Version 1.0

.‘MAE:H64;F'REII3R'AMMBLE
L|:||3||: STARTER I(IT*

—HANDS'DN - BLIIDE

Andre’ LaMothe

MACHG64 Programmable Logic Starter Kit Hands-On™ Guide Version 1.0
Copyright © 2008 Nurve Networks LLC

Author
Andre’ LaMothe

Editor/Technical Reviewers
Patrick Tanner

Glenn Jones

Maksim Djackov

Daniel Quakenbush

Jodell Bumatay

A very special thanks to all the editors. Each had a different style and hopefully caught most typographical and technical
errors @. I am still mystified how every single “it’s” got turned into “its”, but I think it has something to do with <Replace

All> and <Find Next> ©

Printing
0001

ISBN
Pending

All rights reserved. No part of this user manual shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the user of the information contained herein. Although every precaution has been taken in
the preparation of this user manual, the publisher and authors assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information contained herein.

Trademarks

All terms mentioned in this user manual that are known to be trademarks or service marks have been appropriately
capitalized. Nurve Networks LLC cannot attest to the accuracy of this information. Use of a term in this user manual should
not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this user manual as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor any
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this user
manual.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

eBook License

If this manual was purchased in electronic form then it may be printed for personal use and (1) copy may be made for
archival purposes, but may not be distributed by any means whatsoever, sold, resold, in any form, in whole, or in parts.
Additionally, the contents of the CD this electronic user manual came on relating to the design, development, imagery, or any
and all related subject matter pertaining to the MACH64™ are copyrighted as well and may not be distributed in any way
whatsoever in whole or in part. Individual programs are copyrighted by their respective owners and may require separate
licensing.

NURVE NETWORKS LLC, . END-USER LICENSE AGREEMENT FOR HYDRA HARDWARE, SOFTWARE , EBOOKS, AND USER MANUALS

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PRODUCT. IT CONTAINS SOFTWARE, THE USE OF
WHICH IS LICENSED BY NURVE NETWORKS LLC, INC., TO ITS CUSTOMERS FOR THEIR USE ONLY AS SET FORTH BELOW. IF YOU DO NOT AGREE TO THE
TERMS AND CONDITIONS OF THIS AGREEMENT, DO NOT USE THE SOFTWARE OR HARDWARE. USING ANY PART OF THE SOFTWARE OR HARDWARE
INDICATES THAT YOU ACCEPT THESE TERMS.

GRANT OF LICENSE: NURVE NETWORKS LLC (the "Licensor") grants to you this personal, limited, non-exclusive, non-transferable, non-assignable license solely to use in a
single copy of the Licensed Works on a single computer for use by a single concurrent user only, and solely provided that you adhere to all of the terms and conditions of this
Agreement. The foregoing is an express limited use license and not an assignment, sale, or other transfer of the Licensed Works or any Intellectual Property Rights of Licensor.

ASSENT: By opening the files and or packaging containing this software and or hardware, you agree that this Agreement is a legally binding and valid contract, agree to abide by
the intellectual property laws and all of the terms and conditions of this Agreement, and further agree to take all necessary steps to ensure that the terms and conditions of this
Agreement are not violated by any person or entity under your control or in your service.

OWNERSHIP OF SOFTWARE AND HARDWARE: The Licensor and/or its affiliates or subsidiaries own certain rights that may exist from time to time in this or any other
jurisdiction, whether foreign or domestic, under patent law, copyright law, publicity rights law, moral rights law, trade secret law, trademark law, unfair competition law or other
similar protections, regardless of whether or not such rights or protections are registered or perfected (the "Intellectual Property Rights"), in the computer software and hardware,
together with any related documentation (including design, systems and user) and other materials for use in connection with such computer software and hardware in this package
(collectively, the "Licensed Works"). ALL INTELLECTUAL PROPERTY RIGHTS IN AND TO THE LICENSED WORKS ARE AND SHALL REMAIN IN LICENSOR.

RESTRICTIONS:

(a) You are expressly prohibited from copying, modifying, merging, selling, leasing, redistributing, assigning, or transferring in any matter, Licensed Works or any portion
thereof.

(b) You may make a single copy of software materials within the package or otherwise related to Licensed Works only as required for backup purposes.

(c) You are also expressly prohibited from reverse engineering, decompiling, translating, disassembling, deciphering, decrypting, or otherwise attempting to discover the source
code of the Licensed Works as the Licensed Works contain proprietary material of Licensor. You may not otherwise modify, alter, adapt, port, or merge the Licensed Works.
(d) You may not remove, alter, deface, overprint or otherwise obscure Licensor patent, trademark, service mark or copyright notices.

(e) You agree that the Licensed Works will not be shipped, transferred or exported into any other country, or used in any manner prohibited by any government agency or any
export laws, restrictions or regulations.

(f) You may not publish or distribute in any form of electronic or printed communication the materials within or otherwise related to Licensed Works, including but not limited to
the object code, documentation, help files, examples, and benchmarks.

TERM: This Agreement is effective until terminated. You may terminate this Agreement at any time by uninstalling the Licensed Works and destroying all copies of the Licensed
Works both HARDWARE and SOFTWARE. Upon any termination, you agree to uninstall the Licensed Works and return or destroy all copies of the Licensed Works, any
accompanying documentation, and all other associated materials.

WARRANTIES AND DISCLAIMER: EXCEPT AS EXPRESSLY PROVIDED OTHERWISE IN A WRITTEN AGREEMENT BETWEEN LICENSOR AND YOU, THE
LICENSED WORKS ARE NOW PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THE WARRANTY OF NON-INFRINGEMENT. WITHOUT
LIMITING THE FOREGOING, LICENSOR MAKES NO WARRANTY THAT (i) THE LICENSED WORKS WILL MEET YOUR REQUIREMENTS, (ii) THE USE OF THE
LICENSED WORKS WILL BE UNINTERRUPTED, TIMELY, SECURE, OR ERROR-FREE, (iii) THE RESULTS THAT MAY BE OBTAINED FROM THE USE OF THE
LICENSED WORKS WILL BE ACCURATE OR RELIABLE, (iv) THE QUALITY OF THE LICENSED WORKS WILL MEET YOUR EXPECTATIONS, (v) ANY ERRORS
IN THE LICENSED WORKS WILL BE CORRECTED, AND/OR (vi) YOU MAY USE, PRACTICE, EXECUTE, OR ACCESS THE LICENSED WORKS WITHOUT
VIOLATING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY MAY LAST, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. IF
CALIFORNIA LAW IS NOT HELD TO APPLY TO THIS AGREEMENT FOR ANY REASON, THEN IN JURISDICTIONS WHERE WARRANTIES, GUARANTEES,
REPRESENTATIONS, AND/OR CONDITIONS OF ANY TYPE MAY NOT BE DISCLAIMED, ANY SUCH WARRANTY, GUARANTEE, REPRESENATION AND/OR
WARRANTY IS: (1) HEREBY LIMITED TO THE PERIOD OF EITHER (A) Five (5) DAYS FROM THE DATE OF OPENING THE PACKAGE CONTAINING THE
LICENSED WORKS OR (B) THE SHORTEST PERIOD ALLOWED BY LAW IN THE APPLICABLE JURISDICTION IF A FIVE (5) DAY LIMITATION WOULD BE
UNENFORCEABLE; AND (2) LICENSOR'S SOLE LIABILITY FOR ANY BREACH OF ANY SUCH WARRANTY, GUARANTEE, REPRESENTATION, AND/OR
CONDITION SHALL BE TO PROVIDE YOU WITH A NEW COPY OF THE LICENSED WORKS. IN NO EVENT SHALL LICENSOR OR ITS SUPPLIERS BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THOSE RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT LICENSOR HAD
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OF
THE LICENSED WORKS. SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF
ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

SEVERABILITY: In the event any provision of this License Agreement is found to be invalid, illegal or unenforceable, the validity, legality and enforceability of any of the
remaining provisions shall not in any way be affected or impaired and a valid, legal and enforceable provision of similar intent and economic impact shall be substituted therefore.

ENTIRE AGREEMENT: This License Agreement sets forth the entire understanding and agreement between you and NURVE NETWORKS LLC, supersedes all prior
agreements, whether written or oral, with respect to the Software, and may be amended only in a writing signed by both parties.

NURVE NETWORKS LLC
12724 Rush Creek Lane
Austin, TX 78732

This document is valid with the following hardware, software and firmware versions:
e MACH®64 Programmable Logic Starter Kit
e Lattice ispLever Classic Version 7.0.

The information herein will usually apply to newer versions but may not apply to older versions. Please contact Nurve
Networks LLC for any questions you may have.

Visit www.xgamestation.com for downloads, support and access to the XGameStation/HYDRA user community and
more!

For technical support, sales, general questions, share feedback, please contact Nurve Networks LLC at:

support@nurve.net / nurve_help@yahoo.com

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

LICENSING, TERMS & CONDITIONS ... ittt ettt ettt et e e e he e e st e e e abe e e aaseesabe e e asee e aabeeesee e sabeesnbeeaanseeebeeesnneesaee 3
VERSION & SUPPORT/WEB SITEottt ettt ettt sttt e e abee e s abe e e be e e aaee e ebe e e asee e aabeeeabeeesabeesabeeaanseesbeeanneeans 4
MACH64 - PROGRAMMABLE LOGIC STARTER KIT HANDS-ON™ GUIDE VERSION 1.0ouveeeeeeeeeeeeeeeeeeeeeeneeeenene. 9
1.0 OVERVIEW AND GOALS ... eie ittt ettt e e st e s s e e st e sa et e e Re e e san e e eare e e amn e e nn e e e se e e anr e e e neeenareenaneas 9
S T 0 1 =1 = SRR 9
1.2 SYSTEM REQUIREMENTS ..ettttieeiiiiutteteeeeeesssasustseeeeaeessaasssssseesaeesaaasssssseseaaesaaasssseseeeeassaaasssssnnesesssasassssssesessssnnnssssnseeeeneannns 11
1.3 TARGET AUDIENCE ... uutttteeeeeesesatteeeeeeeeessaaustaeeeeaeeasaassseseeeaaesaaasssseeeeaaesaaaasssseeeeeaessaassssenneaeessanassssneeeaenssannsnnnnnneeenennnns 11
1.4 MACHG64 PCB BOARD FEATURES AND OVERVIEWcuutieieeieeesiessteeeeeseesssssunsesseeseessssassssssessssssansssssssesesssssnnssssnseseessnnnns 12
2.0 SYSTEM SETUP AND SELF-TEST ... ettt rme e sne e e smn e e sre e s ane e e nneeennneennne 16
3.0 QUICK START SOFTWARE INSTALLATION GUIDEcooiiiiiiiieiee ettt ettt et sbe e sns e e sne e snne e 19
3.1 INSTALLATION OF SOFTWARE AND TOOLSutttiuteesuteaaauteaateaaaueeaauteaaaseessaseassessauseesaseeaassesssessasseessesaasesaansessaseessnsessnsens 20
3.1.1 Step 1: Installing ispLever Classic Primary Modulecccoecvvvveeiiiieeennnen. 20
3.1.2 Step 2: Installing ispLever Classic Help and User Guide.........ccccccevcvvveeeinnneen. 25
3.1.3 Step 3: Installing Precision RTL Synthesis Module..........cccccceeeviveiiciveeennnen. 28
3.1.4 Step 4: Licensing ispLever ClassSiC.......cuuuaiiiriieiiriee e 32
3.2 TESTING THE TOOL CHAIN.....ciiuutteeeeereeessauteeeeseeesssaausseeaeeeeeeaaasssaeeeeaaeesasssseeseeaaseaaassssseeeeeesssassssseeeeeessaasnssnnnneeesssnnsssnns 37
3.3 CREATING YOUR FIRST PROJECT WITH ISPLEVER CLASSIC PROJECT NAVIGATORuvvviiieeeeisesirieeeeeeeeeesssnnseneeseessssnnnnnens 39
3.4 LOADING THE SOURCE, COMPILING, FITTING, AND PROGRAMMINGuuiiivieiteeeiseieestesesseeesitesessessssessesesssseessssessseessnses 41
3.4.1 Loading the SOUICEccoiiiiiieieeeee e 42
RO 2 7] 1 1] o] 1T PR 45
RO e B 41T PR 45
3.4.4 Understanding the JEDEC Programming File..........ccccceiiiiiiiiiniiiieeie 50
3.4.5 Using ispVM to Program the Target Chipccccooiiiriiiiiiieie e 52
4.0 PROGRAMMABLE TECHNOLOGY OVERVIEW.ottt sttt et e nms e e sne e s snne e 60
4.1 PROGRAMMABLE TECHNOLOGIES PRIMERuctiiutteititaauteaateeesteeeauteaaaueeesaseaaseeaaaseasabeeasssessaseesasseesasesaaseeaaasessaseessnnessnsess 62
5.0 THE LATTICE ISPMACH 4064 IN A NUTSHELL......ooiiiiiitii ittt ettt e e sbe e sate e sne e e saneeeneeas 66
6.0 ABEL “MICRO” PRIMER......ci ittt sttt s e s me e st e st e e e ame e e s se e e s se e e san e e e me e e sane e e ne e e anreenneeennneesnreas 68
6.1 MINIMUM REQUIREMENTS FOR ABEL SOURCE FILES ...ciiiiiiieitiiiie e e e sttt e e e e e s sttt e e e e e e e saanae e e e e e e e ennnaeeeneaeeesnnnnnnnneeeas 69
6.1.1 ABEL HDL File TemMPIateccveeeiiiiie e 69
6.1.2 ABEL Syntax SPECIfICS ..uuuiiiiiiiiii i 70
6.1.2.1 1dENEIfIErS ..o s 71
6.1.2.2 ReSErved KEYWOIScooi ittt st 71
6.1.2.3 Constants and Number SyStemsS.........cooiuiiiiiiiiiiee e 71
6.1.2.4 Boolean LogiCal ValUEScooiiiiiiiiiiiiec e 72
6.1.2.5 Special HDL CONSIANESeeiiiiiiiiieiiee ettt 72
6.1.2.6 Constants, Macros and RaNgESccveeeviiiieeiiiiie e ciieee e sieee e e 72
B.1.2.7 SEINGS .neeieiiie ettt et sttt e s rab e e e bt e e bt e e sab e e s ne e e saneeearean 73
6.2 THINKING IN PARALLELctiutetetteeateeetee ettt eeteeeeaeeasateeaseeesabeeaabeeeaaseeoase e e eas e e sab e e e see e eabe e e abee e aaeeeeabeeesmseesmbeeeaneeesnbeeannaaas 73
6.3 MODULE DECLARATIONSuuuutttteeeeesesautteeseeeeessaassseseesaasssassssseseaeesssaassssseeeaesssaassssssesssesssaassssnseeeesssasassssnseeessesnnnssssneeeens 75
6.3.1 Pin DECIarationscceoiieiiiiie et e 75
6.3.2 NOde DECIArationsceeiiiieiiee e 77
5.4 WORKING WITH SETS .tiiiiiiiiutieiieeeesesaauuteeteeseesaaaassseseeeaassaaassssseeeeeasssaassseseeeaesssaasssssesssssssaassssnsesessssasassssnseeeseesnnsssnsneeeens 77
6.5 LANGUAGE OPERATORSuuuutteiteeeeeesaauuteeeeeseesaaaassseeeeeaassaaasssseseeeessaaassseseeeaesssaasssssseeseesasaassseseeeesssamassseseeeseesmssssssneeeens 81
6.6 LOGICAL DESCRIPTION TECGHNIQUESteteuteeatetaaueeaauteaaaseessuseaasesaausessaseesauseasasessaseessasesasesaanseesaseessnsessnsessassessasessnsenans 84
6.6.1 Boolean LOQiC EQUALIONS..........eiiiiiiiieiiiiee e 84
6.6.2 Explicit Conditional Statements..........oocei i 84
B.6.3 Truth TADIESeeeeiiiieeee e e e e e e 87
6.6.4 State MaChINESeiiiie e e 90
6.8 TEST VECTORS AND SIMULATIONSciiuttteiuteaauetaaueeaausesaassessuseaasesaauseesseesasseasasessaseeessesasesaaasessaseessnsessnsessassessasesssseeans 95
LRSI L0 =0 1 =1V] N SR 100
7.0 HANDS-ON WITH THE LAB EXPERIMENTS ...ttt s 102
7.1 LAB 1 — SINGLE PUSH BUTTON ..eeitiiiiiiititiiitee e e s estieeteeeeesesssaateeeeeaeasssasnsaseeeeaesasaaasssaseeeeeeesaasnssesneeaeseaaasnssnneeeeessaannnnsnns 102
7.1.1 Setup and Parts Neededueiiiiiiiiie e 102

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

712 ASSEMDIY .. 102
7.1.3 Compiling the Projectcooiii e 103
A B - U4 (o O o PSR 105
% IR TR0 410 0 =V PSR 105
71,8 EXEICISES ...eeiieeie ettt 105
7.2 LAB 2 — LOGIC GATE EXPLORATION ...cciuteiiiureesretesseeesureasaseeessseesseeaasseesaseeaaseeessneesaneeesmseesaneesanneesaneessnneesnneesanneesaneesnnens 106
7.2.1 Setup and Parts Neededc..uiiiiiiiiiie e 106
7.2.2 ASSEMDIY ..o e 106
7.2.3 Compiling the Projectcooi i 107
A2 o F- g (o O o PR ST 108
7.2.5 SUMIMAIY ...eiiiitiie ettt ettt e ettt e e be e e s ae e e sabe e e aneeesabeeebeeesabeeeneeesnseeanne 109
7.2.6 EXEICISES ..eeiiiiiieie ittt e e e e 109
7.3 LAB 3 — EXPLORING SYNCHRONOUS LOGIC WITH A 4-BIT COUNTER - PART 1 ..ottt e 109
7.3.1 Setup and Parts NE€dedcoouiiiiiiiiiiieie e 110
7.3.2 ASSEMDIY ... e 110
7.3.3 Compiling the Projectcoviiiiiiiiee e 111
7.3.4 HANAS-ON ..ottt 112
RS TR0 1410 0 =V SRS 113
7.3.6 EXEICISES ...oeiieiie ittt 113
7.4 LAB 4 — EXPLORING SYNCHRONOUS LOGIC WITH A 4-BIT COUNTER - PART 2 ...ciiiiiiiie et 113
7.4.1 Setup and Parts Neededuviiiiiiiiiie e 113
742 ASSEMDIY ..o 113
7.4.3 Compiling the Projectcooiiiii e 115
A X o F- Ty (o O o L PP TR 116
745 SUMIMAIY ...eiiiiiie ettt ettt et e et e bt e e s ae e e sabe e e aaee e sabeesbeeesabeeeneeesnneennne 116
7468 EXEICISES .eeiiiiieiie ettt e e 117
7.5 LAB 5 — 7-SEGMENT DISPLAY PART .. iiiiiiie ittt ettt sme e st e s e e ame e e s ne e e snn e e smn e e s nne e seneennneas 117
7.5.1 Setup and Parts Neededc..ueiiiiiiiiiieee e 117
7.5.2 ASSEMDIY ..o e 117
7.5.3 Compiling the Projectcooiiiiiiiie e 118
7.5.4 HANAS-ON ..ottt 121
7.5.5 SUMIMAIY .oeiiiiiiiie ettt ettt e e s s e e s san e e e s anseeeeeannneeas 121
7.5.6 EXBICISES ..eeiiiuiiiie ittt ettt e et e e 121
7.6 LAB 6 — 7-SEGMENT DISPLAY PART 2. eeiiiuiieiitit ettt ettt ettt e ettt et e e s bt e e ae e e s ate e e aee e sabe e s abe e e aaeeesabeeeaaeeesaseeaneeesabeeenneas 122
7.6.1 Setup and Parts NE€dedcoocuiiiiiiiiii et 122
7.6.2 ASSEMDIY ..o 122
7.6.3 Compiling the Project ..o 123
AR o - T (o O o PP SR 125
7.8.5 SUMIMAIY ..eiiiiiiiie ettt ettt e st e e s s bae e e s aaseeeesanseeeesannneeas 125
7.8.6 EXEICISES ...oeiiiiie it 125
7.7 LAB 7 — 7-SEGMENT DISPLAY PART ... eiiiitiie ittt ettt ettt e s me e s e e s e e ame e e sane e e nmn e e snn e e s nn e e neneennneas 126
7.7.1 Setup and Parts Neededuiiiiiiiiiiee e 126
7.7.2 ASSEMDIY ..o 127
7.7.3 Compiling the Project ..o 128
A4 - U4 (o O o L USSR 130
7.7.5 SUMIMAIY ...eiiiiiie ettt ettt e et e et e be e e s ae e e sabe e e abee e sabeesbee e aaseeebeeesnseeanne 130
778 EXEICISES ..eeiiiiiiiie ettt e et e e e e 130
7.8 LAB 8 — KNIGHT RIDER ANIMATED LEDS — PART T ..ttt sttt sttt e et e s sae e sate e s nae s saneeenneas 131
7.8.1 Setup and Parts NE€dedcoouii it e 131
7.8.2 ASSEMDIY ..o e 132
7.8.3 Compiling the Projectcoo i 133
7.8.4 HANAS-ON ..ottt 136
7.8.5 SUMIMAIY ..eiiiiiiiiie ettt ettt e e s s et e e s aabreeeeanseeeesannneeas 136
7.8.6 EXEICISES ...eeiiiiie ittt 136
7.9 LAB 9 — KNIGHT RIDER ANIMATED LEDS — PART 2 ... eie ettt sttt s e e e e 136
7.9.1 Setup and Parts NE€dedcoouiiiiiiiiiiieee e 137
7.9.2 ASSEMDIY ... e 137
7.9.3 Compiling the Projectcooiiiiii e 138
e R o - T (o O o LRSS 141
7.9.5 SUMIMAIY ...eiiiiiie ittt ettt ettt e et e e bt e e st e e e be e s aabe e sneeesnneenane 141
7.9.6 EXEICISES ..eeiiiiieiie ettt ettt e e 141

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

7.10 LAB 10 — SIMPLE ALU (ARITHMETIC LOGIC UNIT) ..ctiuteieitteeaieeeteeentteesteeesieeessteesmeeessseesbeeesmseesabeeesaeessmsessneessanessnseas 142
7.10.1 Setup and Parts Neededc.coiiiiiiiiiiiieeee e 143
7.10.2 ASSEMDIY .. 143
7.10.3 Compiling the ProjecCtcooiiiiiiiiee e 145
7.10.4 HANAS-ON oottt 149
7105 SUMMANY oottt e st e s sab e e e snsee e e e anneeas 149
7.10.8 EXEICISES ..eviurieiteeesieee ettt sne e 149
7.11 LAB 11 — DIGITAL ORGAN PART T ..ottt sttt ettt e s me e st e e e e e ame e e s n e e e nn e e snn e e nnn e e neneennneas 150
7.11.1 Setup and Parts Neededcoooiiiiiiiiiii e 150
7112 ASSEMDIY .. 151
7.11.3 Compiling the Project ... 152
2 T o =g T £ o SRR 155
7175 SUMMEAIY .ottt ettt e e raee e st e e e be e s sabe e sneeesnneeenee 157
7118 EXEICISES - .ottt e e e e e e e nnna e e e e e e e e 159
7.12 LAB 12 — DIGITAL ORGAN PART 2 ...ttt iittee ettt ettt st e bt e e e s et e e bt e e eae e e oabe e e bt e e saseeambe e e aaeeeeabe e e aneeesabeesnneesabeeanneas 160
7.12.1 Setup and Parts Neededcoooiiiiiiiiiiieeee e 161
7.12.2 ASSEMDIY .. 162
7.12.3 Compiling the ProjecCtccooeiiiiiiee e 163
712,84 HANAS-ON ot 166
7125 SUMIMANY oottt e st e e st e e e s snneeeeeannneeas 166
712,68 EXEICISES .oeeirie ittt sne e 167
7.13 LAB 13 — DIGITAL ORGAN PART 3 ... iiiiitiie ittt ettt sttt ettt st e bt e e sate e s bt e e saeeeaabe e abee e sabeeembe e e ameeeaabeeeaneeesabeeebneesaneeanneas 168
7.13.1 Setup and Parts Neededc.cooiiiiiiiiiieeee e 168
7132 ASSEMDIY . 169
7.13.3 Compiling the Project ... 171
2 T o =g T [SRR 173
7135 SUMMANY oot e e e e s sns e e e e anneeas 173
7.13.8 EXEICTISES ..ottt ettt 174
7.14 LAB 14 — GENERATING NTSC VIDEO PART 1 ..ottt sttt nnne e s e s 174
7441 NTSC PHIMEN et 175
7.14.2 Basic Monochrome NTSC.......c.ooiiiiiiiieieeeeree e 176
7.14.3 Dissecting @ Vide0 LiNeoouueiiiiiiiiieee et 176
7.14.4 Vertical Blanking Periodcoooiiiiiiiiiiee e 177
7.14.5 Adding Color 10 NTSC ..ot 179
7.14.6 Setup and Parts Needed ..o 180
T A4.7 ASSEMDIY .. 181
7.14.8 Compiling the Project ..o 182
A e N o =T o [o ISR 187
71410 SUMMATY ettt sne e sne e e sne e e nnne e 188
71417 EXEICISES cnurie ittt ettt ne e nnn e 188
7.15 LAB 15 — GENERATING NTSC VIDEO PART 2 ...t itee ettt ettt amn e e nnne e neneennneas 188
7.15.1 Setup and Parts Needed ..o 189
7.15.2 ASSEMDIY .. 189
7.15.3 Compiling the Project ... 191
2 X o =T o [ISR 194
7155 SUMMEAIY ..ottt ettt ettt st e ae e e st e e e be e e sab e e ebeeesnneeenee 194
7158 EXEICISES - .ottt e e e e e e e e e e 194
7.16 LAB 16 — GENERATING NTSC VIDEO PART 3 ...ttt ettt ettt st sttt e e sae e e s abe e e sae e e smte e snne e saneaenneas 195
7.16.1 Setup and Parts Neededc.coiiiiiiiiiiieee e 196
7.16.2 ASSEMDIY .. 196
7.16.3 Compiling the ProjecCtcooiiiiiiiiee e 198
7.168.4 HANAS-ON oot 202
7.16.5 SUMIMANY .ottt e st e e s sabe e e s snsee e e e annneeas 202
71688 EXEICISES ..eeiurie ittt 202
7.17 LAB 17 — GENERATING NTSC VIDEO PART 4 - “MACHB4 PONG” ...t e 202
7.17.1 Setup and Parts Neededc.ooiiiiiiiiiiiee e 203
T A7.2 ASSEMDIY .. 203
7.17.3 Compiling the Project ... 205
2 7 P-4 T [o ISR 209
7175 SUMMEAIY .ottt ettt st et e e e bee e st e e ebe e s aaseeaneeesnneeanne 209
7478 EXEICISES - .ttt e et e e e e e e e e e e e e e e ean 209

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

7.18 LAB 18 — GENERATING VGA VIDEO PART T ... ittt e ettt e e e e e e et e e e e e e e e e anareeeeeaeeaeennneens 210
T A8 VGA PrIMEL ..o 210
7.18.2 VGA Signal SpecCifiCationccoooeiiiieiiiieeriee et 212
7.18.3 MACHG64 Built-in VGA Hardware...........cccooeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeee, 214
7.18.4 Setup and Parts Needed ..o 216
7185 ASSEMDIY .. 217
7.18.6 Compiling the Projectccoiveiiiiiee e 219
T A8 A HANAS-ON ... 221
7.18.8 SUMIMANY ottt e s e e s sae e e e s snneeeeeannneeas 222
T A8, EXBICISES ... ettt ettt e e e e ettt e e e e e e e e ee et e e e e e eeeeasaaeeeaeeeeees 222
7.19 LAB 19 — GENERATING VGA VIDEO PART 2. ...ttt ettt e e e e ettt e e e e e e e e e aab b e e e e e e e e eaennsreneeeaaeaeannsrens 222
7.19.1 Setup and Parts Neededc.coiiiiiiiiiiiiee e 223
7.19.2 ASSEMDIY . 223
7.19.3 Compiling the Project ..o e 225
A9 4 HANAS-ON ... 228
7195 SUMMANY oot e st e e e e s snbee e e e annneeas 229
A L Rl T (o [T 229
F Y o = V1 (07 = SR 230
APPENDIX A. THE BUILT-IN PROGRAMMERcceeittiiiiiieiiieieeeieeeee ettt et eeeeeeeeeeeeteeeeeteteteeeteeeeeteteteeeteeeeeeeteteeeaereeereeeeereeeeeeeeeeeees 230
APPENDIX B. MACH 64 CIRCUIT DIAGRAM......ccoiiiiiieieieeeeeeeeeee ettt ettt ettt et et et ettt e e ettt et et et et et e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 232
APPENDIX C. LATTICE ISPMACH 4064 TQFP 48 PINOUT ...ccitiiiiiiiiiiiieie e e e sesiteeee e e e e ssssesaeeeesaaesssnsaseeeaesssssansssnneesesssannnnsnns 235
INOTES ... ettt b b b raaararasa—aaerasa—_—_sasasasasasssasssasssssssasssssssssesesssssssasssesssssesesssesssssesesesesssesesssssssnsesenssssessnssnnnnnnes 236

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

Figure 105.0 — Block diagram of the simple ALU.

———>» RESULT (5-bit)
4-bit result +camy

OPCODE

4-bit W) ALU —>» A>B (1-hit)

— 3 A<B (1-bit)

— 3 A=B (1-bit)

Continously Computed

Unsigned Inputs

OPERANDA OPERAND B
4-bit 4-bit

7.10 Lab 10 — Simp
Difficulty — Hard

In this lab we are going to really push the ispMACH 4064 to its limits and design a little ALU (arithmetic logic unit). The
ALU is the basis of all modern microprocessors and with a proper set of registers and data paths is the core of the
microprocessor. So, if we can build an ALU with the CPLD then we are 90% the way to building a little microprocessor
with it! However, the ispMACH 4064 only has 64 flip flops in it, so it would be a challenge to make a working
microprocessor with it. However, never say never. | believe that a 2-4 bit microprocessor with a couple instructions and a
6-8 word program memory would be possible. Of course your programs would look like:

LDI #0 // load the 4-bit accumulator with the immediate value 0

STA 3 // store the value 0 in memory Tlocation 3 (overwrites the NOP)
IMP #0 // jump back to memory location 0, that is Program Counter = 0
NOP // dead code

s LTAWNRO

15: NOP // last instruction goes here with a 4-bit program counter
But, that’s better than nothing!

Anyway, we aren’t going that far in this lab, just the ALU part. Hence, the idea here is to design a 4-bit ALU that can
perform logical and simple math operations to two 4-bit input operands, display the results, and support up to 16 opcodes.
Figure 105.0 above shows a block diagram of the planned ALU. You will use the ALU by inputting operands A and B on
the DIP switches, then selecting an opcode via the push buttons, then viewing the results on the LEDs. Also, this ALU is
going to be totally asynchronous; meaning that it simply computes the results constantly. In a real system, you would want
to latch the results out on a clock after the longest computational path time, so that you always have stable results at a
deterministic point. But, for our needs asynchronous design works great and makes it easier, so we don’t have to deal
with a clock.

The operations supported by the ALU are shown in Table 25.0 below. The inputs are A and B (both 4-bit) and the result is
X (5-bit).

142

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

Table 25.0 — ALU operations supported (taken directly from source).

Symbolic Name Value Description
OP_NOP 0 no operation
OP_INCA 1 X =A++
OP_DECA 2 X =A-
OP_NOR 3 X=ANORB
OP_OR 4 X=AORB
OP_XOR 5 X=AXORB
OP_XNOR 6 X=AXNORB
OP_NAND 7 X=ANAND B
OP_AND 8 X=AANDB
OP_NOTA 9 X=NOTA
OP_NOTB 10 X=NOT B
OP_SHR 11 X=A>>1
OP_SHL 12 X=A<<1
Note: opcodes 13, 14, 15 not allocated yet, feel free to add
them.

As you can see the ALU is missing addition and subtraction of A and B. This is due to space in the
silicon. When | had add/subtract of the 4-bit operands, almost nothing else would fit. Thus, in the
end, | decided better to have a large repertoire of logical operations rather than only a couple math
operations.

Finally, since the ALU is asynchronous, all operations are not stored. In other words, when you increment A for example
with the opcode OP_INCA, A is not incremented, rather a copy of A is made then +1 added to that and assigned to X.
But, the moment you remove the opcode, the results are removed as well. Thus, to store this result you would need a
clock and final assignment back to A.

7.10.1 Setup and Parts Needed

For this lab you need:

= 28 wires, (17) short, (11) long.
= Alot of patience.

Make sure you have the MACH64 powered off while connecting everything and you should have the following settings:

= VCCIO SEL switch set at 3.3V (might as well conserve power).
= J15jumpers all on (to make sure the on-board CPLD is programmed).

7.10.2 Assembly

Step 1: Netlist connections — In this step you will connect up all the wires for the project with the power OFF. In this lab
there is only a netlist of from and to points, there are no other components and the solderless breadboard area isn’t
needed. Also, as usual the design could use any 1O pins you like, but | try to use 10 pins that are closest to the headers
they are going to plug into. Additionally, now and then | like to throw in an example where an 10 on the far side of the chip
is mixed with another IO, just to show that the fitter will route whatever you tell it to.

Make sure power is OFF while you are building the circuit! And pay close attention to long and

NOTE short wire suggestions. And as always triple check your connections especially with this circuit,
since it nearly uses up all the I/O pads and it's really easy to short one of the power supply lines if
you plug something into the wrong header port, so be careful.

143

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

Table 26.0 — Netlist for the “Simple ALU” lab.

Net # Instructions

Input A connections (4) from DIP switches

Connect a short wire from pin 14 (B8) on the CPLD header to DIP switch DS11 (leftmost bank).
Connect a short wire from pin 15 (B10) on the CPLD header to DIP switch DS10 (leftmost bank).
Connect a short wire from pin 16 (B12) on the CPLD header to DIP switch DS9 (leftmost bank).
Connect a short wire from pin 17 (B14) on the CPLD header to DIP switch DS8 (leftmost bank).

Alw|n|=

Input B connections (4) from DIP switches

Connect a short wire from pin 20 (C0) on the CPLD header to DIP switch DS3 (rightmost bank).
Connect a short wire from pin 21 (C2) on the CPLD header to DIP switch DS2 (rightmost bank).
(
(

)
)
Connect a short wire from pin 22 (C4) on the CPLD header to DIP switch DS1 (rightmost bank).
Connect a short wire from pin 13 (C6) on the CPLD header to DIP switch DSO0 (rightmost bank).

[ee] IN] Kol &)

Output A connections (4) to LEDs

9 Connect a short wire from pin 48 (A8) on the CPLD header to LED L19 (leftmost bank).
10 Connect a short wire from pin 46 (A4) on the CPLD header to LED L18 (leftmost bank).
11 Connect a short wire from pin 45 (A2) on the CPLD header to LED L17 (leftmost bank).
12 Connect a short wire from pin 44 (A0_GOEQ) on the CPLD header to LED L16 (leftmost bank).

Output B connections (4) to LEDs

13 Connect a short wire from pin 41 (D14_GOE1) on the CPLD header to LED L11 (middle bank).
14 Connect a short wire from pin 40 (D12) on the CPLD header to LED L10 (middle bank).

15 Connect a short wire from pin 39 (D10) on the CPLD header to LED L9 (middle bank).

16 Connect a short wire from pin 38 (D8) on the CPLD header to LED L8 (middle bank).

Output X connections (5) to LEDs

17 Connect a short wire from pin 34 (D6) on the CPLD header to LED L4 (rightmost bank).
18 Connect a long wire from pin 33 (D4) on the CPLD header to LED L3 (rightmost bank).
19 Connect a long wire from pin 32 (D2) on the CPLD header to LED L2 (rightmost bank).
20 Connect a long wire from pin 31 (D0) on the CPLD header to LED L1 (rightmost bank).
21 Connect a long wire from pin 28 (C14) on the CPLD header to LED L0 (rightmost bank).

Output LT, GT, EQ connections (3) to LEDs

22 Connect a long wire from pin 2 (A10) on the CPLD header to LED L7 (rightmost bank).
23 Connect a long wire from pin 3 (A12) on the CPLD header to LED L6 (rightmost bank).
24 Connect a long wire from pin 4 (A14) on the CPLD header to LED L5 (rightmost bank).

Input Opcode connections (4) to pushbuttons

25 Connect a short wire from pin 7 (B0) on the CPLD header to push button PB3 at J17 pin 3.
26 Connect a short wire from pin 8 (B2) on the CPLD header to push button PB2 at J17 pin 2.
27 Connect a short wire from pin 9 (B4) on the CPLD header to push button PB1 at J17 pin 1.
28 Connect a short wire from pin 10 (B6) on the CPLD header to push button PB0 at J17 pin 0.

144

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

Figure 106.0 — The completed Simple ALU.

Your project should look like the image shown in Figure 106.0 more or less. You might have different color wires with your
kit and a different PCB color, but the “net list” and setup should be identical.

7.10.3 Compiling the Project

The code for the project is named mach64_kit_alu_01.abl and is located here:

\MACH64\sources\ mach64_kit_alu_01.abl

Step 1 — Loading the code into tool

Go ahead and import it into your project by selecting the left pane of the ispLEVER Classic navigator and clicking on the
device node LC4064V-75T48I and then right clicking to get the context menu, then select “Import” and locate the file on
the CD or your local hard drive. Make sure to make it the active or top most file if you have more in your project.

Step 2 — Compiling the code

Select the filename in the “Sources” pane on the left, this should change the context to the processes for a source file.
Then double click “Compile Logic” in the “Processes for current source” pane and if all goes well you should see a
green arrow. The code is listed below for reference:

MODULE mach64_kit_alu_01
%/ﬁ/{é/////////{//////4///
u e

or: Andre' LaMot
;/ Last Modified:
;? Description: Simple ALU (arithmetic Togic unit), non-clocked asynchronous
// Inputs: two 4-bit operands input on DIP switches, one 4-bit operator input on pushbuttons.
// outputs: cogies of the 4-bit inputs, so they are visible, connected to LEDs, along with the
// 5-bit results of the ALU OEeration (4-bit plus carry) as well as a 3-bit relational
;? output that indicates if the operators are less than, equal, greater than.
L11177777777777771777777777777777777777777777777/77777777777777/7/777777///777/7////7/7////////////
DECLARATIONS

// ALU operation constants, set the most common operations to 1,2,4,8,

// so they are easy to press the buttons

// operation output

OP_NOP = 0; // no operation

145

MACH®64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

OP_INCA = 1; // X = A++

OP_DECA = 2; // X = A--

OP_.NOR = 3; // X = A NOR B

OP_OR = 4; // X = A OR B

OP_XOR =5; // X = A XOR B

OP_XNOR = 6; // X = A XNOR B

OP_NAND = 7; // X = A NAND B

OP_AND =8; // X =A AND B

OP_NOTA = 9; // X = NOT A

OP_NOTB = 10; // X = NOT B

OP_SHR = 11; // X =A > 1

OP_SHL = 12; // X =A<< 1

// inputs and outputs for operands and result

lin_a3..!in_a0 pin 14..17; // inputs for register A, not registered since this system is non-clocked
1in_b3..!in_b0 pin 20..23; // inputs for register B, not registered since this system is non-clocked

out_a3..out_a0 pin 48, 46..44 istype 'com'; // output for register A, not registered
out_b3..out_b0 pin 41..38 istype 'com'; // output for register B, not registered

x4..x0 pin 34..31, 28 istype 'com'; // output for result (5-bit to hold carry for addition)
// for magnitude comparisons

gt pin 2 istype 'com'; // output for A > B

Tt pin 3 istype 'com'; // output for A < B

eq pin 4 istype 'com'; // output for A ==

// ALU operand selection push button inputs

Ipb3..!pb0 pin 7..10; // used for operation select buttons

// set declarations

opcode = [pb3..pb0]; // set for operation selected

in_a = [in_a3..in_a0]; set for input A

in_b = [in_b3..in_b0]; // set for input B

out_a = [out_a3..out_al]; // set for output A

out_b = [out_b3..out_b0]; // set for output B

X = [x4..x0]; // holds output result of ALU operation
EQUATIONS

// the ALU is totally combinatorial and not clocked,

// so we simply generate all the outputs based on the inputs

// of course some operat1ons take longer than others to compute,

// the "fitter report" can give insight into this showing

// the slowest paths in the system and the maximum operational rate

// NOTE: there isn't enough silicon to support addition with all these other operands,
// so if you want to add that then you

// have to remove quite a few others!

// first the magnitude comparisons

gt = (in_a > in_b);
Tt = (in_a < in_| b)
eq = (in_a == in_|),

// send 1inputs to outputs unscathed
out_a = in_a;
out_b in_b;

// now ALU operation, lots of ways to do this with clever syntax, but let's use straightforward syntax
when (opcode == OP_NOP) then // = 0, no operation

{
// do nothing
// set x =0
x = 0;
} // end when
when (opcode == OP_INCA) then // =
// set x = A + 1

x = [0, in_a3, in_a2, in_al, in_a0] + [0,0,0,0,1];
} // end when
else

when (opcode == OP_DECA) then // =

// set x = A -1
x = [0, in_a3, in_a2, in_al, in_a0] - [0,0,0,0,1];
} // end when

else

when (opcode == OP_NOR) then // = 3, X = A NOR B

// set x = in_a NOR in_|
x = I ([1, in_a3..in_a0] # [1, in_b3..in_b0]);
} // end when

else

when (opcode == OP_OR) then // =4, X = A ORB

146

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

in_a OR in_|
= ([0, in_a3..in_a0] # [0,
} // end when
else
when (opcode

OP_XOR) then

// set x = in_a XOR 1in_b
x = ([0, in_a3..in_a0] $
} // end when

[01

else
when (opcode

// set x = in_a XNOR 1in_b
x = ! ([1, in_a3..in_a0]
} // end when

else

when (opcode

in_a NAND in_b
.in_a0] & [1,

// set x
= I([1, in_a3.
} // end when
else
when (opcode

== OP_AND) then
// set x = in_a AND in_b
x = ([0, in_a3..in_a0] & [O,
} // end when

else

when (opcode == OP_NOTA) then //
// set x = lin_a
x = I([1, in_a3.
} // end when

else

when (opcode == OP_NOTB) then //

.in_a0]);

// set x = lin_a
x = ! ([1, in_b3..in_b0]);
} // end when
else
when (opcode == OP_SHR) then //
// set x = A >> 1
x = [0, 0, in_a3..in_al];
} // end when
else
when (opcode == OP_SHL) then //

// set x = A << 1
x = [in_a3..in_a0, 0];
} // end when

$ [0,

END

Code Analysis

.i

/] =

.i

OP_XNOR) then // =

OP_NAND) then // =

// =

.i

n_b3..in_b0]);
5, X = A XOR B
n_b3..in_b0]);
X = A XNOR B
in_b3..in_b0]);
X = A NAND B
in_b3..in_b0]);
X = A AND B
n_b3..in_b0]);
9, X = NOT A
10, X = NOT B
11, X = A>> 1
12, X =A<< 1

There is way too much code to cover all of it, so we are only going to discuss the general operation and a single example.
The idea of the ALU is that two 4-bit “operands* are fed into it along with a 4-bit “opcode”. The operands are input on
DIP switches, the opcode on the pushbuttons which when un-pressed input code 0000 (due to inversion and pullups)
which is the OP_NOP. This is good, since we don’t want the ALU to do anything when you aren’t pressing any of the

pushbuttons.

Now, since the ALU is totally non-synchronous, it’s continuously evaluating the opcode and then running thru the large
WHEN-THEN case statement where there is a clause for each possible opcode. Whichever opcode is on the bus will be
combinatorially computed immediately. But, before the WHEN-THEN statement there are a couple code fragments of
interest. One of them simply copies the inputs to the outputs for display on the LEDs:

// send
out_a = in_a;
out_b = 1in_b;

inputs to outputs unscathed

The second does a magnitude comparison which is constantly output to LEDs as well:

// first the magnitude comparisons
gt = (in_a > in_b);

It = (in_a < in_b);

eq = (in_a == in_b);

147

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

And remember, all this happens at the same time. There is no first or second (the comment is just for organization).
Alright, now let’s get back to the big case statement. Let’s say that the opcode OP_OR is on the inputs then this piece of
code will start to execute:

when (opcode == OP_OR) then // =4, X = A OR B

// set x = in_a OR 1in_
x = ([0, in_a3..in_a0] # [0, in_b3..in_b0]);
} // end when

All it does is OR the two operands together and push them out to X for display. All the ALU operations work this way.
Lastly, say you wanted to add an opcode? Let’s just make something up. How about reverse the bits of operand A? First,
we need to define the opcode, let’s call it OP_REVA, we need to add it at the top of the source with the other opcodes like
this:

OP_NOTB

=10; // X = T B
OP_SHR =11; // X=A>1
OP_SHL = 12; // X = A << 1
OP_REVA = 13; // X = [a0, al, a2, a3], bitwise reversal

So far so good. Next, we need to add the case statement to the WHEN-THEN to do the work. Let’s place it at the end
right after the last opcode:

else

when (opcode == OP_SHL) then // = A<<1

// set x = A << 1
x = [in_a3..in_a0, 0];
} // end when
else
when (opcode == OP_REVA) then // = 13, X

[a0, al, a2, a3]

// set x = A << 1
x = [0,in_a0..in_a3];
} // end when

Almost too easy isn't it! But, watch out if you try to implement any math related operations they will use up nearly all of the
silicon. Keep an eye on this by reviewing the “Fitter Report”.

Step 3 - Fitting the Design

After the code has successfully compiled, it’s time to fit the design into the target device. So, select the device node in the
“Sources“ pane to the left. This should bring up the much more complex context menu in the “Processes for current
source” pane that have the “Fit Design” option. Go ahead and double click “Fit Design”. You might get a dialog for the
constraints that pops up, select “Import” if it does. This simply means to import the constraints (like pin declarations)
from your file and not to read them from an external constraint file. This is what we will do in most cases, but in some
cases we might create a constraint file to fine tune the constraints. After the fitting process, you should get a green check
mark, or at least yellow check mark next to the “Fit Design’ process.

Step 4 — Programming the CPLD with the JEDEC File

The final step in the process is to download the JEDEC bitstream file into the CPLD itself. Finally, turn the power ON, so
the PC can see the onboard programmer and initiate communications.

The reason why we keep the power off until now is that the previous designs could have inputs
going to outputs and outputs going to inputs which cause a lot of current. So each new netlist will
potentially cause electrical shorts until the new program is downloaded, thus we want to keep the
power OFF until we are ready to download the correct program for the netlist to minimize wear and
tear on the driver 1O circuits.

148

MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

Go ahead and run the ispVM System from the toolbar or from the Tools menu on the main menubar. You should already
have a configuration file that represents the ispMACH 4064 chip that refers to the output JEDEC file in your project which
should be called something like mach_64_test_01.jed or whatever you named it. Remember, the configuration file for the
ispVM System has both the device (the ispMACH 4064 in this case) and the JEDEC file in the configuration file. This way,
no matter what you compile in the compiler and fitter, they always output the same JEDEC filename which you can always
program into the chip with the ispVM System tool. Anyway, download the bits into the chip by pressing the green GO
button on the toolbar of the ispVM System tool. It should pause for a few seconds and you should have success and see
PASS next to the device line in the window.

If there is a problem, make sure of the following:

1. The parallel port cable is plugged in.

2. The power is on.

3. The JEDEC file referred to in the configuration file does indeed exist and the device (the chip) is correct.
4. You have installed the drivers for the parallel port.

You should have done all these things previously in the setup and test run, so they should all be familiar to you.

7.10.4 Hands-On
Experiment 1: Input two values on A and B DIP switches, then try every single opcode with the pushbuttons. It’s a bit

hard pressing all four pushbuttons, but you will manage. Confirm that all the opcodes work and the results on output X
and the LT, GT, EQ outputs are always correct.

7.10.5 Summary

This lab shows how to use the CPLD to create a fairly full featured ALU (minus the math operations). The code is
amazingly straightforward as well. However, this lab also shows that math operation on the CPLD eat silicon up very
quickly, so if you want to perform something as simple as 8-bit addition, be prepared to watch your silicon eaten alive.

7.10.6 Exercises

1. See if you can output the result X on the 7-segment display. You just have enough free IOs to do this, but you won’t be
able to drive the LEDs with X anymore, you will only be able to drive the 7-segment.

2. Add opcodes for bit reversal of A and B, add an opcode that counts the number of ON bits in A.

3. Add a clock signal with the 1.0MHz clock that latches X always, then instead of the OP_NOP assigning 00000 to X
make it maintain state. This way, you can see the results of your last operation on X.

4. Try and create an additional operation, see how many of the other opcodes you have to comment out to fit addition.

5. If we have a 8-bit opcode and we wanted to support immediate values of 3-bits in the opcode itself, how many opcodes
are possible?

Answers
5. Given that the desired opcode format is CCCCCDDD where Ds stand for the immediate value bits and Cs stand for the

opcode bits, then there are 5-bits for opcodes, or 2° = 32 possible opcodes. This is how many ARM processors encode
constants as part of the 16/32 bit instruction itself, that's why they are limited to 8-12 bits usually.

149

