
SPI Communications

Goal:
Send and receive serial data using SPI protocol.

Why:

Efficiency. You can send an unlimited amount of data using 3+ lines:
CLK: Clocks the serial data in and out

SDO Serial Data Out.
SDI Serial Data In

SS Slave Select. SS enabled is required for the slave to drive its SDO line.

How: Hardware
Pick one processor to serve as the Master. This device drives the clock line
The other devices serve as slaves. These devices also send data on the SDO line and receive on
their SDI line, but, they only do so as commanded by the bus master. The master determines when
the data is sent (SCK) and which slave is allowed to talk on the slave SDO line (SS).
You usually need a separate SS (slave select) line for each slave device.

RC4/SDI

RC4/SDI

RC4/SDI

RC4/SDI

RC5/SDO

RC5/SDO

RC5/SDO

RC5/SDO

RC3/SCK RC3/SCK

RC3/SCK

RC3/SCK

SS0

SS1

SS2

SS

SS

SS

Master
Clock = output

Slaves
Clock = input

NDSU SPI Communications ECE 376

JSG 1 rev April 18, 2005

SPI - Master Mode

The bus master controls all communications. The master
Determines when data is sent / received
Provides the clock
Provides the SS line (optional). This determines which slave is active.
Writes to the SDO line
Reads the SDI line.

Timing:

The master controls the clock line and pulses it once for each bit that is sent. You can adjust the clock's
phase and sign using CKP and CKE.

Data is sent out on the SDO line most significant bit first.

At the same time, data is read in on the SDI line, most significant bit first.

After eight bits are sent (one byte), SSPIF is set, signifying that the SPI port is
ready to be read to see what data the slave sent, and

ready to send a new byte.

NDSU SPI Communications ECE 376

JSG 2 rev April 18, 2005

How: Software:

1. Set up PORTC as follows:

TRISC (address 0x__ - Bank __)
Bit 7 6 5 4 3 2 1 0

SDO SDI SPICLK

input / output - - 0 1 0 - - -

2. Set up the conditions for the interrupt

SSPSTAT (address 0x94 - Bank 1)

Bit 7 6 5 4 3 2 1 0

Name SMP CKE D/A P S R/W UA BF

Value 0 1 x x x x x 0

SMP: Sample bit:

SPI Master Mode
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time

SPI Slave Mode
SMP must be cleared when SPI is used in slave mode

CKE: SPI Clock Edge Select

CKP = 0
1 = Transmit happens on transistion from active clock state to idle clock state
0 = Transmit happens on transistion from idle clock state to active clock state

CKP = 1
1 = Data transmitted on falling edge of SCK
0 = Data transmitted on rising edge of SCK

BF: Buffer Full Status bit
Receive (SPI and I2C modes)

1 = Receive complete, SSPBUF is full
0 = Receive not complete, SSPBUF is empty

NDSU SPI Communications ECE 376

JSG 3 rev April 18, 2005

SSPCON (address 0x14 - Bank 0)

Bit 7 6 5 4 3 2 1 0

Name WCOL SSPOV SSPEN CKP SPI Master Clock Freq

Value 0 0 1 0 0 0 a b

WCOL: Write Collision Detect bit

Master Mode:
1 = A write to SSPBUF was attempted while the I2C conditions were not valid
0 = No collision

Slave Mode:
1 = SSPBUF register is written while still transmitting the previous word (must be cleared in software)
0 = No collision

SSPOV: Receive Overflow Indicator bit
1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow.

In slave mode the user must read the SSPBUF, even if only transmitting data, to avoid overflows.
In master mode the overflow bit is not set since each operation is initiated by writing to the SSPBUF
register. (Must be cleared in software).

0 = No overflow

SSPEN: Synchronous Serial Port Enable bit. In SPI mode, when enabled, these pins must be properly
configured as input or output.

1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins
0 = Disables serial port and configures these pins as I/O port pins

CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level

0 = Idle state for clock is a low level

bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
0000 = SPI master mode, clock = FOSC/4

0001 = SPI master mode, clock = FOSC/16
0010 = SPI master mode, clock = FOSC/64

0011 = SPI master mode, clock = TMR2 output/2
0100 = SPI slave mode, clock = SCK pin. SS pin control enabled.

0101 = SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin

SSPSM3:SSPSM0 Clock with a 20MHz crystal

00000 FOSC/4 5MHz

0001 FOSC/16 1.25MHz

0010 FOSC/64 312.5kHz

Note that SPI communications is very fast: up to 5 million bits / second being transferred each way.

NDSU SPI Communications ECE 376

JSG 4 rev April 18, 2005

3. Enable an INT interrupt

SSPIE = 1

4. Enable all interrupts:

PEIE = 1;
GIE = 1: enable all interrupts

At this point, you're ready to send and receive 8 bits of data using the on-board SPI port.

NDSU SPI Communications ECE 376

JSG 5 rev April 18, 2005

Example: Write a routine which

Passes 8 bits on SDO and
Returns the 8-bits received on SDI

Determine how long it takes to send data at the maximum bit rate

Calling Format:
Result = SPI_RW('I'); // 'I' is sent on SDO

// the data from SDI is
// returned in Result

Subroutines:
void Init_SPI(void)
{
 SSPCON = 0x20; // SPI is on, 5Mbps
 TRISC5 = 0; // set up PORTC for SPI
 TRISC4 = 1;
 TRISC3 = 0;
 SSPIE = 0; // turn off interrupts
 // use polling instead
 }

unsigned char SPI_RW(unsigned char Data)

{
 unsigned char Result;

 SSPIF = 0;
 SSPBUF = Data; // load the SPI data buffer
 while (!SSPIF); // wait until data sent
 Result = SSPBUF; // load what the slave sent

 return(Result); // and return it
 }

To send 8 bits, this routine takes

 to send the data(8 bits)


1
5Mbps


 = 1.6uS

+ overhead to call the subroutine, read a character, and return a character.

SPI communication is a convenient and fast way to send data from one chip to another on the same circuit
board.

NDSU SPI Communications ECE 376

JSG 6 rev April 18, 2005

SPI - Slave

SPI slave mode is just like the master mode, save the clock line is driven by someone else (CLK = input
for slaves). If using more than one slave, tie the slave select lines from the master to RA5. This causes
the slave to ignore the data unless SS=0. It also synchronizes the data to the falling edge of SS.

Note: Since you can't control how fast the data is sent, the slave often times
Uses an interrupt to receive each byte (you don't have time to wait since the next byte may be
coming within the next 1.6us)
Save each byte in a stack for temporary storage (you don't have time to decode the data as it
comes in. The next byte may be coming in the next 1.6us).

The main routine can then figure out what the data means and what it's supposed to to with this data once
it's been received.

Timing:

NDSU SPI Communications ECE 376

JSG 7 rev April 18, 2005

How: Software:

1. Set up PORTC as follows:

TRISC (address 0x__ - Bank __)
Bit 7 6 5 4 3 2 1 0

SDO SDI SPICLK

input / output - - 0 1 0 - - -

2. Set up the conditions for the interrupt

SSPCON (address 0x14 - Bank 0)
Bit 7 6 5 4 3 2 1 0

Name WCOL SSPOV SSPEN CKP SPI Slave

Value 0 0 1 0 0 1 0 a

a = 0: SS disabled (SS is pin RA5)
a = 1: SS enabled. (RA5)

3. Enable an SPI interrupt (The slave really needs to use interrupts since it can't control how fast the data
comes in. The slave needs to read the data and save it as fast as possible.)

SSPIE = 1

4. Enable all interrupts:
PEIE = 1;

GIE = 1: enable all interrupts

NDSU SPI Communications ECE 376

JSG 8 rev April 18, 2005

Example Code:

1. Initialization Routine for SPI Slaves:
void Init_SPI_Slave(void)
{
 TRISA5 = 1; // RA5 = Slave Select
 SSPCON = 0x25; // turn on SPI slave mode
 SSPIF = 0;
 SSPIE = 1; // enable interrupts
 PEIE = 1;
 GIE = 1;
 }

2. Interrupt Service Routine:
In this example, load the data which is incoming into a buffer, SPI_STACK, as it is read in.
Assume that no data is sent back to the master.

Interrupt Service Routine: Read the SPI port and place the data into a circular stack of six

// Global
 unsigned char Stack_Pointer;
 unsigned char SPI_Stack[6];

// Interrupt Service Routine

void interrupt IntSer(void) @ 0x10
{
 if (SSPIF == 1) { // got a byte
 SPI_Stack[Stack_Pointer] = SSPBUF;
 Stack_Pointer += 1;
 Stack_Pointer = Stack_Pointer % 6;

// SSPBUF = DATA; // if you are going to
// // return data, do it here

 SPIF = 0;
 }
 }

NDSU SPI Communications ECE 376

JSG 9 rev April 18, 2005

Example: DS1267 Digital Potentiometer: Write a routine which sets the value of a DS1267 digital
potentiometer. Make the calling function

void Set_Pot(unsigned char A, unsigned char B)

where A and B are the values of the two potentiometers: .R = R0



A
255




Solution:

Step 1. Find the data sheets for a DS1267.

Step 2. Set up the hardware connections. Connect

DQ to the SPI data line (SDO)
CLK to the SPI clock line (SCK)

RST to some other pin on the PIC chip (sort of a slave select line.) Assume RC0 for now.

Step 3. In the data sheets, find a timing diagram. This is given in Figure 9 and Figure 1:

NDSU SPI Communications ECE 376

JSG 10 rev April 18, 2005

From these diagrams, it appears you need to...

Send 24 bits (17 bits, rounded up to a multiple of eight)
This data is shifted through a shift register on the DS1267 so that you can cascade several digital
pots. The last 17-bits send are the ones that matter. These 24-bits should look like the following:
Flip the bits in each byte. The data bits are received LSB first for the DS1267 while the PIC sends
the data MSB first. Either write your own SPI routine or write a flip routine.

First byte sent Second Byte Sent Third Byte Sent

x x x x x x x 0 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

padding bits and Stack Select Pot 1 value - LSB first Pot #2 value - LSB first

Step 4. Write some code:

Option #1: Use the On-Chip SPI routine. Assume Y=flip(X) flips all bits:
void Set_Pot(unsigned char A; unsigned char B)
{
static bit RST @ ((unsigned)&PORTC*8+0); // RST = RC0

 RST = 0;
 RST = 1; // select the DS1267

 SSPIF = 0;
 SSPBUF = 0;
 while (!SSPIF); // send first byte

 SSPIF = 0;
 SSPBUF = flip(A);
 while (!SSPIF); // send second byte

 SSPIF = 0;
 SSPBUF = flip(B);
 while (!SSPIF); // send third byte

 RST = 0; // deselect the DS1267
}

NDSU SPI Communications ECE 376

JSG 11 rev April 18, 2005

Option #2: Write your own SPI port driver:

static bit RST @ ((unsigned)&PORTC*8+0);
static bit DQ @ ((unsigned)&PORTC*8+5);
static bit CLK @ ((unsigned)&PORTC*8+3);

void Set_Pot(unsigned char A; unsigned char B)
{
 unsigned char i;

 RST = 0; // default levels for RST
 SCK = 0; // and clock

 RST = 1; // select the DS1267

 DQ = 0; // Stack select = 0
 SCK = 1; SCK = 0; // pulse the clock

 for (i=0; i<8; i++) {
 if (((A>>i) & 1) == 0) DQ = 0; // send each bit of A
 else DQ = 1; // LSB first
 SCK = 1; SCK = 0;
 }

 for (i=0; i<8; i++) { // send each bit of B
 if (((B>>i) & 1) == 0) DQ = 0; // LSB first
 else DQ = 1;
 SCK = 1;
 SCK = 0;
 }

 RST = 0; // after 17 bits, you're done
 }

NDSU SPI Communications ECE 376

JSG 12 rev April 18, 2005

What can you do with a digital pot?

1) Design an amplifier which the PIC can monitor and adjust.

The PIC monitors the amplitude of the signal at RA0. If it is too small, increases the gain (increase R). If
it is too large and is saturating the amplifier (RA0 too close tp +5V), reduce the gain (reduce R).

100k
DS1267

1k

gain = 1..100
Stage 1

Stage 2
Envelope Detector

1uF
R
(optional)

RA0

Amplified
Signal

2) Design a tunable low-pass filter. Set the corner from 100Hz to 1kHz.

By adjusting R, you set the corner frequency. A 1-stage filter is shown on the left. A 3-stage
Butterworth filter is shown on the right. All three R's should have the same value.

+

-

C1

0.0088

C2
0.0224

C3

0.0013

100k100k100k100k

C

1-Stage Butterworth Filter

3-Stage Butterworth Filter

max corner = 0 (R=0) (from ECE 321 text)

min corner = 2πf = 


1
100k⋅C




NDSU SPI Communications ECE 376

JSG 13 rev April 18, 2005

2-Wire SPI Communications:

Some companies, such as Dallas Semiconductors, use a 2-wire SPI communication scheme. This uses
A clock line from the master (as a normal SPI communication scheme), but

A single data line.

The concept is that often times you only have communication going one way. If you constrain all
communications to happen in one direction only (termed half duplex), you can save one data line:

When the master is talking, it drives the data line and the slave listens.

When the slave replies, the master switches its data line to input (high z) and the slave drives the
data line.

Since the data can go both ways, add a 1k resistor in-between as a buffer. This limits the current flow if
the PIC and the DS1620 try to drive the data line at the same time. This should never happen, if the
program is written properly. It doesn't hurt to be safe, though.

DQ

CLK

RST

GND

Vdd

2.7V to 5.5V

RC3

RC2

RC1

DS1620PIC16F876

(Master) (Slave)
Data (R=1k)

Clock

Slave Select

Step 1. Find the data sheets for a DS1620

Step 2. Find the hardware connections. Arbitrarily, let
RC1: RST (1 = start comm. 0 = terminate)

RC3: DQ (1k resistor between)
RC2: CLK (pulse low = clock)

Step 3. Find the timing (figure 4 from the data sheets):

NDSU SPI Communications ECE 376

JSG 14 rev April 18, 2005

You

Start with CLK = 1, RST = 0.
Pull RST high to start communications

Set DQ = output for the PIC to drive the data line.
Clock out 8 bits of data with the data valid on the rising edge of the clock. This is the command for
the DS1620 processor.

If you are sending data to the DS1620, keep DQ as output. Clock out 8 more bits, LSB first.
If you are receiving data, switch DQ to input. Clock in 9 bits of data, LSB first. Data valid on clock
low (not obvious on the data sheets but found experimentally in lab)

Step 4. Find in the data sheets what commands you need to use to start a temperature conversion, read
temperature, etc.

NDSU SPI Communications ECE 376

JSG 15 rev April 18, 2005

Example:

Write routines to
Define the bits used in a more meaningful way that RC0...

Send 8 bits to the DS1620
Receive 9 bits from the DS1620

Initialize the DS1620 to continuous temperature readings, and
Read the temperature

a) Define the bits in a more meaningful way:

static bit DQ @ ((unsigned)&PORTC*8+3); // DS1620 - DQ
static bit CLK @ ((unsigned)&PORTC*8+2); // DS1620 - CLK
static bit RST @ ((unsigned)&PORTC*8+1); // DS1620 - RST

b) A subroutine to send 8 bits to the DS1620:
void DS1620_Write(unsigned char Data)
{
 unsigned char i;

 TRISC1 = 0; // set up data pin I/O
 TRISC2 = 0; // The PIC drives the data
 TRISC3 = 0; // line here

 CLK = 1; // default is CLK=1 for the
 for (i=1; i<=8; i++) { // DS1620
 DQ = (Data & 1); // Ship out each bit
 CLK = 0; // LSB first and pulse the
 CLK = 1; // clock line
 Data = Data >> 1;
 }
 }

c) A subroutine to read 9 bits from the DS1620
int DS1620_Read(void)
{
 unsigned int Data;
 unsigned int Temp;
 unsigned char i;

 TRISC1 = 0;
 TRISC2 = 0;
 TRISC3 = 1; // here, DQ is driven by the
 CLK = 1; // DS1620
 Data = 0;
 Temp = 1;

 for (i=1; i<=9; i++) { // read in 9 bits
 CLK = 0; // data valid when CLK=0

NDSU SPI Communications ECE 376

JSG 16 rev April 18, 2005

 if (DQ == 1) Data += Temp; // data comes in LSB first
 Temp = Temp * 2;
 CLK = 1;
 }
 return(Data); // after 9 bits return Data
 }

A Subroutine to initialize the DS1620 to continuous conversion mode

void DS1620_Init(void)
{
 RST = 0; // Start communications

 RST = 1; // with RST going high
 DS1620_Write(0x0C); // x0C = Write Config Reg = 00
 DS1620_Write(0x00); // (sets up continuous conv)
 RST = 0;

 RST = 1;
 DS1620_Write(0xEE); // xEE = Start T conversion
 RST = 0;

 }

A subroutine to read the temperature
int DS1620_Read_Temperature(void)
{
 int Data;
 RST = 0;

 RST = 1; // Start communications
 DS1620_Write(0xAA); // xAA = read T
 Data = DS1620_Read(); // next 9 bits = temp reading
 RST = 0;

 return(Data);
 }

NDSU SPI Communications ECE 376

JSG 17 rev April 18, 2005

