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All rights reserved. No part of this user manual shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the user of the information contained herein. Although every precaution has been taken in
the preparation of this user manual, the publisher and authors assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information contained herein.

Trademarks

All terms mentioned in this user manual that are known to be trademarks or service marks have been appropriately
capitalized. Nurve Networks LLC cannot attest to the accuracy of this information. Use of a term in this user manual should
not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this user manual as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor any
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this user
manual.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

eBook License

If this manual was purchased in electronic form then it may be printed for personal use and (1) copy may be made for
archival purposes, but may not be distributed by any means whatsoever, sold, resold, in any form, in whole, or in parts.
Additionally, the contents of the CD this electronic user manual came on relating to the design, development, imagery, or any
and all related subject matter pertaining to the MACH64™ are copyrighted as well and may not be distributed in any way
whatsoever in whole or in part. Individual programs are copyrighted by their respective owners and may require separate
licensing.



NURVE NETWORKS LLC, . END-USER LICENSE AGREEMENT FOR HYDRA HARDWARE, SOFTWARE , EBOOKS, AND USER MANUALS

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PRODUCT. IT CONTAINS SOFTWARE, THE USE OF
WHICH IS LICENSED BY NURVE NETWORKS LLC, INC., TO ITS CUSTOMERS FOR THEIR USE ONLY AS SET FORTH BELOW. IF YOU DO NOT AGREE TO THE
TERMS AND CONDITIONS OF THIS AGREEMENT, DO NOT USE THE SOFTWARE OR HARDWARE. USING ANY PART OF THE SOFTWARE OR HARDWARE
INDICATES THAT YOU ACCEPT THESE TERMS.

GRANT OF LICENSE: NURVE NETWORKS LLC (the "Licensor") grants to you this personal, limited, non-exclusive, non-transferable, non-assignable license solely to use in a
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NURVE NETWORKS LLC
12724 Rush Creek Lane
Austin, TX 78732



This document is valid with the following hardware, software and firmware versions:
e MACH®64 Programmable Logic Starter Kit
e Lattice ispLever Classic Version 7.0.

The information herein will usually apply to newer versions but may not apply to older versions. Please contact Nurve
Networks LLC for any questions you may have.

Visit www.xgamestation.com for downloads, support and access to the XGameStation/HYDRA user community and
more!

For technical support, sales, general questions, share feedback, please contact Nurve Networks LLC at:

support@nurve.net / nurve_help@yahoo.com
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Figure 105.0 — Block diagram of the simple ALU.
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7.10 Lab 10 — Simp
Difficulty — Hard

In this lab we are going to really push the ispMACH 4064 to its limits and design a little ALU (arithmetic logic unit). The
ALU is the basis of all modern microprocessors and with a proper set of registers and data paths is the core of the
microprocessor. So, if we can build an ALU with the CPLD then we are 90% the way to building a little microprocessor
with it! However, the ispMACH 4064 only has 64 flip flops in it, so it would be a challenge to make a working
microprocessor with it. However, never say never. | believe that a 2-4 bit microprocessor with a couple instructions and a
6-8 word program memory would be possible. Of course your programs would look like:

LDI #0 // load the 4-bit accumulator with the immediate value 0

STA 3 // store the value 0 in memory Tlocation 3 (overwrites the NOP)
IMP #0 // jump back to memory location 0, that is Program Counter = 0
NOP // dead code

s LTAWNRO

15: NOP // last instruction goes here with a 4-bit program counter
But, that’s better than nothing!

Anyway, we aren’t going that far in this lab, just the ALU part. Hence, the idea here is to design a 4-bit ALU that can
perform logical and simple math operations to two 4-bit input operands, display the results, and support up to 16 opcodes.
Figure 105.0 above shows a block diagram of the planned ALU. You will use the ALU by inputting operands A and B on
the DIP switches, then selecting an opcode via the push buttons, then viewing the results on the LEDs. Also, this ALU is
going to be totally asynchronous; meaning that it simply computes the results constantly. In a real system, you would want
to latch the results out on a clock after the longest computational path time, so that you always have stable results at a
deterministic point. But, for our needs asynchronous design works great and makes it easier, so we don’t have to deal
with a clock.

The operations supported by the ALU are shown in Table 25.0 below. The inputs are A and B (both 4-bit) and the result is
X (5-bit).
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Table 25.0 — ALU operations supported (taken directly from source).

Symbolic Name Value Description
OP_NOP 0 no operation
OP_INCA 1 X =A++
OP_DECA 2 X =A-
OP_NOR 3 X=ANORB
OP_OR 4 X=AORB
OP_XOR 5 X=AXORB
OP_XNOR 6 X=AXNORB
OP_NAND 7 X=ANAND B
OP_AND 8 X=AANDB
OP_NOTA 9 X=NOTA
OP_NOTB 10 X=NOT B
OP_SHR 11 X=A>>1
OP_SHL 12 X=A<<1
Note: opcodes 13, 14, 15 not allocated yet, feel free to add
them.

As you can see the ALU is missing addition and subtraction of A and B. This is due to space in the
silicon. When | had add/subtract of the 4-bit operands, almost nothing else would fit. Thus, in the
end, | decided better to have a large repertoire of logical operations rather than only a couple math
operations.

Finally, since the ALU is asynchronous, all operations are not stored. In other words, when you increment A for example
with the opcode OP_INCA, A is not incremented, rather a copy of A is made then +1 added to that and assigned to X.
But, the moment you remove the opcode, the results are removed as well. Thus, to store this result you would need a
clock and final assignment back to A.

7.10.1 Setup and Parts Needed

For this lab you need:

= 28 wires, (17) short, (11) long.
= Alot of patience.

Make sure you have the MACH64 powered off while connecting everything and you should have the following settings:

= VCCIO SEL switch set at 3.3V (might as well conserve power).
= J15jumpers all on (to make sure the on-board CPLD is programmed).

7.10.2 Assembly

Step 1: Netlist connections — In this step you will connect up all the wires for the project with the power OFF. In this lab
there is only a netlist of from and to points, there are no other components and the solderless breadboard area isn’t
needed. Also, as usual the design could use any 1O pins you like, but | try to use 10 pins that are closest to the headers
they are going to plug into. Additionally, now and then | like to throw in an example where an 10 on the far side of the chip
is mixed with another IO, just to show that the fitter will route whatever you tell it to.

Make sure power is OFF while you are building the circuit! And pay close attention to long and

NOTE short wire suggestions. And as always triple check your connections especially with this circuit,
since it nearly uses up all the I/O pads and it's really easy to short one of the power supply lines if
you plug something into the wrong header port, so be careful.
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Table 26.0 — Netlist for the “Simple ALU” lab.

Net # Instructions

Input A connections (4) from DIP switches

Connect a short wire from pin 14 (B8) on the CPLD header to DIP switch DS11 (leftmost bank).
Connect a short wire from pin 15 (B10) on the CPLD header to DIP switch DS10 (leftmost bank).
Connect a short wire from pin 16 (B12) on the CPLD header to DIP switch DS9 (leftmost bank).
Connect a short wire from pin 17 (B14) on the CPLD header to DIP switch DS8 (leftmost bank).

Alw|n|=

Input B connections (4) from DIP switches

Connect a short wire from pin 20 (C0) on the CPLD header to DIP switch DS3 (rightmost bank).
Connect a short wire from pin 21 (C2) on the CPLD header to DIP switch DS2 (rightmost bank).
(
(

)
)
Connect a short wire from pin 22 (C4) on the CPLD header to DIP switch DS1 (rightmost bank).
Connect a short wire from pin 13 (C6) on the CPLD header to DIP switch DSO0 (rightmost bank).

[ee] IN] Kol &)

Output A connections (4) to LEDs

9 Connect a short wire from pin 48 (A8) on the CPLD header to LED L19 (leftmost bank).
10 Connect a short wire from pin 46 (A4) on the CPLD header to LED L18 (leftmost bank).
11 Connect a short wire from pin 45 (A2) on the CPLD header to LED L17 (leftmost bank).
12 Connect a short wire from pin 44 (A0_GOEQ) on the CPLD header to LED L16 (leftmost bank).

Output B connections (4) to LEDs

13 Connect a short wire from pin 41 (D14_GOE1) on the CPLD header to LED L11 (middle bank).
14 Connect a short wire from pin 40 (D12) on the CPLD header to LED L10 (middle bank).

15 Connect a short wire from pin 39 (D10) on the CPLD header to LED L9 (middle bank).

16 Connect a short wire from pin 38 (D8) on the CPLD header to LED L8 (middle bank).

Output X connections (5) to LEDs

17 Connect a short wire from pin 34 (D6) on the CPLD header to LED L4 (rightmost bank).
18 Connect a long wire from pin 33 (D4) on the CPLD header to LED L3 (rightmost bank).
19 Connect a long wire from pin 32 (D2) on the CPLD header to LED L2 (rightmost bank).
20 Connect a long wire from pin 31 (D0) on the CPLD header to LED L1 (rightmost bank).
21 Connect a long wire from pin 28 (C14) on the CPLD header to LED L0 (rightmost bank).

Output LT, GT, EQ connections (3) to LEDs

22 Connect a long wire from pin 2 (A10) on the CPLD header to LED L7 (rightmost bank).
23 Connect a long wire from pin 3 (A12) on the CPLD header to LED L6 (rightmost bank).
24 Connect a long wire from pin 4 (A14) on the CPLD header to LED L5 (rightmost bank).

Input Opcode connections (4) to pushbuttons

25 Connect a short wire from pin 7 (B0) on the CPLD header to push button PB3 at J17 pin 3.
26 Connect a short wire from pin 8 (B2) on the CPLD header to push button PB2 at J17 pin 2.
27 Connect a short wire from pin 9 (B4) on the CPLD header to push button PB1 at J17 pin 1.
28 Connect a short wire from pin 10 (B6) on the CPLD header to push button PB0 at J17 pin 0.
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Figure 106.0 — The completed Simple ALU.

Your project should look like the image shown in Figure 106.0 more or less. You might have different color wires with your
kit and a different PCB color, but the “net list” and setup should be identical.

7.10.3 Compiling the Project

The code for the project is named mach64_kit_alu_01.abl and is located here:

\MACH64\sources\ mach64_kit_alu_01.abl

Step 1 — Loading the code into tool

Go ahead and import it into your project by selecting the left pane of the ispLEVER Classic navigator and clicking on the
device node LC4064V-75T48I and then right clicking to get the context menu, then select “Import” and locate the file on
the CD or your local hard drive. Make sure to make it the active or top most file if you have more in your project.

Step 2 — Compiling the code

Select the filename in the “Sources” pane on the left, this should change the context to the processes for a source file.
Then double click “Compile Logic” in the “Processes for current source” pane and if all goes well you should see a
green arrow. The code is listed below for reference:

MODULE mach64_kit_alu_01
%/ﬁ/{é/////////{//////4///////////////////////////////////////////////////////////////////////////
u e

or: Andre' LaMot
;/ Last Modified:
;? Description: Simple ALU (arithmetic Togic unit), non-clocked asynchronous
// Inputs: two 4-bit operands input on DIP switches, one 4-bit operator input on pushbuttons.
// outputs: cogies of the 4-bit inputs, so they are visible, connected to LEDs, along with the
// 5-bit results of the ALU OEeration (4-bit plus carry) as well as a 3-bit relational
;? output that indicates if the operators are less than, equal, greater than.
L11177777777777771777777777777777777777777777777/77777777777777/7/777777///777/7////7/7////////////
DECLARATIONS

// ALU operation constants, set the most common operations to 1,2,4,8,

// so they are easy to press the buttons

// operation output

OP_NOP = 0; // no operation
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OP_INCA = 1; // X = A++

OP_DECA = 2; // X = A--

OP_.NOR = 3; // X = A NOR B

OP_OR = 4; // X = A OR B

OP_XOR =5; // X = A XOR B

OP_XNOR = 6; // X = A XNOR B

OP_NAND = 7; // X = A NAND B

OP_AND =8; // X =A AND B

OP_NOTA = 9; // X = NOT A

OP_NOTB = 10; // X = NOT B

OP_SHR = 11; // X =A > 1

OP_SHL = 12; // X =A<< 1

// inputs and outputs for operands and result

lin_a3..!in_a0 pin 14..17; // inputs for register A, not registered since this system is non-clocked
1in_b3..!in_b0 pin 20..23; // inputs for register B, not registered since this system is non-clocked

out_a3..out_a0 pin 48, 46..44 istype 'com'; // output for register A, not registered
out_b3..out_b0 pin 41..38 istype 'com'; // output for register B, not registered

x4..x0 pin 34..31, 28 istype 'com'; // output for result (5-bit to hold carry for addition)
// for magnitude comparisons

gt pin 2 istype 'com'; // output for A > B

Tt pin 3 istype 'com'; // output for A < B

eq pin 4 istype 'com'; // output for A ==

// ALU operand selection push button inputs

Ipb3..!pb0 pin 7..10; // used for operation select buttons

// set declarations

opcode = [pb3..pb0]; // set for operation selected

in_a = [in_a3..in_a0]; set for input A

in_b = [in_b3..in_b0]; // set for input B

out_a = [out_a3..out_al]; // set for output A

out_b = [out_b3..out_b0]; // set for output B

X = [x4..x0]; // holds output result of ALU operation
EQUATIONS

// the ALU is totally combinatorial and not clocked,

// so we simply generate all the outputs based on the inputs

// of course some operat1ons take longer than others to compute,

// the "fitter report" can give insight into this showing

// the slowest paths in the system and the maximum operational rate

// NOTE: there isn't enough silicon to support addition with all these other operands,
// so if you want to add that then you

// have to remove quite a few others!

// first the magnitude comparisons

gt = (in_a > in_b);
Tt = (in_a < in_| b)
eq = (in_a == in_| ),

// send 1inputs to outputs unscathed
out_a = in_a;
out_b in_b;

// now ALU operation, lots of ways to do this with clever syntax, but let's use straightforward syntax
when (opcode == OP_NOP) then // = 0, no operation

{
// do nothing
// set x =0
x = 0;
} // end when
when (opcode == OP_INCA) then // =
// set x = A + 1

x = [0, in_a3, in_a2, in_al, in_a0] + [0,0,0,0,1];
} // end when
else

when (opcode == OP_DECA) then // =

// set x = A -1
x = [0, in_a3, in_a2, in_al, in_a0] - [0,0,0,0,1];
} // end when

else

when (opcode == OP_NOR) then // = 3, X = A NOR B

// set x = in_a NOR in_|
x = I ([1, in_a3..in_a0] # [1, in_b3..in_b0]);
} // end when

else

when (opcode == OP_OR) then // =4, X = A ORB
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in_a OR in_|
= ([0, in_a3..in_a0] # [0,
} // end when
else
when (opcode

OP_XOR) then

// set x = in_a XOR 1in_b
x = ([0, in_a3..in_a0] $
} // end when

[01

else
when (opcode

// set x = in_a XNOR 1in_b
x = ! ([1, in_a3..in_a0]
} // end when

else

when (opcode

in_a NAND in_b
.in_a0] & [1,

// set x
= I([1, in_a3.
} // end when
else
when (opcode

== OP_AND) then
// set x = in_a AND in_b
x = ([0, in_a3..in_a0] & [O,
} // end when

else

when (opcode == OP_NOTA) then //
// set x = lin_a
x = I([1, in_a3.
} // end when

else

when (opcode == OP_NOTB) then //

.in_a0]);

// set x = lin_a
x = ! ([1, in_b3..in_b0]);
} // end when
else
when (opcode == OP_SHR) then //
// set x = A >> 1
x = [0, 0, in_a3..in_al];
} // end when
else
when (opcode == OP_SHL) then //

// set x = A << 1
x = [in_a3..in_a0, 0];
} // end when

$ [0,

END

Code Analysis

.i

/] =

.i

OP_XNOR) then // =

OP_NAND) then // =

// =

.i

n_b3..in_b0]);
5, X = A XOR B
n_b3..in_b0]);
X = A XNOR B
in_b3..in_b0]);
X = A NAND B
in_b3..in_b0]);
X = A AND B
n_b3..in_b0]);
9, X = NOT A
10, X = NOT B
11, X = A>> 1
12, X =A<< 1

There is way too much code to cover all of it, so we are only going to discuss the general operation and a single example.
The idea of the ALU is that two 4-bit “operands* are fed into it along with a 4-bit “opcode”. The operands are input on
DIP switches, the opcode on the pushbuttons which when un-pressed input code 0000 (due to inversion and pullups)
which is the OP_NOP. This is good, since we don’t want the ALU to do anything when you aren’t pressing any of the

pushbuttons.

Now, since the ALU is totally non-synchronous, it’s continuously evaluating the opcode and then running thru the large
WHEN-THEN case statement where there is a clause for each possible opcode. Whichever opcode is on the bus will be
combinatorially computed immediately. But, before the WHEN-THEN statement there are a couple code fragments of
interest. One of them simply copies the inputs to the outputs for display on the LEDs:

// send
out_a = in_a;
out_b = 1in_b;

inputs to outputs unscathed

The second does a magnitude comparison which is constantly output to LEDs as well:

// first the magnitude comparisons
gt = (in_a > in_b);

It = (in_a < in_b);

eq = (in_a == in_b);

147



MACHG64 Programmable Logic Starter Kit Hands On Guide Version 1.0 — 2008, Author: Andre’ LaMothe

And remember, all this happens at the same time. There is no first or second (the comment is just for organization).
Alright, now let’s get back to the big case statement. Let’s say that the opcode OP_OR is on the inputs then this piece of
code will start to execute:

when (opcode == OP_OR) then // =4, X = A OR B

// set x = in_a OR 1in_
x = ([0, in_a3..in_a0] # [0, in_b3..in_b0]);
} // end when

All it does is OR the two operands together and push them out to X for display. All the ALU operations work this way.
Lastly, say you wanted to add an opcode? Let’s just make something up. How about reverse the bits of operand A? First,
we need to define the opcode, let’s call it OP_REVA, we need to add it at the top of the source with the other opcodes like
this:

OP_NOTB

=10; // X = T B
OP_SHR =11; // X=A>1
OP_SHL = 12; // X = A << 1
OP_REVA = 13; // X = [a0, al, a2, a3], bitwise reversal

So far so good. Next, we need to add the case statement to the WHEN-THEN to do the work. Let’s place it at the end
right after the last opcode:

else

when (opcode == OP_SHL) then // = A<<1

// set x = A << 1
x = [in_a3..in_a0, 0];
} // end when
else
when (opcode == OP_REVA) then // = 13, X

[a0, al, a2, a3]

// set x = A << 1
x = [0,in_a0..in_a3];
} // end when

Almost too easy isn't it! But, watch out if you try to implement any math related operations they will use up nearly all of the
silicon. Keep an eye on this by reviewing the “Fitter Report”.

Step 3 - Fitting the Design

After the code has successfully compiled, it’s time to fit the design into the target device. So, select the device node in the
“Sources“ pane to the left. This should bring up the much more complex context menu in the “Processes for current
source” pane that have the “Fit Design” option. Go ahead and double click “Fit Design”. You might get a dialog for the
constraints that pops up, select “Import” if it does. This simply means to import the constraints (like pin declarations)
from your file and not to read them from an external constraint file. This is what we will do in most cases, but in some
cases we might create a constraint file to fine tune the constraints. After the fitting process, you should get a green check
mark, or at least yellow check mark next to the “Fit Design’ process.

Step 4 — Programming the CPLD with the JEDEC File

The final step in the process is to download the JEDEC bitstream file into the CPLD itself. Finally, turn the power ON, so
the PC can see the onboard programmer and initiate communications.

The reason why we keep the power off until now is that the previous designs could have inputs
going to outputs and outputs going to inputs which cause a lot of current. So each new netlist will
potentially cause electrical shorts until the new program is downloaded, thus we want to keep the
power OFF until we are ready to download the correct program for the netlist to minimize wear and
tear on the driver 1O circuits.
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Go ahead and run the ispVM System from the toolbar or from the Tools menu on the main menubar. You should already
have a configuration file that represents the ispMACH 4064 chip that refers to the output JEDEC file in your project which
should be called something like mach_64_test_01.jed or whatever you named it. Remember, the configuration file for the
ispVM System has both the device (the ispMACH 4064 in this case) and the JEDEC file in the configuration file. This way,
no matter what you compile in the compiler and fitter, they always output the same JEDEC filename which you can always
program into the chip with the ispVM System tool. Anyway, download the bits into the chip by pressing the green GO
button on the toolbar of the ispVM System tool. It should pause for a few seconds and you should have success and see
PASS next to the device line in the window.

If there is a problem, make sure of the following:

1. The parallel port cable is plugged in.

2. The power is on.

3. The JEDEC file referred to in the configuration file does indeed exist and the device (the chip) is correct.
4. You have installed the drivers for the parallel port.

You should have done all these things previously in the setup and test run, so they should all be familiar to you.

7.10.4 Hands-On
Experiment 1: Input two values on A and B DIP switches, then try every single opcode with the pushbuttons. It’s a bit

hard pressing all four pushbuttons, but you will manage. Confirm that all the opcodes work and the results on output X
and the LT, GT, EQ outputs are always correct.

7.10.5 Summary

This lab shows how to use the CPLD to create a fairly full featured ALU (minus the math operations). The code is
amazingly straightforward as well. However, this lab also shows that math operation on the CPLD eat silicon up very
quickly, so if you want to perform something as simple as 8-bit addition, be prepared to watch your silicon eaten alive.

7.10.6 Exercises

1. See if you can output the result X on the 7-segment display. You just have enough free IOs to do this, but you won’t be
able to drive the LEDs with X anymore, you will only be able to drive the 7-segment.

2. Add opcodes for bit reversal of A and B, add an opcode that counts the number of ON bits in A.

3. Add a clock signal with the 1.0MHz clock that latches X always, then instead of the OP_NOP assigning 00000 to X
make it maintain state. This way, you can see the results of your last operation on X.

4. Try and create an additional operation, see how many of the other opcodes you have to comment out to fit addition.

5. If we have a 8-bit opcode and we wanted to support immediate values of 3-bits in the opcode itself, how many opcodes
are possible?

Answers
5. Given that the desired opcode format is CCCCCDDD where Ds stand for the immediate value bits and Cs stand for the

opcode bits, then there are 5-bits for opcodes, or 2° = 32 possible opcodes. This is how many ARM processors encode
constants as part of the 16/32 bit instruction itself, that's why they are limited to 8-12 bits usually.
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