N DS U SPI Communications ECE 376

SPI Communications

Goal:
Send and receive serial data using SPI protocol.

Why:
Efficiency. You can send an unlimited amount of data using 3+ lines:
CLK: Clocks the serial datain and out
SDO Serial Data Out.
SDI Serial Dataln
SS Slave Select. SS enabled is required for the slave to drive its SDO line.

How: Hardware
Pick one processor to serve as the Master. This device drives the clock line

The other devices serve as daves. These devices also send data on the SDO line and receive on
their SDI line, but, they only do so as commanded by the bus master. The master determines when
the data is sent (SCK) and which dave is allowed to talk on the dave SDO line (SS).

You usualy need a separate SS (slave select) line for each slave device.

Master Saves
Clock = output Clock = input
RC5/SDO O p= RCA/SDI
RC4/SD (= L RC5/SDO
RC3/SCK —@ = RC3/SCK
SSO SS

@—»{ RC4/SDI
U} RC5/SDO

» - RC3/SCK

SS1 SS

——» RC4/SDI

RC5/SDO

& RC3/SCK

SS2 »| SS

JSG 1 rev April 18, 2005



N D S U SPI Communications

ECE 376

SPI - Master Mode

The bus master controls all communications. The master

- Determineswhen datais sent / received
- Providestheclock

- Providesthe SSline (optional). Thisdetermineswhich daveisactive.

- Writestothe SDOline
- Readsthe SDI line.

Timing:

FIGURE 9-2: SPI MODE TIMING, MASTER MODE

SCK(CKF =10, | | | | | |

CKE=10)

SCK (CKP =0, [ | [ 1 |

CKE = 1§
SCK(CKP =1,

CKE = 0) 1 1 |

SCK{CKP =1,

L LT

sDO

bits ¥ bits X b3 X btz X

bit1 X

it

Lit7

bit7

SSPIF

SDI{EMP =0) C : : C : C : C
SDH{EMP = 1) : : : C : S : :

ity

[it0

-

The master controls the clock line and pulses it once for each bit that is sent. Y ou can adjust the clock's

phase and sign using CKP and CKE.

Datais sent out on the SDO line most significant bit first.
At the same time, datais read in on the SDI line, most significant bit first.

After eight hits are sent (one byte), SSPIF is set, signifying that the SPI port is
« ready to be read to see what data the slave sent, and

ready to send a new byte.

rev April 18, 2005



NDSU

SPI Communications

ECE 376

How: Software:

1. Set up PORTC as follows:

TRISC (addressOx__ - Bank )

Bit 7 6 5 4 3 1
SDO (SDI [SPICLK
input / output | - - 0 1 0 -
2. Set up the conditions for the interrupt
SSPSTAT (address 0x94 - Bank 1)
Bit 7 6 5 4 3 2 1 0
Name SMP CKE D/A P S R/W | UA BF
Vaue 0 1 X X X X X 0
SMP: Sample bit:

SPI Master Mode

- 1=Input datasampled at end of data output time
- 0=Input data sampled at middle of data output time

SPI Slave Mode

- SMP must be cleared when SPI is used in slave mode
CKE: SPI Clock Edge Select

CKP=0

- 1=Transmit happens on transistion from active clock state to idle clock state
« 0= Transmit happenson transistion from idle clock state to active clock state

CKP=1

« 1=Datatransmitted on falling edge of SCK
- 0= Datatransmitted on rising edge of SCK

BF: Buffer Full Status bit

Receive (SPI and 12C modes)

» 1=Recelvecomplete, SSPBUF isfull

» 0= Receive not complete, SSPBUF is empty

rev April 18, 2005



N DS U SPI Communications ECE 376

SSPCON (address 0x14 - Bank 0)

Bit 7 6 5 4 3 2 1 0
Name WCOL |SSPOV | SSPEN | CKP SPI Master Clock Freqg
Vaue 0 0 1 0 0 0 a b

WCOL: Write Collision Detect bit

Master Mode:

- 1= A writeto SSPBUF was attempted while the | 2C conditions were not valid
- 0=Nocollison
«  Slave Mode:

- 1=SSPBUF register iswritten while still transmitting the previous word (must be cleared in software)
- 0=Nocoallison

SSPOV: Receive Overflow Indicator bit
1= A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow.

- Indave mode the user must read the SSPBUF, even if only transmitting data, to avoid overflows.

- Inmaster mode the overflow bit is not set since each operation isinitiated by writing to the SSPBUF
register. (Must be cleared in software).

0 = No overflow

SSPEN: Synchronous Serial Port Enable bit. In SPI mode, when enabled, these pins must be properly
configured as input or outpuit.
1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins
« 0= Disables seria port and configures these pins as |/O port pins

CKP: Clock Polarity Select bit
1 =Idle state for clock isa high level
0 = Idle state for clock is alow level

bit 3-0: SSPM3:SSPMO: Synchronous Serial Port Mode Select bits
0000 = SPI master mode, clock = FOSC/4
0001 = SPI master mode, clock = FOSC/16
« 0010 = SPI master mode, clock = FOSC/64
« 0011 = SPI master mode, clock = TMR2 output/2
0100 = SPI dave mode, clock = SCK pin. SS pin control enabled.
0101 = SPI dave mode, clock = SCK pin. SS pin control disabled. SS can be used as 1/0 pin

SSPSM 3:SSPSMO Clock with a20MHz crystal
00000 Foo /4 5MHz
0001 Fo/16 1.25MHz
0010 Foo/64 312.5kHz

Note that SPI communicationsis very fast: up to 5 million bits/ second being transferred each way.

JSG 4 rev April 18, 2005



N DS U SPI Communications ECE 376

3. Enable an INT interrupt
SSPIE=1

4. Enable dl interrupts:
PEIE = 1;
GIE=1. enabledl interrupts

At this point, you're ready to send and receive 8 bits of data using the on-board SPI port.

JSG 5 rev April 18, 2005



N DS U SPI Communications ECE 376

Example:  Write aroutine which
Passes 8 bits on SDO and
+ Returns the 8-bits received on SDI
«  Determine how long it takes to send data at the maximum bit rate

Calling Format:
Result = SPI_RW'Il"); /1 '1" is sent on SDO
/1 the data fromSDl is
/'l returned in Result
Subroutines:
void Init_SPI(void)
{
SSPCON = 0x20; /1 SPlI is on, 5Mps
TRI SC5 = 0; /1 set up PORTC for SPI
TRI SC4 = 1;
TRI SC3 = 0;
SSPIE = 0; [l turn off interrupts
/1 use polling instead
}

unsi gned char SPI _RWunsi gned char Dat a)

{
unsi gned char Result;
SSPI F = 0;
SSPBUF = Dat a; /'l load the SPI data buffer
while (!SSPIF); /1 wait until data sent
Result = SSPBUF; /1 1oad what the slave sent
return(Resul t); /[l and return it
}

To send 8 bits, this routine takes

(8 bits) E2-C = 1.6uS to send the data

+ overhead to call the subroutine, read a character, and return a character.

SPI communication is a convenient and fast way to send data from one chip to another on the same circuit
board.

JSG 6 rev April 18, 2005



N DS U SPI Communications ECE 376
SPI - Save

SPI dave mode is just like the master mode, save the clock lineis driven by someone else (CLK = input
for daves). If using more than one dave, tie the slave select lines from the master to RAS5. This causes

the dave to ignore the data unless SS=0. It also synchronizes the data to the falling edge of SS.

Note: Since you can't control how fast the data is sent, the save often times

« Usesaninterrupt to receive each byte (you don't have time to wait since the next byte may be
coming within the next 1.6us)

«  Save each byte in a stack for temporary storage (you don't have time to decode the data as it
comesin. The next byte may be coming in the next 1.6us).

The main routine can then figure out what the data means and what it's supposed to to with this data once
it's been received.

Timing:

FIGURE 9-3: SPIMODE TIMING (SLAVE MODE WITH CKE = 0)

SE (optional) —‘ ’_
SCKICKF =0 !_l | | | I_l I_‘ I_I_I_l_
T s e e I

iz X bite X bis X b X bis X vie X o X bio
SDI (SMP = 0} ’ SO TG Yo Ye Yo e Ye

hit? hitQ

SSPIF

FIGURE 9-4: SPIMODE TIMING (SLAVE MODE WITH CKE = 1)

cocew-o L L LT LML LML ML
SO0 —( bitr X bite X bits X bita X biz % bz X bt X bio —

Lit7 [it0

SSPIF

JSG 7 rev April 18, 2005



N DS U SPI Communications ECE 376

How: Software:
1. Set up PORTC as follows:

TRISC (addressOx__ - Bank )

Bit 7 6 5 4 3 2 1 0
SDO (SDI [SPICLK
input / output | - - 0 1 0 - - -

2. Set up the conditions for the interrupt

SSPCON (address 0x14 - Bank 0)

Bit 7 6 5 4 3 2 1 0
Name WCOL |SSPOV [ SSPEN| CKP SPl Slave
Value 0 0 1 0 0 1 0 a

« a=0: SSdisabled (SSispin RAD)
SSenabled. (RA5)

Il
=

3. Enable an SPI interrupt (The slave really needs to use interrupts since it can't control how fast the data
comesin. The slave needs to read the data and save it as fast as possible.)

SSPIE=1

4. Enable dl interrupts:
PEIE = 1;
GIE=1. enabledl interrupts

JSG 8 rev April 18, 2005



N D S U SPI Communications

ECE 376

Example Code:

1. Initialization Routine for SPI Slaves:

void Init_SPl_Slave(void)

{
TRI SA5
SSPCON
SSPI F 0;
SSPI E 1;
PEIE = 1;
GE = 1;
}

1
0x25;

2. Interrupt Service Routine:

/'l RA5 = Slave Sel ect
/!l turn on SPI slave node

/1 enable interrupts

In this example, load the data which isincoming into a buffer, SPI_STACK, asitisread in.

Assume that no data is sent back to the master.

Interrupt Service Routine: Read the SPI port and place the data into a circular stack of six

/1 d obal
unsi gned char Stack_Pointer;
unsi gned char SPI_St ack[ 6] ;

/1 Interrupt Service Routine

void interrupt IntSer(void) @O0x10
{
if (SSPIF == 1) {
SPI _St ack[ St ack_Poi nter] = SSPBUF;
Stack_Pointer += 1;
Stack _Pointer = Stack Pointer % 6;

I SSPBUF = DATA,
I

SPIF = 0;
}

/1 got a byte

/1 if you are going to
/'l return data, do it here

rev April 18, 2005



N DS U SPI Communications ECE 376
Example: DS1267 Digital Potentiometer: Write a routine which sets the value of a DS1267 digital
potentiometer. Make the calling function

voi d Set_Pot (unsi gned char A, unsigned char B)

where A and B are the values of the two potentiometers: R =R, gzissg.

Solution:
Step 1. Find the data sheets for a DS1267.

Step 2. Set up the hardware connections. Connect
DQ to the SPI data line (SDO)
CLK to the SPI clock line (SCK)
RST to some other pin on the PIC chip (sort of a dlave select line.) Assume RCO for now.

Step 3. In the data shests, find atiming diagram. Thisis givenin Figure 9 and Figure 1.

DS1267 BLOCK DIAGRAM Figure 1

Froppope] - [roguborye]

256=1 MULTIPLEXER 2661 MULTFLEXER

[wol

3[ef
:
Ez
é

| I:'l-u-| 17-8IT 0 EHIFT REGISTER | b0

I/O SHIFT REGISTER Figure 2

k] POTENTIOMETER-0 =] b POTENTIOMETER=-1 b i ]

17=8IT 10 GHIFT AEGISTER

JSG 10 rev April 18, 2005



NDSU

SPI Communications

ECE 376

(A) 3-WIRE SERIAL INTERFACE GENERAL OVERVIEW

3-WIRE ACTIVE

3-WIRE '
INACTIE
J

hl

2]

2] bE

DO 4( STACK SELEGT BIT }—( POTENTIONE T -1 }—< e }""
L/_\Jrﬂ_\_/_\_/ﬂ“ S b

Cl———

From these diagrams, it appears you heed to...
Send 24 hits (17 bits, rounded up to a multiple of eight)

This data is shifted through a shift register on the DS1267 so that you can cascade severa digital
pots. Thelast 17-bits send are the ones that matter. These 24-bits should look like the following:

Flip the bits in each byte. The data bits are received LSB first for the DS1267 while the PIC sends
the data M SB first. Either write your own SPI routine or write a flip routine.

. A-WIRE
| IHACTIVE

First byte sent Second Byte Sent Third Byte Sent
XX | X[ x| x|[x]x]0|b0O|bl|{b2[b3|b4|b5|b6|b7|b0|bl|b2|b3|b4|b5|b6|b7
padding bits and Stack Select Pot 1 value - LSB first Pot #2 value - LSB first

Step 4. Write some code:

Option #1: Usethe On-Chip SPI routine. Assume Y =flip(X) flips all bits:

voi d Set_ Pot (unsi gned char A;

{

static bit RST @ ((unsigned)&PORTC*8+0);

RST
RST

0;
1,

SSPIF = 0;
SSPBUF = 0;

while (!SSPIF);

SSPIF = 0;

SSPBUF = flip(A);

while (!SSPIF);

SSPIF = 0;

SSPBUF = flip(B);

while (!SSPIF);

RST = 0;

11

11

11

11

11

11

unsi gned char B)

RST = RCO

sel ect the DS1267

send first byte

send second byte

send third byte

desel ect the DS1267

11

rev April 18, 2005



N DS U SPI Communications ECE 376

Option #2: Write your own SPI port driver:

static bit RST @ ((unsigned)&PORTC*8+0);
static bit DQ @ ((unsigned)&PORTC*8+5) ;
static bit CLK @ ((unsigned)&PORTC*8+3);

voi d Set _Pot (unsi gned char A; unsigned char B)

{
unsi gned char i;
RST = 0; /'l default levels for RST
SCK = 0; /1 and cl ock
RST = 1; /|l select the DS1267
DQ = 0; /'l Stack select =0
SCK = 1; SCK = 0; /'l pul se the clock

for (i=0; i<8; i++) {

if (((A>>i) & 1) == 0) DQ = 0; /1 send each bit of A
else DQ = 1; /1 LSB first
SCK = 1; SCK = 0;
}
for (i=0; i<8; i++) { /1 send each bit of B
if (((B>>i) & 1) == 0) DQ = 0; /] LSB first
else DQ = 1;
SCK = 1;
SCK = 0;
}
RST = 0; [l after 17 bits, you're done

}

JSG 12 rev April 18, 2005



N DS U SPI Communications ECE 376

What can you do with a digital pot?

1) Design an amplifier which the PIC can monitor and adjust.

The PIC monitors the amplitude of the signal a RAO. If it istoo small, increases the gain (increase R). If
it istoo large and is saturating the amplifier (RAO too close tp +5V), reduce the gain (reduce R).

>

Amplified
Signal

— RAO

1uF
R

™ (optional)

Stage 2
Envelope Detector

2) Design atunable low-pass filter. Set the corner from 100Hz to 1kHz.

By adjusting R, you set the corner frequency. A 1-stage filter is shown on the left. A 3-stage
Butterworth filter is shown on theright. All three R's should have the same value.

c2
00224 1
7~
T c I I I
~~ ~~ C1 N C3
0.0088 0.0013
3-Stage Butterworth Filter
1-Stage Butterworth Filter
max corner =0 (R=0) (from ECE 321 text)
. _ & 1 C
min corner = 2pf = STo00C @

JSG 13 rev April 18, 2005



N DS U SPI Communications ECE 376

2-Wire SPI Communications,

Some companies, such as Dallas Semiconductors, use a 2-wire SPI communication scheme. This uses
A clock line from the master (as anormal SPI communication scheme), but

A single dataline.
The concept is that often times you only have communication going one way. |f you constrain all
communications to happen in one direction only (termed half duplex), you can save one data line:
«  When the master istalking, it drives the data line and the dave listens.
«  When the dave replies, the master switches its data line to input (high z) and the dave drives the
dataline.

Since the data can go both ways, add a 1k resistor in-between as a buffer. This limits the current flow if
the PIC and the DS1620 try to drive the data line at the same time. This should never happen, if the
program is written properly. It doesn't hurt to be safe, though.

PIC16F876 DS1620 2V 10 55V
Data (R=1k)
(Master) (Slave)
RC3 ‘J\/\/\/—> DQ vdd
Clock

RC2 CLK
Slave Select

RC1 RST

’— GND

Step 1. Find the data sheets for a DS1620

Step 2. Find the hardware connections. Arbitrarily, let
RC1: RST (1= dtart comm. O = terminate)
RC3:. DQ (1k resistor between)
« RC2 CLK (pulselow = clock)

Step 3. Find the timing (figure 4 from the data sheets):

JSG 14 rev April 18, 2005



N DS U SPI Communications ECE 376

DS1620

READ DATA TRANSFER Figure 4

RET
oo lcoh

CLK

tepH tenn

o |-q— tenr —i
0 ’K/ />< i : L5E ]>_ﬂ £ wse 7
. DATA DATA

T

PROTOCOL

You
«  Start with CLK = 1, RST =0.
« Pull RST high to start communications
+  Set DQ = output for the PIC to drive the dataline.

+  Clock out 8 hits of data with the data valid on the rising edge of the clock. Thisis the command for
the DS1620 processor.

« If you are sending data to the DS1620, keep DQ as output. Clock out 8 more bits, LSB first.

« If you are receiving data, switch DQ to input. Clock in 9 bits of data, LSB first. Datavalid on clock
low (not obvious on the data sheets but found experimentally in lab)

Step 4. Find in the data sheets what commands you need to use to start a temperature conversion, read
temperature, etc.

DS1620 COMMAND SET Table 3

J-WIRE BUS
DATA AFTER
ISSUING
INSTRUCTION DESCRIPTION PROTOCOL PROTOCOL NOTES
TEMPERATURE CONVERSION COMMANDS
Read Temperature | Reads last converted temperature AAR =<read data>
value from temperature register.
Read Counter Reads value of count remaining from ADh <read data>
counter.
Read Slope Reads value of the slope accumulator, ASh <read data>
Start Convert T Initiates temperature conversion. EEh Idle 1
Stop Convert T Halts temperature conversion. 22h Idle 1

THERMOSTAT COMMANDS

Wirite TH Writes high temperature limit value into 01h =write data= 2

JSG 15 rev April 18, 2005



N D S U SPI Communications

ECE 376

Example:

Write routines to
Define the bits used in a more meaningful way that RCO...
Send 8 bits to the DS1620
Receive 9 bits from the DS1620
« Initidize the DS1620 to continuous temperature readings, and
Read the temperature

a) Define the bitsin a more meaningful way:

static bit DQ @ ( (unsi gned) &PORTC* 8+3) ;
static bit CLK @ ((unsi gned) &PORTC* 8+2) ;
static bit RST @ ((unsi gned) &PORTC* 8+1) ;

b) A subroutine to send 8 hits to the DS1620:

voi d DS1620 Wi te(unsigned char Data)
{

unsi gned char i;

/1 DS1620 - DQ
/1 DS1620 - CLK
/] DS1620 - RST

TRI SC1 = O; /1 set up data pin /0O
TRI SC2 = 0; /1l The PIC drives the data
TRI SC3 = 0; /1 line here
CLK = 1; /1 default is CLK=1 for the
for (i=1; i<=8; i++) { /] DS1620
DQ = (Data & 1); /1 Ship out each bit
CLK = 0; /1 LSB first and pul se the
CLK = 1; /'l clock Iine
Data = Data >> 1;
}
}
¢) A subroutine to read 9 bits from the DS1620
i nt DS1620_Read(voi d)
{
unsi gned i nt Dat a;
unsi gned i nt Tenp;
unsi gned char i;
TRISC1 = 0;
TRI SC2 = 0;
TRI SC3 = 1; /1l here, DQis driven by the
CLK = 1; /] DS1620
Dat a = 0;
Tenp = 1,
for (i=1; i<=9; i++) { /1l read in 9 bits
CLK = 0; /1 data valid when CLK=0
JSG 16 rev April 18, 2005



NDSU

SPI Communications

ECE 376

if (DQ == 1) Data += Tenp;
Tenp = Temp * 2,

CLK = 1,
}
return(Data);

}

// data conmes in LSB first

[/ after 9 bits return Data

A Subroutine to initialize the DS1620 to continuous conversion mode

voi d DS1620_I nit (voi d)

{

RST = 0;

RST = 1;
DS1620 Wit e(0x00) ;
DS1620 Wit e(0x00);

RST = 0;

RST = 1;

DS1620_W it e( OXEE);
RST = 0;

}

A subroutine to read the temperature
i nt DS1620_Read_Tenper at ure(voi d)

{

i nt Dat a;
RST = 0;
RST = 1;

DS1620 Wit e(0xAA) ;
Data = DS1620_Read();
RST = 0;

return(Data);
}

// Start conmuni cations

/'l with RST going high
/1l x0C = Wite Config Reg = 00
/'l (sets up continuous conv)

|/ XEE = Start T conversion

/[l Start communi cations
Il xAA =read T
/1l next 9 bits = tenp reading

17

rev April 18, 2005



