
Manual
for

xgs Basic

Copyright 2009, Kenneth G. Goutal.  All rights reserved.

This manual describes the XGS Basic system, version 1.0.

This system consists of the following parts:

● the compiler (xgsbasic.exe)
● the serial downloader to the XGS PIC (sdwrite.exe)
● a simulator for simple debugging on your PC (basicvm.exe)
● the virtual machine 

The compiler program is called XGSBASIC.EXE.  It is an MS-Windows console application; 
that is, in runs on MS-DOS, or under MS-Windows but only using the COMMAND or CMD 
application.  You will need to use one of those methods to navigate to the folder and run 
command lines arguments. A full description of the command line syntax is given below.

The microSD downloader program is called SDWRITE.EXE. It likewise is an MS-Windows 
console application. A full description of the command line syntax is given below.

The simulator program is called BASICVM.EXE.  It, too, is an MS-Windows console application. 
It does not support graphics or sound or, indeed, any input/output other than a PRINT 
statement. A full description of the command line syntax is given below.

The virtual machine runs on the XGS PIC. You can either choose to compile this or use one 
of the already compiled BASICVM_PIC_TILE.HEX or BASICVM_PIC_BITMAP.HEX files.  If you do 
choose to compile it make sure you follow all instructions in the main source file. 

Downloading the hex file is the easiest method and you may use the PICKit 2 standalone gui 
or go to the File->Import menu in MPLAB lab to load the hex into MPLAB and then program 
using the PICKit2 like normal.

Support for the XGS PIC 16-Bit Development Kit may be obtained from Nurve Networks LLC, 
support@nurve.net, www.xgamestation.com.

mailto:support@nurve.netw
http://www.xgamestation.com/


1.1 Command Line Syntax  
To compile a Basic source file to a file that can be downloaded:

XGSBASIC [ -o output-file ] [ -p port ] [ -c ] input-file

The default for output-file is the same name as the input file but with the ".bai" 
extension.

The default for port is "COM4".

Use -c to compile a file without downloading it.

So, to compile and run the tile graphics demo:

1. Flash the basicvm_pic_tile.hex file into the XGS PIC

2. Compile the lifetile.bas file and download it to the XGS PIC

3. Reset the XGS PIC to cause it to load and run the downloaded file XGSBASIC 
lifetile.bas

The Basic runtime code automatically loads and starts the file named "autorun.bai" on 
reset so that would be a good choice for the download-file. There is no default for the 
download-file.  Instead, no download is performed and only the output file is written.

The default for the port argument is "COM4". This should be set to the COM port that 
the XGS PIC board is connected to. For example, if your XGS PIC board is connected to 
COM6, use the string "-p COM6" on the command line. The port will be configured to 
9600 baud, 8 bits no parity.

To run Basic programs, you'll need to download the Basic runtime into your XGS PIC 
board. The runtime can be built from the files included in this directory. The main file is 
called db_vmmain_v010.c and it lists all of the other files needed at the start. Don't 
forget to change the receive buffer size in the UART driver before compiling and 
flashing the runtime.

To load the sample program, connect your XGS PIC to your PC using the USB2Serial 
adapter and determine the COM port that gets assigned to the adapter. Insert a 
formatted microSD card into the XGS PIC and type the following command:

XGSBASIC -p com2 life.bas

This should compile the life.bas demo program and download it into the microSD flash 
card. After that, just reset the XGS PIC and the program should start. A random pattern 
will be generated and then the "life" algorithm will be run for 30 generations. After that, 
a new random pattern will be generated and the process starts over. If you like what is 
unfolding with a particular pattern, you can press the yellow button on the gamepad and 
that will extend that pattern beyond the normal 30 generations. Just keep holding the 
button down until you're tired of watching that pattern. When you release the button, a 
new pattern will be generated.



1.2 Language Syntax  

Names:

Before going further, a discussion of names is in order.  Several kinds of things are 
identified by names:  variables (both scalars and arrays); statement labels; and 
subroutines.

A name can be at most 32 characters long.  A name must start with a letter but can 
contain letters of either case, digits, "$", "%" and "_".  Also, a variable name that ends 
with "$" is assumed to be a string variable unless otherwise specificed; similarly, a 
variable name that ends with "%" is assumed to be an integer variable.

it should be noted that xgsBasic is not case-sensitive:  the names “foo”, “Foo”, and “FOO” 
are all the same name as far as it is concerned.

Programs in xgsBasic consist of statements.  Each statement occupies a single line, and 
each line consists of a single statement.

Expressions:

Expressions are used in many of the statements of this language.  While there are some 
statements that are so simple that they do not require any expressions, expressions are 
so fundamental that we will discuss them before discussing the actual statements.

Statements:

Any statement may be preceded by a label.  Doing so is required for some purposes, but 
most lines do not require them, and should not have them.  This dialect of BASIC does 
not support the concept of line numbers.  The use of labels will be discussed later, as 
necessary.

Some statements are not complete in and of themselves, and must be used in groups, or 
at least in pairs.  For example, the SUB statement begins the definition of a subroutine. 
The END SUB statement is ends the definition.  All statements in between the two 
statements a part of that subroutine.



1.2.1 Expressions  
An expression is either a constant, a variable, or some combination of one or more 
of those using various operators.  There are so many that it is helpful to consider 
them in groups or categories:

● Constant Expressions
decimal-constant  0xhex-constant  string-constant

● Arithmetic Expressions
+  -  *  /  MOD -

● Logical Expressions
NOT  OR  AND  =  <>  <  <=  >=  >

● Bitwise Expressions
~  &  |  ^  ~&  ~|  <<  >>

● Other Expressions
(...)  variable  array-reference  function-call

Below are descriptions of each of them, by category.  We examine constant 
expressions first, because it we will see them in examples of all the other 
expressions.



1.2.1.1 Constant Expressions  
decimal-constant  0xhex-constant  string-constant

1.2.1.1.1 decimal constant  

The value of this expression is a specific integer value represented as a 
signed decimal number.

Syntax:
[ { + | - } ] decimal-digit-string

where decimal-digit-string is from 1 to 5 decimal digits with no intervening 
characters of any kind.  The lower bound is -32768, and the upper bound is 
32767.
A “minus” (negative-value) symbol may precede the decimal-digit-string, and 
space is allowed between the sign and the decimal-digit-string.

Examples:
This expression: has this value:

0 0

-0 0

000 0

9 9

09 9

-9 -9

-09 -9

32767 32767

– 32768 -32768

Counterexamples:

32768  (too large a positive value) -32768

-32769  (too large a negative value) 32767



1.2.1.1.2 hexadecimal constant  

The value of this expression is a specific integer value represented as a 
unsigned hexadecimal number. 

Syntax:
[ { + | - } ] 0xhex-digit-string

where hex-digit-string is from 1 to 4 hexadecimal digits with no intervening 
characters of any kind.  The lower bound is 0000, and the upper bound is FFFF.
The two-character string 0x prefixes the hexadecimal number in order to let 
the compiler (and a subsequent human reader) know that any decimal digits 
are actually part of a base-sixteen number.  No space is allowed between the 
two characters 0 and x or between the x and the hex-digit-string.  The letter 
x must be in lower case;  it must not be a capital or upper-case X.

A “minus” (negative-value) symbol may precede the 0x, and space is allowed 
between the sign and the 0x.

Examples:
This expression: has this value:

0x0 0

0x00000 0

0x9 9

0x00009 9

0xF 15

0x0000F 15

0xFF 255

0xFFF 4095

0x7FFF 32767

0x8000 -32768

0xFFFF -1

0xFFFFF -1

0xf 15

0x0000f 5

-0xf -15

0Xf  (upper-case X) (none)
0xG  (invalid hex digit) (none)



1.2.1.1.3 string constant  

The value of this expression is a specific sequence of printable characters.  

Syntax:
" printable-characters "

The printable characters include the blank (0x20) as well as punctuation, 
digits, and upper-case and lower-case letters.

The characters of the string must be enclosed in a pair of double-quotes ( 
”...” );  hence, the double-quote character itself may not be included as part 
of a string constant.

Examples:
This statement: produces this output:

PRINT "ABcd 09 ,.;:!?" ABcd 09 ,.;:!?

PRINT "'ABcd 09 ,.;:!?'" 'ABcd 09 ,.;:!?'



1.2.1.2 Arithmetic Expressions  

Arithmetic expressions include those with the following operators:

+  -  *  /  MOD  -

1.2.1.2.1 addition  

Syntax:
expr

1
 + expr

2

This expression adds expr
2
 to expr

1
.

Example:
The value of the following expression is 11:

6 + 5

1.2.1.2.2 subtraction  

Syntax:
expr

1
 – expr

2

This expression subtracts expr
2
 from expr

1
.

Example:
The value of the following expression is 6:

11 - 5

1.2.1.2.3 multiplication  

Syntax:
expr1 * expr2

This expression subtracts expr
2
 from expr

1
.

Example:
The value of the following expression is 30:

6 * 5

1.2.1.2.4 division  

Syntax:
expr1 / expr2

This expression divides expr
1
 by expr

2
.

Example:
The value of the following expression is 6:

30 / 5



1.2.1.2.5 modulo  

Syntax:
expr1 MOD expr2

This expression divides expr
1
 by expr

2
, and returns the remainder.

Example:
The value of the following expression is 0:

30 MOD 5

The value of the following expression is also 0:

30 MOD 6

The value of the following expression is 1:

31 MOD 5

The value of the following expression is 2:

30 MOD 4

1.2.1.2.6 negation  

Syntax:
- expr

This expression negates, or returns the negative value of, expr.

Example:
The value of the following expression is negative three:

- 3



1.2.1.3 Relational Expressions  
=   <>   <   <=   >   >=

Relational expressions make arithmetic comparisons between numbers.  They 
return 0 (zero) to represent FALSE and 1 (one) to represent TRUE.

1.2.1.3.1 equality  

The value of this expression is 1 (one) if the specified expressions are equal 
to each other;  otherwise, the value is 0 (zero).

Note: This expression should not be confused with the assignment 
statement!

Syntax:
expr

1
 = expr

2

Examples:
The value of the following expression is 0 (representing FALSE):

3 = 2

The value of the following expression is 1 (representing TRUE):

4 = 4

1.2.1.3.2 inequality  

The value of this expression is 1 (one) if the specified expressions are not 
equal to each other;  otherwise, the value is 0 (zero).

Syntax:
expr

1
 <> expr

2

Examples:
The value of the following expression is 0 (representing FALSE):

3 <> 3

The value of the following expression is 1 (representing TRUE):

3 <> 4



1.2.1.3.3 less-than  

The value of this expression is the 1 (one) if the value of expr
1
 is strictly less 

than the value of expr
2
;  otherwise, the value is 0 (zero).

Syntax:
expr

1
 < expr

2

Examples:

The value of the following expression is 0 (representing FALSE):

4 < 3

The value of the following expression is 0 (representing FALSE):

4 < 4

The value of the following expression is 1 (representing TRUE):

4 < 5

1.2.1.3.4 less-than-or-equal-to  

The value of this expression is the 1 (one) if the value of expr
1
 is less than or 

equal to the value of expr
2
;  otherwise, the value is 0 (zero).

Syntax:
expr

1
 <= expr

2

Examples:
The value of the following expression is 0 (representing FALSE):

4 <= 3

The value of the following expression is 1 (representing TRUE):

4 <= 4

The value of the following expression is 1 (representing TRUE):

4 <= 5



1.2.1.3.5 greater-than  

The value of this expression is the 1 (one) if the value of expr
1
 is strictly 

greater than the value of expr
2
;  otherwise, the value is 0 (zero).

Syntax:
expr

1
 > expr

2

Examples:
The value of the following expression is 0 (representing FALSE):

6 > 7

The value of the following expression is 0 (representing FALSE):

7 > 7

The value of the following expression is 1 (representing TRUE):

7 > 6

1.2.1.3.6 greater-than-or-equal-to  

The value of this expression is the 1 (one) if the value of expr
1
 is greater than 

or equal to the value of expr
2
;  otherwise, the value is 0 (zero).

Syntax:
expr

1
 >= expr

2

Examples:
The value of the following expression is 0 (representing FALSE):

6 >= 7

The value of the following expression is 1 (representing TRUE):

7 >= 7

The value of the following expression is 1 (representing TRUE):

7 >= 6



1.2.1.4 Logical Expressions  
NOT  OR  AND

Logical expressions treat 0 (zero) as FALSE and any non-zero value as TRUE. 
Similarly, they return 0 (zero) to represent FALSE and 1 (one) to represent TRUE.

Note: These are not the same as bitwise operations with the same or similar 
names.  Logical operators perform their operations on the whole value of each 
expression, and return either an integer 0 (zero) or an integer 1 (one);  bitwise 
operators (see below) perform their operations on corresponding bits in each of 
the expressions, and return a new integer representing those result of those 
operations.

1.2.1.4.1 logical NOT  

The value of this expression is TRUE if the specified expression is FALSE , and 
is FALSE  if the specified expression is TRUE.

Syntax:
NOT expr

Examples:
The value of the following expression is 1 (representing TRUE):

NOT 0

The value of the following expression is 0 (representing FALSE):

NOT 3



1.2.1.4.2 logical OR  

The value of this expression is TRUE if the values of either (or both) of  the 
specified expressions is (or are) TRUE.

Syntax:
expr

1
 OR expr

2

Examples:
The value of the following expression is 0 (representing FALSE):

0 OR 0

The value of the following expression is 1 (representing TRUE):

0 OR 3

The value of the following expression is 1 (representing TRUE):

-12 OR 0

The value of the following expression is 1 (representing TRUE):

-11 OR 1

1.2.1.4.3 logical AND  

The value of this expression is TRUE if the values of both of  the specified 
expressions are TRUE.

Syntax:
expr

1
 AND expr

2

Examples:
The value of the following expression is 0 (representing FALSE):

0 AND 0

The value of the following expression is 0 (representing FALSE):

0 AND 3

The value of the following expression is 0 (representing FALSE):

-12 AND 0

The value of the following expression is 1 (representing TRUE):

-11 AND 1



1.2.1.5 Bitwise Expressions  
~  &  |  ^  <<  >>

1.2.1.5.1 bitwise NOT  

The value of this expression is the integer representation of the inversion, or 
ones-complement, of the bits of the specified expression.

Syntax:
~ expr

Examples:
This expression: has this value:

~ 0 -1
~ 0x0000 0xFFFF

~ -1 0
~ 0xFFFF 0x0000

~ -2 1
~ 0xFFFE 0x0001

~ -256 255
~ 0xFF00 0x00FF

~ -275 274
~ 0xFEED 0x0112



1.2.1.5.2 bitwise inclusive OR  

The value of this expression is the integer representation of the inclusive OR 
of the corresponding bits of the specified expressions.  That is, if a given bit 
in expr1 is set to 1 or the corresponding bit in expr2 is set to 1, or both bits 
are set, then the corresponding bit in the result is set to 1;  otherwise, it is 
set to 0 (zero).

Syntax:
expr

1
 | expr

2

Examples:
This expression: has this value:

     0 | 1 1
0x0000 | 0x0001 0x1

     1 | 2 3
0x0001 | 0x0002 0x0003

     2 | 3 3
0x0002 | 0x0003 0x0003

  -256 | 255 -1
0xFF00 | 0x00FF 0xFFFF



1.2.1.5.3 bitwise exclusive OR  

The value of this expression is the integer representation of the exclusive OR 
of the corresponding bits of the specified expressions.  That is, if a given bit 
in expr1 is set to 1 or the corresponding bit in expr2 is set to 1, but not both 
bits are set, then the corresponding bit in the result is set to 1;  otherwise, it 
is set to 0 (zero).

Syntax:
expr

1
 ^ expr

2

Examples:
This expression: has this value:

     0 ^ 1 1

0x0000 ^ 0x0001 0x0001

     1 ^ 2 3

0x0001 ^ 0x0002 0x0003

     2 ^ 3 1

0x0002 ^ 0x0003 0x0001

 65280 ^ 255 -1

0xFF00 ^ 0x00FF 0xFFFF

 43690 ^ 21845 -1

0xAAAA ^ 0x5555 0xFFFF

 43690 ^ 65280 21930

0xAAAA ^ 0xFF00 0x55AA



1.2.1.5.4 bitwise AND  

The value of this expression is the integer representation of the AND of the 
corresponding bits of the specified expressions.  That is, if a given bit in 
expr1 is set to 1 and the corresponding bit in expr2 is set to 1, then the 
corresponding bit in the result is set to 1;  otherwise, it is set to 0 (zero).

Syntax:
expr

1
 & expr

2

Examples:
This expression: has this value:

     0 & 1 0
0x0000 & 0x0001 0x0000

     1 & 2 0
0x0001 & 0x0002 0x0000

     2 & 3 2
0x0002 & 0x0003 0x0002

  -256 & 255 0
0xFF00 & 0x00FF 0x0000

-21846 & 21845 0
0xAAAA & 0x5555 0x0000

-21846 & -256 -22016
0xAAAA & 0xFF00 0xAA00



1.2.1.5.5 bitwise shift left  

The value of this expression is the integer representation of shifting expr
1 

left by the number of bits specified by expr
2
.

Syntax:
expr

1
 << expr

2

Examples:
This expression: has this value:

     1 << 1 2

0x0001 << 0x0001 0x0002

     1 << 2 4

0x0001 << 0x0002 0x0004

     1 << 8 256

0x0001 << 0x0008 0x0100

    15 << 4 240

0x000F << 0x0004 0x00F0

    15 << 8 3840

0x000F << 0x0008 0x0F00

   255 << 8 -256

0x00FF << 0x0008 0xFF00

   255 << 16 0

0x00FF << 0x0010 0x0000



1.2.1.5.6 bitwise shift right  

The value of this expression is the integer representation of shifting expr
1 

right by the number of bits specified by expr
2
.

Note: This is an arithmetic shift.  Hence, the sign bit (the most-significant 
bit) is preserved, and is also copied to the next bit to its right, for as 
many bits as specified by expr2.

Syntax:
expr

1
 >> expr

2

Examples:
This expression: has this value:

     1 >> 1 0

0x0001 >> 0x0001 0x0000

     1 >> 2 0

0x0001 >> 0x0002 0x0000

     2 >> 1 1

0x0002 >> 0x0001 0x0001

    15 >> 1 7

0x000F >> 0x0001 0x0007

   240 >> 4 15

0x00F0 >> 0x0004 0x000F

  -256 >> 8 -1

0xFF00 >> 0x0008 0xFFFF

  -256 >> 16 -1

0xFF00 >> 0x0010 0xFFFF



1.2.1.6 Other Expressions  
(...)  variable  array-reference  function-call

1.2.1.6.1 parentheses  

The value of this expression is the expressions inside the matched pair of 
parentheses.

Syntax:
( expr )

Parentheses simply provide the traditional way of grouping expressions 
together, particularly for the purpose of over-riding operator precedence.

Examples:
This expression: has this value:

6 / 2 + 4 7

( 6 / 2 ) + 4 7

6 / (2 + 4) 1

4 + 6 / 2 7

( 4 + 6 ) / 2 5

 



1.2.1.6.2 variable  

A variable is simply a value that changes, while the variable name remains 
the same.

Syntax:
variable

Examples:
This expression or statement: has this value or does this:

x (undefined!)

LET x = 6 assigns x the value 6

LET y=2 assigns y the value 2

z=4 assigns z the value 4

x 6

y 2

z 4

x / y 3

y + z 6

x / y + z 7

( x / y ) + z 7

x / (y + z) 1

z + x / y 7

( z + x ) / y 5



1.2.1.6.3 array reference or element  

An array is simply a variable that can contain or represent more than one 
value simultaneously, each one distinguished from the others by its index (or 
subscript).  The index may be any expression whose value is an integer;  that 
is, it may not be a floating-point value or a string.

Generally, an array is used to group together two or more values that are in 
some sense alike, for instance, the highest temperature on each day of the 
year, or the wave frequency of each note in a scale or tune.

Syntax:
variable ( index [ , index ] )

Example:
Suppose your program includes the following statements:

LET piano[40] = 261        REM C4

LET piano[41] = 277        REM C#4 or Db4

LET piano[42] = 293        REM D4

LET piano[43] = 311        REM D#4 or Eb4

LET piano[44] = 329        REM E4

LET piano[45] = 349        REM F4

LET piano[46] = 369        REM F#4 or Gb4

LET piano[47] = 391        REM G4

LET piano[48] = 415        REM G#4 or Ab4

LET piano[49] = 440        REM A4

LET piano[50] = 466        REM A#4 or Bb4

LET piano[51] = 493        REM B4

LET piano[52] = 523        REM C5

This stores the frequencies of the musical pitches noted in the comments 
into a set of array elements.  (Yes, those frequencies are approximate.)   The 
index of each array element is the piano key corresponding to that pitch.

You might then define a two-dimensional array to contain a sequence of 
notes.  Each element of this array would have two parts – the frequency, and 
the duration.  Something like this:

tada[1,1] = piano[52] REM “TA” on High C ...

tada[1,2] = 483 REM for almost half a second.

tada[2,2] = 0 REM Silence ...

tada[2,2] = 17 REM for just a jiffy.

tada[3,1] = piano[52] REM “DA” on High C ...

tada[3,2] = 1500 REM for 1.5 seconds.



1.2.1.6.4 function call  

The value of a function call is the value of the name of the function 
immediately prior to ending (or returning, or exiting).  See the section later in 
this document regarding how to define a function..

Syntax:
name ( [ arg [ , arg ] ... ] )

The name is just the name of the function.  

There can be any number of arguments, even none at all, as long as they 
match they number of arguments with which the function was defined.  

Each argument can be any expression, as long as it matches the type of 
expression of the corresponding argument with which the function was 
defined.

Example:
Suppose your program contains the following statements, which define a 
function  that computes the area of a right triangle, given the two orthogonal 
sides.

DEF rightTriangleArea ( side1, side2 )

rightTriangleArea = side1 * side2 / 2

END DEF

This function could then be called as follows:

LET A =  rightTriangleArea ( 3, 4 )

which would set the variable “A” to the value 3*4/2, or 6.  Or it could be 
called this way:

PRINT  rightTriangleArea(9,8)

which would display the number 36 (that is, 9*8/2) on a line by itself.

Now we are ready to consider the statements that use all these expressions.



1.2.2 Simple Statements  
Here is a list of statements that stand by themselves:

REM

OPTION

DEF1

DIM

IF2

LET

GOTO

CALL

PRINT

STOP

END

Here are descriptions of each of them:

1.2.2.1 REM  

Syntax:

REM [ comment text to end of line ]

1.2.2.2 OPTION  

Syntax:

OPTION TARGET = { “tile” | “bitmap” }

This statement is the way to set various compiler options.  At the moment the 
only one that is implemented is TARGET, which selects either the "tile" or "bitmap" 
graphics runtime environments.

1 There are two forms of the DEF statement.  One is a simple statement, requiring no other statements to be complete. 
That form is described in this section.  The other form requires a matching END DEF statement, and is described in the 
Compound Statements section, below.

2 There are two forms of the IF statement.  One is a simple statement, requiring no other statements to be complete. 
That form is described in this section.  The other form requires a matching END IF statement, and may also include 
ELSE or ELSE IF statements, and is described in the Compound Statements section, below.



1.2.2.3 DEF  

Syntax:

DEF name ( [ arg [ , arg ] ... ] )

...

END DEF

This form of the DEF statement is self-contained, and merely defines a constant; 
that is, it defines a name to have an unchangeable value.

Example

The following defines “hundredpi” to be a constant whose value is always 
(roughly) 100 times the value of π.

DEF hundredpi = 314

1.2.2.4 DIM  

Syntax:

DIM variable-defs

This statement is the way to declare one or more variables to be arrays.

1.2.2.5 LET  

Syntax:

[ LET ] l-value = expr

This is the assignment statement.  It assigns the expression to the right of the 
“equals” sign to the l-value on the left.  An l-value is just a way of saying 
something that can have a value assigned to it, i.e. either a scalar (one-
dimensional) variable or a single element of an array.

Note that the word LET is optional.  However, if present, it must be the first word 
of the statement, and no other word may be there instead.

Example:

LET A = 7

pixels_per_brick = 47

let ballWidth=15



1.2.2.6 IF  

Syntax:

IF expr THEN statement

This statement is a way for a program to do a thing or not do a thing.

Examples:

If a value is zero, set it to some specific (default) value:

IF number_of_monsters = 0 THEN LET number_of_monsters = 111

Similarly, if some counter has reached a predetermined maximum, set it back to 
one.

IF N >= 24 THEN N = 1

1.2.2.7 GOTO  

Syntax:

GOTO label

This statement causes the program execute the statement at “label” instead of 
executing the statement immediately following the GOTO statement.  The GOTO 
statement seems obvious and innocent at first, but has generally been found to 
cause complexity and confusion if used more than sparingly.  The xgsBasic 
language has many ways to organize sequences of statements in an orderly way, 
so the GOTO statement should be easy to avoid in most cases.

Example:

LET x=1

abc:  LET x=x+1

GOTO hijk

efg:  LET x=x-5

GOTO efg

hijk: LET x=x+2

STOP
END

Two questions immediately arise:  (1) Does this program ever finish?  (2) What is 
the value of x if and when it does?



1.2.2.8 CALL  

Syntax:

CALL name ( [ arg [ , arg ] ... ] )

This statement calls the specified subroutine with the specified arguments (if 
any).  Even if there are no arguments, the parentheses are required.  If there is 
more than one argument, each argument must be separated from the next by 
using a comma.  Note that the ellipsis (three periods in a row) just means that 
there may be an arbitrary number of arguments, each (except the first) preceded 
by a comma.  See subsection SUB, under Compound Statements, below.

Example:

SUB sayhi

PRINT “Hello, World!”

END SUB

CALL sayhi

CALL sayhi

CALL sayhi

This example defines a subroutine (see below) called “sayhi”, which merely 
displays the text string “Hello, World!”.  Following the definition, the subroutine 
is called three times in a row;  each time, it displays the same message.



1.2.2.9 PRINT  

Syntax:

PRINT [ expr [ [ { , | ; } expr ] ... ] ]

This statement displays text on the screen.  The text will represent zero or more 
expressions, as specified in the statement.  Each expression may be a string or 
decimal or hexadecimal constant, or a scalar variable, or an array element.  If no 
expressions are included, a blank line is displayed.  If only one expression is 
included, no other syntax is required.  If more than one expression is included, 
each must be separated from the next by either a comma or a semicolon.  

If the separator is a semicolon, the second expression will appear immediately 
adjacent to the previous expression;  in effect, they will appear to be 
concatenated.

On the other hand, if the separator is a comma, the second expression will begin 
at the next 8th column on the line.  

Examples:

a:  PRINT

b:  PRINT A

c:  PRINT pixels_per_brick ;  ballWidth

d:  PRINT pixels_per_brick ,  ballWidth

The example labeled “a” will print an empty or blank line.  

Example “b” will print the number “7” on a line by itself.  

Example “c” will print “4715” on a line by itself.

Example “d” will print “47      15” (that is “47” followed by 6 blanks or spaces, 
followed by “15”) on a line.

1.2.2.10 STOP  

Syntax:

STOP

This statement tells the program to stop altogether, regardless of where in the 
program it appears or how it was encountered.

1.2.2.11 END  

Syntax:

END

This statement tells the compiler that it is the last statement of the program.  It 
has no effect on the program at run time.  It is optional, but its use is 
encouraged.



1.2.3 Compound Statements  
Here is a list of statements that must appear in groups:

DEF3

END DEF

SUB

END SUB

IF4

ELSE IF

ELSE

END IF

FOR

NEXT

DO

LOOP

Here are descriptions of each of them:

3 There are two forms of the DEF statement.  One is a simple statement, requiring no other statements to be complete. 
That form is described in the Simple Statements section, above.  The other form requires a matching END DEF 
statement, and is described in the this section.

4 There are two forms of the IF statement.  One is a simple statement, requiring no other statements to be complete. 
That form is described in the Simple Statements section, above.  The other form requires a matching END DEF 
statement, and may also include ELSE or ELSE IF statements, and is described in the this section.



1.2.3.1 DEF  

This form of the DEF statement defines a function.

Syntax:

DEF name ( [ arg [ , arg ] ... ] )

...

END DEF

The statement itself (with the name and parentheses and arguments) specifies 
how the function will be called.  It must be followed by a matching END DEF 
statement (as shown).  All the statements in between specify what the function 
does to achieve the result that it returns.  In this form, the END DEF statement is 
required.

Inside of the function, the function's name is used as a variable to which to 
assign the return value; the value of that variable at the time the function 
completes execution is the return value of the function.  There is no RETURN 
statement, as in some other dialects of BASIC.

Examples:

The following defines a function that computes the area of a right triangle, given 
the two orthogonal sides.  The “body” of the function consists of just one 
statement, which computes the area of the square and divides that by 2, and 
assigns that the name of the function.

DEF rightTriangleArea ( side1, side2 )

rightTriangleArea = side1 * side2

rightTriangleArea = rightTriangleArea / 2

END DEF

The body of this function could just as easily be as a single line, as follows:

DEF rightTriangleArea ( side1, side2 )

rightTriangleArea = side1 * side2 / 2

END DEF

This function could then be called as follows:

LET A =  rightTriangleArea ( 3, 4 )

which would set the variable “A” to the value 6.  Or it could be called this way:

PRINT  rightTriangleArea(9,8)

which would display the number 36 on a line by itself.



1.2.3.2 SUB  

This statement defines a subroutine.

Syntax:

SUB name ( [ arg [ , arg ] ... ] )

END SUB

A subroutine is essentially the same as a function, except that it does not return 
a value (or “have a return value”).  See subsection CALL, under Simple 
Statements, above.

Example:

The following defines a subroutine that chooses a “fortune” at random, and 
displays it.  Note that it does not return the value of the fortune for any further 
processing.

SUB dpyRightTriangleArea ( side1, side2 )

PRINT side1 * side2 / 2

END DEF

This subroutine could be called as follows:

CALL  dpyRightTriangleArea ( 9, 8 )

which would have exactly the same result as the second example of calling the 
function in the previous section:  it would display the number 36 on a line by 
itself.



1.2.3.3 IF  

Syntax:

IF expr THEN statement

IF expr THEN

  [ ELSE IF expr THEN ]

  [ ELSE ]

  END IF

This statement is the way for a program to do different things instead of each 
other, depending on circumstances.

The simplest case provides the means to either do a thing or not do a thing.  The 
second form provides a way to do several things, or not do them;  or to do more 
than one alternative thing or set of things.

Examples:

If a value is zero, set it to some specific (default) value:

IF number_of_monsters = 0 THEN LET number_of_monsters = 111

Similarly, if some counter has reached a predetermined maximum, set it back to 
one.

IF N >= 24 THEN N = 1

If you need to do more than one thing (or not), use this form:

IF number_of_monsters = 0 THEN

  LET level = level + 1

  LET number_of_monsters = 111 * level

END IF

If you need to do two different things depending on circumstances, use this 
form:

DEF furry = 1

DEF flying = 2

IF level MOD 2 = 1 THEN

  monster_type = furry

ELSE

  monster_type = flying

END IF



If you need to do more than two different things, the IF ... THEN ... ELSE IF chain 
may be your answer:

DEF Sunday = 1

DEF Monday = 2

...

DEF Saturday = 7

IF (dayOFweek = Saturday)

  PRINT "Have a nice weekend!"

ELSE IF (dayOFweek = Sunday)

  PRINT "Have a nice Sunday!"

ELSE

  PRINT "Have a nice day!"

(This example is based on one in the PHP section of the w3schools.com web 
site.)

One IF statement can be “nested” inside another:

DEF furry = 1

DEF flying = 2

DEF slimy = 3

DEF arach = 4

IF level MOD 2 = 1 THEN

  IF LEVEL > 5 THEN

    monster_type = furry

  ELSE

    monster_type = slimy

  END IF

ELSE

  IF level > 5

    monster_type = arach

  ELSE

    monster_type = flying

  END IF

END IF



1.2.3.4 FOR  

Syntax:

FOR variable1 = expr1 TO expr2 [ STEP expr3 ]

statements

NEXT variable1

This statement is the way to do one or more statements over and over again, a 
certain number of times, each time setting the value of some variable to a new 
value.

First, the variable is set the value of the first expression.  Then the statements in 
the middle are executed.  The NEXT statement indicates that the variable (note 
that this is the same variable that is part of the FOR statement) should be set to 
the next value;  if the new value of the variable is equal to or greater than the 
second expression, the statements in the middle are skipped, and the next 
statement to be executed will be the one immediately following the NEXT 
statement.

By default – i.e.if the STEP clause is omitted – the next value is always one 
(integer 1) greater than the previous value.

The variable may be used in the statements between the FOR and NEXT 
statements, or not;  sometimes you only need it to control how many times a 
thing is done, not use it for anything else.

Examples:

Print out the numbers from 1 to 10:

FOR j = 1 TO 10

  PRINT j

  NEXT j

Print out every 3rd number from 1 to 20 (1, 4, 7, 10, 13, 16, and 19):

FOR j = 1 TO 20 STEP 3

  PRINT j

  NEXT j



1.2.3.5 DO  

Syntax:

DO { UNTIL | WHILE } expr

statements

LOOP

or

DO

statements

LOOP { UNTIL | WHILE } expr

This statement is the way to do one or more statements over and over again, 
based on very general criteria.  The two forms are equivalent, although the first 
format is generally clearer.

In either case, the use of UNTIL guarantees that the statements in the middle will 
be executed at least once, whereas with the use of WHILE there is no such 
guarantee – the statements inside the loop may not be executed at all.

In detail:  In the case of DO UNTIL expr ... LOOP (and DO ... LOOP UNTIL expr), 
the statement(s) inside the loop is (are) first executed once.  The expression is 
then evaluated, and if it is false, then the statement(s) is (are) executed again, 
and so on, until the expression is true.

In the case of DO WHILE expr ... LOOP (and DO ... LOOP WHILE expr), the 
expression is evaluated first, and while (or, as long as) the expression is true, 
the statement(s) in the middle is (are) executed over and over again.

IMPORTANT:  Unlike the FOR statement, the DO statement in all its forms can 
very easily become an “infinite”, i.e. never-ending, loop!  Specifically, if no 
statement(s) inside the loop alter any of the variables that make up the 
expression in the DO or LOOP statement, then the expression will never be altered, 
and can never become true (for UNTIL) or false (for WHILE).  Even changing one or 
more variables that make up the expression doesn't guarantee that the 
expression will change from false to true or vice versa, so considerable care is 
required.



Examples:

Get 128 bytes of data from somewhere (using a user-defined function):

byteCount = 0

DO until byteCount = 128

  CALL loadByte()

  byteCount = byteCount + 1

  LOOP

Get bytes of data from somewhere (using a user-defined function) until an EOF 
byte is encountered.  As each byte comes in, store it in a buffer, and keep a 
count.  Don't store the EOF in the buffer or include it in the count:

DEF EOF = 0x0F

i = 1

do until byte = EOF

  byte = getByte()

  if byte != EOF THEN

    buffer[i] = byte

    i = i + 1

    END IF

  LOOP

byteCount = i - 1



1.3 Language Summary  
This section summarizes the entire syntax of xgsBasic, using a format very similar to 
one known as Backus-Naur Form, or BNF.  In each definition, or “production”, the first 
term is the one being defined, and it is shown in normal typeface.  

The actual syntax is shown in bold face.  

By contrast, the meta-syntax – those characters indicating denoting which pieces of 
actual syntax are optional or alternatives – are shown in normal case.  

Keywords are shown in ALL-UPPERCASE, although (as noted above) this is not a 
requirement of the language;  it's just used here to help distinguish keywords from 
things that are not keywords.  

Terms that require further definition, and are defined below where they are used, are 
shown in italics.

As with BNF, brackets ( '[' and ']') enclose optional pieces of syntax – you can include 
them, or leave them out, either at your whim or as appropriate to the situation.  Braces 
( '{' and '}' ) enclose sets of alternatives, each alternative separated from its neighbor(s) 
by a vertical bar ( '|' ).  A trio of dots or periods ( '...' ) is used to indicate that the 
previous piece of syntax may be repeated any number of times.

1.3.1 Labels  
Any statement may be preceeded by an identifier followed by a colon.  This is called 
a label and can be the target of a GOTO statement.



1.3.2 Statements  
statements ::=

statement

| statement

statements

Note: This definition is somewhat informal.  It means that the word “statements” (plural) 
as used in the syntax descriptions above mean either a single statement or more 
than one statement, each on a line by itself.

1.3.3 Statement  
statement ::=

| REM comment text to end of line

| OPTION TARGET = { "tile" | "bitmap" }

| DEF name = value

| DEF name ( [ arg [ , arg ] ... ] )

| END DEF

| SUB name ( [ arg [ , arg ] ... ] )

| END SUB

| DIM variable-defs

| [ LET ] l-value = expr

| IF expr THEN statement

| IF expr THEN

| ELSE IF expr THEN

| ELSE

| END IF

| FOR var = expr TO expr [ STEP expr ]

| NEXT var

| DO

| DO WHILE expr

| DO UNTIL expr

| LOOP

| LOOP WHILE expr

| LOOP UNTIL expr

| GOTO label

| CALL name ( [ arg [ , arg ] ... ] )

| PRINT

| STOP

| END



1.3.4 variable-defs  
variable-defs ::=

variable-def

| variable-defs , variable-def

1.3.5 variable-def  
variable-def ::=

variable [ AS type ]

| variable ( size [ , size ] ) [ AS type ]

1.3.6 type  
type ::=

BYTE

| FLOAT (not yet implemented)
| INTEGER

| STRING



1.3.7 expr  
In what follows, it may not always be clear that the punctuation marks that either are 
between one expr and another, or precede the expr, or surround the expr, are in 
bold face.  They are, just like the keywords OR, AND, MOD, and so forth.  As such 
they are required.  Likewise it may not be clear that  “0x” is in bold face.  It is, and is 
a required part of hexadecimal constant.

expr ::=
expr OR expr

| expr AND expr
| expr ^ expr
| expr | expr
| expr & expr

| expr = expr
| expr <> expr
| expr < expr
| expr <= expr
| expr >= expr
| expr > expr
| expr << expr
| expr >> expr
| expr + expr
| expr - expr
| expr * expr
| expr / expr
| expr MOD expr

| - expr
| NOT expr

| BNOT expr

| ( expr )

| decimal-constant

| 0xhex-constant

| string

| variable

| array-reference

| function-call



1.3.8 l-value  
l-value ::=

array-reference

| variable

1.3.9 array-reference  
array-reference ::=

variable ( index [ , index ] )

1.3.10 variable  
variable ::=

name

1.3.11 function-call  
function-call ::=

name ( [ arg [ , arg ] ... ] )

1.3.12 built-in bitmap graphics functions  
PLOT ( x, y, color )

LINE ( x1, y1, x2, y2, color )

HLINE ( x1, x2, y, color )

VLINE ( x, y1, y2, color )

CLEAR ( color )

FILLRECT ( x1, y1, x2, y2, color )

CIRCLE ( x, y, radius, color )

TEXT ( x, y, string )

1.3.13 built-in tile graphics functions  
SETTILEMAP ( tile-map-array )

SETTILES ( tile-array )

SETCOLORTABLE ( color-table-array )

SETSPRITE ( n state x y tile-number )

1.3.14 other built-in functions  
RND ( limit )

WAITFORVSYNC ()

GAMEPAD ( which )
SOUND ( frequency )



1.3.15 name  
name ::=

letter

| letter alphanums

1.3.16 decimal-constant  
decimal-constant ::=

[ sign ] digit-string

Note: The value of a decimal-constant must be in the range -32768 through 32767, 
inclusive.  Spaces are not allowed within a decimal-constant.

1.3.17 digit-string  
digit-string ::=

digit

| digit digit-string

Note: Spaces are not allowed within a digit-string.

1.3.18 hex-constant  
hex-constant ::=

hex-digit

| hex-digit hex-constant

Note: The value of a hex-constant must be in the range 0x0000 through 0xFFFF, 
inclusive.  Spaces are not allowed within a hex-constant.

1.3.19 string-constant  
string-constant ::=

" printable-characters "

Note: There is no specific limit to the length of a strong constant, only the practical limit 
of the available memory.  The doublequotes, one at each end of the string 
constant, are required.



1.3.20 printable-characters  
printable-characters ::=

printable-characters

| printable-character printable-characters

1.3.21 printable-character  
printable-character ::=

letter

| digit

| punctuation-mark

| blank

1.3.22 alphanums  
alphanums ::=

alphanum

| alphanum alphanums

1.3.23 alphanum  
alphanum ::= letter | digit



The following define the which specific characters make up the syntactic items 
above.

1.3.24 letter  
letter ::=

A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | z

| a | b | c | d | e | f | g | h | i | j | k | l | m

| n | o | p | q | r | s | t | u | v | w | x | y | z

1.3.25 punctuation-mark  
punctuation-mark ::=

. | , | : | ; | ! | ? | / | \ | '

| ` | ~ | @ | # | $ | % | ^ | & | *

| _ | + | - | = | ( | ) | { | } | [ | ] | 

1.3.26 hex-digit  
hex-digit ::=

A | B | C | D | E | F | a | b | c | d | e | f

| digit

1.3.27 digit  
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9


	1.1Command Line Syntax
	1.2Language Syntax
	1.2.1Expressions
	1.2.1.1Constant Expressions
	1.2.1.1.1decimal constant
	1.2.1.1.2hexadecimal constant
	1.2.1.1.3string constant

	1.2.1.2Arithmetic Expressions
	1.2.1.2.1addition
	1.2.1.2.2subtraction
	1.2.1.2.3multiplication
	1.2.1.2.4division
	1.2.1.2.5modulo
	1.2.1.2.6negation

	1.2.1.3Relational Expressions
	1.2.1.3.1equality
	1.2.1.3.2inequality
	1.2.1.3.3less-than
	1.2.1.3.4less-than-or-equal-to
	1.2.1.3.5greater-than
	1.2.1.3.6greater-than-or-equal-to

	1.2.1.4Logical Expressions
	1.2.1.4.1logical NOT
	1.2.1.4.2logical OR
	1.2.1.4.3logical AND

	1.2.1.5Bitwise Expressions
	1.2.1.5.1bitwise NOT
	1.2.1.5.2bitwise inclusive OR
	1.2.1.5.3bitwise exclusive OR
	1.2.1.5.4bitwise AND
	1.2.1.5.5bitwise shift left
	1.2.1.5.6bitwise shift right

	1.2.1.6Other Expressions
	1.2.1.6.1parentheses
	1.2.1.6.2variable
	1.2.1.6.3array reference or element
	1.2.1.6.4function call


	1.2.2Simple Statements
	1.2.2.1REM
	1.2.2.2OPTION
	1.2.2.3DEF
	1.2.2.4DIM
	1.2.2.5LET
	1.2.2.6IF
	1.2.2.7GOTO
	1.2.2.8CALL
	1.2.2.9PRINT
	1.2.2.10STOP
	1.2.2.11END

	1.2.3Compound Statements
	1.2.3.1DEF
	1.2.3.2SUB
	1.2.3.3IF
	1.2.3.4FOR
	1.2.3.5DO


	1.3Language Summary
	1.3.1Labels
	1.3.2Statements
	1.3.3Statement
	1.3.4variable-defs
	1.3.5variable-def
	1.3.6type
	1.3.7expr
	1.3.8l-value
	1.3.9array-reference
	1.3.10variable
	1.3.11function-call
	1.3.12built-in bitmap graphics functions
	1.3.13built-in tile graphics functions
	1.3.14other built-in functions
	1.3.15name
	1.3.16decimal-constant
	1.3.17digit-string
	1.3.18hex-constant
	1.3.19string-constant
	1.3.20printable-characters
	1.3.21printable-character
	1.3.22alphanums
	1.3.23alphanum
	1.3.24letter
	1.3.25punctuation-mark
	1.3.26hex-digit
	1.3.27digit


