIECT DECLARATION SECTION /////////////////////////////////////]]//////]///]
I 777 77177777777777777

N Ty
' PUBLIC FUNCTIONS /111117
VI T1777777777777

PUB SRAM_Start_ASM_Driver(sram_init_program)
' this function starts the ASM SRAM driver up and sends the 4-bit initialization program code to it as well as initializes the I0 pins for
' proper operation the control word or "program" instructs the SRAM controller to either post inc/dec on reads/write or neither

LII101L111111111111711711711117111/1////////
L110111117111171111711717711111//1/1//7/////
L11111777777777777777177777771777777177717717

Parameters: sram_init_program - this data word (lower 4-bits only) is used to program the behavior of the controller, see below

4-bit format

| 3 2 | 1 0

| sr r0O | sw w0

[2E]B)cococoaoonaaa pgm0

sw - sign bit for write post increment/decrement (l=add, O=subtract).

w0 - 1 bit magnitude for write post increment/decrement (wl ignored in this version).
sr - sign bit for read post increment/decrement (l=add, O=subtract).

ro - 1 bit magnitude for read post increment/decrement (rl ignored in this version).

In most cases, its recommended that controller is initialized with both post increment on read/write
which is the value %0000_1111, these program bits will show up on the LEDs to the top right of the SRAM card

' if the driver is running kill it, however, there is no way to reset the controller, so the program loaded into the program
' from RESET will remain there until another reset
SRAM_Stop_ASM_Driver

' set command in global shared variable

sram_command := sram_init_program

' set starting address of parameters passed to sub-functions, this is a pointer to pointer, in this case NULL since this operation
' has no parms

sram_parameter_list_ptr := 0

' start the driver, return status, set up cog id variables
return (cogon := (cog := cognew(@SRAM_Driver_Entry, @sram_command)) > 0)

I 177777777 77177777777771777

PUB SRAM_Stop_ASM_Driver
' stops sram driver

' Parameters: none.

if cogon~
cogstop(cog)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

I 777777177777017717777177777777/777//1/177777[11/77/[///]]
' These functions makes up the pub11c 1nterface to the ASM SRAM driver, the c11ent
' calls the function se Tlobals that ing "monitored

Y
'//

PUB SRAM_Write64K_A(addrl6, data8)
' this function writes 8-bit data to the first 64K of the SRAM

Parameters: addrl6é - 16-bit address to write to
! data8 - 8-bit data to write

@addrlé
_Write64k ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr :
sram_command

repeat while sram_command
VI 1177177177777 77777777777777777777777777777777777771777777///7/
PUB SRAM_| writeAuto_A(data8)
this function writes data to the SRAM at the current address ptr, then the SRAM controller updates the ptr
depending on its initially programmed inc/dec behavior
Parameters: data8 - 8-bit data to write

@data8
_WriteAuto ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr
sram_command

repeat while sram_command
VI 1177171777777 777777777777777777777777777717777777717/7777///7/

PUB SRAM_| Read64K_A(addrl6)
this function reads a byte of data from the first 64K of the SRAM

Parameters: addrl6é - 16-bit address to read from

@addrlé
_Read64K ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr
sram_command

repeat while sram_command
return sram_return_value
VI 71777777777777777777777777777777777717777777717/7777///7/
PUB SRAM_| ReadAuto_A
this function reads_a byte of data from the currently addressed byte in the_ SRAM by the address pointer
' if the SRAM controller is programmed for auto inc/dec after read then it will take place automatically and the
: address pointer will be updated by the SRAM controller
' Parameters: None.

sram_parameter_list_ptr :
sram_command

_ReadAuto ' always set command last, so command doesn't start before parameter addresses are in
repeat while sram_command
return sram_return_value

I 7777777777777777777777777777777777777177717711717117

PUB SRAM_| LoadAddr64K_A(addr16)
this function sets the SRAM controllers address latch to the sent 16-bit address, clears the upper 3-bits of the address as well

pParameters: addrl6é - 16-bit address to set the SRAM address Tlatch to, upper 3-bits is zero'ed

@addrlé
_LoadAddr64k ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr :
sram_command

repeat while sram_command

return sram_return_value
I 1117777777 777777777777777771777777777777777177717771777/17
PUB SRAM_| LoadAddr512K_A(addrl9)

this function sets the SRAM controllers address latch to the sent 19-bit address, loads the lower 16-bits directly then walks/advances to the final
19-bit address if needs

Parameters: addrl9 - 19-bit address to set the SRAM address latch to

@addrl9
_LoadAddr512k ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr :
sram_command

repeat while sram_command
return sram_return_value

LTI TI777777777777777777777777717777777777777771777777777777777777177/

PUB SRAM_| LoadAddrLow_A(addr8)
this function sets the SRAM controllers lower 8-bits of address latch to the sent 8-bit address

Parameters: addr8 - 8-bit address to set lower 8-bits of SRAM address latch to

@addrs8
_LoadAddrLow ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr :
sram_command

repeat while sram_command
return sram_return_value

I T1777177777777777777/777177/

PUB SRAM_LoadAddrHi_A(addr8)
' this function sets the SRAM controllers upper 8-bits of the 16-bit address latch to the sent 8-bit address, the upper 3-bit address

. which is not addressable directly is reset to 000 during this operation
' Parameters: addr8 - 8-bit address to set upper 8-bits (15..8) of SRAM address latch to

sram_parameter_list_ptr := @addr8

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

sram_command := _LoadAddrHi ' always set command last, so command doesn't start before parameter addresses are in
repeat while sram_command
return sram_return_value

LI 777777777177777711717177

PUB SRAM_MemSet_A(addrl9, data8, num_bytes)
: this function sets a contiguous b1ock of SRAM to a byte value anywhere in the 512K and of any length

' Parameters: addrl9 - 19-bit address to start memory set at
! ata8 - 8-bit data to write
! num_bytes - number of bytes to write

@addrl9
_MemSet ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr :
sram_command

repeat while sram_command

I1177711777777177777777777777777777777777777777771777777777777717717777777/77

PUB SRAM_MemSum_A(addrl9, num_bytes) .
' this function sums a contiguous block of SRAM and returns the 32-bit result

pParameters: addrl9 - 19-bit address to start memory sum at

! num_bytes - number of bytes to sum
sram_parameter_list_ptr := @addrl9 .
sram_command = _MemSum ' always set command last, so command doesn't start before parameter addresses are in

repeat while sram_command
return sram_return_value

I1177711777777177777777777777777777777777777777771777777777777717717777777/77

PUB SRAM_MemCopy_A(dest_addrl9, src_addrl9, num_bytes)

this function copies a number of bytes from one address in the SRAM to another (non-overlapping)

NOTE: this function uses a_"cache" to speed the operat1on the cache is located in COG ram, and thus has size Timits due
to the code space, currently the cache is located at "sram_cache" and has a size of SRAM_(CACHE_PAGE_SIZE

Parameters: dest_addrl9 - 19-bit destination address in SRAM
src_addrl9 - 19-bit source address in SRAM
num_bytes - number of bytes to copy

@dest_addr19 .
_MemCopy ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr :
sram_command

repeat while sram_command

I1177711777777177777777777777777777777777777777171777777777777717717777777/77

PUB MM_Copyto_SRAM_A(dest_addrl9, src_addrl6, num_bytes)
: this function copies bytes anywhere in the prope11ers 64K main memory into the SRAMs 512K memory

Parameters: dest_addrl9 - 19-bit destination address in SRAM
! src_addrlé - 16-bit source address in propeller main memory
num_bytes - number of bytes to copy

@dest_addr19 i
_MM_Copyto_SRAM ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr :
sram_command

repeat while sram_command

I1177711777777177777777777777777777777777777777771777777777777717717777777/77

PUB SRAM_Copyto_MM_A(dest_addrl6, src_addrl9, num_bytes) i
' this function copies bytes from the 512K SRAM to anywhere in the propellers 64K main memory

Parameters: dest_addrl6é - 16-bit destination address in propeller main memory
src_addrl9 - 19-bit source address in SRAM
num_bytes - number of bytes to copy

@dest_addrl6 i
_SRAM_Copyto_MM ' always set command last, so command doesn't start before parameter addresses are in

sram_parameter_list_ptr :
sram_command

repeat while sram_command

LTI T17771777777777777777777177/

CON

SRAM_DBUS_BIT_SHIFT =16
SRAM_CTRL_BIT_SHIFT =1

SRAM_STROBE_BIT_SHIFT = 30

commands for controller, pre-shifted to left 1-bit, so we don't have to do it during runtime, small enough to fit in constants

SRAM_CMD_WRITE_SHIFTED = %00000_00_0
SRAM_CMD_READ_SHIFTED = %00000_01_0
SRAM_CMD_LOADLO_SHIFTED = %00000_10_0

SRAM_CMD_LOADHI_SHIFTED %00000_11_0

' SRAM controller commands (functions)

_wait = 0 ' do nothing command
_Write64K =1 "' write byte to lower 64K fast mode
_Read64K = 2 ' read byte from lower 64K fast mode
_Write512K = 3 ' write byte anywhere in 512K memory, slower (not implemented)
_Read512K = 4 ' read byte from anywhere in memory, slower (not implemented)
_WriteAuto =5 ' writes to the current address sram controller is set to, then auto inc/dec executes if programmed
_ReadAuto =6 ' writes to the current address sram controller is set to, then auto inc/dec executes if programmed
_LoadAddr64k =7 ' loads a 16-bit address (0..64K-1) directly into the low and high address latches, clears the upper 3-bits of address
_LoadAddr512k = 8 ' loads a 19-bit address (0..512K-1) into address buffer, by advancing if necessary using dummy reads
_LoadAddrLow =9 ' loads only the Tower 8-bits of address into address buffer .
_LoadAddrHi = 10 ' Toad only the uppper 8-bits of address into address buffer, also clears upper 3-bits, good to select 256 bytes "pages"
_Memset =11 ' fills memory anywhere in the 512K region with a byte value . .
_MemCopy = 12 ' copies a number of bytes in the SRAM from source to destination, doesn't support overlapping copies

_MM_Copyto_SRAM
_SRAM_Copyto_MM

_ReadAddr

_MemSum

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

13 ' copies bytes from the Propeller's main memory to the SRAM's 512K space
14 ' copies bytes from the SRAMs 512K to the Propeller's main memory

15

returns the current value of the 19-bit address buffer in the SRAM controller (not implemented)

= 16 ' sum a region of memory and returns the 32-bit result, helps with diagnostics and DSP stuff

SRAM cache constants

SRAM_CACHE_PAGE_SIZE = 192 ' number of bytes in local COG memory cache page
VI 1177177177777 77777777777777777777777777777777777771777777///7/

DAT

org $000 ' set the code emission for COG at $000

SRAM_Driver_| Entry

driver

fit:

the

this is the entry point for the ASM SRAM driver, the driver is meant as an example to be used from other

programs, but is by no means the most optimized it could be. moreover, to get optimal performance from the sram you

must blend the sram access code right inline with your COG code since the difference between maximum speed is a few instructions
any overhead can slow the system down considerable. the sram can operation faster than the prop can push it, so all_bottlenecks
are in the prop access in most cases. the_sequence of steps to access the sram are basically bit banging the control lines and
writing and reading the 8-bit bus in parallel

the driver is commanded by means of a global shared memory region where the caller/client passes commands into, and the
driver is "listening" for a new command, when a command is detected, the its executed and the driver resets the global command
inidicating that the command is complete, this way the client doens't try to send commands until the current command is processed

adﬁi%iona]]y the communication parameter passing area consists of 3 vars that must be declared by the client in the following order
and format:

sram parameter passing area, this starting address always holds, the command, parameter ptr, and return value, in that order

long sram_command ' holds command to SRAM driver, also the starting address of this LONG is assumed
‘ to be the start of all parms
' Tong sram_parameter_list_ptr ' holds pointer to parameter list to driver
' Tong sram_return_value ' holds result of sub-function (if there is one)

so the_client on start up passes the addressed of @sram_command from his globals, and the driver records this, then the client
must place the command into sram_command, and set sram_parameter_list_ptr to point to the parameters for the function in question,
in many cases, this might be the first parm on the stack or some other location, by using this extra layer of indirection the SRAM

has the most flexibility . .
finally, if there are any results or return valuse they will show up in sram_return_value

the driver also makes use of a COG memory cache to speed_up SRAM <-> SRAM copies, performance degrades considerably when the source
and target addresses are over the 64K directly addressable region of the SRAM, thus by at Teast caching blocks we can minimize how
many seeks need to be made, the cache is located in the DAT section at the end of the program, make it whatever you wish that will

sram_cache - cache
its size must be set in BYTES in this variable Tocated in the CON section:
SRAM_CACHE_PAGE_SIZE = 192

which Teave about 40 Tongs left for more code space!! So if you want to increase the cache size you will have to comment out some of

functions

copy boot parameter into sram_parms_base_ptr
read the SRAM initialization command from client, store in cmd i
this is only done the 1st time, after this the main command waiting Toop is entered

mov sram_parms_base_ptr, par
rdlong sram_cmd, sram_parms_base_ptr

mov sram_cmd_parms_ptr_ptr, par
add sram_cmd_parms_ptr_ptr, #4

set pointer to pointer where parms are, this ptr must be dereferenced each function call

mov sram_result_ptr, par
add sram_result_ptr, #8

store pointer to return variable global that driver uses

' set the IO direction and states for SRAM interface

mov outa, SRAM_CTRL_MASK write 1's to interface, control lines only, so we don't accidentally fire a program clock
' one by one set pin groups to output
or dira, SRAM_DBUS_CTRL_STROBE_MASK

set I/0s for sram interface all to outputs for now

and outa, NSRAM_CTRL_MASK set control lines to code "00" which means next clock strobe read program

initialize the memory controller, need to put the command on the data bus, and pulse strobe

and outa, nSRAM_DBUS_MASK outa = (outa & !sram_dbus_mask), make hole for data
mov rl, sram_cmd ' rl = sram_cmd, which during startup is the program code for sram controller
sh1l rl, #SRAM_DBUS_BIT_SHIFT ' rl = sram_cmd < 16, place data into proper position

or outa, ril finally, outa = (outa & !sram_dbus_mask) | sram_cmd

' now pulse the strobe Tline
or outa, SRAM_STROBE_MASK
and outa, NSRAM_STROBE_MASK

1
0

strobe
strobe

now that we are done, set DBUS to inputs, leave control to outputs.
mov outa, #0
and dira, nSRAM_DBUS_MASK

at _this point, we have the following status
MM[sram_cmd] -> current command from client i
MM [sram_cmd_parms_ptr, sram_cmd_parms_ptr+l, sram_cmd_parms_ptr+2,...,sram_cmd_parms_ptr+n] -> sram parameters in MM

write 0 out to sram command to signify first command was processed
mov r0, #0
wrlong r0, sram_parms_base_ptr

'//
'//
SRAM_Cmd_wait_| _Loop

if_z

enter into command loop waiting for command . .
rdlong sram_cmd, sram_parms_base_ptr wz ' read command from MM in global shared variable
jmp #SRAM_Cmd_wa1t_Loop ' if non-zero then execute command, else continue to loop

retreive latest pointer to parameters
rdlong sram_cmd_parms_ptr, sram_cmd_parms_ptr_ptr

sram_cmd_parms_ptr -> parameter list starting address for 0...(n-1) parameters

' ok now we basically need to do case (sram_cmd) and for each value execute the code body

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

mov r0, #SRAM_Jump_Table ' r0 = base address of jump table

add r0, sram_cmd ''r0o =r0 + cmd

movs :Read_Jumpvec, r0 ' access vector address in jump table at [r0 + cmd] -> destination of jmp (self modify code)
nop ' wait a second for pre-fetch, let self modifying code complete downstream

:Read_Jumpvec mov rl, 0 ' dummy O value has been overwritten with jump vector above
jmp ril ' jump to sub-function starting address

' this is an inline jump table, more or less implements an assembly language "case" statement .
SRAM_Jump_Table ' to save memory convert to words or bytes later, but means more code above to perform select Togic
' table holds starting address of each sub-function

Tong wait_ '= 0 , do nothing command (DONE)
long wWrite64K_ '= 1, write byte to lower 64K fast mode (DONE)
Tong Read64K_ '= 2 , read byte from Tower 64K fast mode (DONE)
Tong write512K_ '= 3 , write byte anywhere in 512K memory, slower (not implemented),
‘ instead load the address with LoadAddr512K_ then use ReadAuto/writeAuto
Tong Read512K_ '= 4 , read byte from anywhere in memory, slower (not implemented)
long writeAuto_ '= 5, writes to the current address sram controller is set to, then auto inc/dec executes if programmed (DONE)
Tong ReadAuto_ '= 6 , writes to the current address sram controller is set to, then auto inc/dec executes if programmed (DONE)
Tong LoadAddr64K_ '= 7 , loads a 16-bit address (0..64K-1) directly into the Tow and high address latches,
¢ also clears the upper 3-bits of address (DONE)
Tong LoadAddr512K_ '= 8 , loads a 19-bit address (0..512K-1) into address buffer, by advancing if necessary using dummy reads (DONE)
long LoadAddrLow_ =9 , loads only the lower 8-bits of address into address buffer (DONE)
Tong LoadAddrHi_ '= 10, load only the uppper 8-bits of address into address buffer,

also clears upper 3-bits, good to select 256 bytes "pages" (DONE)

11 , fills memory anywhere in the 512K region with a byte value (DONE)

Tong MemSet_
12 , copies a number of bytes in the SRAM from source to destination, doesn't support overlapping copies (DONE)

Tong MemCopy_

Tong MM_Copyto_SRAM_
Tong SRAM_Copyto_Mm_ '

13 , copies bytes from the Propeller's main memory to the SRAM's 512K space (DONE)
14 , copies bytes from the SRAMs 512K to the Propeller's main memory (DONE)

Tong ReadAddr_ '= 15 , returns the current value of the 19-bit address buffer in the SRAM controller (not implemented)

Tong MemSum_ ' =16 ' sum a region of memory and returns the 32-bit result, helps with diagnostics and DSP stuff

'//
MAND SUB-FUNCTION IMPLEMENT,

Q//

it do nothing command, should never get here
jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
Write64K_ write byte to lower 64K fast mode. Eg. Write64k(addressl6, data8)

th1s sub-function writes a byte to the lower 64K of memory, both the low and high address latches are written to with the sent 64K
address, then the data byte is written.

parameters two longs, starting address: sram_cmd_parms_ptr

parm 0 (32-bit): address to write, 16-bits

parm 1 (32-bit): data to write, 8-bits

retrieve long holding 16-bit address
rdlong sram_parmO, sram_cmd_parms_ptr
mov r0, sram_cmd_parms_ptr

add r0, #4

' retrieve long holding 8-bit data
rdlong sram_parml, rO

' call set address routing, exprext sram_parm0 = 16-bit address
mov r7, sram_parm0
call #SetAddr64K_Proc

' place 8-bit data on data bus ------------------o
mov r0, sram_parml

and r0, #S$FF ' mask lower 8-bits (precaution)
sh1l r0O, #SRAM_DBUS_BIT_SHIFT ' shift data into position
and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data

or outa, r0 outa (outa & !sram_dbus_mask) | (sram_parm0 << 16)

' command lines should already be in output mode, so only need to write 2-bit command code for write memory

and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command

or outa, #SRAM_CMD_WRITE_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_WRITE_SHIFTED)
' finally clock the strobe line and tell the sram controller to complete the operation

or outa, SRAM_STROBE_MASK strobe = 1

and outa, NSRAM_STROBE_MASK ' strobe = 0

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
AK_ read byte from lower 64K fast mode, Eg. Read64K(addressl6)

th1s sub-function reades a byte from the Tlower 64K of memory, both the low and high address latches are written to with the sent 64K
address, then the data byte is retrieved and stored in sram_ result_| ptr

parameters: one long, starting address: sram_cmd_parms_ptr

parm 0 (32-bit): address to read from, 16-bits

retrieve long holding 16-bit address
rdlong sram_parmO, sram_cmd_parms_ptr

' call set address routing, expect sram_parm0 = 16-bit address
mov r7, sram_parm0
call #SetAddr64K_Proc

' place data bus into read mode and retrieve 8-bit data ---------------------
and dira, nSRAM_DBUS_MASK

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

' command lines should already be in output mode, so only need to write 2-bit command code for read memory

and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command

or outa, #SRAM_CMD_READ_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_READ_SHIFTED)

' finally clock the strobe line and tell the sram controller to complete the operation

or outa, SRAM_STROBE_MASK strobe = 1

' data is now on bus, retrieve it. .

mov r0, ina C pu11 data from external pins . . .
shr r0O, #SRAM_DBUS_BIT_SHIFT ' shift the data 16 time to the right [23..16] is location of data pins
and rO, #$FF ' mask the data to 8-bits

' write data back out to global client parameter passing area
wrlong r0, sram_result_ptr

' finally finish the clocking of the read
and outa, NSRAM_STROBE_MASK ' strobe = 0

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
write5 ite byte anywhere in 512K memory, slowe

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//

2K_ read byte from anywhere in memory, slower

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
writeAuto_ writes to the current address sram controller is set to, then auto inc/dec executes if programmed

! th1s sub-function writes a byte to the currently addressed memory location in the 512K memory
' parameters: one longs, starting address: sram_cmd_parms_ptr
' parm 0 (32-bit): data to write, 8-bits

' retrieve long holding 8-bit data
rdlong sram_parmO, sram_cmd_parms_ptr
' now place data bus into output mode
or dira, SRAM_DBUS_MASK

' place 8-bit data on data bus ------------------o
mov r0, sram_parmO

and r0, #$FF

sh1 r0O, #SRAM_DBUS_BIT_SHIFT

mask lower 8-bits (precaution)
shift data into position

(outa & !sram_dbus_mask), make hole for data

and outa, nSRAM_DBUS_MASK outa
(outa & !sram_dbus_mask) | (sram_parm0 << 16)

or outa, r0 outa

' command lines should already be 1n output mode, so only need to write 2-bit command code for write memory
and outa, nSRAM_CTRL_MASK clear control lines to "00", make ho1e for comman
or outa, #SRAM_CMD_WRITE_SHIFTED ' outa = (outa & nSRAM_CTRL_| MASK) | (SRAM_CMD_WRITE_SHIFTED)

' finally clock the strobe line and tell the sram controller to complete the operation
or outa, SRAM_STROBE_MASK ' strobe = 1
and outa, NSRAM_STROBE_MASK ' strobe = 0

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
ds the current byte addressed he sram controller, then auto inc/dec executes if programmed

! th1s sub funct1on reads a byte from the current]y addressed memory location in the 512K memory
' parameters: none

' place data bus into read mode and retrieve 8-bit data ---------------------
and dira, nSRAM_DBUS_MASK

' command lines should already be in output mode, so only need to write 2-bit command code for read memory

and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command

or outa, #SRAM_CMD_READ_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_READ_SHIFTED)

' finally clock the strobe line and tell the sram controller to complete the operation

or outa, SRAM_STROBE_MASK strobe = 1

' data is now on bus, retrieve it. .

mov r0, ina C pu11 data from external pins . . .
shr r0O, #SRAM_DBUS_BIT_SHIFT ' shift the data 16 time to the right [23..16] is location of data pins
and rO, #$FF ' mask the data to 8-bits

' write data back out to global client parameter passing area
wrlong r0, sram_result_ptr

' finally finish the clocking of the read
and outa, NSRAM_STROBE_MASK ' strobe = 0

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

'//
LoadAddr64k. loads a 16-bit address (0..64Kk-1) directly into the lTow and high address latches, clears the upper 3-bits of address

' this sub-function sets the SRAMs' 16-bit latch, Tow and high address latches are written to with the sent 64K
' parameters: one long, starting address: sram_cmd_parms_ptr
' parm 0 (32-bit): address to set latches to (lTower 16-bit used)

' retrieve long holding 16-bit address
rdlong sram_parmO, sram_cmd_parms_ptr

' call set address routing, exprext sram_parm0 = 16-bit address
mov r7, sram_parmO
call #SetAddr64K_Proc

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
LoadAddr512 loads a 19-bit address (0.. -1) into address buffer, by advancing if necessary using dummy reads

this sub-function simple sets the addressing latch to the sent location in the 512K memory

after which a readauto or writeauto would normally be performed

if the address is <= 64K then the address is directly latched into the 16-bit address latc

if the address is > 64K the $FFFF is Tlatched into the address latch, then the memory controller is "walked" with dummy reads
until its to the write location

NOTE: this function only works with SRAM controller pre-programmed with post increment on reads.

parameters: two longs, starting address: sram_cmd_parms_ptr

parm 0 (32-bit): address to write, 19-bits used

retrieve long holding 19-bit address, store in sram_parmO

rdlong sram_parmO, sram_cmd_parms_ptr . .

mgé r0, sram_cmd_parms_ptr ' advance pointer to next parameters which holds data
a r0, #4

' retrieve long holding 8-bit data store in sram_parml
rdlong sram_parml, rO

mov r7, sram_parm0O
call #SetAddr512K_Proc

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
LoadAddrLow_ loads only the lower 8-bits of address into address buffer

. this sub-function sets the SRAMs' Tower 8 bits of 16-bit address latch, more or Tless updating the 0-255 address, but leaving the
upper 8-bits
' of the latch as well as the internal upper 3-bits which are not accessible unless under controller control
parameters: one long, starting address: sram_cmd_parms_ptr

parm 0 (32-bit): address to set latches to (lower 8-bit used)

' retrieve long holding low 8-bits of 16-bit address
rdlong sram_parmO, sram_cmd_parms_ptr

' now place data bus into output mode
or dira, SRAM_DBUS_MASK

' place lower 8-bits of address on data bus -------—---—————————————
mov r0, sram_parmO

and r0, #S$FF ' mask lower 8-bits |

sh1l r0O, #SRAM_DBUS_BIT_SHIFT ' shift data into position

and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data
or outa, r0 ' outa = (outa & !sram_dbus_mask) | (sram_parm0 << 16)

' command lines should already be 1n output mode, so only need to write 2-bit command code for load low address
and outa, nSRAM_CTRL_MASK clear control lines to "00", make ho1e for comman
or outa, #SRAM_CMD_LOADLO_SHIFTED ' outa = (outa & nSRAM_CTRL_| MASK) | (SRAM_CMD_LOADLO_SHIFTED)

' finally clock the strobe Tline and tell the sram controller to complete the operation
or outa, SRAM_STROBE_MASK strobe =
and outa, NSRAM_STROBE_MASK ' strobe =

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
LoadAd oad only the uppper 8-bits of address into address buffer, also clears upper 3-bits, good to select 256 bytes "pages"

this sub-function sets the SRAMs' upper 8 bits of 16-bit address latch (19-total bits, 16 addressable)

more or less updating the 0-255 page address, but leaving the lower 8-bits

of the latch alone. Also,the internal upper 3-bits which are not accessible unless under controller control are reset to 000
parameters: one long, starting address: sram_cmd_parms_ptr

parm 0 (32-bit): address to set latches to (upper 8-bit used)

' retrieve long holding upper 8-bits of 16-bit address
rdlong sram_parmO, sram_cmd_parms_ptr

' now place data bus into output mode
or dira, SRAM_DBUS_MASK

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

' place upper 8-bits of 16-bit address onto data bus ------—---———-————————————
mov r0, sram_parmO
8

shr r0, ' move upper 8-bits into lower 8-bits

and r0, #$FF ' mask lower 8-bits (precaution)

sh1l rO, #SRAM_DBUS_BIT_SHIFT ' shift data into position

and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data

or outa, r0 ' outa = (outa & !sram_dbus_mask) | (sram_parm0 << 16)

' command Tines should already be in output mode, so only need to write 2-bit command code for load high address
and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command

or outa, #SRAM_CMD_LOADHI_SHIFTED ' outa = (outa & nSRAM_CTRL_MASK) | (SRAM_CMD_LOADHI_SHIFTED)

' finally clock the strobe line and tell the sram controller to complete the operation
or outa, SRAM_STROBE_MASK ' strobe =1
and outa, NSRAM_STROBE_MASK ' strobe = 0

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
MemSet_ fills memory anywhere in the 512K region with a byte value
parameters three longs, starting address: sram_cmd_parms_ptr
' parm 0 (32-bit): destination address, 19-bits used
' parm 1 (32-bit): data to write, 8- b1t§ used . .
' parm 2 (32-bit): number of bytes to fill/set 32-bit (only makes sense to move 512K at a time.
' retrieve long holding 19-bit address, store in sram_parmQ
rdlong sram_parmO, sram_cmd_parms_ptr . .
mov r0, sram_cmd_parms_ptr ' advance pointer to next parameters which holds data
add r0, #4
retrieve long holding 8-bit data store in sram_parml
rdlong sram_parml, rO
add ro0,
retrieve long holding number of bytes (32-bit value)
rdlong sram_parm2, rO
' advance memory pointer to starting address
mov r7, sram_parm0
call #SetAddr512K_Proc
' now place data bus into output mode
or dira, SRAM_DBUS_MASK
' place 8-bit data on data bus —-—-—-----—-—mmmm
mov r0, sram_parml
and r0, #$FF ' mask Tower 8-bits (precaution)
sh1l rO, #SRAM_DBUS_BIT_SHIFT ' shift data into position
and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data
or outa, r0 ' outa = (outa & !sram_dbus_mask) | (sram_parm0 << 16)
' command lines should already be in output mode, so only need to write 2-bit command code for write memory
and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command
or outa, #SRAM_CMD_WRITE_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_WRITE_SHIFTED)
' now we are ready to fill/set the memory, simply toggle the clock Tine (assumes auto increment on write)
:AddrAdvance . . .
' finally clock the strobe line and tell the sram controller to complete the operation
or outa, SRAM_STROBE_MASK ' strobe = 1
and outa, nSRAM_STROBE_MASK ' strobe = 0
djnz sram_parm2, #:AddrAdvance ' repeat while sram_parm2 (num_bytes) > 0
:AddrAadvanceend

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command

mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done

'//

copies a number of bytes in the SRAM from source to destination, doesn't support overlapping copies, will do it, but results

Memcopy_

cache

won t be as expected.

can be any size, suggested 64-256 bytes for any kind of performance

parameters: three Tongs, starting address: sram_cmd_parms_ptr

parm 0 (32-bit): destination address, 19-bits used

parm 1 (32-bit): source address, 19-bits used

parm 2 (32-bit): number of bytes to copy 32-bit (only makes sense to move 512K at a time.

first compute number of pa%es and bytes that need copying i .
copy pages, one at a time from SRAM to cache back to SRAM in cache size blocks 64-256 bytes at a time
then copy remaining bytes

' READ PARAMETERS FROM CALLER === === oo oo oo o

rdlong sram_parm0, sram_cmd_parms_ptr ' sram_parm0 hold destination address 19-bit
mgé r0, sram_cmd_parms_ptr ' advance pointer to next parameters which holds data
a r0, #4

retrieve long holding 19-bit source address store in sram_parml
rgéong sram_parml, rO
a ro,

retrieve long holding number of bytes (32-bit value) to copy
rdlong sram_parm2, rO

' parameters now retrieved, at this point we have

NOTE: Function operates by reading blocks of memory at a time and moving it, the blocks are stored locallly in a

"sram cache", this

:wWriteCache

if_b

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

sram_parm0 = dest_addr
sram_parml = src_addr
sram_parm2 = num_bytes_to_copy

MAIN MEMCPY LOOP === == oo oo oo o o o o

we need to copy a number of bytes from SRAM to SRAM, too slow to copy if copying splits between 64K mark, thus
use internal COG memory as a cache and copy "pages" from 64-256 bytes at a time from SRAM -> COG Cache -> SRAM

mov num_bytes_to_copy, sram_parm2 ' this is the total number of bytes requested to be copied from client
GO D 0 O D e _Loop
. cmp num_bytes_to_copy, #SRAM_CACHE_PAGE_SIZE we, wz ' copy one page at a time, whatever memory permits
if_ae Jmp #:CopyMorePages if num_bytes_to_ copy >= SRAM_CACHE_PAGE_SIZE then.
else num_bytes_to_copy < SRAM_CACHE_PAGE_SIZE then.
mov num_copy_bytes, num_bytes_to_copy ' set number of bytes to copy this pass
mov num_bytes_to_copy, #0 ' and we are done next time around
jmp #:SetSrcAddr
end else
:CopyMorePages ' if num_bytes_to_copy >= SRAM_CACHE_PAGE_SIZE then.. i . .
mov num_copy_bytes, #SRAM_CACHE_PAGE_SIZE ' lets copy the maximum page size this pass
§ub gum?bytes_to_copy, #SRAM_CACHE_PAGE_SIZE ' adjust the bytes left to copy next pass, when num_bytes_to_copy == 0, we are done!
end i

COPY NEXT SRAM PAGE (OR LESS) INTO COG CACHE === === === oo

:SetSrcAddr .
starting address of local cog SRAM cache
mov sram_cache_entry_ptr, #sram_cache
' set source address in memory 1atch for reads
mov r7, sram_parml r7 = source address
call #SetAddr512K_Proc
' place data bus into read mode and retrieve 8-bit data -----------------------ooooo o
and dira, nSRAM_DBUS_MASK
' command lines should already be 1n output mode, so only need to write 2-bit command code for read memory
and outa, nSRAM_CTRL_MASK clear control lines to "00", make hole for command
or outa, #SRAM_CMD_READ_SHIFTED ' outa = (outa & NSRAM_CTRL_| MASK) | (SRAM_CMD_READ_SHIFTED)
' outer most "page size" loop, this will either be <= SRAM_CACHE_PAGE_SIZE, we need to copy this many bytes, but we need to perform
' the copies in groups of 4, since the COG memory is LONG based and the SRAM is BYTE based, thus this disparity causes
' a second interior loop or step to read the 4 bytes out at a time, position them in a 1ong then write the long to the cache
mov curr_byte, #0 ' current byte loop counter, need to copy a total of num_copy_bytes from SRAM to cache
:ByteCacheReadLoop '
read bytes 0,1,2,3 from SRAM sequentially and store into cache_entry which will then be written to cache
(note if only 1-3 bytes need to be written then this is redundant, but mork worth to conditionally test it
mov cache_byte, #4 ' cache byte index in packed long, used as counter here . L
mov num_shifts, #0 ' number of shifts per byte copy iteration, shifts byte read into packed position in long
mov cache_entry, #0 ' used to hold packed LONG constructed via 4 bytes read from SRAM
‘ then this is written at once to local COG cache
:ReadBytesINtoCacheENntryLoop ' ——— - - - - - oo oo LOOP

clock the strobe line and tell the sram controller to initiate the read and auto inc/dec

or outa, SRAM_STROBE_MASK ' strobe = 1

mov r0, ina

shr r0, #SRAM_DBUS_BIT_SHIFT
and r0, #S$FF

sh1 r0, num_shifts

or cache_entry, rO

add num_shifts, #8

data is now on bus, retrieve it.
pull data from external pins

shift the data 16 time to the right [23..16] is location of data pins

mask the data to 8-bits

r0 = r0 << num_shifts, used to place bits into correct LONG byte position
store byte 0 into cache entry

num_shifts = num_shifts + 8, next byte read needs to be shifted 8 more bits

finally finish the clocking of the read

and outa, NSRAM_STROBE_MASK strobe =

djnz cache_byte, #:ReadBytesIntoCacheEntryLoop ' while cache_byte > 0, loop

we have the next packed LONG of bytes from the SRAM read in, now its time to store them in the cache and advance
cache pointer.

' COGMEM[sram_i cache_entry_ptr++] = cache_entry

movd :writeCache, sram_cache_entry_ptr

modify destination address, so we can write to local COG memory with packed cache entry

add sram_cache_entry_ptr, #1 increment cache pointer for next iteration

mov 0, cache_entry

(also give pre-fetch time to complete modify downstream)

self modifying code, dummy "0" destination modified above receives packed 4-byte sram data

add curr_byte, #4 wC, wz : bytes always copied 4 at a time, so at worst case an extra 3 bytes will be copied into cache

but has no effect on final write operation, which will always copy out EXACTLY the
correct number of bytes

cmp curr_byte, num_copy_bytes wc, wz

jmp #:ByteCacheReadLoop ' loop while current byte being copied < total number of bytes to copy

' WRITE CACHED COG PAGE BACK TO SRAM === oo oo oo

' at this_point we have a cache page full of bytes (in Tong size chunks), could be a full page or less than full size
' if total number of bytes to copy was less than cache page size OR we are on the last copy and copying the remaining
' Teft over bytes from the Tast full page size copy

' advance address pointer to dest1nat1on location in SRAM

mov r7, sram_parmQ = destination address

call #SetAddr512K_Proc

copy bytes from COG cache into sram now...

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

perform what setup we can outside the Toop

place data bus into write mode and prepare to write cache page out to sram ----------------—-———-
or dira, SRAM_DBUS_MASK

' command Tines should already be in output mode, so only need to write 2-bit command code for write memory
and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command

or outa, #SRAM_CMD_WRITE_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_WRITE_SHIFTED)

' outer most "page size" loop, this will either be <= SRAM_CACHE_PAGE_SIZE, we need to copy this many bytes, but we need to perform

' the copies in groups of 4, since the COG memory is LONG based and the SRAM is BYTE based, thus this disparity causes

' some work to have to be done to extract the packed bytes from the long and then send them to sram

mov curr_byte, #0 ' byte loop counter, need to copy num_copy_bytes from cache to SRAM completing the memory move
‘ (a page at a time

Bytecachewr1teLoop

:ReadCache

if_b

if_a

need to do this more or less
' SRAM [curr_byte] = (COG_CACHE [curr_byte / 4] >> (curr_byte MOD 4)) && $FF
' compute COG index in sram cache to read from (long data containing packed bytes)
mov cache_index, curr_byte
shr cache_index, #2

cache_index = curr_byte / 4

compute the byte index in the long to read
mov cache_byte, curr_byte
and cache_byte, #3

cache_byte = curr_byte mod 4
' at this point we know the long in the cache memory and the byte within the long we need to read
mov r0, #sram_cache
add r0, cache_index

want to read COGMEM_SRAM_CACHE [cache_index], modify source operand downstream
put some work from downstream here to optimize, but leave for now to see what's going on

movs :ReadCache, r0
nop

cache_entry = COGMEM_SRAM_CACHE [cache_index], dummy "0" is overwritten with actual index
by self modify code

mov cache_entry, 0O

now we simply need to extract the proper byte from the cache entry and write it to sram

mov num_shifts, cache_byte
sh1 num_shifts, #3

num_shifts = cache_byte * 8

shr cache_entry, num_shifts place the requested byte into the lower 8-bits position

' we have everything we need, now let's write the data
mov r0, cache_entry

and r0, #S$FF ' mask lower 8-bits (precaution)
sh1l r0O, #SRAM_DBUS_BIT_SHIFT ' shift data into position
and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data

' outa =

or outa, r0 (outa & !sram_dbus_mask) | (sram_parm0 << 16)

' finally clock the strobe Tline and tell the sram controller to complete the operation

or outa, SRAM_STROBE_MASK strobe =
and outa, NSRAM_STROBE_MASK ' strobe =
add curr_byte, #1 ' if (++curr_byte < num_copy_bytes) then repeat Toop

cmp curr_byte, num_copy_bytes wc, wz
jmp #:ByteCachewriteLoop

' done with current cache page pass, may or may not have read/write an entire page, either way update source and destination pointers
add sram_parm0, num_copy_bytes
add sram_parml, num_copy_bytes

' END OF MAIN COPY LOOP, TEST IF MORE BYTES NEED TO BE COPIED, AND LOOP BACK —-——--——-—--————————————————

if num_bytes_to_copy > 0 then continue copying pages, jump back up to outer most Toop
cmp num_bytes_to_copy, #0 wc ,wz
jmp #:CopyLoop

reset data bus to input before leaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

command complete reset global, so caller/client can issue another command
moyv ro0,
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done

'//

MM_Copyto_SRAM_

copies bytes from the Propeller's main memory to the SRAM's 512K space
' NOTE assumes that controller is in auto inc after write mode
' parameters: three longs, starting address: sram_cmd_parms_ptr
' parm 0 (32-bit): destination address in sram, 19-bits used
' parm 1 (32-bit): source address in main memory, 16-bits used (propeller only has 64K address space, Tower 32K RAM, upper 32K ROM)
' parm 2 (32-bit): number of bytes to copy 32- bit (only makes sense copy up to 64K though, since that's how big the prop memory is

' READ PARAMETERS FROM CALLER === === oo oo oo oo o

rdlong sram_parm0, sram_cmd_parms_ptr ' sram_parm0 hold destination address 19-bit
mgé r0, sram_cmd_parms_ptr ' advance pointer to next parameters which holds data
a r0, #4

retrieve long holding 16-bit source address referring to main memory store in sram_parml
rgéong sram_parml, rO
a ro,

retrieve long holding number of bytes (32-bit value) to copy
rdlong sram_parm2, rO

parameters now retrieved, at this point we have
sram_parm0 = dest_addr in SRAM

sram_parml = src_addr in prop main memory (MM)
sram_parm2 = num_bytes_to_copy to copy

we want to perform the following algorithm in the_abstract...
'for (index = 0; index < num_bytes_to_copy; index++)

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

' SRAM[dest_addr + index] = MM[src_addr + index]

' this isn't too bad, since we are not copying sram to sram, we only have to place the sram at the destination address to write to

' advance SRAM address pointer to dest1nat1on 1ocat1on in SRAM
mov_r7, sram_parm0 = destination address in SRAM
call #SetAddrSlZK Proc

' place data bus into write mode and prepare to write byte stream from main memory
or dira, SRAM_DBUS_MASK

' command lines should already be in output mode, so only need to write 2-bit command code for write memory

:CopytoSramLoop

and outa, nSRAM_CTRL_MASK clear control lines to "00", make hole for command

or outa, #SRAM_CMD_WRITE_SHIFTED ' outa = (outa & NSRAM_CTRL. MASK) | (SRAM_CMD_WRITE_SHIFTED)
- LooP
' at loop entry, sram_parm2 holds total number of bytes requested to be copied from client

rdbyte r0, sram_parml ''r0 =MM [src_addr]

' we have everything we need, now let's write the data

and r0, #S$FF ' mask lower 8-bits (precaution)

sh1l rO, #SRAM_DBUS_BIT_SHIFT ' shift data into position

and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data

or outa, r0 outa

(outa & !sram_dbus_mask) | (r0 << 16)

' finally clock the strobe line and tell the sram controller to complete the operation
' SRAM [dest_addr] <- r0 <- MM [src_addr]

or outa, SRAM_STROBE_MASK strobe = 1

and outa, NSRAM_STROBE_MASK ' strobe = 0

' SRAM address will auto increment, but have to increment source MM address manually
add sram_parml, #1

djnz sram_parm2, #:CopytoSramLoop repeat while sram_parm2 (number of bytes to copy) > 0
' reset data bus to input before Teaving

mov outa, #0

and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
moyv ro0,
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop return to main command fetch loop when done

'////////////4///

copies bytes from the SRAMs 512K to the Propeller's main memory
' NOTE: assumes that controller is in auto inc after write mode
parameters: three longs, starting address: sram_cmd_parms_ptr

' parm 0 (32-bit): source address in main memory, 16-bits used (propeller only has 64K address space, Tower 32K RAM,

' parm 1 (32-bit): destination address in sram, 19-bits used

upper 32K ROM)

' parm 2 (32-bit): number of bytes to copy 32-hit (only makes sense copy up to 64K though, since that's how big the prop memory is

' READ PARAMETERS FROM CALLER == === oo oo oo o oo oo o
rdlong sram_parmO, sram_cmd_parms_ptr sram_parm0 hold destination address in main_memory 16-bit used
mgé r0, sram_cmd_parms_ptr advance pointer to next parameters which holds data

a r0, #4

retrieve long holding 19-bit source address referring to SRAM store in sram_parml
rdlong sram_parml, rO
add r0, #4

retrieve long holding number of bytes (32-bit value) to copy
rdlong sram_parm2, rO

parameters now retrieved, at this point we have
sram_parm0 = dest_addr in main memory (MM)
sram_parml = src_addr in SRAM

sram_parm2 = num_bytes_to_copy to copy

' we want to perform the following algorithm in the abstract.
'for (index = 0; index < num_bytes_to_copy; index++
' MM[dest_addr + index] = SRAM[src_addr + index]

' this isn't too bad, since we are not copying sram to sram, we only have to place the sram at the source location to read from

' advance SRAM address pointer to source 1ocat1on in SRAM
mov r7, sram_parml r7 = source address in SRAM
call #SetAddr512K_Proc

' place data bus into read mode and prepare to read byte stream from SRAM
and dira, nSRAM_DBUS_MASK

' command lines should already be in output mode, so only need to write 2-bit command code for read memory

:CopytoMainMemoryLoop

and outa, nSRAM_CTRL_MASK ' clear control Tines to "00", make hole for command

or outa, #SRAM_CMD_READ_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_READ_SHIFTED)
o LooP
' at loop entry, sram_parm2 holds total number of bytes requested to be copied from client

rdbyte r0, sram_parml r0 = MM [src_addr]

' we have everything we need, now let's write the data

' clock the strobe 1ine and tell the sram controller to initiate the read and auto inc/dec

or outa, SRAM_STROBE_MASK strobe = 1

' data is now on bus, retrieve it... .

mov r0, ina ' pull data from external pins . . .
shr r0O, #SRAM_DBUS_BIT_SHIFT ' shift the data 16 time to the right [23..16] is location of data pins
and rO, #$FF ' mask the data to 8-bits

' write the data to main memory
wrbyte r0, sram_parmO

' finally finish the clocking of the read
and outa, NSRAM_STROBE_MASK ' strobe = 0

' SRAM address will auto increment, but have to increment source MM address manually

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

add sram_parm0, #1
djnz sram_parm2, #:CopytoMainMemoryLoop ' repeat while sram_parm2 (number of bytes to copy) > 0

' reset data bus to input before Teaving
mov outa, #0
and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0
wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done
'//
dr_ returns the current value of the 19-bit address buffer in the SRAM controller
jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done

'//

MemSum_ sum a region of memory and returns the 32-bit result, helps with diagnostics and DSP stuff
! parameters three longs, starting address: sram_cmd_parms_ptr
' parm 0 (32-bit): source address to sum, 19-bits used
' parm 1 (32-bit): number of bytes to sum 32-bit (only makes sense to move 512K at a time.

' retrieve long holding 19-bit address, store in sram_parmQ

rdlong sram_parmO, sram_cmd_parms_ptr . .

mgé r0, sram_cmd_parms_ptr ' advance pointer to next parameters which holds data
a r0, #4

' retrieve long holding number of bytes (32-bit value)
rdlong sram_parml, rO

' advance memory pointer to starting address
mov r7, sram_parm0
call #SetAddr512K_Proc

' place data bus into read mode and prepare to read byte stream from SRAM
and dira, nSRAM_DBUS_MASK

' command Tines should already be in output mode, so only need to write 2-bit command code for read memory
and outa, nSRAM_CTRL_MASK ' clear control Tines to "00", make hole for command
or outa, #SRAM_CMD_READ_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_READ_SHIFTED)

' now we are ready to read/sum the memory, simply toggle the clock Tine (assumes auto increment on read)

mov rl, #0 rl holds sum
:AddrAadvance
' finally clock the strobe line and tell the sram controller to complete the operation
or outa, SRAM_STROBE_MASK strobe = 1
' data is now on bus, retrieve it. .
mov r0, ina C pu11 data from external pins . . .
shr r0O, #SRAM_DBUS_BIT_SHIFT ' shift the data 16 time to the right [23..16] is location of data pins
and rO, #$FF ' mask the data to 8-bits
add ri1, roO ' sum += data
' finally finish the clocking of the read
and outa, NSRAM_STROBE_MASK ' strobe = 0
djnz sram_parml, #:AddrAdvance ' repeat while sram_parm2 (num_bytes) > 0
:AddrAadvanceend

write sum out to caller
wrlong rl, sram_result_ptr

' reset data bus to input before Teaving

mov outa, #0

and dira, nSRAM_DBUS_MASK

' command complete reset global, so caller/client can issue another command
mov r0, #0

wrlong r0, sram_parms_base_ptr

jmp #SRAM_Cmd_wait_Loop ' return to main command fetch Toop when done

:/éﬁé/éé/ééﬁﬁ/ééﬁéﬁﬁéé///
VI 117171 7117777777777777777777777777777777771777777777777777///7/
'//44é44£{////////////4/44//é/4é/é£//
Y1117 177177777777 77777777777777777777777771717777777777777///7/
SetAddr64K_Proc
' internal sub-routine that sets the 64K Tower 16-bit Tatch address
' expects r7 holding 16-bit address to advance to

' now place data bus into output mode
or dira, SRAM_DBUS_MASK

' place lower 8-bits of 16-bit address onto data bus ------—---——-————————————

and r7, #S$FF ' mask lower 8-bits

sh1l r7, #SRAM_DBUS_BIT_SHIFT ' shift data into position

and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data
or outa, r7 ' outa = (outa & !sram_dbus_mask) | (sram_parm0 << 16)

' command Tines should already be in output mode, so only need to write 2-bit command code for load Tow address
and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command
or outa, #SRAM_CMD_LOADLO_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_LOADLO_SHIFTED)

' finally clock the strobe Tline and tell the sram controller to complete the operation
or outa, SRAM_STROBE_MASK strobe = 1
and outa, NSRAM_STROBE_MASK ' strobe = 0

' place upper 8-bits of 16-bit address onto data bus ------—---—--————————————
mov r7, sram_parm0O

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

shr r7, #8 ' move upper 8-bits into Tower 8-bits

and r7, #S$FF ' mask lower 8-bits (precaution)

sh1l r7, #SRAM_DBUS_BIT_SHIFT ' shift data into position

and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data

or outa, r7 outa (outa & !sram_dbus_mask) | (sram_parm0 << 16)

' command lines should already be 1n output mode, so only need to write 2-bit command code for Toad high address

and outa, nSRAM_CTRL_MASK clear control lines to "00", make ho1e for command
or outa, #SRAM_CMD_LOADHI_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_LOADHI_SHIFTED)

' finally clock the strobe Tline and tell the sram controller to complete the operation
or outa, SRAM_STROBE_MASK strobe = 1
and outa, NSRAM_STROBE_MASK ' strobe = 0

SetAddr64K_Proc_Ret ret
VI 1177177177777 77777777777777777777777777777777777771777777///7/
SetAddr512K_Proc

: internal sub-routine that sets the 512K 19-bit address Tlatch completely

expects r7 holding 19-bit address to advance to
' side effects destroys, r0, r6, r7

compare desired target address to $FFFF, if less than simply latch address and write data, else
' write $FFFF and then advance to final Tocation with dummy reads

mov r6, r7 ' make copy of address in r6
. cmp r7, MAX_SHORT wz, wc L . .
if_be jmp #:LoadAddr ' if addr <= $FFFF then load it into 16-bit latch, jump to latch code
mov r7, MAX_SHORT ' else latch $FFFF then advance to write location in SRAM using post increment on read
:LoadAddr ' we are at the target address either by a short 16-bit direct Tatch or by advancing to the location via dummy reads..

' either way, we can now write the data as usual
' now place data bus into output mode

'//{{///////////////////////////////;;;?
'///
or dira, SRAM_DBUS_MASK

N~

//
//
//

' place lower 8-bits of 16-bit address onto data bus ------—---———————————————

mov r0, r7 .

and r0, #S$FF ' mask lower 8-bits |

sh1l rO, #SRAM_DBUS_BIT_SHIFT ' shift data into position

and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data

or outa, r0 outa (outa & !sram_dbus_mask) | (sram_parm0 << 16)

' command lines should already be in output mode, so only need to write 2-bit command code for load Tow address

and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command
or outa, #SRAM_CMD_LOADLO_SHIFTED ' outa = (outa & NSRAM_CTRL_MASK) | (SRAM_CMD_LOADLO_SHIFTED)

' finally clock the strobe Tline and tell the sram controller to complete the operation
1

or outa, SRAM_STROBE_MASK strobe =

and outa, NSRAM_STROBE_MASK ' strobe = 0

' place upper 8-bits of 16-bit address onto data bus ------—---——-————————————

mov r0, r7 i

shr r0, #8 ' move upper 8-bits into lower 8-bits

and r0, #$FF ' mask Tower 8-bits (precaut1on)

sh1l rO, #SRAM_DBUS_BIT_SHIFT ' shift data into position

and outa, nSRAM_DBUS_MASK ' outa = (outa & !sram_dbus_mask), make hole for data

or outa, r0 outa (outa & !sram_dbus_mask) | (sram_parm0 << 16)

' command Tlines should already be in output mode, so only need to write 2-bit command code for load high address

and outa, nSRAM_CTRL_MASK ' clear control lines to "00", make hole for command
or outa, #SRAM_CMD_LOADHI_SHIFTED ' outa = (outa & nSRAM_CTRL_MASK) | (SRAM_CMD_LOADHI_SHIFTED)

' finally clock the strobe line and tell the sram controller to complete the operation

or outa, SRAM_STROBE_MASK ' strobe
and outa, NSRAM_STROBE_MASK ' strobe

YILILIL1111111111111111171771/717117///1/////////////////////]
LTI T17777777777777777777777777717777777777177771177777717

' now advance memory, set up read address in 512K ----—--—-——-——-——o———————___

(]
(=1

=~
=~
=~
~>
~>
=~
~>
=~
>
>
~~
S~
NN
=~
=~
=~
=~
=~
~
~~
~~
~
~
~~
~
~
~~
=~
=~
=~
=~
=~
~>
~
~
=~
AN

' advance the address pointer by using the post increment behavior (if needed)
sub r6, r7 wz, wc ' compute difference between addrl9 and latched address

if_z Jjmp #:AddrAdvancetend ' if (addrl9 - $FFFF) > 0 then perform advance, else no advance needed, jump over code

' place data bus into read mode for dummy read, data is ignored
and dira, nSRAM_DBUS_MASK

' command lines should already be 1n output mode, so only need to write 2-bit command code for read memory
and outa, nSRAM_CTRL_MASK clear control lines to "00", make ho1e for comman
or outa, #SRAM_CMD_READ_SHIFTED ' outa = (outa & NSRAM_CTRL_| MASK) | (SRAM_CMD_READ_SHIFTED)

' advance address pointer (addrl9 - $FFFF) times, Eg. ($10000 - $FFFF) = 1, one clock then exit

:AddrAadvance

' finally clock the strobe line and tell the sram controller to complete the operation

or outa, SRAM_STROBE_MASK ' strobe = 1

and outa, NSRAM_STROBE_MASK ' strobe = 0

djnz r6, #:AddrAdvance ' repeat while sram_parm0 (difference from target and latched)
:AddrAadvancetnd

SetAddr512K_Proc_Ret ret

VI 777777777777777777777777777777777777/77777777777777/77777777//1/77/7///
DAT

' general purpose registers

ro Tong $0

rl Tong $0
r2 Tong $0

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

' 32-bit constants, masks, anything that is greater than 9-bits and can't be represented as an immediate
%0000_0000_0000_0000_0000_0000_0000_0110
%0000_0000_1111_1111_0000_0000_0000_0000
%0100_0000_0000_0000_0000_0000_0000_0000
%0100_0000_1111_1111_0000_0000_0000_0110

%1111 1111 1111 1111 1111 1111 1111 1001
%1111_1111_0000_0000_1111_1111_1111 1111
%1011 1111 1111 1111 1111 1111 1111 1111
%1011_1111_0000_0000_1111_1111_1111_1001

r3 Tong
r4 long
r5 long
ré long
r7 Tong
SRAM_CTRL_MASK Tong
SRAM_DBUS_MASK Tong
SRAM_STROBE_MASK Tong
SRAM_DBUS_CTRL_STROBE_MASK long
NSRAM_CTRL_MASK long
NSRAM_DBUS_MASK long
NSRAM_STROBE_MASK long

NSRAM_DBUS_CTRL_STROBE_MASK Tong

used for debugging

DEBUG_LED_MASK Tong
NDEBUG_LED_MASK Tong
' math constants

MAX_INT long
MAX_SHORT long
ZERO Tong

sram_parms_base_ptr

%0000_0000_0000_0000_0000_0000_0000_0001
%1111_1111 11111111 1111 11111111 1110

$FFFFFFFF
$0000FFFF
$00000000

sram interface variables aqd work1ng$gar1ab1es
ng

' Targest integer also -1 in 2's complement

pointer to main memory where the sram interface parameter passing area is
v

0 - sram command
1 - pointer to sram parameters from caller

the requested sram controller command

pointer to pointer po1nt1n% at sram_parameters
pointer to global used to ho

1d result from driver

sram_cmd Tong $0 '

sram_cmd_parms_ptr long $0 ' pointer to sram parameters
sram_cmd_parms_ptr_ptr long $0

sram_result_ptr Tong $0 '

' local storage for all the sram parameters needed for function call
sram_parm0 long $0

sram_parml long $0

sram_parm2 long $0

sram_parm3 Tong $0

this is the cache storage for sram to sram memory copy/moves, we need a temporary buffer to move the data (64-256 bytes is a good choice)

resize depending on what code you include, can use RES to save typing, but used data statements to be able to initialize cache for different

reasons. .

' cache algorithm working vars

num_bytes_to_copy long
num_copy_bytes long
curr_byte long
num_shifts long
sram_cache_entry_ptr long
cache_entry long
cache_byte long

cache_index Tong

[=lelelelelelefe]

if you need more cache size you can comment out functional chunks of the ASM drive
sram_cache Tong 0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0
Tong 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

ver code that you aren't using
,8,8,8, ,0,0,0 ' 64 bytes per Tline of storage

9,0, 0,0,0,0,0,0,0, 0,0
,0,0,0,0,0

total number of bytes to copy

number of bytes to copy this pass, page 0 to SRAM_CACHE_PAGE_SIZE
current byte being processed

number of times to shift operand

points to sram cache entry being processed

a data entry from the cache

a byte in cache entry
index into the cache

HYDRA XTREME 512K Card (HX512) - User Manual Verison 1.0 — May 2007, Author: Andre’ LaMothe

NOTES

	Table of Contents
	1.1 Product Contents
	1.2 Introduction and Quickstart
	1.3 Printed Circuit Board Annotation and I/O Interface Description
	1.4 Architectural Description and SRAM Operation
	1.5 Programming Techniques and Driver API Listing
	1.6 Advanced Programming Concepts and Graphics
	1.7 Re-programming the HX512's CPLD
	1.8 Summary
	Appendices
	A. HX512 Circuit Schematics
	B. Lattice ispMach 4064 Details and Signals Descriptions
	C. Building Your Own Lattice ISP Programmer
	D. Using the HX512 without the HYDRA
	E. HX512 API Driver Sources

