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1 Section I - Tutorial 

1.1 Introduction 
This first part of the book is intended to give you a step-by-step introduction in how to use a de-
velopment system for the SX controller, and how to write the first applications for the SX. 

Development systems for the SX are offered by several vendors. In this introduction, we will 
describe the SX-Key development system offered by Parallax. 

In this text, you will find several sections that are marked in gray, together with one of the sym-
bols below: 

 
The exclamation mark indicates important information. You should read this text in any case to 
avoid problems. 

 

 
This symbol marks a section that contains useful additional information, which is not necessary 
for understanding the current topic. 

 

 

The Tutorial part of this book does not describe every feature of the SX in detail. The "R" 
symbol followed by a chapter and a page number indicates that more information about a topic 
can be found in the reference section of this book. 

 

 
This symbol marks a section that contains useful additional information, which is not necessary 
for understanding the current topic. 

 

Throughout the text, we have to deal with addresses, data, and values. The SX handles and stores 
all these in binary format, i.e. as a collection of bits where each bit can be set (1) or cleared (0). As 
the data memory is organized in 8-bit registers, data is always handled in bytes, i.e. in groups of 8 
bits. Instead of writing binary numbers, we will use two hexadecimal digits to represent the con-
tents of a register in most cases. The SX program memory is addressed with 12 bit values. To 
represent an address, we usually use three hexadecimal digits. Sometimes, when it comes to time 
calculations, etc. it is easier for us human beings to do the calculations in decimal. In order to 
distinguish between the different number types, we use the similar notation, most of the SX As-
semblers allow: 
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A leading "%" for binary numbers, a leading "$" for hexadecimal numbers, and no special char-
acter for decimal numbers, e.g. 

%1011 1100 = $BC = 188 

Sometimes, you may also find a notation like 0xbc, an alternative notation for hexadecimal num-
bers. C programmers are used to it quite well. Most available Assemblers for the SX also accept 
the “postfix” notation for binary, and hexadecimal values, e.g. 10010101B, or FFH, but we will not 
use this format in the book text. 

In the tutorial example programs, we sometimes make use of instructions that are not always 
explained when they are used first. Please refer to the "Alphabetic Instruction Overview" in the 
Quick Reference section of this book when you want to learn more about the function of a spe-
cific instruction. 
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1.2 SX Development - What You Need 

1.2.1 The Tools 

When you plan to develop software and hardware for a new type of microcontroller, you usually 
need to buy new "tools", meaning a financial investment. For the SX, this is the case as well but 
fortunately, several vendors offer moderately priced development systems for the SX. 

One reason why development systems for the SX can be offered cheaper than systems for other 
microcontrollers lies in the SX itself: It has "built-in" debugging capabilities, and due to the 
EEPROM program memory, and the in-system programming features, there is no need for UV 
EPROM erasers or in-circuit emulation systems. 

1.2.2 Prototyping Systems 

When you perform your first experiments with the SX, it is most likely that you do not have a 
finished PCB on hand, designed for the system you intend to develop. Various prototype boards 
are offered by Parallax, Ubicom, and other vendors. 

All the boards come with the basic components that are required to get the SX up and running, 
like a voltage regulator, a reset circuitry, a clock generator, etc. Additional components like LEDs, 
switches or pushbuttons, RS-232 drivers, serial EEPROMs, components for A/D conversion, and 
filters for PWM outputs can be found on most of the boards as well. Ubicom also offers boards 
designed to test a specific SX feature in detail, like communications via the I2C bus, or a demon-
stration board for TCP/IP applications (this is a WEB server on a 4.5 by 8.5 mm PCB). 

1.2.3 A "Home-brew" Prototyping System 

 

 

Like all CMOS components, the SX can be damaged by excessive voltages produced by 
electro-static discharges. Therefore, take the usual safety measures that are required when 
handling static sensitive components. Also, make sure that the supply voltage does not exceed 
the maximum value specified in the SX datasheet (7.5 Volts). 
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For the first experiments, you can build your own “homebrew” prototyping system as shown in 
the schematic below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A simple SX Prototyping System 

 

         VDD(2)    /MCLR (28) 
 
 

OSC1 (27) RC7 (25)
 
 RC6 (24)
 
OSC2 (26) RC5 (23)
 
RTCC (1) RC4 (22)
 
RA0 (6) RC3 (21)
 
RA1 (7) RC2 (20)
 
RA2 (8) RC1 (19)
 
RA3 (9) RC0 (18)
 
RB0 (10) RB7 (17)
 
RB1 (11) RB6 (16)
 
RB2 (12) RB5 (15)
 
RB3 (13) RB4 (14)

VSS (4) 

R2 
Q1 

JP1 

PB1

R1C1  C2

       ISP                5 V 
 O1 O2 VDD VSS    -    + 

HD1 HD2
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Bill of Material 

Name Dimension Remark 
R1 10 kΩ  
R2 Depends on the reso-

nator, or crystal type 
 

C1 100 nF 
C2 100 µF Tantalum 

Filter capacitors, use two or 
more if necessary. 

PB1 Pushbutton Reset 
Q1 50 MHz Ceramic reso-

nator 
Alternatively you may use a 50 
MHz crystal 

IC1 SX 28, DIP package On a PCB, use a socket 
JP1 Jumper Open when the development 

system is connected to HD1 
HD1 4-pin header connector, 

1/10’’ spacing 
Connector for development 
system 

HD2 2-pin header connector 5V stabilized  
 

In order to connect external components to the SX, you should provide header pins for the port 
lines, and for the RTCC input. 

Take care that the leads connecting to OSC1 and OSC2 are as short as possible as the clock fre-
quency may be up to 75 MHz (depending on the SX type used). It is also important to filter VDD 
by placing capacitors as close as possible to the VDD and VSS pins of the SX. 
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1.3 SX-Key Quick Start using the Parallax SX-Key 

1.3.1 The SX-Key 

Parallax, Inc. has developed SX-Key® development system for the SX. The major component is a 
small PCB with a female 9-pin SUB-D connector to be connected to a serial COM port of a PC at 
one end, and with a 4-pole plug at the other end that connects to the 4-pin ISP header you will 
find on all prototype boards. 

 

If you have built your own prototype board, double check that the header pins on your board 
are connected to the SX pins in an order that matches the one printed on the SX-Key plug, i.e. 
OSC1-OSC2-VDD-VSS. As this plug is not indexed, make sure that it is plugged in the right di-
rection. 

 

When you take a closer look at this small PCB, you will notice that it is crowded with various 
components, including an SX controller, a clock generator and a voltage converter that provides 
the programming voltage for the SX under test. 

Together with the PC software which comes with the SX-Key you have a complete development 
system allowing you to write applications for the SX in Assembly language, program the SX, and 
test the application using the integrated debugger, or running the application “stand-alone”. All 
this is performed using the target SX on the prototype board, and not in a somehow simulated 
mode. This means that you can run an application in real-time speed but also in single steps for 
testing purposes. All this is controlled by the PC program via a serial connection. 

1.3.2 Installing the SX-Key IDE Software 

Together with the SX-Keyprogramming tool, you should have received a CD-ROM with the SX-
Key IDE software. You need a PC running a Windows-OS (Win 95 or greater). To install the 
software, run the setup program that is on the CD-ROM. 

It makes sense to setup a shortcut to launch the SX-Key software from the desktop or from the 
Start menu. 

Before taking the next steps, it is a good idea to visit Parallax's WEB Site (www.parallax.com) 
looking for newer versions of the SX-Key software. Parallax, Inc. usually offers new versions for 
download free of charge. 
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1.3.3 The First Program 

For the first tests, we need an LED connected to port pin RB0 of the SX: 

 

 

 

 

 

Some commercially available prototype boards do have an LED installed like this at the RB0 pin 
already. On some boards, the LED may be connected between RB0 and VSS instead. For our first 
tests, this does not matter. 

When you use a Parallax SX Tech board, you can easily position the two required components in 
the breadboarding area. 

If not yet done, connect the SX-Key via a cable to a serial port of your PC and plug the other end 
on to the ISP header pins (double-check the correct orientation of the plug). Make sure that you 
use a "straight-through" type of serial cable, i.e. not a null-modem cable. If you need adapters to 
convert between 9-pin and 25-pin DB connectors, also make sure that the adapters are "straight-
through". Finally, note whether the cable is connected to COM1, COM2, or any other COM port. 

Make sure that the jumper that connects a resonator or crystal to the OSC1 pin on the prototype 
board is open. If there is no jumper, remove the resonator or crystal from the socket. 

Now connect the power supply to the prototype board, and launch the SX-Key software on the 
PC. After the program has loaded you should see a window like this: 

 

VDD 

470 Ω 

RB0
LED
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This window shows the text editor of the new Parallax SX-Key IDE, 
Version 2. Compared to former versions, this new IDE has a lot of 
useful enhancements, like syntax highlighting, the possibility to open 
several files at the same time, and much more. You will use the editor 
to enter the application source code.  

Select "Configure" from the "Run" menu, or press Ctrl-U as a shortcut 
to open the dialog box shown below: 

Click a radio button in the “Serial Port” section to select the COM port 
you want to use for the SX-Key. For now, leave the other options in this 
dialog unchanged. See the Parallax documentation for the meaning of 
the other options. Finally, click "Okay" to close the dialog box.  

 

 

 

 

Next, enter the following text in the editor window: 
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; ================================================================= 
; Programming the SX Microcontroller 
; TUT001.SRC 
; ================================================================= 
LIST Q = 37 
DEVICE  SX28L, TURBO, STACKX, OSCHS2 
IRC_CAL IRC_FAST 
FREQ    50_000_000 
RESET   0 
 
  mov    !rb, #%11111110 
Loop 
  clrb   rb.0 
  setb   rb.0 
  jmp    Loop 

 

It makes no difference if you type uppercase or lowercase letters. You may enter tabs or spaces to 
separate the words. The leading space we have inserted in some lines is not really required but it 
makes the text look a bit more "structured". You may also insert any number of empty lines at 
any place in order to structure the source code text. 

 

This and the following sample programs assume that you are using an SX 28 controller. In 
case you are using another SX type, replace the DEVICE SX28L directive with the respective 
DEVICE directive. 

 

After you have entered your first program code, you need to save it. Either click on the diskette 
shortcut button, select “Save” from the “File” menu, or enter Ctrl-S on the keyboard to open the 
“Save Source as...” dialog. If you like, select or create a folder where the file shall be saved, and 
then enter the file name, e.g. TUT001 (the “.SRC“ extension will be added automatically, so there 
is no need to type it in). 

Next, click the Assemble button (the fourth button from the left), select “Assemble” from the 
“Run” menu or press Ctrl-A as a shortcut to assemble this little program. When a dialog opens, 
telling you that the file needs to be saved prior to assembling, click the “Ok” button. You may 
consider to mark the “Don’t show this dialog again” option to avoid that it pops up whenever 
you assemble another program. When the status line at the bottom right of the editor window 
displays "Assembly Successful", the program could be assembled without errors, and it is most 
likely that you can execute it. 

Should a dialog box pop up containing the message “Unable to assemble due to errors in source 
code”, click the “Ok” button. The editor window should then look similar to the next figure. 
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It is most likely that the error is caused by some misspelled text. The offending line is high-
lighted, and in the new window that has opened below the text, you will find a description of the 
error. In our example, the assembler error message reads, "Symbol is a reserved word". This may 
be a bit miss-leading, but assemblers don’t have too much intelligence to detect each and every 
reason for an error. In our example, the word "clb" left of "rb" is misspelled, because it should 
read "clrb". 

Make the necessary corrections, and press Ctrl-A again to assemble the modified program until 
the message "Assembly Successful" finally shows up in the status line. 

After having corrected any errors, you should again save your "masterpiece". Click the “Save” 
button (the button showing the diskette symbol), select "Save" from the "File" menu, or press the 
shortcut Ctrl-S. 

When source code files become larger, it is a good idea to save them from time to time. Simply 
click the Save button or press the Ctrl-S shortcut to make sure that your work is not lost. Please 
note that the editor automatically generates a backup copy of the previously saved version of a 
saved file when the option “Create backup (.bak) files” is activated in the Configure dialog. This 
means that you will always have the current and the previous version of a program available on 
your disk drive. In order to archive certain versions of a source code file, use the "File - Save As" 
option to save the file under another name. 

Now click the Debug button (the fourth button from the left with the bug symbol), select "Debug" 
from the "Run" menu, or type the Ctrl-D shortcut to launch the SX-Key debugger. As programs 



Section I - Tutorial 

13 

are always executed on the target SX controller, they must be transferred to the SX before debug-
ging can begin. Invoking the debugger means that the current version of the source code file is 
assembled, and then the resulting machine program is transferred to the SX (provided that there 
are no errors in the source code). 

When you see a display like 

 
you are very close to executing your first program. 

Should an error message show up like this one: 

 
click the "Abort" button, and find out what the problem is. There are several reasons for such 
message: 

• No supply voltage connected to the prototype board, supply voltage too low, or too high. 

• SX-Key not connected to the specified COM port, or wrong orientation of the ISP plug. 

• The jumper between SX-Key pin OSC1 and the resonator is still in position. 

• The orientation of the SX in the socket is wrong, is not plugged in at all, or a pin has been 
bent. 

• The SX is defective. 

• The SX-Key is defective.  

Check the reasons in the given order. Hopefully, you will have found the reason before reaching 
the last two items in the list. 
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After you have corrected the problem, press Ctrl-D again. Within a few seconds, the "Program-
ming" message should come up. When the program has been transferred to the SX, the message 
box is closed, and the following windows will open: 
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The size and the position of these windows depends on the screen resolution you have config-
ured. You may move each of the windows, and you can also resize the "Code - List File" window 
if you like. 

1.3.4 The SX-Key Debugger Windows 

1.3.4.1 The Registers (R) Window 

This window shows the SX "internals", i.e. its various registers. The figure below explains the 
different areas in that window: 

 
 
 

 
 
 
 

In the middle of the "Registers" window, there is another area, that we will call "Program Mem-
ory" or "P" Window. Currently address $7FF is highlighted in this window. (Note that the R win-
dow displays all values in hex or binary without leading "$" or "%" signs.) 

1.3.4.2 The Code – List File (C) Window 

This window displays the assembly source code as you have entered it, plus some additional 
information. Actually, this is the so-called "List" file format showing the machine codes that were 

Registers 
$00...$0f 

      hex     binary 
Register contents 

Addr. Code  Mnemonic 
Program memory

Register bank 0...7 
Addresses $10...$1F 

      M      W Register 
Register  hex  binary Program memory (P) 

Window
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generated by the Assembler, together with the addresses where the machine codes are stored in 
program memory.  

1.3.4.3 The Debug (D) Control Window 

This window contains the buttons that are required to operate the debugger, and other buttons to 
open the debugger windows in case they have been closed or minimized. Click one of the buttons 
"Registers", "Code", or "Watch" to open the corresponding windows ("Watch" is inactive for now). 

In the following text, we will use the short form "D", "R" or "C" to refer to one of the windows, 
and "P" for the program memory display in the center of the "R" window. 

1.3.5 Executing the First Program in Single Steps 

The highlight in the P window is positioned at program address $7FF and in the C window the 
line containing RESET 0 is highlighted. After a reset, the SX controller sets the program counter, 
i.e. the register that contains the address of the instruction to be executed next to the address of 
the highest available program memory location. For the SX 28, this is $7FF. 

At this address, the assembler has inserted an instruction that makes the SX continue program 
execution at (i.e. jump to) the address defined by the RESET directive in our program (0 in our 
example). 

The instruction which unconditionally causes the program execution to branch to another loca-
tion is the jmp instruction. This instruction loads the program counter (PC) with the target ad-
dress, i.e. the PC then "points" to the first program instruction to be executed. 

By the way, you can use the scroll bar to the right of the P window to scroll the displayed text up 
and down. In this case, the highlighted line may be moved out of the window, but it keeps its 
position to mark the next instruction to be executed. 

The same is true for the C window. Here you have horizontal and vertical scroll bars available to 
move the text. 

Now left-click the "Step" button in the D window once. Alternatively, you may also enter Alt-S on 
the keyboard (make sure that the D window has focus in this case). 
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Now the window contents should change like this: 

 

 
The highlight has moved to address $000, i.e. the SX has executed the jmp 0 instruction that is 
located at address $7ff which caused the jump to the new program address at $000. As you can 
see, the highlight in the (C) window is now positioned on that line. 

1.3.6 Compound Instructions 

The P window displays the MOV W, #FE instruction where the C window has highlighted the mov 
!rb, #%11111110 instruction, i.e. a different instruction. 

The point here is that the SX does not "know" how to execute a MOV W, #FE instruction. The As-
sembler automatically has generated two separate instructions that are “familiar” to the SX: 
MOV W, #FE 
MOV !RB, W 
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These two instructions were saved in two subsequent locations of the program memory. We will 
call such assembler instructions compound instructions. There are various compound instructions 
available to make programmer's life a bit easier because it saves you the extra work of writing 
two or more separate lines of code. (Later, we will see that compound statements can also cause 
situations to make programmer's lives quite hard.) 

Now let's find out what the mov !rb, #%11111110 instruction means. A mov instruction copies 
the contents of one register into another register or it copies a constant value into a register. 
"mov" is derived from "move", but it actually copies a value instead of moving it, i.e. the contents 
of the source remains unchanged after execution, where the target receives the new value. 

The hash mark "#" left of the binary number %11111110 means that the constant value %11111110 
shall be copied into a target called !rb here. The hash-sign is very important - if you leave it out, 
the assembler will assume that you want to copy the contents of register %11111110 to !rb in-
stead! 

"!rb" specifies the SX configuration register for port B. We will discuss port configuration in more 
detail later. For now, you should keep in mind that a cleared bit in the configuration register 
means that the associated port pin will become an output. To make clear which bits are set and 
cleared in the !rb register, we use binary notation here. 

Here, we configure the RB.0 pin as an output - this is where we have connected the LED. 

Actually, the mov !rb, #%11111110 is composed by the two instructions 
mov w, #%11111110 
mov !rb, w 

i.e. the constant value %11111110 is copied into the w register, and then the contents of w is cop-
ied into !rb. The w register (the "Working" register) is used as temporary storage by many com-
pound instructions. In general, w is a multi-purpose register used to hold one operand of arith-
metic or logical instructions, to hold the result of special mov instructions with arithmetic/logical 
functions and as temporary storage like in the example above. The w register is similar to the 
“accumulator” found in other microcontrollers or microprocessors. 

Now left-click the "Step" button once again, and you will notice that the highlight in the P win-
dow has moved to the second part of the compound instruction where the highlight in the C 
window did not move at all. 

Click "Step" again to execute the mov !rb, w instruction, and to bring the highlight on to the 
clrb rb.0 instruction. Click "Step" to let the SX execute this instruction as well, and check if the 
LED turns on. 

If you have a prototype board where the LED is connected to VSS with the other end (the cath-
ode), click "Step" once more to execute the setb rb.0 instruction that should finally turn on the 
LED in this case. 
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If you managed to turn the LED on, you are all set - your first SX program works as expected! 

In case the LED remains off, check the following: 

• Is the constant that is moved into !rb actually %11111110 (did you eventually forget the 
leading "#" or "%" characters)? 

• Do all instructions address the right port (rb)? 

• Do the clrb rb.0 and setb rb.0 instructions both contain the "0", and not another 
digit? 

• Is the LED really connected to pin 10 (RB0) of the SX 28? 

• Is the polarity of the LED correct? 

In case you have found an error in the program code, click the "Quit" button to return to the edi-
tor, make the necessary corrections, and enter Ctrl-D to launch the debugger again (the program 
will be assembled and transferred to the SX automatically). 

If the problem was caused by hardware, you have (hopefully) disconnected power from the SX. 
This has caused the SX-Key software to display the error message "SX-Key not found on COMx". 
Click the "Abort" button to return to the Editor window and re-connect the power supply then. 

If the program did work properly, instead of disconnecting the power supply, click the "Quit" 
button to leave the debugger back to the Edit window. 

When you want to re-activate the debugger again later, it is not necessary to transfer the program 
to the SX again as long as you did not make changes in the source code. In this case, don't select 
"Run - Debug", and don't press the Ctrl-D shortcut. Instead, select "Run - Debug (reenter)", or 
press the shortcut Ctrl-Alt-D. This starts up the debugger immediately without transferring the 
program into the SX. 

When the debugger is active again, address $7ff is highlighted as it was when you started the 
debugger the first time, and you may continue the debugging session. 

Now let's find out what makes the LED turn on or off: 

The clrb rb.0 instruction clears a bit in the specified register (rb in this case), where rb is a pre-
defined name the assembler "knows". The assembler replaces it with $06, the address of the Port 
B data register. Instead of "rb", you could have written "$06" as well. Which bit shall be cleared is 
specified by the digit that follows the register name, separated by a period. 

In our case, we clear bit 0 in the Port B data register. As the associated port pin has been config-
ured as an output, this means that the output pin goes to low level and the LED is turned on. 
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The next instruction setb rb.0 does just the opposite of clrb - it sets a bit in the specified reg-
ister. In our case, it causes the output pin RB0 go to high level that turns the LED off again. 

In the left part of the R Window, the contents of the first 16 registers are displayed in hexadecimal 
and binary format. When you watch the contents of address $06 you will notice how the content 
changes as you keep clicking the "Step" button. Note that the hexadecimal value is displayed with 
a red background when it has recently changed, and that bit 0 in the binary display area is also 
shown with a red background when its state has changed. This helps you to quickly find out 
which data has changed after executing an instruction. 

Notice that the contents of PC is always displayed with a red background as the program counter 
always changes its contents, either to address the next instruction in sequence, or another location 
after a jmp, skip or call instruction. 

1.3.7 Symbolic Addresses – Labels 

The last instruction in our program is a jmp instruction that sets PC back to address $002 where 
the clrb instruction is stored. If you look at the P window, you notice that it shows jmp 002, but 
in our program, we have written jmp Loop. 

We could also have written jmp $002 instead, but this would not be very flexible. Imagine what 
happens if we would insert another instruction immediately following the mov !rb, 

#%11111110 instruction. This would "shift" all subsequent instructions "up" in program memory, 
and to reach the clrb rb.0 instruction, you would have to change the $002 address parameter of 
the jmp instruction. Think what a "nice job" it would be to correct all the jmp instructions in a 
program consisting of hundreds of lines, and what could happen if you would forget to correct 
even one of them. 

Fortunately, the assembler allows the definition of symbolic addresses that makes life a lot easier. 
When the assembler finds a word at the beginning of a line that is neither an instruction nor an-
other "reserved word" (more about this later), it interprets it as a "label". In this case, it stores the 
word (Loop in our example) in an internal table (the symbol table) together with the address of 
the instruction that follows the label, either in the same line, or in the next line that is not empty, 
and does not contain a comment only ($002 here). 

Whenever the assembler finds an instruction that is not followed by a numeric value, as in jmp 
Loop, it searches the symbol table for that word and replaces it with the numeric value that is 
stored there ($002 in our example). 

 

SASM, the default assembler of the SX-Key 2.0 software expects that labels always begin in 
the leftmost column of a line, where other assemblers like the “old” SX-Key assembler accept 
leading white space. For compatibility reasons, it is a good idea to always let labels begin in 
the first column. 



Section I - Tutorial 

21 

1.3.8 Running the Program at Full Speed 

If you are tired of clicking the "Step" button, you might consider letting the program run at full 
speed. Click the "Run" button, and see what happens: The LED "glows" rather dim and not at 
about half of the full intensity as you might have expected. 

There are two reasons for this phenomenon: Duty cycle and speed. 

Here are the instructions that are continuously executed while the SX runs at full speed, together 
with the required clock cycles: 
Loop 
  clrb   rb.0  ; 1 
  setb   rb.0  ; 1 
  jmp    Loop  ; 3 

 

You may add comments (like the number of clock cycles in the lines above) using the 
semicolon. The assembler will ignore all text in a line that follows a semicolon. If a line begins 
with a semicolon, all the rest of the line will be ignored. This is sometimes helpful to temporarily 
"comment out" instructions in a program. 

 

The clrb and setb instructions take one clock cycle each, and the jmp requires three cycles. The 
diagram below shows the LED timing (assuming that you run the SX at 50 MHz clock):  

 

 

 

 

 

 

After the clrb instruction, the LED is turned on. It takes one clock cycle (20 ns at 50 MHz system 
clock) until the setb instruction is executed, i.e. until the LED is turned off again. Then it takes 
three cycles to execute the jmp and another cycle for clrb until the LED is turned on again. This 
means that during 20% of one loop the LED is on, and 80% of the loop, the LED is off. 

To extend the LED's on time, we need to add some "cycle eater" instructions between the clrb 
and setb instructions that "steal" three clock cycles. The SX "knows" a special "do nothing" in-
struction that exactly does this, the nop (for no operation). 

Quit the debugger, and add three nop instructions like this: 
Loop 

on

off

clrb    setb    jmp                         clrb 

1C. 
= 

20ns

4 Cycles 
= 

80ns 

LED 
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  clrb   rb.0  ; 1 
  nop   ; 1 
  nop   ; 1 
  nop   ; 1 
  setb   rb.0  ; 1 
  jmp    Loop  ; 3 

As you did change the source code, you can't restart the debugger now, therefore press Ctrl-D to 
re-assemble the modified program, and to have it transferred into the SX. Then start the program 
at full speed by clicking the "Run" button. 

The changes result in the following timing: 

 

 

 

 

 

 

Now the LED is on and off for an equal time, i.e. it has a duty cycle of 50%. 

One full loop now has a period of 8 clock cycles or 160 ns, and this means a frequency of 6.25 
MHz! This is a frequency LEDs are not designed for, and this is the second reason why the LED 
may be darker than expected. 

Instead of having the LED "blink" at this frequency, we want to make it blink slowly enough so 
that we really can see it blink. Before we enhance the program, try the following: 

First, stop the full-speed execution by either clicking the "Stop" or "Reset" button. Now click the 
"Walk" button, and you will see the LED blink. 

The "Walk" mode is similar to single stepping except that the debugger "clicks" the "Step" button 
for you a couple of times per second. As you may notice, the LED does not really blink, instead it 
"flickers". This is because the debugger needs some time to update the window contents between 
each step. 

Click "Reset" or "Stop" to end the "Walk" mode. When you click "Reset", the SX is really reset, i.e. 
the PC is reset to $7ff (and some other registers are initialized to specific values as well). When 
you click "Stop", the execution stops at the instruction which was executed when you clicked that 
button, and all registers reflect the status at that time, and you may continue program execution 
from that point. 

on 

off 

clrb    nop     nop    nop    setb    jmp                         clrb 

4 Cycles 
= 

80ns 

4 Cycles 
= 

80ns 

LED 
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1.3.9 Program Loops for Time Delays 

Now we will slow down the SX in order to obtain a nicely blinking LED while the program is 
running at full speed. 

In the last version of our program, we used three nop instructions to "eat up" time. In order to 
"waste" more time we will add some more program loops. 

Don't enter the following statements, as we only need them for some time calculations: 
Loop 
  decsz  $08 ; 1/2  
    jmp Loop ; 3 
  clrb   rb.0 ; 1 
Loop1 
  decsz  $08 ; 1/2  
    jmp Loop1 ; 3 
  setb   rb.0 ; 1 
  jmp    Loop ; 3 

In this code, we have added two more program loops, one following the clrb instruction, and 
one following the setb. 

Within the loops, we use the decsz (decrement and skip on zero) instructions. This instruction 
decrements the contents of the specified register (at address $08 in data memory here) by one. In 
case the content of the register ends up in zero after the decrement, the next instruction will be 
skipped (the jmp in our example). 

Let's assume that the register at $08 contains zero when we start the program. In this case, the 
first decsz instruction would change its contents to $ff or 255. Because its content is not zero, the 
next instruction will not be skipped, i.e. the jmp instruction will be executed. 

 

You may wonder why 0 - 1 results in 255 in the SX, and not in -1, as you might guess. This is 
because the SX (like most other controllers) does not “know” about negative numbers. 

To understand the “underflow” from 0 to 255, let’s see what happens when a value of 255 (or 
%11111111) is incremented by one. The “real” result would be %100000000, i.e. the 9th bit 
would be set, and all other bits cleared. As the registers in the SX can only hold eight bits, the 
exceeding 9th bit is lost. This means that 255 + 1 yields in 0 in the SX. 

Decrementing a value of 0 by one is the reverse of incrementing a value of 255 by one, and 
this is why 0 - 1 yields in 255 in the SX. 

 

 

This sequence is repeated until the content of $08 finally reaches zero. Now the jmp will be 
skipped, and the clrb or setb instructions are executed. 
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Again, we have added the number of clock cycles that each instruction requires. Note that the 
decsz instructions usually take one cycle (when there is no skip), but two in case of a skip. 

As a data register can hold 256 different values (0...255), each of these loops is executed 256 times 
where 255 times, the skip is not performed. Therefore, each loop takes 255 * (1+3) + 2 = 1,022 
clock cycles and one more cycle to clear or set the port bit. By adding the three more cycles for the 
final jmp Loop instruction, we end up in 1,023 * 2 + 3 = 2,047 cycles that take 2,047 * 20 ns = 40.94 
µs which results in an LED blink frequency of 24.426 kHz - far beyond visibility! 

Even if we would nest another delay loop within each of the two loops, the SX would still be too 
fast. Before considering to reduce the system clock rate, try this program: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT002.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET  0 
  mov   !rb, #%11111110 
Loop 
  decsz $08             ; 1/2  
    jmp Loop            ; 3 
  decsz $09             ; 1/2 
    jmp Loop            ; 3 
  decsz $0a             ; 1/2 
    jmp Loop            ; 3 
  clrb  rb.0            ; 1 
Loop1 
  decsz $08             ; 1/2 
    jmp Loop1           ; 3 
  decsz $09             ; 1/2 
    jmp Loop1           ; 3 
  decsz $0a             ; 1/2 
    jmp Loop1           ; 3 
  setb  rb.0            ; 1 
  jmp   Loop            ; 3 

 

Don’t try to assemble, or run the program yet. Note the  include "Setup28.inc" directive at 
the beginning of the code. The new SX-Key 2.0 software now allows to include one or more files 
within the code. This means that the assembler will open the file that is specified with the 
include directive, read its contents, and inserts the lines read at the location of the include 
directive. This feature is handy to add lines that are the same for many different programs. 

Please create a new file in the SX-Key Editor environment, enter the following lines, and save it 
under the name “Setup28.inc” in the same directory where you have saved TUT002.SRC: 
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; ================================================================= 
; Programming the SX Microcontroller 
; Setup28.inc 
; ================================================================= 
 
LIST Q = 37 
DEVICE  SX28L, TURBO, STACKX, OSCHS2 
IRC_CAL IRC_FAST 
FREQ 50_000_000 

 

As we need to make some definitions concerning the configuration of the SX chip in each and 
every program, these configuration lines are good candidates for an include file (in the next 
chapter, chip configuration is explained in more detail). 

We will use Setup28.inc together with many other code samples in this tutorial section of the 
book. Should you use another SX chip, e.g. an SX20, you only need to change the DEVICE speci-
fication in Setup28.inc, and all programs using this include file will be automatically configured 
for an SX20 (when you assemble them with this modified include file). 

After having saved the file, assemble the second tutorial program TUT002 that you have entered 
before. 

In this program, we have nested three program loops before executing the clrb or setb instruc-
tions and we use three registers as delay counters ($08, $09, and $0a). 

In each loop, we first decrement $08 until it is zero and then decrement $09. If the content of $09 
has not yet reached zero, we repeat the 256 loops decrementing $08 until $09 is zero. Then we 
decrement $0a, and repeat the previous steps until finally $0a is zero. 

Now let's figure the approximate time the three nested loops take: 

As the "inner" loop is identical to the one in the previous code example, it takes 1,022 cycles to 
execute it. The "middle" and the "outer" loop are executed 256 times as well, therefore the total 
number of clock cycles required by the three nested loops is approximately 256 * 256 * 1.022 = 67 * 
106 cycles. For a complete LED on-off cycle, the total time delay is 2 * 67 * 106 * 20ns ≈ 2.6 seconds, 
i.e. the resulting LED blink frequency is about 0.38 Hz. 

After you have entered this new version in the editor window, don't forget to save it under a new 
file name (e.g. TUT002.src), and then press Ctrl-D to launch the debugger. 

Click the "Run" button to execute the program. Provided that you have correctly entered the pro-
gram, the LED should now blink quite slowly. 

While the program is running at full speed, the R, P, and C windows are not updated because 
this would slow down execution far beyond real-time. If you want to take a "snapshot" of the 
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current register status, click the "Poll" button at any time while the program is executed at full 
speed. 

When you want to execute this program in single steps, keep in mind that one nested delay loop 
now takes about 67 Million steps. Maybe that clicking the "Step" button 67 Million times is a good 
test for your left mouse button, but we don't take any responsibility for your hurting fingers. 

Even the "Walk" mode takes far too long to execute one LED on-off cycle. 

As such kind of loops can be found frequently in SX programs, there should be a way to "skip 
over" such loops and start singe-stepping from there. Fortunately, the SX debugger allows setting 
a "breakpoint" that solves this problem. 

1.3.10 Setting a Breakpoint 

Setting a breakpoint means that you “tell” the debugger to execute the instructions beginning at 
the address, PC is currently pointing to, up to and including the instruction where you have set 
the breakpoint. 

To set a breakpoint, first make sure that the program is halted by either clicking the "Stop" or 
"Reset" buttons. Then, in the C window, move the mouse pointer to the program line where you 
want to set the breakpoint and hit the left mouse button once. The debugger will display this line 
with a red background now, indicating that a breakpoint is active on that line. If necessary, scroll 
the text in the window up or down until the line you want is visible before setting the breakpoint. 

In case the line with the breakpoint is the next line to be executed as well, only the left part of the 
line is marked with a red background while the rest of the line is highlighted with a blue back-
ground. 

For example, click "Reset" for a "clean start", and then click on the line with the clrb rb.0 in-
struction. Finally, start the program at full speed with "Run". 

You will notice that it takes a while until the LED is turned on. Once the LED is on, program exe-
cution halts due to the active breakpoint, and the decsz $08 instruction in Loop1 is the next one 
to be executed. 

If you like, you may single-step the program for a while but you can also click "Run" again to go 
through the program at full speed until the breakpoint is reached the next time. During that time, 
you will notice that the LED is turned off after a while, and finally is turned on again, when the 
program "hits" the breakpoint after executing the clrb instruction. 

Please note that there can only be one breakpoint active at a time. This is not a limitation of the 
SX-Key software but by the SX itself. As soon as you click another line in the C window, this new 
line will be highlighted in red, and the line marked before is reset to standard. 

In order to remove an active breakpoint, simply click on the highlighted line once again. 
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Please note that due to the internal structure of the SX the instruction in the line marked for a 
breakpoint will be executed before the program actually halts. This may be confusing sometimes, 
when you set a breakpoint on a line with a jump or call instruction as you will see later. In addi-
tion, the SX does not stop program execution when the breakpoint is set to a line containing a nop 
instruction. 

You may add a BREAK directive to the source code immediately before the instruction where the 
debugger shall activate a “default” breakpoint when it is invoked. You can change the position of 
the BREAK directive in the source code later without the need to re-assemble the code, i.e. you 
may re-start the debugger using the Debug (reenter) option, or by entering the Ctrl-Alt-D short-
cut. 

When the debugger is active, you may change the position of the breakpoint at any time by 
clicking on another line in the list window that contains executable code. 

1.3.11 Where to Go Next 

This ends the Quick-Start chapter for the SX key development system. In this chapter, you have 
learned some basic SX instructions, and programming techniques but most of the chapter was 
dedicated to the SX-Key development system. 

In the next tutorial chapters, we will concentrate on more SX instructions and features, assuming 
that you are familiar with the development tool, you are using: The SX-Key system. 

 

When you are done with debugging a program, you may want to have the SX execute the 
program “stand-alone”, i.e. without the SX-Key probe connected. In order to do so, it is 
important that you re-program the SX without the debug code. Select “Program” from the “Run” 
menu, click the “Program” shortcut button, or enter Ctrl-P. This instructs the SX-Key to transfer 
the “stand-alone” code into the SX program memory. It is also necessary that the SX has 
another clock source now. You can find more information about the various clock sources in 
chapter 1.14. 
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1.4 SX Configuration - ORG/DS - Conditional Branches 

1.4.1 Configuration Directives 

For the sample program shown before (and many other programs in the tutorial section of this 
book), we have created an include file “Setup28.inc” containing the following lines: 
LIST  Q = 37 
DEVICE  SX28L, TURBO, STACKX, OSCHS2 
IRC_CAL IRC_FAST 
FREQ  50_000_000 

Such statements are called "Assembler Directives". They do not cause the assembler to generate 
program code. Instead, they instruct the development system how to configure the SX when it 
transfers a program to the device. For configuration purposes, the SX has special registers called 
"Fuse Registers". 

The DEVICE directives make it easy to define the settings of the fuse register bits because you 
need not to remember which fuse bit is used to set a specific option like the turbo mode or an 
extended stack and option register. 

 

(2.2.7.1 - 234) The parameters following a DEVICE directive each define a specific configura-
tion. For example:  

SX28L informs the assembler that the generated program shall be transferred into an SX28 
device.  

TURBO activates the turbo mode, i.e. each standard instruction will be executed in one clock 
cycle.  

STACKX or OPTIONX activate an 8-level return stack for subroutines and an extended option 
register. 

OSCHS2 defines the drive mode for an external crystal, or ceramic resonator.  

The LIST Q = 37 directive instructs the Assembler to suppress certain warnings.  

The IRC_CAL IRC_FAST directive defines that the internal RC oscillator shall be set to the 
fastest mode which actually disables the oscillator calibration performed by the SX-Key in order 
to reduce the chip programming time.  

The FREQ directive defines the clock frequency that shall be generated by the SX-Key 
hardware (50 MHz in this case). 
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You may wonder why the SX offers the “non-turbo” mode, where each standard instruction is 
executed in four clock cycles, the smaller 2-level return stack, and the reduced option register 
functionality. This is due to compatibility reasons to some similar microcontroller devices 
manufactured by other vendors. In “real life”, you will never use this reduced functionality 
together with an SX. Why would you drive a Porsche in the to lowest gears only? 

 

As you can see, a DEVICE directive can be followed by more than one parameter. Use commas to 
separate each of the DEVICE parameters. 

The IRC_CAL and FREQU directives are internal for the SX-Key debugger. They specify the cali-
bration of the SX-internal clock oscillator and the clock frequency in Hz, the debugger shall gen-
erate when the SX runs at full speed. Note that you may insert underscores for better readability 
of the frequency parameter and in any other numerical value. 

Each program also requires a RESET directive together with an address (or a symbolic address) to 
inform the Assembler where the main program execution starts. The assembler generates a jmp 
instruction to that address in the highest location of the program memory. We did not place the 
RESET directive in the Setup28.inc include file because the reset address or the symbolic name of 
that address may change in different programs. 

From now on, we will start each program with a directive like this: 
include “Setup28.inc” 

assuming that Setup28.inc contains the directives as shown above. 

When you are using a development system other than the SX-Key, make sure that the SX is 
clocked at 50 MHz because many of the sample programs assume this clock speed when gener-
ating timing delays, interrupts, etc. In this case, it may be also be necessary to modify the defini-
tions in the include file, or to insert the device configuration lines in each source code file when 
an include directive is not supported. 

1.4.2 The ORG and DS Directives 

In the previous program, we have used three nested loops to "slow down" the SX in order to see 
the LED blink. To build a loop that is executed a certain number of times, you need a loop 
counter that is incremented or decremented (as in our example) until a specific value has been 
reached (0 in our case). We have used registers at address $08, $09 and $0a in the data memory as 
loop counters in this example. 

Let's re-write this example and make it a bit more "generic": 
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; ================================================================= 
; Programming the SX Microcontroller 
; TUT003.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET   Main 
 
  org $08 
Counter1 ds 1 
Counter2 ds 1 
Counter3 ds 1 
 
  org $100 
Main 
  mov    !rb, #%11111110 
Loop 
  decsz Counter1 
    jmp Loop 
  decsz Counter2 
    jmp Loop 
  decsz Counter3 
    jmp Loop 
  clrb   rb.0 
 
Loop1 
  decsz Counter1 
    jmp Loop1 
  decsz Counter2 
    jmp Loop1 
  decsz Counter3 
    jmp Loop1 
  setb   rb.0 
 
  jmp    Loop 

 

Following the RESET directive, you can see the org $08 ("originate") directive. This informs the 
assembler that definitions following this directive shall begin at address $08 (in data memory in 
this case). 

In the next line, you find the statement Counter1 ds 1. As mentioned before, the assembler in-
terprets a word that has no pre-defined meaning - like "Counter1" in this case - as a label and 
adds the word together with a numeric value that represents its address to the symbol table. The 
address of the label Counter1 is $08 because we have instructed the assembler to continue 
counting from that address on with the previous org $08 directive. 

The ds following the label name means "define space", and the 1 following ds instructs the as-
sembler to "set aside" one byte for Counter1. This also increments the assembler's internal ad-
dress-counter by one. Therefore, the next label, Counter2 will be located at address $09. As ds 1 
also reserves one byte for Counter2, Counter3 is located at address $0a. 
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You may think of the three reserved bytes as three variables, each having a size of one byte, 
named Counter1, Counter2 and Counter3. 

Within the loops, you will notice that the decsz instructions no longer refer to "hard-coded" ad-
dresses in data memory, but they use the variable names instead. 

Using symbolic addresses or names for variables makes a program much more readable, and it is 
a lot easier to modify it later. 

Note that there is another org directive in the program: org $100. As before, it instructs the as-
sembler to set its internal address pointer to the specified value ($100 in our example). 

The next instruction (the mov w, #%11111110, i.e. the first instruction of the compound mov 
!rb, #%11111110 instruction) will be coded into that address. This means that our program no 
longer begins at address $000 in program memory but at address $100 instead. 

As we have placed the label Main in front of the first instruction, we can use that label to specify 
this address together with the RESET directive. You may use any other name but Main for the 
main program entry point. The SX-Key debugger has a special function that allows you to click 
one button to jump to the line labeled “Main”. Therefore, it is a good idea to use this name for the 
main program entry point.  

Note that one of the org directives specifies an address in data memory, where the other one 
specifies an address in program memory. The assembler "sorts that out" automatically. Also note 
that in case of the label Main, we have a "forward declaration", i.e. the label is referred to in the 
source code before it is actually defined. Again, the assembler takes care of this (it actually does 
an extra run through the source code "collecting” all the label definitions before generating the 
instruction code). 

1.4.3 Conditional Branches 

In the sample programs before, we have already used the decsz instruction to build the delay 
loops. Let's discuss such kinds of instructions in more detail now. 

Without the capability to change the flow of program execution depending on certain conditions, 
a microcontroller would be rather useless as it could only execute "straight through" types of pro-
grams. Therefore, the SX comes with a set of conditional skip instructions, like the decsz instruc-
tion. 
decsz Counter1 
  jmp Loop 

for example, decrements the Counter1, i.e. it subtracts one from the former content, and the re-
sult becomes the new content of Counter1. In case that the result yields in zero, the instruction 
immediately following the decsz is skipped (the jmp Loop in our example). 
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If you know microprocessors or other controllers, you may wonder why the SX does not "know" 
basic instructions like jz or jnz (Jump if Zero or Jump if Not Zero), but compound instructions 
only. This is because each instruction code always consists of just one word, 12 bits wide, but 12 
bits are not enough to hold a register address as well as a jump address. 

Therefore, keep in mind that the instruction following a conditional skip is not executed when 
the condition is true. 

You may wonder why we have indented the jmp instructions following the decsz instructions. 
The first reason is to make the program more readable, and the indentation indicates that this 
instruction is not always executed. The second reason is much more important. 

Look at the following code snippet: 
decsz Counter1 
  mov !rb, #%11111110 

On the first glance, this sequence seems to be fine, but it contains a "ticking bomb"! Remember 
that the mov !rb, #%11111110 is a compound instruction as the SX does not provide a basic 
instruction that can copy a constant value directly into a port configuration register. The assem-
bler translates the instructions like this: 
decsz Counter1 
  mov w, #%11111110 
  mov !rb, w 

You can now immediately see what the problem is: The decsz instruction does not "know" about 
compound instructions. All it does is adding an extra one to the PC register in order to skip the 
next instruction in case the condition is true. In our example, the mov w, #%11111110 instruction 
will be skipped but not the mov !rb, w instruction! The result is that !rb will receive a random 
value, depending on the current content of the w register, and this is definitely not what you 
want. 

 
Therefore, the instruction that immediately follows a skip must never be a compound 
instruction; otherwise, strange results may occur! 

 

There are two ways to avoid that dangerous situation: Not using compound statements at all, or 
paying special attention to it. 

Not using compound statements at all is possible because you can always write the basic instruc-
tions that make a compound instruction, but this means additional typing work, and increases 
the size of the source code. 

Indenting the instruction following a skip makes it easier to double-check for not using com-
pound instructions at such places. 
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1.5 Subroutines - Symbols - Data Memory 

1.5.1 Subroutines 

If you look at the previous LED-Blinker program, you will notice that the nested delay loops are 
duplicated, i.e. one is executed before turning the LED on, and the other is executed before the 
LED is turned off again. 

Subroutines can help to avoid such duplicates, as shown in the following program version: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT004.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET   Main 
 
org $08 
Counter1 ds 1 
Counter2 ds 1 
Counter3 ds 1 
 
org $000 
TimeEater 
Loop1 
  decsz Counter1 
    jmp Loop1 
  mov Counter1, #50 
  decsz Counter2 
    jmp Loop1 
  decsz Counter3 
    jmp Loop1 
  ret 
 
  org $100 
Main 
  mov    !rb, #%11111110 
Loop 
  call TimeEater 
  clrb   rb.0 
  call TimeEater 
  setb   rb.0 
  jmp    Loop 
 

Here we have moved the delay loops to a subroutine called TimeEater. A subroutine is a se-
quence of instructions terminated with a ret (Return) instruction. 

To execute the instructions in a subroutine, you use the call instruction together with the ad-
dress where the first instruction of the subroutine is located. In our example, we have defined the 
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label TimeEater as a symbolic address for the subroutine entry, and therefore we use that label 
together with the call instructions. 

Similar to a jmp instruction, a call unconditionally causes a branch to the specified address, i.e. 
the content of PC is changed accordingly. 

As soon as the ret instruction is reached, the content of PC is restored to point to the address of 
the instruction immediately following the call which caused the branch. 

As you can see, there are two call instructions in this program, both invoking the TimeEater sub-
routine. 

Within TimeEater you find the nested delay loops with the extension that Counter1 is now ini-
tialized to 50 when it underflows. This makes the delay a bit shorter in order to increase the 
LED's blink frequency. 

Instead of duplicating the delay loops twice in the program, we have now just one set of delay 
loops in the subroutine, and we call the subroutine twice instead. 

In this example, this only saves a few words in program memory but you can imagine that sub-
routines help to save a remarkable amount of program memory space. 

Besides this, subroutines also help structuring a program. Think of subroutines as "black boxes" 
that perform a specific task. So the calling program needs not to take care of the details, it just 
calls the subroutines, expecting that the subroutines do their job properly. 

1.5.2 The Stack 

 

 

(2.2.6 - 229) Previously, we had mentioned that a ret instruction terminates a subroutine, and 
that it restores the PC register to point at the instruction following the call. This means that the 
content of PC+1 as return address must be saved somewhere before loading it with the entry-
address of the subroutine. 

 

If there were just one fixed register to save the return address, it would not be possible to call 
another subroutine from within a subroutine, although this is common programming practice. 

The second call of a subroutine would overwrite the previously saved value, i.e. the return ad-
dress for the first-level subroutine call would get lost. 

Therefore, a memory structure called "Stack" is used so save a certain number of return addresses 
to allow for nested subroutine calls. A stack structure is also called LIFO (Last In First Out) as this 
describes the way, data can be stored and retrieved. 
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You can think of a LIFO as a stack of dishes. If you put a new dish on the stack, it is a good idea 
to later remove this dish first in order to avoid a disaster. 

The SX has a stack that can hold up to eight return addresses (in "compatibility mode", the 
SX18/20/28 stack can only hold two addresses). This means that the maximum nesting depth for 
subroutines is eight. If you like, single-step through the following program to see what happens 
when this depth is exceeded: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT005.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET   Main 
 
org     $000 
sr1 
    call sr2 
    ret 
sr2 
    call sr3 
    ret 
sr3 
    call sr4 
    ret 
sr4 
    call sr5 
    ret 
sr5 
    call sr6 
    ret 
sr6 
    call sr7 
    ret 
sr7 
    call sr8 
    ret 
sr8 
    call sr9 
    ret 
sr9 
    ret 
     
org     $100 
 
Main 
  call sr1 
  jmp  Main 
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In the SX, the stack is dedicated to storing return addresses only. It cannot be used to store other 
data, and there are no PUSH or POP instructions available, that you may know from 
microprocessors or other microcontrollers. This is not possible because in the SX, data and pro-
gram code are stored in different memory, having different size. 

In order to make use of the 8-level stack, make sure that the SX is configured accordingly, i.e. 
include the DEVICE OPTIONX or DEVICE STACKX directive in your program code. 

1.5.3 Local Labels 

In the previous LED-Blinker sample program, we have used the label Loop to name the main 
program loop, and the label Loop1 to name the delay loop within the subroutine. 

Try what happens when you rename the delay loop in the subroutine to Loop as well: 
TimeEater 
Loop 
    decsz Counter1 
      jmp Loop 
    mov Counter1, #50 
    decsz Counter2 
      jmp Loop 
    decsz Counter3 
      jmp Loop 

When you try to assemble this modified program, you will get an error message like "Label is 
already defined". Obviously, it is not possible that two labels representing different addresses can 
have the same name, otherwise the assembler would not "know" which address it should use 
when the program contains a reference to a label. 

On the other hand, when programs become larger, you must be creative "inventing" new label 
names that are not only unique but also describe the meaning of what the labels stand for. 

If you think of subroutines that are "generic" enough to be used in different programs, you must 
even take care that a subroutine copied to, or included with another source code does not make 
use of labels that are already defined elsewhere in this code. 

Fortunately, most assemblers for the SX allow the definition of local labels. Modify the false code 
sample above to look like 
TimeEater 
:Loop 
    decsz Counter1 
      jmp :Loop 
    mov Counter1, #50 
    decsz Counter2 
      jmp :Loop 
    decsz Counter3 
      jmp :Loop 
;... 
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Main 
  mov    !rb, #%11111110 
:Loop 
  call TimeEater 
  clrb   rb.0 
  call TimeEater 
  setb   rb.0 
  jmp    :Loop 

and try to assemble the program again. This time, the assembler does not complain, and the pro-
gram runs as expected although the subroutine and the main program loop make use of labels 
named :Loop. 

The leading colons in front of the label names make :Loop local labels. A local label is valid only 
in the area of a program that is enclosed by two non-local, i.e. public labels. 

This means that the first :Loop label in our example is valid from TimeEater up to Main, and the 
second :Loop label is valid from Main through the rest of the program code, where TimeEater 
and Main are both public labels. 

 

This tip shall beware you from unnecessary headaches: 

Just "for fun", insert a new global label Foo in TimeEater, following the first jmp :Loop 
instruction: 

TimeEater 

:Loop 

  decsz Counter1 

    jmp :Loop 

Foo 

  mov Counter1, #50 

  decsz Counter2 

and try to assemble the program. This time, the assembler will report that the label :Loop in 
the line following the decsz Counter2 instruction is not defined. 

According to the definition of the range in which a local label is valid, this is correct because 
the :Loop label following decsz Counter2 is now only valid between Foo and Main, and 
there is no definition for :Label in this area.  

Here, in this small program, such problems can be localized quite easily but imagine how 
difficult this might be in a large program with many local labels. Therefore, pay special attention 
when inserting new global labels "in the middle" of a program. 
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When the assembler comes across a global label, it is stored in the symbol table, but also in a "Re-
cent Global Label" buffer. 

When the assembler comes across a local label, it builds the full label name by appending the 
local label name to the recent global label, and stores this name in the symbol table. For example, 
when the recent global label is Subroutine, a local label :NoClear would be stored as Sub-
routine:NoClear in the symbol table. 

When the assembler comes across the reference to a local label, it first builds the full name from 
the recent global symbol and the local label, before searching it in the symbol table. On the other 
hand, the assembler also accepts references to full names. 

This means that you can refer to a specific local label even from a location that follows a new 
global label. However, in this case, you must specify the label in full, like in the following exam-
ple: 
org    $000 
 
Subroutine 
  clr  w 
:NoClear 
  mov  $09, w 
  ret 
 
org    $100 
 
Main 
  call Subroutine 
  call Subroutine:NoClear 
  call :NoClear                ; This causes an error 

Although this code is of no specific use, it demonstrates how two different entry points of a sub-
routine can be accessed from the main program. First, the "regular" call enters the subroutine at 
the main entry point that causes w to be cleared, using the global name Subroutine. The second 
call refers to a local label within the subroutine by specifying the "full" label name (Subrou-
tine:NoClear) i.e. w is not cleared. The third call causes an error because the assembler tries to 
locate the label Main:NoClear which does not exist. 

1.5.4 Some More Considerations about Subroutines 

You may have wondered why we have originated the TimeEater subroutine at address $000, and 
why the main program begins at $100 now. 

To understand this, it is important to know that the call instruction only allows eight bits to spec-
ify the address of a subroutine. This is how the instruction code for call is structured: 
1001 aaaa aaaa 
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When the assembler translates a call instruction, it replaces the lower eight bits aaaa aaaa in 
the instruction code with the lower eight bits of the address that is specified together with the call 
instruction. As a result, the entry point of a subroutine can only be specified by values between 
$000 and $0ff. 

Therefore, it makes sense to reserve the lower area in program memory from $000 through $0ff 
for subroutines, and let the main program begin at $100. 

Later we will see that address $000 has a special meaning when we discuss interrupts. 

When the program memory from $000...$0ff is not large enough to hold the code for all of your 
subroutines, there are two options: 

1. Usage of another program memory page (we will discuss this later in the tutorial). 

2. Jump to a higher address in program memory - here comes an example: 
RESET     Main 
org       $000 
 
SR1 
  jmp     _SR1 
 
org       $100 
Main 
 
; Initializations 
 
:Loop 
     
  ; Instructions within the main loop 
     
  call    SR1 
  jmp     :Loop 
 
_SR1 
 
  ; Instructions within the subroutine 
   
ret 

As you can see, the subroutine SR1 requires one word only in the program area from $000 to $0ff 
for the jmp _SR1 instruction where the remaining code for the subroutine is located, following 
the main program loop in memory above $100. The only little disadvantage is the additional 
word required for the jmp instruction and the three extra clock cycles needed to execute the jmp. 

Fortunately, the assembler reports an error when you try to translate a program where the entry 
point of a subroutine lies above $0ff (this may happen when you add more instructions to a sub-
routine that cause following subroutines being "advanced up" in program memory. Error mes-
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sages will be similar to "Address is not within lower half of memory page" or "ERROR: CALL 
must be to first half of page". 

As mentioned before, a subroutine should behave like a "black box", i.e. it should be possible to 
call it from any location in the program, without any side effects caused by the subroutine. This 
especially means that the subroutine may not make changes to register contents which are im-
portant for other parts of the program. 

For example, a function in the C programming language can fulfill this requirement when all ar-
guments are passed to the function by value, and when the function uses local variables only. In 
addition, a function can optionally return a value to the calling program. 

Requirements like this cannot be realized with the SX that easy. The main reason is the lack of a 
stack for data that C uses for passing arguments and for storing local variables. 

When you write subroutines, take special care that no register contents are changed that are re-
quired to remain unchanged by the calling program. On the other hand, it is almost impossible to 
write a subroutine that does not at least modify the content of the w register. Therefore, the calling 
program should never trust that w remains unchanged after a subroutine call. The same is true for 
the flags in the status register that we will address later. Often, the w register, or the status regis-
ters are used to return a result from the subroutine to the calling program. Here is an example:  
; The subroutine multiplies the contents of number by three 
; and returns the result in w. 
; 
TimesThree 
  mov w, Number 
  add w, Number 
  add w, Number 
ret 
 
 
mov  Number, #2 
call TimesThree 
 
; w now holds 6 

Note, that this simple subroutine does not handle results greater than 255. 

A good method to protect variables from being overwritten by a subroutine is the usage of differ-
ent memory banks that are dedicated to the subroutines and the main program. We will discuss 
this in the next chapter. 

Sometimes, subroutines need to store intermediate results. In such cases, it is a good idea to re-
serve one or more variables that can be used for temporary storage. By convention, the contents 
of such variables are only valid from the point where a subroutine has saved a value there, until 
it terminates. This means that no other part of the program may make assumptions on the vari-
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able’s contents. Nor can any subroutine assume that the variables hold specific values when it is 
called next. 

When you write programs with nested subroutine calls, take care that a subroutine at a lower 
level does not make use of the same temporary variables. This would make its contents invalid 
for the calling subroutine. 

Ubicom recommends the definition of variables named localTemp0, localTemp1, localTemp2, 
etc. as temporary storage. The subroutine at the highest nesting level may use localTemp0, the 
subroutine at the next lower level may use localTemp1, etc. 

Even when you make use of clearly defined conventions how to use variables, it is always a good 
idea to double-check the integrity of variable usage, and it is also helpful to add comments to 
each subroutine to explain which variables might be changed, and on with variable contents the 
subroutine relies. 

1.5.5 Correctly Addressing the SX Data Memory 

 

 

(2.2.2 - 203) The reference section in this book describes how the data memory is divided in 
eight memory banks of 32 bytes each (SX 18/20/28), where the first 16 bytes are always 
located in the first bank (bank 0), no matter which bank is currently active. Within this first bank, 
only the upper eight bytes can be used as general-purpose registers where the lower eight 
registers stand for the SX'es special registers. 

 

Let's try to learn more about memory banks with this little program (this version contains a bug 
as you will see): 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT006.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET Main 
 
Main 
  inc $10 
  inc $30 
  inc $50 
  inc $70 
  jmp Main 
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Enter and assemble this program, and then step through it with the debugger. After the first step, 
the inc $10 instruction will be executed that increments the memory location at $10. As you step 
through this instruction, watch the displayed content of $10, and see how it increments as ex-
pected. 

Now, when you step through the inc $30 instruction you might expect that the contents of 
memory location $30 will increment, but this is not the case. Instead, $10 is incremented again. 
The same happens when you step through the next two instructions. Each time, $10 is incre-
mented, but not $50 or $70. 

The problem here is that the instruction code for an inc only provides five bits for an address in 
data memory: 
0010 101f ffff 

When the assembler translates the instruction, it replaces the five bits that are marked with "f" 
with the lower five bits of the address argument that is part of the inc instruction. 

Using our example, the following codes result: 
$10    ->      0001 0000 
inc   -> 0010 101f ffff 
Instruction code -> 0010 1011 0000 
 
$30   ->      0011 0000 
inc   -> 0010 101f ffff 
Instruction code -> 0010 1011 0000 
 
$50   ->      0101 0000 
inc   -> 0010 101f ffff 
Instruction code -> 0010 1011 0000 
 
$70   ->      0111 0000 
inc   -> 0010 101f ffff 
Instruction code -> 0010 1011 0000 

As you can see, the instruction code is always the same, this is why each of the inc instructions 
addresses $10, and not the other registers as you might have expected. 

You may compare the organization of the SX data memory with a parking garage. Each parking 
deck has 32 lots, numbered from 0 to 31 where the lots 0 to 15 are reserved for special people, 
while the remaining lots from 16 to 31 are open to the public. 

Let's assume, you will borrow your car to a friend, and you have arranged that he can pick up the 
car in our (fancy) parking garage. 

Later, you park the car in deck 5, lot 16 and call your friend: "You can pick up my car in lot 16". 
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You can be sure, your friend will get mad about you because you forgot to tell him in which deck 
you have left the car for him. Neither did you tell him the type of the car nor the license plate 
number. How should he ever find your car when all lots No. 16 in all decks are occupied by cars? 

This is similar to the SX data memory: For the upper 16 bytes in each bank, it is not enough to 
specify the address because this would always be a value from $10 to $1f. In addition, you must 
tell the SX which memory bank (deck) it shall use. 

Now let's improve our program: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT007.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET   Main 
 
Main 
  bank $10 
  inc  $10 
 
  bank $30 
  inc  $30 
 
  bank $50 
  inc  $50 
 
  bank $70 
  inc  $70 
 
  jmp Main 
 

Add the new bank instructions to the "old" example, assemble the modified version, and single-
step through it using the debugger. Now you will notice that the registers $10, $30, $50 and $70 
change as expected. 

After a reset, please single-step the program once again, but this time, note how the value in the 
FSR register at address $04 changes whenever a bank instruction is executed. It will hold the val-
ues $00, $20, $40 and $60 in this sequence. 

The bank instruction copies the upper three bits of the instruction argument into the upper three 
bits of the FSR while the other bits in the instruction argument are ignored. Thus, instead of writ-
ing bank $10, we could have written bank $00 up to bank $1f instead without any difference. The 
only important fact is that the upper three bits in the argument must all be cleared in order to se-
lect bank 0. 



Programming the SX Microcontroller 

44 

Due to "historical reasons" (compatibility to other controller devices), the SX data memory is also 
called "data file", and one location in the data file is called "file register". This explains the name 
of the FSR: File Select Register. 

Let's visualize how the data memory is physically addressed: 

The complete address is composed of the three upper FSR bits and the lower five bits of the in-
struction code. In our example, the addresses for the four inc instructions are built as follows: 
bank $10 ->      0001 0000 
FSR      ->      000? ???? 
inc $10  -> 0010 1011 0000 
Address  ->      0001 0000 = $10 
 
bank $30 ->      0011 0000 
FSR      ->      001? ???? 
inc $30  -> 0010 1011 0000 
Address  ->      0011 0000 = $30 
 
bank $50 ->      0101 0000 
FSR      ->      010? ???? 
inc $50  -> 0010 1011 0000 
Address  ->      0101 0000 = $50 
 
bank $70 ->      0111 0000 
FSR      ->      011? ???? 
inc $70  -> 0010 1011 0000 
Address  ->      0111 0000 = $70 

The three bits highlighted in gray are the three upper bits in the bank instruction's argument and 
the three upper bits in the FSR, and the bits shown in inverse are the five lower bits from the in-
struction code. 

You may ask why we use different address arguments for the inc instructions when the assem-
bler generates the same code anyway. Actually, you could use $10 as address argument for all the 
inc instructions, and the program would work as fine as before. However, the program becomes 
more readable if we use the address arguments that indicate which file registers we really mean. 
Nevertheless, you may never forget that this is not enough to uniquely specify an address in the 
data file – in addition, you need to specify the right bank before accessing a memory location. 

Now, let’s enhance the program by inserting the inc $08 and inc $0f instructions following 
each bank instruction in the code: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT008.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET   Main 
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Main 
  bank $10 
  inc  $08 
  inc  $0f 
  inc  $10 
 
  bank $30 
  inc  $08 
  inc  $0f 
  inc  $30 
 
  bank $50 
  inc  $08 
  inc  $0f 
  inc  $50 
 
  bank $70 
  inc  $08 
  inc  $0f 
  inc  $70 
 
  jmp Main 
 

As you single-step through the program, you will notice that the inc $08 and inc $0f instruc-
tions following each bank instruction always increment the registers at $08 or $0f, no matter 
which bank is currently selected. 

The reason is that data addresses in the range from $00 up to $0f always address physical reg-
isters that are located in bank 0, where these physical registers do not exist in banks 1 through 7. 
This is an exception to the rule how data memory addresses are composed: The upper three bits 
of an address will be always cleared to 000 when the address contained in the instruction code is 
below $10, and the upper three FSR bits are ignored in this case. 

This adds another "strange" behavior to our parking garage example: The parking lots 0 through 
15 only exist in deck 0. When you try to drive into one of these lots in another deck, you will al-
ways be "beamed" down to deck 0. 

Think of the data addresses from $00 through $0f as “Global Variable Area”, i.e. you can always 
reach variables in this area, no matter what bank is currently selected. Also keep in mind that the 
lower eight bytes in this area are reserved for the SX “special registers”. 

1.5.6 Clearing the Data Memory and Indirect Addressing 

1.5.6.1 SX 18/20/28 

When starting the debugger, or after a reset, you may have noticed that the SX data memory 
holds random data at this time. Sometimes, it makes sense to setup the data memory for a "clean 
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start” before executing the application code by initializing all memory locations to zero (except 
the special registers at $00 through $07). 

The following “monster” program clears the contents of the registers from $08 to $3f: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT009.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET  Main 
 
Main 
  clr  $08 
  clr  $09 
  clr  $0a 
  clr  $0b 
  clr  $0c 
  clr  $0d 
  clr  $0e 
  clr  $0f 
 
  bank $10 
  clr  $10 
  clr  $11 
  clr  $12 
  clr  $13 
  clr  $14 
  clr  $15 
  clr  $16 
  clr  $17 
  clr  $18 
  clr  $19 
  clr  $1a 
  clr  $1b 
  clr  $1c 
  clr  $1d 
  clr  $1e 
  clr  $1f 
 
  bank $30 
  clr  $30 
  clr  $31 
  clr  $32 
  clr  $33 
  clr  $34 
  clr  $35 
  clr  $36 
  clr  $37 
  clr  $38 
  clr  $39 
  clr  $3a 
  clr  $3b 
  clr  $3c 
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  clr  $3d 
  clr  $3e 
  clr  $3f 
  jmp  Main 

 

Before you really enter this program, and consider adding more bank and clr instructions for the 
rest of the memory, let's search for a better solution. 

But before we do so, there is one thing we can even learn from this "dumb" program: There is no 
need to repeat the bank instruction as long as all the following instructions refer to registers in the 
same bank. 

Our current task is to clear all registers in data memory with the exception of registers $00 
through $07, and not to use a single clr instruction for each of these registers. 

This task could be easily solved if the clr instruction could accept the contents of a variable as an 
address of the location to be cleared, instead of a constant address as argument. We might then 
place the clr inside of a program loop that increments the address argument until we have 
cleared all memory. 

Fortunately, the SX allows us to do something like this by writing 
clr ind 

This kind of addressing a register is also called Indirect Addressing because in this case, the ad-
dress is not directly specified by the instruction argument. Instead, it is read from another regis-
ter in memory. The SX has one special register that "delivers" the indirect address - it is called the 
FSR (File Select Register). 

When the assembler "sees" an ind or indf as instruction argument, it sets the address part of the 
instruction code to %00000,  i.e. the "virtual" register at address $00 will be accessed. Actually, 
this means that the SX accesses the register whose address is represented by the eight bits in FSR. 

With this information, your first idea might be to write the following instructions in order to clear 
the data memory: 
  clr fsr 
:ClearData 
  clr ind 
  incsz fsr 
    jmp :ClearData 

Don't run these instructions in the SX because some more steps are required before: 

First, the FSR is cleared to start at address $00, and inside the loop, the register is cleared which is 
currently addressed by the FSR contents. While the program executes the loop, FSR is incre-
mented each time, so when the loop is done, all registers from $00 through $ff should be cleared. 
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As you know, registers at $00 through $07 are "restricted area", i.e. this area must not be cleared 
because it contains the SX special registers, including FSR itself which is located at $04. Even 
worse, the program counter, PC is located at $03. Imagine what happens if the PC register would 
be indirectly cleared - this loop would never end! 

The first idea for skipping this "restricted area" is to not clear the FSR but to initialize it to $08 at 
the beginning of the code. Unfortunately, this does not solve our problem because the addresses 
$20...$27, $40...$47, etc. are also "mapped" into that area (see the “fancy” parking garage example 
before) - again, the special registers would be “illegally” touched. 

The sequence below solves the problem: 
clr   fsr    ; 1 
     ; 2 
:ClearData    ; 3 
  sb      fsr.4   ; 4 
    Setb  fsr.3   ; 5 
  clr     ind    ; 6 
  ijnz    fsr, :ClearData  ; 7 

We have added line numbers as comments in order to make it easier to refer to specific lines. 

The table below shows some values in hexadecimal and binary to help you understanding the 
following explanations: 

Hex Binary 
Bits 7 6 5 4 3 2 1 0 
$00 0 0 0 0 0 0 0 0 
$08 0 0 0 0 1 0 0 0 
$09 0 0 0 0 1 0 0 1 
$10 0 0 0 1 0 0 0 0 
$1F 0 0 0 1 1 1 1 1 
$20 0 0 1 0 0 0 0 0 
$28 0 0 1 0 1 0 0 0  
 

In line 1, FSR is cleared, i.e. it contains $00 then. 

Line 4 contains the instruction sb fsr.4 (Skip if Bit). The instruction skips the next instruction 
when bit 4 in FSR is set. This is not the case now, therefore, the next setb fsr.3 instruction in 
line 5 is executed, so bit 3 in FSR is set. This means that FSR now contains $08, i.e. the "restricted 
area" has been successfully skipped. 

The ijnz fsr, ClearData (Increment and Jump if Not Zero) is a compound instruction, i.e. the 
assembler generates two instructions. The instruction first increments the content of FSR, and 
then performs a jump to ClearData in case the increment did not overflow the contents of FSR to 
zero. 
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On the first "round" through the loop, register 8 is cleared (in line 6), FSR is incremented to $09 
(in line 7), and the jump to ClearData is executed. 

FSR contains $09 in line 4 now. As bit 4 is not yet set, line 5 is executed again. As FSR bit 3 is al-
ready set, another setb fsr.3 instruction does not change the contents of FSR at all. 

This will be continued until FSR has finally reached a value of $10. From then on, line 5 will be 
skipped. 

As soon as FSR is incremented to $20, i.e. when bit four is clear, line 5 will be executed again that 
sets FSR’s bit three. So, this skips the "restricted area" again. 

This is repeated until FSR finally overflows from $ff to $00 causing the loop to terminate. 

While the loop is executed, the FSR contents also holds the values $28...$2f, $48...$4f, etc., al-
though these addresses are all mapped into the address space $08...$0f in bank 0, i.e. the registers 
$08...$0f will be cleared "very thoroughly". As this is not a problem, it does not make sense to add 
another exception that avoids those "multiple clears". 

When you execute the following program in the "animated" or "Walk" mode of your debugger, 
you can easily trace how the file registers are cleared: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT010.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET  Main 
 
Main 
  clr     fsr 
ClearData 
  sb      fsr.4 
  Setb    fsr.3 
  clr     ind 
  ijnz    fsr, ClearData 
  jmp     $ 
 

After the program has cleared the data memory, it enters into an endless loop when it comes to 
the jmp $ instruction that might look a bit strange to you. 

We did not forget to add some hexadecimal digits after the $ sign. The "stand-alone" $ in this 
case, tells the assembler to replace it with the value, the assembler currently has stored in the 
internal address counter. In this case, this is the address of the jmp instruction itself. We could 
have reached the same effect by writing 
Forever 
  jmp Forever 
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The only way to release the SX out of this endless loop is to either do a reset, or to turn off the 
power supply. 

In case you do a reset, and then want to run the program again, it is most likely that all register 
contents are already cleared, and so you can no longer see the effect of the clr instructions. 

To "fill" the registers with random data, remove the power supply for a while, and then restart 
the debugger after you have powered up the system again. 

 

Whenever a program contains the initial loop to clear the data memory, single-stepping the 
program with the debugger means that you would have to step through all the ClearData 
loop cycles. 

Remember that your debugger has a "Breakpoint", or an "Execute-to-Cursor" feature that helps 
you to skip over the ClearData loop at high speed. 

 

Indirect addressing is not only helpful to clear the data memory. When you are used to other pro-
gramming languages, you know the concept of arrays and array indices. 

When you indirectly address a group of registers in data memory that are located at consecutive 
addresses, these registers are nothing else but the elements of an array, and the FSR is the array 
index. We will present more examples for indirect addressing as we go ahead in this tutorial. 

1.5.6.2 SX 48/52 

 

 

(2.2.2.2 - 205) The "big brothers" of the “little” SX controllers described before come with 262 
bytes of available data memory. In addition, the special registers and the port data registers 
are also mapped into the data address space, requiring ten more addresses (for INDF, RTCC, 
PD, STATUS, FSR, and Ports RA through RE). This results in a total of 272 different ad-
dresses that must be accessed. 

 

The address space is divided into a "Global Register Bank", and 16 banks (Bank 0...F) of 16 bytes 
each giving the total of 262 locations. 

In order to clear the data memory, we can also use the FSR to indirectly address most locations in 
data memory. Similar to the "smaller" SX controllers, the instruction argument ind or indf causes 
the assembler to set the address part of the instruction code to %00000, and the SX 48/52 will 
access the register whose address is represented by the eight FSR bits. 

This means that 256 bytes can be addressed this way. When the FSR has a value from $00 through 
$1f, a register in the "Global Register Bank" is accessed. In this bank, the special registers and the 
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port data registers are located at $00...$09, plus six general purpose registers at $0a through $0f. 
When the FSR has a value from $10 through $ff, an indirect memory access addresses one of the 
registers in bank 1 through bank F, totaling in 256 different locations. As you can see, the 16 bytes 
in bank 0 cannot accessed this way. 

In order to access the 16 registers in bank 0, we must use semi-direct addressing, i.e. the highest 
bit (bit 4) in the address part of an instruction code must be set, and the upper four bits of FSR 
must be cleared. Besides this, the semi-direct addressing mode allows access to all 256 registers in 
banks 0 through F, but does not allow access to the global and special registers. 

The following code clears all SX 48/52 data registers: 
  ; Clear the SX 48/52 data memory 
  ; 
  mov fsr, #$0a ; As indirect addressing covers the 
   ;  global registers and banks 1 to F, 
   ;  we must initialize FSR to $0a in 
   ;  order to not touch the "special 
   ;  registers" (IND...RE). 
ClearRAM 
  clr   ind 
  incsz fsr 
    jmp ClearRam 
 
  ; As registers in bank 0 cannot be addressed indirectly, 
  ; we must clear them using semi-direct addressing 
  ; 
  clr fsr  ; "Point" FSR to bank 0 
  clr $10  ; Now clear the registers 
  clr $11  ; NOTE: Bit 4 in the instruction  
  clr $12  ;       code must be set in order 
  clr $13  ;       to address a register in  
  Clr $14  ;       bank 0, and not a global 
  Clr $15  ;       register. 
  Clr $16 
  clr $17 
  clr $18 
  clr $19 
  clr $1a 
  clr $1b 
  clr $1c 
  clr $1d 
  clr $1e 
  clr $1f 

At the beginning of this code, we initialize FSR to $0a. This makes sure that we leave the special 
registers and the port registers alone, i.e. the first register that will be cleared is the global register 
at $0a. 

We then simply indirectly clear the register that is addressed via the FSR, and increment FSR 
until its value has finally reached $00 again. 
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In order to clear the 16 registers in bank 0, we use semi-direct addressing, i.e. we set FSR to $00 in 
order to address bank 0, and then use 16 separate clr instructions. Because semi-direct address-
ing requires that bit four in the instruction code is set, the address arguments of the clr instruc-
tions always start with $1. 

1.5.7 Symbolic Variable Names 

In earlier example programs, we already have made use of symbolic names (or addresses) for 
variables in data memory, because symbolic names are much more readable and understandable 
for us human beings. In this chapter, we have used hexadecimal addresses instead, to better 
show the structure of the data memory. 

Lets have a look at a program that first clears the data memory, and then increments some reg-
isters in various banks, using symbolic addresses. 

Here, we first introduce a new include file, called “Clr2x.inc” that contains the code required to 
clear all data memory in an SX 2x chip, i.e. the code that we had discussed before. As clearing all 
data memory is a common task, found in many SX applications, it makes sense to create an 
include file  once, and then use it with the include directive for many applications. 

Please enter the following code lines, and save them in a file named “Clr2x.inc”: 
; ================================================================= 
; Programming the SX Microcontroller 
; Clr2x.inc 
; ================================================================= 
; Clear all data memory 
 
  clr       fsr 
 
:ClearData 
  sb      fsr.4 
    setb  fsr.3 
  clr     ind 
  ijnz    fsr, :ClearData 

 

Note that the code in this include file makes use of a local label only, :ClearData. You should 
always only use local labels within include files that generate code in order to make it possible 
that such code can by included at any place in the main program without interfering with other 
current global labels. 

Next, please enter the following program code: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT011.SRC 
; ================================================================= 
include "Setup28.inc" 
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RESET       Main 
 
org         $10                 ;  1 
BankA       equ $               ;  2 
Counter1    ds  1               ;  3 
 
org         $30                 ;  4 
BankB       equ $               ;  5 
Counter2    ds  1               ;  6 
                                                 
 
org         $50                 ;  7 
BankC       equ $               ;  8 
Counter3    ds  1               ;  9 
 
org         $70                 ; 10 
BankD       equ $               ; 11 
Counter4    ds  1               ; 12 
 
org         $100                ; 13 
 
Main 
 
; Includes code to clear all data memory 
; 
include "Clr2x.inc" 
                                                 
; Testing data memory addressing 
TestAddr 
  bank      BankA               ; 21 
  inc       Counter1            ; 22 
 
  bank      BankB               ; 23 
  inc       Counter2            ; 24 
 
  bank      BankC               ; 25 
  inc       Counter3            ; 26 
  bank      BankD               ; 27 
  inc       Counter4            ; 28 
 
  jmp       TestAddr            ; 29 

 

You already know the org directive. In line 1, for example, the assembler is instructed to place 
subsequent definitions starting at address $10. 

1.5.8 The EQU, SET and = Directives 

New in the program above is the directive 
BankA equ $ 
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in line 2. The equ (Equates) directive is used to assign a constant value to a symbolic name (or 
label). In this case, the label BankA is defined, and it receives the value of the current position of 
the assembler-internal address counter ($10 in this case). 

Alternatively, we could have written 
BankA equ $10 

but should you ever intend to move BankA to another memory bank, you would have to modify 
both, the org and equ arguments, where using the "$" only requires a modification of the org 
argument, i.e. one reason for a possible bug has been eliminated. 

 

Instead of using the equ directive, you may also use the equals sign (and some assemblers, 
like SASM also allow set instead of =), i.e. instead of BankA equ $ you may write 

BankA = $ 

or 

BankA set $ 

instead. 

The difference between equ and =/set is that an assignment once made with equ cannot be 
changed throughout the rest of the program, where = and set allow re-definitions. When you 
assign a value to a label using = or set, this assignment remains in force until the assembler 
comes across a new =/set assignment for the same label, while working through the source 
code from top to bottom. 

For example, the following source lines will cause a "Symbol already defined" error: 

Donald equ 5 

; 

; Donald is 5 now 

; 

Donald equ 6  ; error 

where the following lines will assemble without error: 

Donald = 5 

; 

; Donald is 5 now 

; 

Donald = 6 

; 

; Donald is 6 now 
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Line 3 contains the definition Counter1 ds 1 

This defines a symbolic address named Counter1 at the current memory position ($10), and it 
reserves one byte of memory. This variable is located in bank 0 (or in BankA if you prefer the 
symbolic bank name). 

Lines 4 through 12 similarly define the constants BankB, BankC and BankD and the variables 
Counter2, Counter3 and Counter4. The variables are located in memory banks 1, 2 and 3. 

In lines 15 to 20, we clear the data memory, and in lines 21 to 29, we test addressing variables in 
different memory banks as in the former demonstration program, this time using symbolic ad-
dresses. 

1.5.9 Some Thoughts about Data Memory Usage 

Let’s go through the structure of the SX2x data memory again to see what segments are available: 

Addresses $00...$07:   8 reserved registers 
Addresses $08...$0f:   8 available registers, always addressable 
Addresses $10...$1f: 16 available registers in bank 0 
Addresses $30...$3f: 16 available registers in bank 1 
Addresses $50...$5f: 16 available registers in bank 2 
Addresses $70...$7f: 16 available registers in bank 3 
Addresses $90...$9f: 16 available registers in bank 4 
Addresses $b0...$bf: 16 available registers in bank 5 
Addresses $d0...$df: 16 available registers in bank 6 
Addresses $f0...$ff: 16 available registers in bank 7 

As we already had mentioned in the chapter dealing with subroutines, the SX does not offer a 
method to realize the concept of local and global variables "per-se" but the structure of the data 
memory allows for a concept that comes close to it. 

In the address space from $08 through $0f you should locate global variables, i.e. variables that 
can be easily accessed from the main program as well as from subroutines without the need to 
switch banks because this area can always be reached, no matter what bank is currently selected. 

The remaining blocks of 16 bytes in eight banks (0...7) should be dedicated to subroutines, or to 
major blocks in the main program having different functionality. If possible, each of the subrou-
tines or the major blocks should use a different memory bank. 
There are cases where this concept cannot always be maintained consequently, especially when 
the eight bytes in bank 0 are not enough to hold all global variables. 



Programming the SX Microcontroller 

56 

 
(2.2.2.2 - 205)  The data memory of the "big" SX 48/52 controllers is organized a bit differently. 
You can find detailed information about the SX 48/52 in the reference part of this book. 

1.5.10 Don't Forget to Select the Right Bank 

 

 

Always keep a close eye on the currently selected memory bank. When you forget to activate 
the correct bank, unpredictable memory contents will be the result in most cases that might 
crash a program, and often, such errors are hard to find, even with a debugger. 

 

Please have a look at the following program: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT012.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET     Main 
 
org          $10 
Counter      ds 1 
 
org          $30 
Timers       equ $ 
Timer1       ds 1 
  
  
org          $000 
 
;---------------------------------- 
; Subroutine for time delays 
;---------------------------------- 
Delay 
  bank       Timers 
  clr        Timer1 
 
:Loop 
  decsz      Timer1 
    jmp      :Loop 
  ret 
   
org          $100 
;---------------------------------- 
; Main program 
;---------------------------------- 
Main 
  bank       Counter 
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:OuterLoop 
  clr        Counter 
 
:InnerLoop 
  call       Delay 
  incsz      Counter 
  jmp       :InnerLoop 
  jmp        :OuterLoop 

 

At the beginning, the program defines names for the memory bank Timers which holds the 
Timer variable, while no name is defined for the global bank that “hosts” Counter. 

The main program first selects bank Counter to make sure that the bank selection does not de-
pend on random settings of the upper three bits in the FSR. As you can see, a bank can also be 
selected by specifying the symbolic name of a variable that is defined in that bank instead of us-
ing a separately specified bank name, when no separate name is defined for that bank. 

Then, the Counter variable is cleared and execution enters into :InnerLoop. Inside this loop, the 
Delay subroutine is called, and then Counter is incremented. :InnerLoop is repeated until 
Counter contains a value of zero. If this is the case, execution jumps back to :OuterLoop. 

The Delay subroutine switches the bank to Timers, clears the Timer variable in this bank and the 
program loop then decrements Timer until it reaches zero. Finally, the return to the calling pro-
gram is executed. 

Please enter the program, and activate the debugger. Set a breakpoint on the jmp :OuterLoop 
instruction, and run the program at full speed. 

After :OuterLoop has been executed 256 times, the program should stop at the breakpoint, so 
wait and see... 

Well, you can wait as long as you want, the breakpoint will never be reached. To "bail out" of the 
program, do a reset. 

Did you already figure out the problem? 

The "bad guy" here is the Delay subroutine. It activates the Timers bank in order to access the 
Timer variable, does the delay loop until Timer contains zero, and returns to the main program, 
leaving bank Timers selected! 

The main program - on the other hand - "believes" that bank Main is active, and "thinks" it incre-
ments the Counter variable. (In our "Virtual Parking Garage" we did go to the right lot, but at the 
wrong deck.) In reality, the main program increments the first memory location in the Timers 
bank and this is the Timer variable that currently holds a value of zero. As this is the case at each 
return from the Delay subroutine, this memory location can never be zero in the main program. 



Programming the SX Microcontroller 

58 

To fix that bug, add a bank Main instruction immediately before the ret instruction in the Delay 
subroutine. 

Imagine how cumbersome it can be to find such a nasty bug in a large program - therefore, al-
ways keep a close eye on the bank selections! 

1.5.11 Saving the Current Bank in a Subroutine 

In a small program like the one shown before, it is acceptable that the subroutine switches back to 
bank Main before returning, but for a generic subroutine, it does not make sense to switch to a 
specific bank on return because the subroutine cannot "know" which bank was active before. 
Here, the following example shows one solution: 
org          $08 
localTemp0   ds 1 
 
org          $30 
Timers       equ $ 
Timer1       ds 1 
 
org          $000 
 
;---------------------------------- 
; Subroutine for time delays 
;---------------------------------- 
Delay 
 
  mov        localTemp0, fsr 
 
  bank       Timers 
  clr        Timer1 
 
:Loop 
  decsz      Timer1 
    jmp      :Loop 
 
  mov        fsr, localTemp0 
  ret 

Here, we have declared a variable localTemp0 in the "global" section of the data memory, and 
the subroutine copies the content of FSR into that variable, before FSR is changed. Immediately 
before returning from the subroutine, the original content of FSR is restored from localTemp0. 

This makes the subroutine more generic, but problems might occur if you try to use nested sub-
routines, like in this example: 
org          $08 
localTemp0   ds 1 
 
org          $10 
BankA  equ $ 
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org          $30 
BankB        equ $ 
 
org          $50 
BankC        equ $ 
 
SR1 
  mov       localTemp0, fsr ; LocalTemp0 now “points” to BankA 
  bank      BankB 
  ; 
  ; some instructions 
  ; 
  call      SR2 
  ; 
  ; some more instructions 
  ; 
  mov       fsr, localTemp0 
ret 
 
SR2 
  mov       localTemp0, fsr ; LocalTemp0 now “points” to BankB 
  bank      BankC 
  ; 
  ; some instructions 
  ; 
  mov       fsr, localTemp0 
ret 
 
Main 
  bank      BankA 
  call      SR1 
  ; 
  ; etc. 

Here, SR1 saves the FSR to localTemp0 that currently contains the address of the current bank in 
the main program (i.e. BankA), before changing FSR to address BankB. Later, SR1 calls SR2 and 
SR2 again saves FSR to localTemp0. This means that the original contents of FSR saved in 
localTemp0 that are required to restore FSR for the main program are lost. 

It is obvious that just one variable is not enough to save the FSR when it comes to nested sub-
routines. 

The code below makes use of two temporary variables to fix that problem: 
org          $08 
localTemp0   ds 1 
localTemp1   ds 1 
 
org          $30 
BankB        equ $ 
 
org          $50 
BankC        equ $ 
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SR1 
  mov       localTemp0, fsr 
  bank      BankB 
  ; 
  ; some instructions 
  ; 
  call      SR2 
  ; 
  ; some more instructions 
  ; 
  mov       fsr, localTemp0 
ret 
 
SR2 
  mov       localTemp1, fsr 
  bank      BankC 
  ; 
  ; some instructions 
  ; 
  mov       fsr, localTemp1 
ret 
 
Main 
  bank      BankA 
  call      SR1 
  ; 
  ; etc. 

Another chance you have, is to insert a bank instruction immediately following the subroutine 
call to make sure that the correct bank is selected no matter what changes the subroutine made to 
the FSR. 

Whatever solution you choose, paying special attention to keeping the right bank set avoids cum-
bersome bug-fixing later. 

1.5.12 Routines for an FSR Stack 

As you know, return addresses for subroutines are automatically stored in an eight-level stack by 
the SX. Why should we not create a similar structure to save the FSR before switching banks in a 
subroutine, and restore the FSR from the "software stack" before returning? 

Besides this, a stack buffer can be used to temporarily save other data as well. 

The following program demonstrates the implementation of a stack, the necessary subroutines to 
save and restore the FSR, and how these routines are used: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT013.SRC 
; ================================================================= 
include "Setup28.inc" 
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RESET   Main 
 
org     $10 
BankA   equ $ 
org     $30 
BankB   equ $ 
org     $50 
BankC   equ $ 
org     $70 
BankD   equ $ 
org     $90 
BankE   equ $ 
org     $b0 
BankF   equ $ 
org     $d0 
BankG   equ $ 
 
;--------------------------------------------------- 
; Bank for the FSR Stack 
;--------------------------------------------------- 
org     $f0 
Stack   equ $ 
CurrFSR ds  1 
SP      ds  1 
ST      ds  7 
 
org     $000 
 
;--------------------------------------------------- 
; Save the FSR to the stack 
;--------------------------------------------------- 
PushFSR 
  mov   w, FSR 
  bank  Stack 
  mov   CurrFSR, w 
  mov   w, #ST 
  add   w, SP 
  mov   fsr, w 
  mov   w, CurrFSR 
  mov   ind, w 
  inc   sp 
  mov   w, CurrFSR 
  mov   fsr, w 
ret 
 
;--------------------------------------------------- 
; Restore the FSR from the stack 
;--------------------------------------------------- 
PopFSR 
  bank  Stack 
  dec   SP 
  mov   w, #ST 
  add   w, SP 
  mov   fsr, w 
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  mov   w, ind 
  mov   fsr, w 
ret 
 
SR1 
  call PushFSR 
  bank BankC 
  call SR2 
  call PopFSR 
ret 
 
SR2 
  call PushFSR 
  bank BankD 
  call SR3 
  call PopFSR 
ret 
 
SR3 
  call PushFSR 
  bank BankE 
  ; 
  ; some instructions 
  ; 
  call PopFSR 
ret 
 
Main 
  bank Stack 
  clr  SP 
 
  bank BankB 
  call SR1 
  jmp  $ 

 

In bank Stack, we have defined some variables: 

CurrFSR: 1 byte temporary storage for the FSR 
SP:  1 byte for the stack pointer 
ST:  7 bytes for the stack memory 

We can also describe the stack memory as an array of 7 bytes, and the stack pointer is an index 
into that array. 

The PushFSR subroutine is used to save the current contents of the FSR in the stack: 

First, the current content of the FSR is copied to the W register before FSR is changed by the bank 
Stack instruction that selects the Stack bank. 

Next, the content of w (i.e. a copy of the original FSR value) is stored in CurrFSR because we need 
w for other purposes. 
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The next task is to point FSR to the next empty location in the stack. The SP variable contains the 
offset to the next empty location, and the main program has initially cleared SP. 

First, the instruction 
mov w, #ST 

copies the address (and not the contents) of the first stack location to w, and 
add w, SP 

adds the offset into the stack to w. Now w contains the absolute address of the next empty stack 
location. The instruction 
mov fsr, w 

copies this absolute address to the FSR. 
mov w, CurrFSR 

copies the original contents of FSR to w, and finally, 
mov ind, w 

saves this value to the indirectly addressed stack item. Before returning from the subroutine, we 
increment the stack pointer SP to hold the offset of the next empty location in the stack, and we 
then restore the original contents of the FSR. 

The PopFSR subroutine retrieves the contents of FSR that was saved last in the stack, and copies 
that value into the FSR. 

The instruction 
bank Stack 

activates the Stack bank, and thus modifies the FSR, but this is no problem here as we are going 
to change FSR anyway. 

As SP contains the offset into the stack to the next empty location, we first must decrement SP in 
order to set the offset to the location where FSR was saved last. Again, we need to store the ab-
solute address of this location in FSR for indirect addressing: 
mov w, #ST 
add w, SP 
mov fsr, w 

and finally, 
mov w, ind 
mov fsr, w 

set FSR to the value that was saved last in the stack. 
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It is important that SP is cleared before PushFSR is called the first time. Here, this is done at the 
very beginning of the main program. 

To demonstrate how the stack routines work, the main program selects BankB, then calls SR1, 
which calls SR2, and SR2, calls SR3. Each of the subroutines first calls PushFSR to save the FSR, 
and then selects another bank. Each subroutine calls PopFSR immediately before returning in 
order to restore FSR. 

Single-step this program to see how the FSR is saved at the beginning of a subroutine, and how it 
is restored to its former value before the subroutine terminates. 

Please note that this version of PushFSR does not handle a stack overflow situation, which will 
occur when PushFSR is called more than seven times without calling PopFSR in between. In addi-
tion, PopFSR has no protection against stack underflow that can occur when PopFSR is called 
without a previous call to PopFSR. 

The stack size of seven bytes is large enough when you want to use the stack just to save and 
restore the FSR in subroutines, because the SX allows for a maximum of eight levels of nested 
subroutines. As PushFSR and PopFSR are also subroutines that don't require to internally save 
FSR on the stack, a nesting level of seven remains for other subroutines that might save and re-
store the FSR. 

Besides using the stack routines to save and restore the FSR within subroutines, you can use the 
"software stack" as temporary storage for other values as well. In this case, you might consider 
increasing the stack size. 

Although the stack routines make it easy to write "generic" routines that don't require explicitly 
declared variables for temporary storage, you should keep in mind that pushing a value requires 
17 clock cycles, and that a pop requires 13 clock cycles while using a temporary variable requires 
one or two clock cycles for the save and the restore. 

1.5.13 The "#"-Pitfall 

 

 
Before ending this chapter, we want to make you aware of an error that can easily be made, 
and that could cause you some sleepless nights. 

 

Remember the sentence "first, the instruction mov w, #ST copies the address (and not the con-
tents) of the first stack location to w". 

An instruction parameter with a leading "#" symbol indicates that the value given after the "#" 
shall be interpreted as constant or "literal" value, and we have used instructions like 
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mov Number, #2 

more than once. For example, the compound instruction above, copies the constant value 2 into a 
variable called Number. 

Instead of this, you could also write the following sequence: 
InitValue equ 2 
mov Number, #InitValue 

During translation, the assembler replaces InitValue with the value that has been assigned to 
that label before (2 in our example). 

On the other hand, the following sequence is not allowed: 
InitValue equ #2 
mov Number, InitValue 

The "#" character must be part of the instruction parameter, and it cannot be included in a con-
stant definition. 

A symbolic address too is nothing else but a numerical value. The only difference is that the as-
sembler has automatically assigned a value (the current contents of the internal address counter). 

For example, when the assembler translates the instruction 
mov w, #ST 

in our example program, it replaces ST with $f2 because this is the address of ST. Imagine what 
would happen if you forget to add the "#" character, so that the instruction would read 
mov w, ST 

instead. Now the mov instruction does not copy the address of ST to w, but the contents of the 
first item in the stack instead. 

You can be caught in the same trap is you intend to copy a constant value to a register, like in 
mov Number, #15 

when you forget to type the "#" so that the instruction reads 
mov Number, 15 

instead. In this case, the contents of the register at 15 (or $0f) will be copied to w, but not the con-
stant value 15. 

Please pay extra attention when using constant values - never forget the leading "#" - this makes 
you sleep longer and deeper! 
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The previous example programs used to define a "Bank Name" as in 

org $30 

BankC equ $ 

Var1  ds 1 

Var2  ds 1 

Var3  ds 2 

Later in the program, we have used the symbolic bank name, as in 

bank BankC 

inc  Var1 

Instead of using a special bank name, you can also use the name of any variable declared in 
that bank as an instruction parameter, as in 

bank Var1 

inc  Var1 

Because the bank instruction just copies the upper three bits of the argument to the upper 
three bits of the FSR, any address within a bank is a valid argument for the bank instruction as 
the upper three bits are always the same. 

Nevertheless, in most cases, it makes sense to use a specific bank name as this does describe 
the "class" of a bank better than the name of a variable that is part of this "class". This makes it 
easier to read the program (not for the assembler, but for us human beings), and it helps 
keeping track whether the right bank is selected. 
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1.6 Arithmetic and Logical Instructions 

1.6.1 Arithmetic Instructions 

The SX controllers have not been designed to perform sophisticated calculations but as high-
speed controllers for communications, real-time system control, etc. 

Nevertheless, there are basic arithmetic instructions available you may use to perform calcula-
tions that are more complex by combining them in a program. As the SX works on byte level, 
arithmetic and logical instructions operate on byte-level too, i.e. the operands have the size of one 
byte each, and the result has the size of one byte (plus one bit, as we will see). 

1.6.1.1 Addition 

For example, the add instruction has the following syntax: 
add op1, op2 

This instruction calculates the sum of op1 and op2, and places the result in op1. We can say that 
op1 is the target because it finally holds the result. 

There are two basic variants of the add instruction: 
add fr, w 

add w, fr 

Both variants calculate the sum of the contents of a file register (fr) and w. The first variant stores 
the result in fr, and the second one places the result in the w register. In both cases, the content of 
the right operand remains unchanged. 

There are two more compound add instructions which the assembler replaces by two basic in-
structions: 
add fr, #Constant -> mov w, #Constant 
    add fr, w 

 

add fr1, fr2 -> mov w, fr2 
    add fr1, w 

The first instruction stores fr + Constant in fr, and the second instruction stores fr1 + fr2 in 
fr1. 

Note that both instructions modify the contents of w, and both instructions must not immediately 
follow a skip instruction. 

When adding two one-byte values, there are two possible special cases: 
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1. The result is greater than 255 

As the target can only store values up to 255, the target would contain a wrong result in this case 
because the ninth bit of the result is lost. Therefore, bit 0 in the STATUS register is set in this case. 
This bit is commonly known as  "Carry Flag", "C Flag", or "Overflow Flag". 

If an addition result is greater than 255, the C flag is set, otherwise it is cleared. 

You can address the C flag just like any other flag using the syntax 
$03.0 

because the STATUS register has address $03 in data memory. As the assembler accepts a pre-
defined name for the STATUS register, you may also write 
Status.0 

As it is sometimes necessary to set or clear the carry flag before a specific instruction is per-
formed, you may use the instructions 
clrb Status.0 

setb Status.0 

to clear or set the carry flag, or use the instructions 
clc 

stc 

Actually, the assembler translates all variants of the set and clear instructions into clrb $03.0 or 
setb $03.0 instruction codes. 

2. The result is zero 

There is another flag, the "Zero Flag" or "Z Flag",  indicating a zero result. This flag is located in 
bit 2 of the STATUS register. It is set, when an operation yields in a zero result, otherwise the Z 
flag is cleared. 

To clear or set the Z flag, there are two pre-defined instructions available: 
clz 

stz 

After an addition, the Z flag is set, when the result is zero, and there are two reasons for that: 
Either, both operands contain zero, or the result is exactly 256, or binary 1 0000 0000. In the sec-
ond case, the C flag will also be set because this is an overflow situation. 
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1.6.1.2 Skip Instructions 

To allow a program to react on special cases, there are conditional instructions that perform a 
skip, depending on the status of the C or Z flags:  

sz    (skip if zero) 

snz   (skip if not zero) 

sc    (skip if carry) 

snc   (skip if not carry) 

These instructions skip over the next instruction in case the specified condition is true, i.e. the 
next instruction is executed if the specified condition is false. 

In addition, there are skip instructions that allow testing any bit in a file register: 

sb    fr.bit  (skip if bit) 

snb   fr.bit  (skip if not bit) 

1.6.1.3 The TEST Instruction 

There are some instructions that do not set the Z flag if the target register contains zero after exe-
cution of such instructions. There are also cases where it is necessary to test if a register contains 
zero after other instructions have been executed that have modified the Z flag in between. In this 
case, use the instructions 
test w 

test fr 

to test whether the W register or a file register contains zero. Both instructions set the Z flag in 
case the specified register contains zero, otherwise, the Z flag is cleared. 

The test instruction does not modify the register contents. 
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1.6.1.4 Multi-Byte-Addition 

In case a single-byte-precision is not enough, you can reserve two or more bytes for each oper-
and, and perform the addition in two or more steps. The example below performs a 16-bit addi-
tion: 
org   $08 
Op1L  ds 1 
Op1H  ds 1 
Op2L  ds 1 
Op2H  ds 1 
 
Main 
  mov Op1H,  #$10   ; Op1: 0001 0000 1001 1100 = $109c =  4,252 
  mov Op1L,  #$9c 
  mov Op2H,  #$30   ; Op2: 0011 0000 0111 1011 = $307b = 12,411 
  mov Op2L,  #$7b   ;------------------------------------------ 
                    ; +  : 0100 0001 0001 0111 = $4117 = 16,663 
 
  ; Op1 = Op1 + Op2 
  ; 
  add  Op1L, Op2L   ; $9c + $7b = $117 (Carry = 1) 
  addb Op1H, c      ; $10 + $01 = $11 
  add  Op1H, Op2H   ; $11 + $30 = $41 

Beginning at address $08, we have reserved four bytes for the variables Op1L, Op1H, Op2L and 
Op2H. Op1H is used to store the high byte of the first operand, and the high byte of the result. Op1L 
takes the low byte of the first operand and the result. The Op2H and Op2L variables contain the 16-
bit value of the second operand. 

To test the addition, we assign constant values to the operands (we have chosen values that result 
in an overflow in the low byte). 

Similar to an "addition by hand", the digits are added from "right to left", i.e. the low order byte 
comes first, and then the high order byte. 

Note the addb instruction. It allows to "add" any bit of a register to the contents of another regis-
ter. As you can see, the assembler supports c as pre-defined name for bit 0 in the STATUS reg-
ister, i.e. the carry flag. Addb fr.c is a compound instruction that is replaced by the two instruc-
tions 
snc 
  inc fr 

After a possible overflow while adding the low bytes has been handled by the addb Op1H.c in-
struction, we finally add the two high operand bytes. 

Similarly, you can add variables using more than two bytes to represent greater values. 
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Let's make a short excursion to present another method how to address variables that logically 
belong together, like the two bytes Op1L and Op1H of the first operand and Op2L and Op2H of 
the second operand. Look at the following version of the 16-bit addition: 

org   $08 

Op1   ds     2  

Op2   ds     2 

 

Main 

  mov   Op1+1, #$10   ; Op1:   0001 0000 1001 1100 = $109c 

  mov   Op1,   #$9c   ; 

  mov   Op2+1, #$30   ; Op2:   0011 0000 0111 1011 = $307b 

  mov   Op2,   #$7b   ;--------------------------- 

                      ; Sum:   0100 0001 0001 0111 = $4117 

                      ; Op1 = Op1 + Op2 

                      ; 

  add   Op1,   Op2    ; $9c + $7b = $117 (Carry = 1) 

  addb  Op1+1, c      ; $10 + $01 = $11 

  add   Op1+1, Op2+1  ; $11 + $30 = $41 

Here, we have defined two 16-bit variables Op1 and Op2. The instructions refer to the low 
bytes of the operands by using the "base names", Op1 or Op2, and to refer the high bytes, they 
use the "base names" plus 1, i.e. Op1+1 or Op2+1. 

Here we make use of arithmetic operations, the assembler can perform at assembly-time. 
Because Op1 and Op2 are both symbols that represent addresses ($08 and $0a), the 
assembler replaces the expression Op1+1 by $09, and the expression Op2+1 by $0b. These 
two values are the addresses of the operand's high bytes. 

 

1.6.1.5 Subtraction 

The sub instruction performs 8-bit subtraction operations, and its general syntax is 
sub op1, op2 

and it performs the operation 

op1 = op1 - op2 

Similar to the add instruction, there are two basic variants: 
sub fr, w 
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sub w, fr 

and two compound instructions that use w as temporary storage: 
sub fr, #Constant 

sub fr1, fr2 

The C and the Z flag are changed by the sub instructions. The Z flag is set when the result of a 
subtraction is zero, i.e. when op1 and op2 are equal. 

If op1 is greater than or equal to op2, the C flag is set, otherwise it is cleared, indicating a "bor-
row", i.e. if the result is positive, C is set and otherwise it is cleared. 

If a result is wrong in case the C flag is cleared depends on how we interpret the result. If we 
allow for positive values in a range from 0 to 255, negative numbers are not allowed, and we 
have an error when C is cleared. 

1.6.1.6 Signed Numbers 

We can interpret the contents of a register as signed number. In this case, the highest bit (bit 7) 
indicates the sign, and the remaining 7 bits (6...0) are used to represent the value. The table below 
shows some important values: 

decimal binary hex
+127 0111 1111 7F

+1 0000 0001 01
+0 0000 0000 00
-1 1111 1111 FF

-128 1000 0000 10
 

The representation of negative numbers may look strange on the first glance, but on the other 
hand, it is quite logical. If we decrement a register, containing %0000 0001, i.e. if we calculate 1-1, 
the result is %0000 0000. If we then decrement the register again, its new contents is %1111 1111 
so this must be the equivalent of -1 because the result of 0-1 is -1. 

Well, except that bit 7 is set, indicating a negative number, the remaining 7 bits (111 1111) don't 
look like -1. 

If we setup the rule that negative numbers are represented in two's complement format, we come 
closer to an understanding. To convert a number into its two's complement, negate all bits, and 
add one to the result. Let's do it for -1: 

Value -1: 1111 1111 
negation: 0000 0000 
plus 1:  0000 0001 = +1 
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The same conversion for -128: 

Value -128: 1000 0000 
negation: 0111 1111 
plus 1:  1000 0000 = +128 

As you can see, we include the sign bit when doing the conversion in order to get the correct 
result. 

Let's assume we wanted to use the SX to build a pocket calculator that should subtract 30 - 50 as 
an example. The result that we expect is -20. 

The SX performs the calculation as follows: 

30 = $1e = %0001 1110 
- 
50 = $32 = %0011 0010 
= 
$ec = %1110 1100 (C flag is clear) 

Because bit 7 is set, we know that the result is negative, i.e. we must display a minus sign. Before 
we can display the digits, it is also necessary to convert the negative number into its positive 
equivalent by finding its two's complement: 
; Result contains $1110 1100 
; 
not Result ; Result is %0001 0011 
inc Result ; Result is %0001 0100 = $14 = 20 

We now can display the digits, and the user of our SX-Calculator will see the correct result: -20. 

As you can see this is simply a matter of interpretation - the SX itself does not "know" about 
negative numbers it strictly respects the simple rules of binary arithmetic. 

1.6.2 Incrementing and Decrementing 

We have used the inc and dec instructions in examples before, but we want to discuss them here 
for completeness. The general syntax is: 
inc fr 

dec fr 

The instructions increment or decrement the specified register, i.e. they add or subtract 1 and set 
the Z flag in case the register contents is zero after the operation, otherwise, the Z flag is cleared. 
The instructions do not modify the C flag. 
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The combined instructions incsz and decsz often are useful because they perform an increment 
or decrement and the test for a zero result. Note that these are basic instructions each requiring 
one word in program memory only. The instructions have the following syntax:  
incsz fr 

decsz fr 

The specified file register is incremented or decremented. When the register content is zero after 
the operation, the instruction following incsz or decsz is skipped. Note that this skipped instruc-
tion must not be a compound instruction. 

Both instructions do not change the Z and C flags. 

Note that none of the increment or decrement instructions can be used to increment or decrement 
the W register. If you want to do that, use add w, #1 or sub w, #1 instead. Keep in mind that 
these instructions change both, the Z and the C flag. 

1.6.3 Arithmetic Instructions and Multi-Byte Counters 

Now, that we have discussed the multi-byte addition, we can use it to construct delay loops that 
make use of numbers grater than 255. To make them work as expected, some points require at-
tention. 

The following instructions seem to be correct on the first glance, but they don't work as intended: 
:Loop 
  inc Counter 
  addb Counter+1, c 
  sz 
    jmp :Loop 

Because the inc instruction does not change the C flag, Counter+1 will never be incremented. 
The following instructions fix that problem: 
:Loop 
  add Counter, #1 
  addb Counter+1, c 
  sz 
    jmp :Loop 

Using the add instruction instead of an inc to increment Counter sets the C flag when Counter 
overflows from 255 to 0. 

To generate longer delays, the following instructions seem to be useful: 
:Loop 
  add Counter, #1 
  addb Counter+1, c 
  addb Counter+2, c 
  sz 
    jmp :Loop 
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Again, we have a problem here because the generated delay is much shorter than expected. 

To find out what's wrong, we should remember that addb is a compound instruction. In the code 
below, we have replaced the addb instructions by the instructions that "make" addb: 
:Loop 
  add Counter, #1 
  snc 
    inc Counter+1 
  snc 
    inc Counter+2 
  sz 
    jmp :Loop 

"Adding" C is performed by skipping the inc in case C is not set. Now you can see the reason for 
the problem: 

Because an inc never changes C, the status of C reflects the result of add Counter, #1 through-
out the rest of the loop, i.e. if Counter has overflowed, C is set, and so, both snc instructions do 
not skip. Therefore, Counter+1 is incremented (as it should), but Counter+2 is incremented as 
well when Counter has an overflow, and not only when Counter+1 overflows. 

 

When you want to test the above program using the debugger to find out the bug, you have the 
problem that you need to step through the loop until it comes to an overflow. When you 
execute the program in the animated or "Walk" mode, you would have to stop that mode 
shortly before the overflow occurs to continue in single steps from there. Both methods are 
time-consuming. 

Here comes the trick: After single-stepping through the loop a couple of times to check if is 
works correctly in general, you can assume that the SX will execute further loop cycles 
correctly as well. Now simply set the contents of Counter to a value of say $fe or $ff. To do 
this, left-click the location in the debugger window that displays the current contents of 
Counter. This field opens for entry then, and allows you to type in the new value. 

Then continue single stepping through the loop and notice how both registers (Counter+1 
and Counter+2) are incremented when Counter overflows. 

 

The following code finally works as expected: 
:Loop 
  add  Counter, #1 
  addb Counter+1, c 
  snz 
    inc Counter+2 
  sz 
    jmp :Loop 

Knowing that the addb instruction in reality performs an inc when C is set, and also knowing 
that this inc sets the Z flag when Counter+1 overflows to zero, we use snz to test the Z flag, and 
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increment Counter+2 if necessary, i.e. when the Z flag is set. In this case, the Z flag is affected by 
the inc Counter+2 instruction, and as long as Counter+2 does not overflow, the jmp :Loop 
instruction is executed. 

In case, the addb Counter+1, c instruction did not cause an overflow, i.e. the Z flag is clear, snz 
will skip the inc Counter+2 instruction, and the next instruction is sz. As Z still is clear, jmp 
:Loop will be executed. 

1.6.4 The DEVICE CARRYX Directive 

 

 

If you include a DEVICE CARRYX directive in the configuration section of a program, the "Carry 
Extended" bit in the SX fuse register will be set when the program is transferred into the SX. In 
this case, add and sub instructions work differently. 

As you could see in the previous examples, it was necessary to use an extra addb instruction 
to add the overflow to the next higher digit in multi-byte operations. 

 

 

When the CARRYX option is activated, add and sub instructions automatically add the C flag 
to the result. Therefore, it is no longer necessary to add an overflow. On the other hand, you 
must make sure that C has a defined state before you execute a single-byte add or sub, or 
before you perform the add or sub for the first byte of a multi-byte operation. 

Use clc to clear the carry flag before an add, but use stc to set the flag before a sub. This is 
also true for mov instructions that perform arithmetic operations (we will describe them later in 
this chapter). 

When you do not correctly clear or set the carry flag, it is most likely, that add and sub 
instructions return wrong results. 

For all the samples in this tutorial, we assume that the CARRYX option is not active. 

 

1.6.5 Logical Operations 

Logical operations are executed on bit-level, but always "in parallel" for all bits in a register. 

1.6.5.1 AND 

The general syntax of the and instruction is 
and op1, op2 

A logical AND between the bits of op1 and op2 is performed, and the result is stored in op1. This 
is the truth table for each bit: 
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AND 
op1 op2 Result 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

The result is one and only one when both operand bits are one, or the result is zero if at least one 
of the operand bits is zero. 

The following basic variants of the and instruction are available: 
and fr, w 

and w, fr 

and w, #Constant 

In addition, the two compound instructions are available that use w as temporary storage: 
and fr, #Constant 

and fr1, fr2 

All and instructions set the Z flag when after the operation all bits in the target are cleared, other-
wise Z is cleared. 

To test the status of a single bit in a register, you normally will use an sb or snb instruction. An 
and instruction allows to test any number of bits in a register with only one instruction, like in the 
example below: 
mov   w, #%10010011  ; Original: 10010011 
and   w, #%00001111  ; Mask:     00001111 
                     ; Result:   00000011 
sz 
  jmp :NotZero       ; jump is executed 
 
mov   w, #%10010000  ; Original: 10010000 
and   w, #%00001111  ; Mask:     00001111 
                     ; Result:   00000000 
sz 
  jmp :NotZero       ; jump is not executed 

This method is also called "masking bits". The constant value specified with the and instructions 
above is the "mask". All bits that are cleared in the mask are "masked out" in the result (marked 
gray above). This means that it does not matter which status these bits have in w because they 
never can influence the result of the and operation. 
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As the content of the target register is modified by this operation, it can be used to clear specific 
bits in the target instead of using clrb instructions for several single bits. 

1.6.5.2 OR 

The general syntax of the or instruction is 
or op1, op2 

A logical OR between the bits of op1 and op2 is performed, and the result is stored in op1. This is 
the truth table for each bit: 

OR 
op1 op2 Result 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

The result is zero and only zero when both operand bits are zero, or the result is one if at least 
one of the operand bits is one. 

The following basic variants of the or instruction are available: 
or fr, w 

or w, fr 

or w, #Constant 

In addition, the two compound instructions are available that use w as temporary storage: 
or fr, #Constant 

or fr1, fr2 

All or instructions set the Z flag when after the operation all bits in the target are cleared, other-
wise Z is cleared. 

Or instructions can be used instead of setb instructions in order to set several bits at the same 
time, like in 
mov   w, #%01100000  ; Original: 01100000 
or    w, #%01001010  ; Mask:     01001010 
                     ; Result:   01101010 

All bits that are set in the constant value specified with the or instruction will be set in the target 
register (marked gray). (Bits that were already set in the target remain set). 
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1.6.5.3 XOR 

The general syntax of the xor instruction is 
xor op1, op2 

A logical EXCLUSIVE-OR between the bits of op1 and op2 is performed, and the result is stored 
in op1. 

This is the truth table for each bit: 

XOR 
op1 op2 Result 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

The result is one, when one of the two operand bits is one and the other bit is zero, or the result is 
zero if both operand bits are equal. 

The following basic variants of the xor instruction are available: 
xor fr, w 

xor w, fr 

xor w, #Constant 

In addition, the two compound instructions are available that use w as temporary storage: 
xor fr, #Constant 

xor fr1, fr2 

All or instructions set the Z flag when after the operation all bits in the target are cleared, other-
wise Z is cleared. 

Use the xor instruction to negate certain bits in a register, i.e. bits previously set will be cleared 
and vice versa. See the following example: 
mov   w, #%01100010  ; Original: 01100010 
xor   w, #%01001010  ; Mask:     01001010 
                     ; Result:   00101000 

All bits that are set in the constant value specified with the xor instruction will be inverted in the 
target register. The other bits remain unchanged. 
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1.6.5.4 NOT 

The general syntax of the not instruction is 
not op 

The bits of the operand are negated, and the result is stored in the operand. 

This is the truth table for each bit: 

NOT 
op Result 
0 1 
1 0 

 

The result is one, when the operand bit is zero, and the result will be zero when the operand bit is 
one. 

The following basic variants of the not instruction are available: 
not fr 

not w 

All not instructions set the Z flag when after the operation all bits in the target are cleared, other-
wise Z is cleared. 

1.6.6 Rotate instructions 

The syntax of the rotate instructions is: 

rl fr   (rotate left) 

rr fr   (rotate right) 

The instructions move the bits in a register to the left or to the right by one position. 

When rl is executed, bit fr.0 receives the status of the C flag, and the C flag receives the previ-
ous status of bit fr.7. 

When rr is executed, bit fr.7 receives the status of the C flag, and the C flag receives the pre-
vious status of bit fr.0. 

The following diagrams show the operation of the rotate instructions: 
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Here, the C flag is used as a "buffer" for the "rotated-out" bit; the Z flag is not changed by these 
instructions. Before executing a rotate instruction, make sure that the C flag is correctly set or 
cleared depending on what value shall be "rotated-in". 

Rotate instructions are useful to perform multiplications, but also to convert serial to parallel data 
and vice versa. Programs for scanning LED or keyboard matrices usually make use of rotate in-
structions as well. 

1.6.6.1 Multiplication and Division 

The SX does not support special multiplication or division instructions. In order to multiply or di-
vide values, other instructions must be used to build the necessary algorithm. 

Let's use the simple multiplication 11 * 4 as an example to demonstrate different possibilities to 
solve that multiplication: 

The program below uses the method of repeated additions: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT014.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET     Main 
org       $08           ;  1 
F1        ds 1          ;  2 
F2        ds 1          ;  3 
Result    ds 1          ;  4 
 
org       $100          ;  5 
Main                    ;  6 
  mov     F1, #11       ;  7 
  mov     F2, #4        ;  8 
  clr     Result        ;  9 
:MulLoop                ; 10 
  add     Result, F1    ; 11 
  decsz   F2            ; 12 
    jmp   :MulLoop      ; 13 
jmp       $             ; 14 

 

In lines 2, 3 and 4, we define three variables, two for the factors, and one for the result. 

RL 
0 1 2 34567C

         

RR 
012345 6 7 C 

         



Programming the SX Microcontroller 

82 

In Lines 7 and 8, the two factors, F1 and F2 receive the two values 11 and 4, and in line 9, we clear 
Result because we cannot assume that it contains zero. 

Within :MulLoop, we add F1 to Result until the contents of F2, the other factor is zero. In our 
example, F1 is added to Result four times. We expect a result of 44. When you debug the pro-
gram, you will notice a result of $2c. Convert this into decimal (2 * 16 + 12 = 44) to make sure that 
the program works as expected. 

As (almost) always, this simple program bears some cases of trouble: 

The case that the multiplication can result in a value of above 255 has been ignored here. We 
would have to test the C flag after each addition to find out if an overflow occurred. 

Before improving the program, let's find out the "worst-case", i.e. what is the maximum result 
that a multiplication of two bytes could produce: 

255 * 255 = 65,025 = $fe01 

This means a size of two bytes for the Result variable is large enough to hold the maximum pos-
sible result. 

This is the enhanced program: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT015.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET     Main 
 
org       $08           ;  1 
F1        ds 1          ;  2 
F2        ds 1          ;  3 
Result    ds 2          ;  4 
 
org       $100          ;  5 
Main                    ;  6 
  mov     F1, #255      ;  7 
  mov     F2, #255      ;  8 
  clr     Result        ;  9 
  clr     Result+1      ; 10  
:MulLoop                ; 11 
  add     Result, F1    ; 11 
  addb    Result+1, c   ; 12 
  decsz   F2            ; 13 
  jmp     :MulLoop      ; 14 
jmp       $            ; 15 

 

In this program, we have reserved two bytes for Result, and therefore we must clear both 
Result bytes in lines 9 and 10. 
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Instead of a single byte addition within :MulLoop, we now execute a two-byte addition using the 
newly inserted addb Result+1, c instruction. 

We have initialized both factors to the maximum possible value in order to test the worst-case. 

To test the program, run it in full-speed and then perform a halt. You should find the result in the 
registers at $0a and $0b. 

We could further enhance the program to allow for 2-byte factors. In this case, we would have to 
increase the number of result bytes. The rule is simple: The number of bytes required for the re-
sult is equal to the sum of bytes in both factors. 

Both programs presented so far have another problem: Try to multiply 255 * 0. The result in this 
case is not zero as you might expect. 

The problem is caused by the fact that on entry into :MulLoop, F1 is immediately added to 
Result, i.e. we already have performed the multiplication F1 * 1. Then, the decsz instruction 
decrements F2 (containing 0) down to 255. This finally completes the disaster. 

To catch that bug, we should test if F2 is zero before entering the loop. If this is the case, we are 
all set, and can skip the loop. 

When we asked you to test the multiplication 255 * 255, we suggested that you would run the 
program at full speed because we did not want to keep you busy with stepping through the loop 
255 times. 

This brings us to another point: Although repeated addition is a simple algorithm to multiply 
two numbers, it can take a while, depending on the contents of F2 in our case. "A while" means 
just some microseconds here, but even this may be to long for real-time applications. 

For an alternative algorithm, let's take another look at the rl instruction, and how it influences 
the contents of a register initialized to 11 ($0b): 
mov Result, #11 ; $0b = %0000 1011 = 11 
clc 
rl Result       ; $16 = %0001 0110 = 22 

As you know, the status of the C flag is rotated into bit 0 of the target register, it is necessary to 
clear C before the rl as we cannot assume that it is cleared - therefore, never forget the clc in-
struction here. 

You can see that after the rl, the value in Result has doubled. This is a fact that is quite easy to 
understand. If we take a decimal number, move all digits one position to the left, and add a zero 
to the right, we have performed a multiplication by 10 (i.e. with the base of the number system). 
In case of binary numbers, the base is two, and a left-shift means a multiplication by 2. 

Based upon this, it is easy to perform the sample calculation 11 * 4 when we add another line: 
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rl Result       ; $2c = %0010 1100 = 44 

In general, as long as F2 contains a value that is a power of two, we only need to take care that 
the result buffer is large enough before applying the rl instruction to the result accordingly. Here 
is an example: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT016.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET     Main 
 
org       $08 
F1        ds 1 
F2        ds 1 
Result    ds 2 
 
org       $100 
Main 
  mov     F1, #11 
  mov     F2, #4 
  clr     Result 
  clr     Result+1 
  test   F2 
  snz 
    jmp :Done 
  mov    Result, F1 
  clc 
:MulLoop 
  rl Result 
  rl Result+1 
  rr F2 
  sb F2.0 
    jmp :MulLoop 
:Done 
jmp  $ 

 

This program multiplies F1 and F2, where F2 must contain a value that is a power of two (the 
program does not verify if this is the case, so please don't fool it). The result buffer has a size of 
two bytes, large enough for two one-byte factors. 

Before entering :MulLoop we check if F2 is zero. In this case, we're already done, and the result 
buffer already contains the correct result (zero). 

When F2 does not contain zero, we first copy F1 into the result buffer, clear the carry flag, and 
then enter the loop. While testing the loop, we should keep a close eye on the status of the carry 
flag. 
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Inside the loop, we rotate the low result byte to the left. The very first rl shifts a zero into bit 0 of 
the result because the C flag is clear. In case bit 7 of the low result byte was set before, the C flag 
is set now otherwise, it is clear. 

Next, we rotate left the upper result byte. If C is set (because bit 7 of the low result byte was set 
before), bit 0 of the high result byte is set (which is OK). In any case, the C flag is cleared because 
the upper result byte contained all zeros due to the initialization. 

Next, we rotate F2 to the right. Because C is cleared, bit 7 of F2 will be cleared after the rr in-
struction. As we assume that F2 may only contain values that are equal to a power of 2, we can 
further assume that exactly one bit in F2 is set (in our example, this is bit 2 when we enter the 
loop). The rr instruction does the inverse of the rl instruction, i.e. we divide F2 by two whenever 
we cycle through the loop until the contents of F2 has reached a value of one (bit F2.0 is set). 

If this is the case, we exit the loop, and the multiplication is finished. 

Unfortunately, in real-life, we must assume that F2 can contain values that are not equal to a 
power of two, e.g. 12. Nevertheless, we can represent 12 as a sum of powers of two: 12 = 8 + 4, 
and instead of F1*12, we can write F1*(8 + 4) or F1*8 + F1*4. 

In general, it is possible to represent any integer number as a sum of powers of two, e.g. 23: 

23 = 16 + 4 + 2 + 1   (where 1 = 20) 

and F1 * 23 can be represented as 

F1*16 + F1*4 + F1*2 + F1*1. 

Then next multiplication example makes use of this rule: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT017.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET     Main 
 
org       $08 
F1        ds 2                  ;  1 
F2        ds 1                  ;  2 
Result    ds 2                  ;  3 
Counter   ds 1                  ;  4 
 
org       $100 
 
Main 
  mov     F1, #255              ;  5 
  mov     F2, #255              ;  6 
  clr     F1+1                  ;  7 
  clr     Result                ;  8 
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  clr     Result+1              ;  9 
  mov     Counter, #8           ; 10 
:MulLoop 
  sb      F2.0                  ; 11 
    jmp   :Continue             ; 12 
  add     Result, F1            ; 13 
  addb    Result+1, c           ; 14 
  add     Result+1, F1+1        ; 15 
:Continue 
  clc                           ; 16 
  rl      F1                    ; 17 
  rl      F1+1                  ; 18 
  rr      F2                    ; 19 
  decsz   Counter               ; 20 
    jmp   :MulLoop              ; 21 
  jmp  $                        ; 22 

 

This program accepts any values from 0 through 255 for F1 and F2, and stores the result of F1*F2 
in Result and Result+1, where Result contains the low byte, and Result+1 the high byte. (This 
order should be familiar to Intel programmers - Motorola friends are free, of course, to change 
that order). 

In line 1, we reserve two bytes for F1 although the maximum allowed value for F1 is only 255. 
The additional byte is required because F1 will be multiplied by powers of two later, acting as a 
temporary result buffer. 

We have declared a new variable Counter in line 4 - we need it to count the eight bits in F2. 

In lines 5 and 6, we initialize both factors to the maximum worst-case value (255), and lines 7...9 
clear the "extension" of F2 and the result buffer. 

Counter is initialized to 8 in line 10. Because F2 can now contain any number, and not only pow-
ers of two, we must test each bit in F2, and we can no longer terminate the loop when F2.0 is set. 
This is why we need the new Counter variable. 

Inside :MulLoop, we test if F2.0 is currently set. If this is the case, we must add F1, multiplied 
with the current power of two to the result. This happens in lines 13...15. 

In lines 17 and 18, we multiply F1 by two in order to have the correct value available for the next 
possible add to the result. 

Finally, we divide F2 by 2 in line 19, and then decrement Counter. :MulLoop is executed eight 
times, once for each bit in F2. 

As you have seen in the sample programs, an rr instruction can be used to divide a value by two. 
The algorithms shown for multiplication can be similarly used for division by using an rr in-
struction instead of an rl instruction, and repeated additions must be replaced with repeated 
subtractions. 
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1.6.7 The SWAP Instruction 

This instruction is a bit special because it modifies the bits in a register, usually not required for 
arithmetic or logical operations. The syntax is 
swap fr 

The instruction exchanges the lower four, and the upper four bits in a register (these groups of 
four bits are called "Nibbles"). It does not modify any flags. 

If, for example a register contains %00001111 before a swap, it will contain %11110000 after the 
swap. 

1.6.8 The DC (Digit Carry) Flag 

The STATUS register contains another flag that is changed by some instructions, the Digit Carry 
or DC flag. This flag is located in bit 1 of the STATUS register. 

An add instruction sets this flag, on an overflow from bit 3 to bit 4 (i.e. from the low to the high 
nibble); otherwise the DC flag is cleared. 

A sub instruction clears this flag on an underflow from bit 4 to bit 3; otherwise, the DC flag is 
cleared. 

The DC flag is useful when you want to perform BCD arithmetic, i.e. when register contents rep-
resent binary coded decimals. 

1.6.9 MOV Instructions with Arithmetic Functions 

We already have used mov instructions in almost all samples so far, and you will find more de-
tails about mov instructions in the next chapter. 

Here, we will discuss such mov instructions that do not just copy a value into a target register, but 
this special class of mov instructions also performs arithmetic or logical operations “on the fly” 
while moving values. This interesting class of instructions can be used for comparisons and other 
tests where the original contents of a register shall be maintained. 

All these mov instructions perform an arithmetic or logical operation on a value that is contained 
in a register (the source), and move the result into w, without changing the original contents of the 
source. 

 

Note that it is necessary to clear or set the carry flag before executing a mov that does an 
addition or subtraction in case the DEVICE CARRYX option is active. (See the explanation 
earlier in this chapter for more details.) 
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Now let's describe the mov instructions in this class: 

mov w, /fr         ( w = not fr) 

Similar to the not instruction, the content of fr is negated, and the result is stored in w. fr re-
mains unchanged. The Z flag is set if the result is zero, otherwise it is cleared. 

mov w, fr-w        ( w = fr-w ) 

The difference between fr and w is stored in w, and fr remains unchanged. The Z flag is set if the 
result is zero, otherwise it is cleared. The C flag is cleared if the result is negative otherwise, it is 
set. The DC flag will be cleared on an underflow from the high to the low nibble otherwise, it is 
set. 

This instruction, for example, is useful when you want to test if a register contains a specific 
value, like in 
mov w, #123 
mov w, Value-w 
sz 
  jmp :NotEqual 

Here, we initialize w with the compare value, and then execute the mov w, Value-w instruction. 
If the variable Value also contains 123, the result in w will be zero, and the Z flag is set. Therefore 
the jmp :NotEqual instruction is skipped in this case. 

mov w, ++fr        ( w = fr+1 ) 

The incremented content of fr is stored in w, and fr remains unchanged. The Z flag is set if the 
result is zero, otherwise it is cleared. 

This instruction can be helpful when you increment a variable in a loop, and you want to avoid 
that it overflows: 
:Loop 
  mov w, ++Counter 
  mov w, #1 
  snz 
    mov Counter, w 
  jmp :Loop 

This code is a bit "tricky": The mov w, ++Counter instruction sets w to zero in case it contains 255, 
and the Z flag is set. Next, the mov w, #1 instruction "prepares" a new value for Counter. As this 
mov instruction does not change any flags, the status of the Z flag still reflects the result of the 
previous instruction. The snz instruction always skips the mov Counter, w instruction, except 
when Z is set, and this is the case when Counter contains 255. 

As a result, the content of Counter is changed from 255 to 1, and it never yields in a zero value. 

mov w, --fr        ( w = fr-1 ) 
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The decremented content of fr is stored in w, and fr remains unchanged. The Z flag is set if the 
result is zero, otherwise it is cleared. 

mov w, <<fr        ( w = rl fr ) 

The left-rotated content of fr is stored in w, and fr remains unchanged. The status of the C flag is 
copied to bit 0 of the result, and the status of bit fr.7 is copied to the C flag. 

mov w, >>fr        ( w = rr fr ) 

The right-rotated content of fr is stored in w, and fr remains unchanged. The status of the C flag 
is copied to bit 7 of the result, and the status of bit fr.0 is copied to the C flag. 

 
When performing mov and rotate instructions, make sure that the C flag is initialized to a 
defined state before. 

 

mov w, <>fr        ( w = swap fr ) 

The content of fr is stored in w with the high and low nibbles exchanged, and fr remains un-
changed. No flags are changed by this instruction. 
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1.7 MOV Instructions 
The mnemonic mov is derived from "move". This usually means that something is moved from 
one place to another, e.g. when you move from one home to another, you belongings located in 
the old home before the move will be located in the new home after the move. 

The SX mov instructions act as "data-movers" as well and they also "move" something (the con-
tents of a register (the source register) or a constant value) to a new location (the target register), 
but they leave the source register unchanged. They actually transfer a copy of the source into the 
target. 

Depending on the type of the mov instruction and the resulting target value, the flags are changed 
or not. 

The general syntax of a mov instruction is  
mov  Target, Source 

this means the move goes from "right to left". The right instruction argument defines the source, 
and the left argument specifies the target. 

Some mov instructions are basic SX instructions, where others are compound instructions. Let's 
address the basic instructions first: 

1.7.1 Basic MOV Instructions 
mov fr, w 

This instruction copies the contents of w to the specified file register fr. No status flags are 
changed by this instruction. 
mov w, fr 

This instruction copies the contents of the specified file register fr to w. When w contains zero 
after the mov, the Z flag is set otherwise, it is cleared. 
mov w, #Constant 

This instruction sets the contents of w to the specified constant value. No status flags are changed 
by this instruction. 

 

Never forget to place the leading hash symbol "#" in front of the constant value (or label). If it is 
missing, the assembler creates a mov w, fr instruction instead, i.e. w will receive the 
contents of a register with the address specified by Constant, but not the constant value 
itself. 
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mov w, m 

This instruction copies the contents of the MODE (m) register to w. No flags are changed by this 
instruction. The value in m specifies which group of the port configuration registers is currently 
active. 
mov m, w 

This instruction copies the contents of w to the MODE (m). No flags are changed by this instruc-
tion. The value in m specifies which group of the port configuration registers is currently active. 
mov m, #Constant 

This instruction sets the contents of the MODE register (m) to the specified constant value. No 
status flags are changed by this instruction. 

 

Never forget to place the leading hash symbol "#" in front of the constant value (or label). If it is 
missing, the assembler creates a mov m, fr instruction instead, i.e. m will receive the 
contents of a register with the address specified by Constant, but not the constant value 
itself. 

 

mov !option, w 

This instruction copies the contents of w to the OPTION register. We will discuss the OPTION 
register together with interrupts. No status flags are changed by this instruction. 
mov !Port, w 

This instruction copies the contents of w to the specified port configuration register (!ra, !rb, !rc, 
etc.). No status flags are changed by this instruction. Make sure that the MODE (m) register is 
correctly set before in order to select the desired group of port configuration registers. 

1.7.2 Compound MOV Instructions 

In addition to the basic mov instructions described before, the assembler supports a set of com-
pound mov instructions. The assembler generates two basic mov instructions as replacements for 
the compound mov instructions. 

 

Because the compound mov instructions use w as temporary storage, be aware that the 
previous content of w is lost! 

As compound statements are replaced by two basic instructions, a compound mov may never 
follow immediately a conditional skip instruction! 
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mov fr, #Constant 

This instruction sets the contents of a register to the specified constant value. The status flags are 
not changed by this instruction, and w contains the constant value. 

 

Never forget to place the leading hash symbol "#" in front of the constant value (or label). If it is 
missing, the assembler generates a mov fr1, fr2 instruction instead, i.e. fr will receive the 
contents of a register with the address specified by Constant, but not the constant value 
itself. 

 

mov fr1, fr2 

This instruction copies the contents of register fr2 to register fr1. If fr2 contains zero, the Z flag 
is set, otherwise it is cleared. w is set to the contents of fr2. 
mov fr, m 

This instruction copies the contents of the MODE register (m) to the register fr. The flags are not 
changed by this instruction. w is set to the contents of m. 
mov m, fr 

This instruction copies the contents of the register fr to the MODE register (m). The flags are not 
changed by this instruction. w is set to the contents of fr. 
mov !option, fr 

This instruction copies the contents of register fr to the OPTION register. If fr contains zero, the 
Z flag is set, otherwise it is cleared. w is set to the contents of fr. 
mov !option, #Constant 

This instruction sets the OPTION register to the specified constant value. The flags are not 
changed by this instruction. w is set to the constant value. 

 

Never forget to place the leading hash symbol "#" in front of the constant value (or label). If it is 
missing, the assembler generates a mov !option, fr instruction instead, i.e. the OPTION 
register will receive the contents of a register with the address specified by Constant, but not 
the constant value itself. 

 
mov !Port, fr 

This instruction copies the contents of register fr to the specified port configuration register (!ra, 
!rb, !rc, etc.). If fr contains zero, the Z flag is set otherwise, it is cleared. w is set to the contents 
of fr. 
mov !port, #Constant 
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This instruction sets the specified port configuration register (!ra, !rb, !rc, etc.) to the specified 
constant value. The flags are not changed by this instruction. w is set to the constant value. 

 

Never forget to place the leading hash symbol "#" in front of the constant value (or label). If it is 
missing, the assembler generates a mov !Port, fr instruction instead, i.e. the configuration 
register will receive the contents of a register with the address specified by Constant, but not 
the constant value itself. 

 

Instead of using compound mov instructions, you can always combine basic mov instructions to 
achieve the same effects. Sometimes, it can even save clock cycles and program memory when 
you keep in mind that compound instructions are combined basic instructions, like in the fol-
lowing example: 
mov Factor1, #44 
mov Factor2, #44 

When we write the basic instructions that "make" the compound instructions, the sample looks 
like this: 
mov w, #44 
mov Factor1, w 
mov w, #44 
mov Factor2, w 

As you can see now, the second mov w, #44 is not necessary because w already contains 44, so 
that the instructions 
mov w, #44 
mov Factor1, w 
mov Factor2, w 

have the same effect. Of course, you could also write 
mov Factor1, #44 
mov Factor2, w 

but this makes the program quite difficult to understand, especially for someone who does not 
know about the internals of compound statements. The following context completes this: 
mov w, ra 
mov PortStatus, w 
mov Factor1, #44 
mov Factor2, w 

Now, someone might assume that Factor2 receives the value read from ra into w because it is 
not obvious that the mov Factor1, #44 instruction modifies w. 
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1.8 Recognizing Port Signals 

1.8.1 Recognizing Signal Edges at Port B 

To test the examples in this chapter, a pushbutton is required that is connected between port pin 
RB3 of the SX and VSS. Most of the commercially available demo boards have this pushbutton 
already installed. 

We will enhance the sample program shown in the introduction in a way that the LED blinks 
faster when the pushbutton is pressed. This is the enhanced program: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT018.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET    Main 
 
TRIS     equ $0f 
PLP      equ $0e 
 
org $08 
Counter1 ds 1 
Counter2 ds 1 
Counter3 ds 1 
Time     ds 1 
 
org $000 
TimeEater 
mov      Counter1, Time 
:Loop 
  setb   Time.5 
  sb     rb.3 
    clrb Time.5     
  decsz  Counter3 
    jmp  :Loop 
  decsz  Counter2 
    jmp  :Loop 
  decsz  Counter1 
    jmp  :Loop 
  ret 
 
org $100 
Main 
  mov    Time, #$30 
  mode   PLP 
  mov    !rb, #%11110111 
  mode   TRIS 
  mov    !rb, #%11111110 
Loop 
  call   TimeEater 
  clrb   rb.0 
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  call   TimeEater 
  setb   rb.0    
  jmp    Loop 

 

In this program version, we have defined a new variable Time that defines the current LED blink 
frequency, and the main program initializes it to $30. 

The TimeEater subroutine now initializes Counter1 with the contents of Time, and not with a 
constant value. 

1.8.1.1 MODE and Port Configuration Registers 

 
(2.2.4.12 - 218) The contents of the MODE (m) register defines which port configuration register 
is accessed by the mov !r?, ??? instruction. 

 

After a reset, the port direction (TRIS) registers are selected by default. In the main program, we 
first set m to select the Pull-up Configuration registers with the mode PLP instruction. We have 
defined constants for the necessary values for m at the beginning of the program. This is easier 
than keeping all that values in mind. 

The mov !rb, #%11110111 instruction clears bit 3 in the Pull-up register, i.e. a pull-up resistor is 
activated for port pin RB.3, and this is the pin with the pushbutton. Without a pull-up resistor, 
the port input will "float" as long as this pushbutton is open, i.e. its state would be undefined. But 
as the pull-up resistor pulls the input level up to VDD, the port bit will read 1 in this case. 

In the inner delay loop, we read port bit rb.3, i.e. the status of the pushbutton, and we change 
the value in Time accordingly: 
  setb   Time.5 
  sb     rb.3 
    clrb Time.5     

First, we set bit 5 in Time, i.e. it contains $30. If rb.3 is set, the pushbutton is open, and in this 
case, we don't change Time. If the pushbutton is down, bit Time.5 is cleared, i.e. Time now con-
tains $10. Therefore, TimeEater generates a shorter delay and the LED will blink faster. 

 

As you can see, bit Time.5 is set each time when the program executes the loop, although it 
is only necessary to set the bit when the pushbutton is open. On the other hand, this would 
require an additional test, and a jmp instruction that requires more execution time and 
additional program memory than setting Time.5 "in preparation". 
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In this example, we test the status of the pushbutton frequently within the inner delay loop. This 
method is also known as "Polling". 

If you compare the slow blink frequency of the LED with the original program, you will notice 
that it is slower in this version. This is because additional clock cycles are required in the inner 
loop to poll the pushbutton. This is not a problem in this program, but it may be not acceptable in 
other applications. 

As we poll the pushbutton inside the inner delay loop, this test is performed quite often although 
it is only necessary, when Counter1 requires a re-initialization. Therefore, we can modify the 
subroutine as follows: 
TimeEater 
  setb   Time.5 
  sb     rb.3 
    clrb Time.5     
  mov    Counter1, Time 
:Loop 
  decsz  Counter3 
    jmp  :Loop 
  decsz  Counter2 
    jmp  :Loop 
  decsz  Counter1 
    jmp  :Loop 
  ret 

Now, that the polling of the pushbutton is done outside the delay loop, it has almost no influence 
on the total delay time, and you will notice that the LED blinks faster in both modes now. 

Let's modify the program in order to use the pushbutton as a toggle, i.e. pressing it once shall 
make the LED blink fast, and pressing it another time shall make the LED blink slowly again, and 
so on. 

To test this, please exchange the TimeEater subroutine by this new version: 
TimeEater 
  snb    rb.3 
    jmp  :NoButton 
  xor    Time, #%11101111 
:NoButton 
  mov    Counter1, Time 
:Loop 
  decsz  Counter3 
    jmp  :Loop 
  decsz  Counter2 
    jmp  :Loop 
  decsz  Counter1 
    jmp  :Loop 
  ret 
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Run the modified program at full speed, and try to change the blink frequency by pressing the 
push button. You will notice that this is not that easy. In order to successfully change the fre-
quency, you must press the button while the LED is on, and you must release it while the LED is 
off. As long as the LED blinks slowly, you should manage it but if the LED blinks quickly, you 
need a "fast finger". 

The reason for this problem is that the button read is "static", i.e. we don't recognize the fact that 
the button state has changed, Instead we query the button state as it currently is. When you hold 
it down too long, this state will be read whenever TimeEater is called, and this causes a toggle of 
the bit Time.4 as long as you keep the button pressed. 

We could fix this problem by adding more instructions that save the last button state and toggle 
the "speed bit" Time.4 only if the button state is different from the previously saved state. On the 
other hand, why should we do this if the SX has this functionality "built in"? 

1.8.1.2 Signal Edges at Port B 

 

(2.2.4.9 - 214) Port B is equipped with some additional registers that can be accessed when 
the MODE (m) register is set to certain values. One of these registers is named WKPND_B 
(Wake-up Pending). A bit in this register is set, when the associated port pin has registered a 
signal change. After a reset, negative edges, i.e. high-low transitions, set the bits by default. 

 

There is another configuration register for Port B that allows changing the default. If you clear a 
bit in the WKED_B (Wake-up Edge) register, the input is configured to set the associated bit in the 
WKPND_B register on a positive edge, i.e. a low-high transition. 

A bit in the WKPND_B register signaling a detected edge on the associated port input pin, remains 
set until it is cleared by software. Then it is "armed" to indicate the next signal edge that might 
occur on that input. 

To clear the bits in the WKPND_B register, a mov !rb, w instruction is used where usually w is 
cleared before in order to reset all bits in the WKPND_B register. The "trick" here is that this mov 
instruction actually does an exchange. This means the content of w is copied into the WKPND_B 
register, where the previous content of this register is copied to w. This makes it possible to read 
the contents of WKPND_B although this register "officially" is write-only. 

Because the primary use of these registers is to control how signal edges shall wake up a "sleep-
ing" SX, they contain the "Wake-up" part in their names. Besides this, the registers also control 
interrupts, but they can also be used directly to test for signal edges. (We will address wake-up 
and interrupts later). 

Now let's try a sample program that makes use of these features: 
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; ================================================================= 
; Programming the SX Microcontroller 
; TUT019.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS     equ $0f 
PLP      equ $0e 
WKPND_W  equ $09 
 
org $08 
Counter1 ds 1 
Counter2 ds 1 
Counter3 ds 1 
Time     ds 1 
Button   ds 1 
 
org $000 
TimeEater 
  mode   WKPND_W 
  clr    w 
  mov    !rb, w 
  and    w, #%00001000 
  snz 
    jmp  :NoButton 
  xor    Time, #%00100000 
:NoButton 
  mov    Counter1, Time 
:Loop 
  decsz  Counter3 
    jmp  :Loop 
  decsz  Counter2 
    jmp  :Loop 
  decsz  Counter1 
    jmp  :Loop 
   
  ret 
 
org $100 
Main 
  mov    Time, #$30 
  mode   TRIS 
  mov    !rb, #%11111110 
  mode   PLP 
  mov    !rb, #%11110111 
  mode   WKPND_W 
  clr    w 
  mov    Button, w 
  mov    !rb, w 
 
Loop 
  call   TimeEater 
  clrb   rb.0 
  call   TimeEater 
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  setb   rb.0 
  jmp    Loop 

 

At the beginning of this program, we have defined a new constant WKPND_B. This is the value that 
is required in the MODE register to access the WKPND_B register in order to exchange its contents 
with w. 

In the main program, we clear the WKPND_B register to avoid that an action is executed after a 
reset because at reset, all bits in this register are set. 

We have also declared a new variable Button that is cleared in the main program. We don't need 
this variable here, but we’ll use it for an enhancement soon. 
TimeEater 
  mode   WKPND_B 
  clr    w 
  mov    !rb, w 
  and    w, #%00001000 
  snz 
    jmp  :NoButton 
  xor    Time, #%00100000 
:NoButton 

This part of the subroutine performs the actions necessary detecting a "button down" event. The 
clr w and mov !rb, w instructions clear the WKPND_B register, and w holds the previous contents 
of the register. Note that the mov !rb, w instruction does not alter the Z flag, therefore, we can-
not test it to see whether the contents of w is zero. 

Instead, we mask out bit 3 (and w, #%00001000). When bit 3 is not set, i.e. no "button down" 
event, the jump to :NoButton is executed. In the other case, the xor Time, #%00100000 instruc-
tion toggles bit 5 in Time in order to select the fast or slow blink frequencies for the LED, i.e. Time 
either contains $30 or $10. 

When you run the program at full speed, you will notice that the toggle between the two blink 
speeds does not always work as expected. This is caused by contact "bouncing", i.e. before the 
pushbutton contact finally stays closed when you press and hold it down, it opens and closes a 
couple of times (within a time period in the area of some milliseconds). Because the SX is that 
fast, the program interprets the bounce as separate button "down events" where each of them 
toggles the Time variable contents. 

1.8.1.3 De-bouncing Mechanical Contacts 

There are several methods used to eliminate the bouncing of mechanical contacts. One idea is to 
use an RC network to "smoothen" the contact signal. Another idea is to use a pushbutton with a 
make and a brake contact, each connected to one port input (we will show this in a later applica-
tion example). Another method is to wait a certain period after the first button-down has been 
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detected. If the button is still down after that period, we can assume that the button is "really" 
down. 

We are going to use this method in an enhanced version of the TimeEater subroutine: 
TimeEater 
  mode   WKPND_B 
  clr    w 
  mov    !rb, w 
  mov    Button, w 
  mov    Counter1, Time 
:Loop 
  decsz  Counter3 
    jmp  :Loop 
  sb     Button.3 
    jmp  :Continue 
  clr    Button 
  sb     rb.3 
    jmp  :Continue 
  xor    Time, #%00100000 
:Continue 
  decsz  Counter2 
    jmp  :Loop 
  decsz  Counter1 
    jmp  :Loop 
    ret 

At the beginning of TimeEater, we read the WKPND_B register as before, and save the result in the 
Button variable that we are going to use now. In case of a button-down event, bit Button.3 is set 
now. After finishing the inner delay loop, we now test if Button.3 is set. In this case, we clear the 
Button variable to prepare it for the next event. Then we read port bit rb.3 directly to find out 
if the button is still down, i.e. if this bit is clear. In this case, we assume that the button is "really 
down", and toggle bit Time.5 as before. 

Here, we make use of the inner delay twice - it serves as timer for the de-bouncing delay and for 
the blink delay. 

If you are using a pushbutton that produces very long bounces, it may happen that the delay pro-
vided by the inner loop is too short. In this case, simply move the instructions "behind" the mid-
dle delay loop that decrements Counter2 or even "behind" the outer delay loop: 
  decsz  Counter2 
    jmp  :Loop 
  decsz  Counter1 
    jmp  :Loop 
 
  sb     Button.3 
    jmp  :Continue 
  clr    Button 
  sb     rb.3 
    jmp  :Continue 
  xor    Time, #%00100000 
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:Continue 

Be aware that this makes the program react much slower on a button push, i.e. if you press it too 
short, the button-down will not be recognized.  
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1.9 Interrupts - The OPTION Register 

1.9.1 Interrupts 

The sample programs in the previous chapter made an LED blink at a low frequency. In order to 
do this, it was necessary to "slow-down" the SX using nested delay loops. 

In reality, the SX has been designed to perform more important tasks than just make an LED 
blink. "Blinking an LED" is one of those tasks, the SX can easily handle "in the background" while 
taking care of other things like serial communications, A/D conversion, reading switches or 
buttons, frequency and time measurement, speed control, Internet communications, etc. 

In theory, it would be one solution to insert code within the inner delay loop to handle other 
tasks. In the previous example, we did this to read the button state. You could also call subrou-
tines from there to handle other tasks. 

Often, handling other tasks requires a variable number of clock cycles, i.e. the delay caused by 
the loop "around" such task handlers would no longer be constant. This might be acceptable for a 
blinking LED but not for a program, that transmits serial data at a high baud rate. Here, precise 
timing is essential. 

The scenario described above is a typical "multi-tasking" scenario, i.e. the SX must be able to per-
form several tasks "at the same time". Of course, the SX can only execute one instruction after 
another, but if you make sure that each task is assigned a certain "slice" of execution time, it looks 
as if the SX is performing several tasks in parallel. 

This important feature is the basis for Virtual Peripherals that make the SX so uniquely different 
from other microcontrollers. We will address Virtual Peripherals in a later chapter of this tutorial. 

In addition, there might occur random events that do not match a pre-defined time frame, like a 
button press or the edges of a square wave with varying pulse length, etc. 

The magic word that describes the method to solve such requirements is "Interrupt". If a certain 
event occurs, the SX interrupts the current sequence of instructions, executes a special subroutine 
that handles the event, and then continues with executing the previously interrupted sequence. 

Similar to a subroutine, the return address is saved internally, i.e. the address of the instruction 
that comes next to the last one executed before the interrupt. On return from the interrupt, this 
address is restored to the program counter. 

You certainly will recall from the chapter dealing with subroutines, that it is important to make 
sure that the subroutines do not change register contents that are required by the calling pro-
gram. We have shown some techniques how to save and restore the contents of the FSR there. 
When dealing with interrupts, the problem is that an interrupt can occur at any time, and there is 
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no chance to save important register contents before entering the interrupt handler. This means 
that the interrupt handler would have to save and restore important registers like W, STATUS 
and FSR. 

Fortunately, the designers of the SX have built in so called "shadow registers" for W, STATUS 
and FSR that always hold duplicates of the original register's contents. While handling an inter-
rupt, the shadow registers are no longer updated, so that they hold the contents of the registers as 
they were before the interrupt. When interrupt handling is finished, the contents of the shadow 
registers are used to restore the original values in W, STATUS and FSR without any additional 
code in the application program. 

Another problem might occur when - while one interrupt is serviced - another interrupt is trig-
gered. Because the SX can always only handle one interrupt at a time, further interrupts must be 
disabled until the previous interrupt has been serviced. Again, this is automatically handled by 
the SX, so there is no need to provide special instructions for that. 

To handle an interrupt, a special subroutine is called, and the SX assumes that this routine begins 
at address $000 in program memory. This subroutine is also called the Interrupt Service Routine 
(ISR). To return from an ISR, you cannot use a "regular" ret instruction, but you must use reti 
or retiw instead. These instructions make sure that the register contents are restored from the 
shadow registers as described before, and that the program counter PC is loaded with the correct 
return address. 

The reti (Return from Interrupt) instruction returns from the ISR as described before. The retiw 
(Return from Interrupt with W) performs an additional very useful operation that we'll explain 
soon. 

In the beginning of this chapter, we mentioned that several events can be the reason for an inter-
rupt: 

• Asynchronous events, e.g. signal edges at a port B input caused by a button press. 

• Synchronous events, i.e. interrupts that are generated whenever a certain time has 
elapsed. 

• Interrupts after a certain number of (synchronous or asynchronous) events, or interrupts 
caused by a counter overflow. Here an external signal is fed into an SX input. A signal 
edge increments an internal counter. When this counter overflows, an interrupt is issued. 

 
In order to enable interrupts, bit 6 in the OPTION register must be cleared, therefore programs 
must contain an OPTIONX or STACKX directive to allow write access to this bit. 
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1.9.1.1 Asynchronous Interrupts 

 

(2.2.4.9 - 214) In the previous chapter, we have made use of the WKPND_B register at Port B 
that allows detecting signal edges at any of the eight Port B inputs. In addition, each of these 
inputs can be configured to cause an interrupt when the configured signal edge (positive or 
negative) is detected. 

 

In order to have one of the Port B inputs cause interrupts, it first must be configured as an input, 
i.e. the associated bit in the TRIS_B register must be set (this is the default after a reset). 

In addition, the associated bit in the WKED_B register must be set when a negative signal edge 
shall trigger the interrupt (this is the default after a reset). To have a positive edge trigger the in-
terrupt, the bit must be cleared. 

So far, the setup of the Port B registers is identical to the steps we have taken in the last chapter. 
In addition, we must now clear the associated bit in the WKEN_B (Wake-up Enable) register to en-
able the interrupt. 

As an example for an asynchronous interrupt, we use the "LED-Blinker" application with some 
modifications and enhancements. To test this program, the LED should be connected to RB0, and 
the pushbutton to RB3 as before. 

The task of this program is to keep the LED blinking in the "foreground" while detecting a but-
ton-down state, and the necessary de-bouncing shall be done in the "background", i.e. the fore-
ground task shall not "notice" that "something happens in the background". 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT020.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET      Main 
 
TRIS       equ $0f 
PLP        equ $0e 
WKEN       equ $0b 
WKPND_W    equ $09 
 
org        $08 
 
Counter1   ds 1 
Counter2   ds 1 
Counter3   ds 1 
Time       ds 1 
Bounce     ds 2 
localTemp0 ds 1 
 
org $000 
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;----------------------------------- 
; ISR 
;----------------------------------- 
  mov    localTemp0, m 
  clr    Bounce 
  clr    Bounce+1 
:DeBounce 
  decsz  Bounce 
    jmp  :DeBounce 
  decsz  Bounce+1 
    jmp  :DeBounce 
  mov  w,  #%00100000 
  sb     rb.3 
    xor  Time, w 
  mode   WKPND_W 
  clr    w 
  mov    !rb, w 
  mov    m, localTemp0 
  reti 
 
TimeEater 
  mov    Counter1, Time 
:Loop 
  decsz  Counter3 
    jmp  :Loop 
  decsz  Counter2 
    jmp  :Loop 
  decsz  Counter1 
    jmp  :Loop 
  ret 
 
org $100 
 
Main 
  mov    Time, #$30 
  mode   TRIS 
  mov    !rb, #%11111110 
  mode   PLP 
  mov    !rb, #%11110111 
  mode   WKPND_W 
  clr    w 
  mov    !rb, w 
  mode   WKEN 
  mov    !rb, #%11110111 
 
Loop 
  call   TimeEater 
  clrb   rb.0 
 
  call   TimeEater 
  setb   rb.0 
  jmp    Loop 
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In this program version, we configure input RB3 to trigger an interrupt at a positive signal edge: 
  mode   WKEN_B 
  mov    !rb, #%11110111 

To avoid that a set bit in the WKPND_B register triggers an interrupt immediately after reset, we 
clear the WKPND_B register before enabling the interrupt. 

The ISR begins at the fixed address $000, and it first saves the contents of the MODE register. 

 

As the SX does not automatically save and restore the MODE register, it is important to do this 
within the ISR in case the ISR is about to change the contents of MODE. Our example program 
would even work without saving and restoring m because the main program does only access 
the port configuration registers before enabling the interrupt, but you should not forget to build 
in this safety measure in a generic ISR. 

 

After saving m, the ISR generates a time-delay to de-bounce the button, and then reads the button 
input at rb.3 to find out if the button is still down. If so, bit Time.5 is toggled, similar to the pre-
vious program version. Next, the WKPND_B register is cleared. 

 

It is very important to clear the WKPND_B register inside the ISR. If you fail to do so, another 
interrupt will be triggered immediately after the ISR returns and this means that there is no 
more time available for the main program. 

Note that a bit in the WKPND_B register is also set when a port pin is configured as an output, 
and its state changes in the direction that has been configured in the WKED_B register. 
Therefore, you usually would not clear the associated bit in the WKEN_B register to avoid that 
output state-changes cause interrupts. 

If you like, you may test this: Comment out the mov !rb, w instruction in the ISR, and activate 
the debugger. First, reset the SX, then press the pushbutton for a short time, and single-step 
through the code. 

 

Finally, the ISR restores m and returns with reti. 

Note that the program execution "stays" in the ISR for a while because of the delay loop inside 
that is used to de-bounce the pushbutton. In a "real-life" application, this is not very elegant be-
cause too much processing time might be "stolen" from the main program. We'll discuss better 
solutions in the following sections. 

1.9.1.2 Synchronous (Timer-Controlled) Interrupts 

 
(2.2.5.1 - 222) In the previous sample program, the main program handled the task to blink the 
LED, but this is a typical "background" task to be handled by an ISR. 
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The SX offers an excellent method to deal with synchronous (or timer-controlled) interrupts. Es-
sentially, this feature is what makes the powerful concept of Virtual Peripherals possible! 

Please enter the following program, and then test it by using the debugger in single-step mode: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT021.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org $000 
;----------------------------------- 
; ISR 
;----------------------------------- 
  inc $09 
  reti 
 
Main 
  mov rtcc, #$fa 
  mov !option, #%10001000 
:Loop 
  inc $08 
  inc $08 
  inc $08 
  inc $08 
  inc $08 
  inc $08 
  inc $08 
  inc $08 
  inc $08 
  jmp :Loop 

 

In the main program, first, the RTCC register is initialized to $fa, and then the OPTION register is 
set to $88 (you will soon see what this means). 

See how RTCC starts counting up after you have executed the third inc $08 instruction for the 
first time. Continue single stepping, until RTCC changes from $ff to $00, and see how the pro-
gram flow changes into the ISR code that increments the register at $09. 

When you execute the reti instruction, verify that the program execution is continued with the 
next instruction in the main program (the last inc $08 before jmp :Loop). 

The RTCC Register (Real Time Clock Counter) is incremented at each system clock cycle. The inc 
instructions require one clock cycle, i.e. each time an inc is executed, RTCC is incremented once. 
The jmp requires three clock cycles, i.e. each time a jmp is executed, RTCC is incremented by 
three. Also note, that jumping to the entry point of the ISR at $000, and the reti each require 
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three clock cycles. When you execute the program in animated or "Walk" mode, you can see, how 
the ISR is periodically called and how the contents of $09 increments for each interrupt. 

 

If the RTCC overflows within the three clock cycles required for the jmp at the end of the main 
:Loop, some debuggers do not execute the ISR. This is a problem with the debugger - you 
can be sure that the SX really performs an interrupt here when it runs at full speed. 

 

To enable interrupts triggered by RTCC overflows, you must load the OPTION register with 
%10001000 or $88. We will discuss the meaning of the OPTION bits later in more detail. 

At the beginning of the main program, we have initialized the RTCC register to $fa. Usually, it is 
not necessary to initialize this register. We have done it here in order to have an interrupt trig-
gered after a few single steps to make it easier for you. The inc instructions in the main program 
and in the ISR have been added to keep the SX "busy" somehow. In a real program, these will be 
replaced by instructions that are more meaningful. 

When we assume a 50 MHz system clock, it is easy to determine the time interval between two 
ISR calls. The RTCC register overflows every 256 clock cycles of 20 ns length each. This means 
that an interrupt is triggered every 256 * 20 ns = 5.12 µs. 

For applications that require an exact timing, it is important that the interval between two ISR 
calls can be defined by the program. As you can see in our sample program, we have forced the 
first interrupt to come up earlier by initializing RTCC to $fa. In order to obtain shorter interrupt 
periods, it is an idea to initialize RTCC to a certain value before returning from the ISR. You can 
test this by inserting the mov rtcc, #$fa instruction immediately before the reti instruction. 
Single-step the modified program, and see what happens. 

Let's assume that we want an interrupt every microsecond at a system clock frequency of 50 
MHz. This means that an interrupt must be triggered every 50 clock cycles. To achieve this, it is 
not sufficient to load RTCC with 256-50 = 206 at the end of the ISR. You must keep in mind that 
the instructions within the ISR already have taken clock cycles while RTCC was incremented, and 
three more clock cycles were required to enter the ISR. Another thee clock cycles are "stolen" to 
return from the ISR. 

In order to find out the correct RTCC initialization you would have to sum all these clock cycles, 
and whenever you make a change in the ISR code, you would have to re-calculate the sum. 
Things get even more complicated when the execution time of the ISR instructions is not con-
stant. This can easily happen when conditional skips are involved. Fortunately, there is no need 
to do all this manually because the SX keeps track of the clock cycles "used" within the ISR. Be-
cause the RTCC keeps incrementing after its overflow has triggered the interrupt, its contents at 
the end of the ISR exactly holds the number of clock cycles "used" so far. 
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Therefore, we take the number of clock cycles that shall elapse between two interrupts (nC), sub-
tract this value from the current contents of RTCC in order to get the correct initialization value 
for RTCC.  

To understand this, assume for a moment that the ISR did not "use" any clock cycles, and that the 
call and return do not require any clock cycles either. This would mean that RTCC contains zero, 
i.e. the "magic value" that has triggered the interrupt. In order to have the next interrupt triggered 
after RTCC has been incremented for nC cycles, it is necessary to decrement it now by nC. This is 
why we subtract nC. 

In reality, less than nC cycles are required until the next interrupt to be "just in time" because the 
ISR really did "use" clock cycles. As mentioned before, this cycle count is contained in RTCC and 
so the correction is done automatically. 

There is even more good news: The retiw instruction has been included to do exactly that! Simi-
lar to reti, retiw returns from an interrupt but it also adds the contents of w to the RTCC. 

In order to store (RTCC - nC) to the RTCC, we just need to store -nC to w before executing the 
retiw instruction. 

To achieve an interrupt period of 1 µs (50 clock cycles), for example, just write the following code: 
mov w, #-50 
retiw 

Congratulations to the SX development team - this "little trick" is one of the features that make 
the SX so powerful! 

 

As already mentioned before, at return from an interrupt, the contents of w and other registers 
are restored. Even though w is now used to return the RTCC initialization, the former contents 
of w is still restored before the interrupted program is continued, so don't worry. 

 

When you define an interrupt period of nC clock cycles, you must make sure that the total cycles 
for instructions within the ISR does not exceed a value of nC-7. If this is the case, interrupt calls 
get lost, i.e. RTCC will overflow again while the previously triggered ISR is still active. The value 
nC-7 already considers the so-called "latency time" that is required to read in new instructions 
into the instruction pipeline of the SX. 
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It is a good advice to always determine the "worst-case" number of clock cycles required by an 
ISR that handles synchronous interrupts in order to make sure that this value is less than nC-7, 
where nC specifies the number of clock cycles between two interrupts. 

Also, note that small values of nC take away more processing time from the mainline program. 
Because some instructions, like a jmp, require three clock cycles, this is the minimum number 
of cycles that must be available in the mainline program. 

 

1.9.1.3 The Prescaler 

As mentioned before, at 50 MHz system clock, the maximum time interval between two inter-
rupts can be 5.12 µs if you just use the RTCC to count clock cycles. 

In order to obtain longer interrupt intervals, you can make use of the integrated prescaler that 
can be "hooked" between the system clock and the RTCC. 

We make use of the prescaler in the program below (assuming that an LED is connected to RB0): 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT022.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS    equ $0f 
 
org     $08 
Timer   ds 1 
Counter ds 1 
 
org     $000 
;----------------------------------- 
; ISR 
;----------------------------------- 
  decsz Timer 
    reti 
  xor   rb, #%00000001 
  reti 
   
Main 
  mode TRIS 
  mov  !rb, #%11111110 
  mov  !option, #%10000111 
:Loop 
  inc  Counter 
  jmp  :Loop 
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In this program, we initialize the OPTION register with %10000111, i.e. bit 3 (PSA - Prescaler) is 
cleared. This “installs” the prescaler between the system clock and the RTCC. The lower three 
bits in OPTION determine the divide-by factor of the prescaler. When all three bits are set, this 
factor is 1:256. 

Thus, the interval between two interrupts is now 

20 ns * 256 * 256 ≈ 1.3 ms. 

Because we again want to blink an LED, this interval is too short. If we increase it by another 
factor of 256, we end up at a period of 0.34 seconds, and this is an acceptable value. 

Therefore, we have defined the Timer variable that is decremented by the ISR. When Timer fi-
nally reaches zero (after 256 interrupts), xor rb, #%00000001 is executed that toggles the level 
at rb.0, turning the LED on or off. 

Compared to the previous programs, this version is much smaller, and the mainline program no 
longer needs to take care of turning the LED on or off. Currently, the mainline program does 
nothing else but incrementing Counter (we inserted this here to make the mainline program 
"think" that it is at least "good for something"). 

 

A "stylistic" comment: In this program, the ISR contains two reti instructions. This is against 
"good programming style" where a routine should have just one entry-point and one exit-point 
only. However, when you do real-time programming, it is often important to get a task done as 
fast as possible, therefore, whatever is faster (but still is save) is OK. 

Sometimes, this causes code to look a bit "cryptic" - in this case, meaningful comments help 
you and others to understand it later. 

 

In the next program sample, we will make use of a timer-controlled interrupt to blink the LED 
and to read and de-bounce a pushbutton that shall toggle the blink frequency. This time, we will 
not make use of the Port B edge-detection feature. 

Let's discuss the timing first, before writing the program (this should be the "usual" approach): 

Without the prescaler, the maximum delay between two interrupts can be 5.12 µs at 50 MHz sys-
tem clock. Let's use a time-base of 2 µs here, which is equivalent to 100 clock cycles. 

For de-bouncing we'll wait about 40 ms after a detected button-down until we accept a pressed 
button. This is equivalent to 20,000 ISR calls. For this value, we need a 16-bit counter or a nested 
loop with two 8-bit counters. With the "inner" counter covering the full range of 256, the outer 
counter must count down from 20,000 / 256 (≈ 78 ) to zero. 
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By multiplying the 40 ms-interval by ten, we achieve a 400 ms-interval to toggle the LED result-
ing in a slow blink frequency of 1/(2 * 400 ms) = 1.25 Hz. For the fast blink, we multiply the 40 
ms-interval by 5, which results in a frequency of 2.5 Hz. 

The program below uses these values. It has some more "bells and whistles" that we will discuss: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT023.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET    Main 
 
TRIS     equ $0f 
PLP      equ $0e 
 
org      $08 
Time     ds 1   ;  1 
Timer256 ds 1   ;  2 
Timer78  ds 1   ;  3 
TimerLED ds 1   ;  4 
Counter  ds 1   ;  5 
ISRState ds 1   ;  6 
 
org      $000 
;-------------------------------------- 
; ISR 
;-------------------------------------- 
  decsz Timer256                ;  7    1/2 
    jmp :ExitISR                ;  8    3 
  decsz Timer78                 ;  9    1/2 
    jmp :ExitISR                ; 10    3 
  mov   Timer78, #78            ; 11    2 
 
  mov   w, ISRState             ; 12    1 
  jmp   pc+w                    ; 13    3 
  jmp   :WaitOn                 ; 14    3  
  jmp   :WaitOff                ; 15    3 
:WaitOn                         ; 16 
  snb rb.3                      ; 17    1/2 
    jmp :Continue               ; 18    3 
  inc ISRState                  ; 19    1 
  xor Time, #%00001111          ; 20    2 
  jmp :Continue                 ; 21    3 
:WaitOff                        ; 22 
  sb rb.3                       ; 23    1/2 
    jmp :Continue               ; 24    3 
  clr ISRState                  ; 25    1 
:Continue                       ; 26 
  decsz TimerLED                ; 27    1/2 
    jmp :ExitISR                ; 28    3 
  mov TimerLED, Time            ; 29    2 
  xor rb, #%00000001            ; 30    2 
:ExitIsr                        ; 31 
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  mov  w, #-100                 ; 32    1 
  retiw                         ; 33    3 
 
Main                            ; 34 
  clr ISRstate                  ; 35 
  mov Time, #10                 ; 36 
  clr Timer256                  ; 37 
  mov Timer78, #78              ; 38 
  mov TimerLED, Time            ; 39 
  mode TRIS                     ; 40 
  mov !rb, #%11111110           ; 41 
  mode PLP                      ; 42 
  mov !rb, #%11110111           ; 43 
  mov !Option, #%10001000       ; 44 
:Loop                           ; 45 
  inc Counter                   ; 46 
  jmp :Loop                     ; 47 
 

In lines 1...6, we define the variables that are required. Time is used to hold the initialization for 
the LED frequency (5 or 10). Timer256, Timer78 and TimerLED are the three timer counters for 
the required time intervals. Counter is used to keep the mainline program "busy", and ISRState 
is a variable that controls the operations within the ISR. 

The mainline program initializes the variables and the ports (lines 35...43), and in line 44, it en-
ables the RTCC interrupt without prescaler. 

Within the ISR, Timer256 is decremented first. As long as it does not underflow, the ISR is termi-
nated immediately. After 256 ISR calls, Timer256 underflows, and Timer78 is decremented. 

After 19,968 ISR calls, Timer78 underflows. In this case, Timer78 is initialized to 78 again, and the 
subsequent ISR instructions are executed. 

At this point, there can be two different cases that must be considered: 

• State 0: The button was not pressed before, i.e. we should see if it is pressed now. 

• State 1: The button was pressed before, i.e. we should see if it has been released in the 
meantime. 

The ISRState variable tells us, which state is currently active, and we now must find a way to 
branch to different parts of the ISR, depending on the contents of ISRState in order to handle the 
different states (two in our example). 

The jmp pc+w instruction makes it easy to code such "calculated" branches. This happens in lines 
12 and 13. First, w takes the contents of ISRState, and then a jmp pc+w is executed. 

This instruction adds the contents of w to the lower eight bits of the program counter (PC regis-
ter). Here, w can contain 0 or 1. After the execution of the jmp pc+w instruction PC is automati-
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cally incremented, i.e. it now points to jmp :WaitOn. In case w contains zero, this is the next in-
struction to be executed. In case w contains one, PC points to jmp :WaitOff after the pc+w opera-
tion, i.e. this will be the next instruction to be executed in this case. 

Instruction sequences like 
  jmp   pc+w 
  jmp   :WaitOn 
  jmp   :WaitOff 

 are also called "Jump Tables". 

 

Routines that perform different actions depending on the contents of a state variable are also 
called "State Engines" or "State Machines". We will use state engines in various other 
examples in this book because they make it easy to handle timed operations that are typical for 
synchronous interrupts. 

 

When ISRState is zero, the instructions following line 16 will be executed. In case rb.3 reads 1, 
the input line has high level, and no button is pressed. The state remains unchanged, and the ISR 
is left. 

If rb.3 reads 0, the input line is low, i.e. the button is down now. In this case, ISRState is set to 
one, and xor Time, #%00001111 modifies the contents of Time that shall either be 10 or 5. If we 
represent those values in binary, you can see why this xor instruction modifies the Time values 
as desired: 
10 = %0000 1010 

 5 = %0000 0101 

In order to change the value from 5 to 10, and vice versa, the bits in the lower nibble must be 
inverted, and this is what the xor actually does. 

When ISRState is one, the instructions following line 22 are executed, where we test if the 
pushbutton has been released already. If this is the case, (rb.3 is 1), ISRState is reset to zero 
otherwise, ISRState remains unchanged. Because the test for the button status is only executed 
after 19,964 interrupts, i.e. about every 40 milliseconds, the button has time enough to "bounce" in 
the meantime. 

Right of the line number comments, we have added the clock cycles which each instruction re-
quires. To make sure that the total number of clock cycles required by the ISR is less than the 
RTCC initialization (minus 7) we must determine the worst-case number of cycles. In our ISR, 
this is the case, when the following instructions are executed in sequence: 
  decsz Timer256          ;  7    2 
  decsz Timer78           ;  9    2 
  mov   Timer78, #78      ; 11    2 
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  mov   w, ISRState       ; 12    1 
  jmp   pc+w              ; 13    3 
  jmp   :WaitOn           ; 14    3  
  snb rb.3                ; 17    2 
  inc ISRState            ; 19    1 
  xor Time, #%00001111    ; 20    2 
  jmp :Continue           ; 21    3 
  decsz TimerLED          ; 27    2 
  mov TimerLED, Time      ; 29    2 
  xor rb, #%00000001      ; 30    2 
  mov  w, #-100           ; 32    1 
  retiw                   ; 33    3 
                          ;     ___ 
                          ;      31 

As you can see, 31 cycles are definitely less than 100; therefore, we are all save. 

This ISR "steals" up to 38 (31+7) clock cycles every 100 clock cycles, i.e. they are no longer avail-
able for the mainline program. We can reduce this by calling the ISR every 200 clock cycles only. 
To do this, Timer78 must be initialized with 39 in lines 11 and 38, and line 32 must read mov w, 
#-200. 

We can reduce the time required by the ISR even more if we use the prescaler to divide the sys-
tem clock by 256. This eliminates the need to count 256 ISR calls using the Timer256 variable 
because the prescaler does this for us now. This is the modified ISR (the original lines have been 
commented out): 
;-------------------------------------- 
; ISR 
;-------------------------------------- 
; decsz Timer256  ;  7    1/2 
;   jmp :ExitISR  ;  8    3 
  decsz Timer78  ;  9    1/2 
    jmp :ExitISR  ; 10    3 
; mov   Timer78, #78 ; 11    2 
  mov   Timer78, #39 ; 11    2 
 
  mov   w, ISRState  ; 12    1 
  jmp   pc+w   ; 13    3 
  jmp   :WaitOn  ; 14    3  
  jmp   :WaitOff  ; 15    3 
 
:WaitOn   ; 16 
  snb rb.3   ; 17    1/2 
    jmp :Continue  ; 18    3 
  inc ISRState  ; 19    1 
  xor Time, #%00001111 ; 20    2 
  jmp :Continue  ; 21    3 
 
:WaitOff   ; 22 
  sb rb.3   ; 23    1/2 
    jmp :Continue  ; 24    3 
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  clr ISRState  ; 25    1 
 
:Continue   ; 26 
  decsz TimerLED  ; 27    1/2 
    jmp :ExitISR  ; 28    3 
  mov TimerLED, Time ; 29    2 
  xor rb, #%00000001 ; 30    2 
 
:ExitIsr   ; 31 
; mov  w, #-100  ; 32    1 
  mov  w, #-200  ; 32    1 
  retiw   ; 33    3 

In addition, change the following lines in the mainline program: 
; mov Timer78, #78  ; 38 
  mov Timer78, #39  ; 38 
 
; mov !Option, #%10001000 ; 44 
  mov !Option, #%10000111 ; 44 

Now, the ISR is called after 51,200 clock cycles have elapsed (256 * 200), i.e. it is called every milli-
second. The controller load, caused by the ISR is now less than 0.08%, so it can be almost ignored. 

1.9.1.4 Interrupts Caused by Counter Overflows 

 

(2.2.5.1.3 - 224) This third variant of interrupts that can be handled by the SX is very similar to 
timer-controlled interrupts. Again, an overflow of the RTCC triggers an interrupt. However, 
here, the RTCC is not clocked by the system clock but by an external source instead, that is 
fed into the RTCC pin of the SX. 

 

Optionally, the prescaler can be used to divide the external signal, and you can configure the 
RTCC input to react on positive or negative signal edges. 

To test the next example program, you should connect a pushbutton to the RTCC input. Because 
this input has no internal pull-up resistor, you must add an external resistor, as shown in the 
schematic below (we assume that an LED is still connected to RB0): 

 

 

 

 

 

 

VDD

RTCC (1)

4.7 kΩ
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The program below should toggle the LED state after you have pressed the button five times: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT024.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS    equ        $0f 
PLP     equ        $0e 
 
org     $000 
;-------------------------------------- 
; ISR 
;-------------------------------------- 
  xor   rb,      #%00000001 
  mov   rtcc,    #251 
  reti 
 
org     $100 
Main 
  mov   !rb,     #%11111110 
  clrb  rb.0 
  mov   rtcc,    #251 
  mov   !option, #%10111000 
Loop 
  inc   8 
  jmp   Loop 

 

This sample program configures port pin rb.0 as output to control the LED, and we set this out-
put pin to low in order to turn on the LED. Then we initialize RTCC to 251 (256 - 5). The OPTION 
register is configured in order to make negative edges at the RTCC input increment the RTCC 
and that an RTCC overflow triggers an interrupt. 

As there is nothing else to do in the mainline program, we let it increment the register at $08. 

When you press the button five times (hoping that it won't bounce), the RTCC is incremented 
each time you push the button. When it overflows, the ISR toggles rb.0 to turn the LED on or off. 
Before leaving the ISR, RTCC is re-initialized to 251. 

When you test the program at full-speed, it is most likely that the LED will toggle after less than 
five button pushes. The SX is simply too fast! Therefore, the RTCC also counts the negative edges 
caused by button bounces. 

Next, let's look at an example that shows, how the SX can "feed" its own RTCC input. We use this 
here to de-bounce a button that generates the signals for the RTCC input. For this example, we 
need a button with make and break contacts, connected to RB3 and RB2. A jumper between RB7 
and the RTCC input is also required: 
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This is the program: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT025.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET     Main 
 
TRIS      equ  $0f 
PLP       equ  $0e 
 
org       $08 
ButtStat  ds   1 
 
org       $000 
;-------------------------------------- 
; ISR 
;-------------------------------------- 
  xor     rb,   #%00000001 
  mov     rtcc, #251 
  reti 
 
org       $050 
Main 
  clr     ButtStat 
  mode    TRIS 
  mov     !rb, #%01111110 
  mode    PLP 
  mov     !rb, #%11111001 
  clrb    rb.0 
  setb    rb.7 
  mov     rtcc, #251 
  mov     !option, #%10111000 
  
Loop 
  mov     w, ButtStat 
  jmp     pc+w 
  jmp     :WaitForOn 
  jmp     :WaitForOff 
         
:WaitForOn 
  snb     rb.1 

RTCC

RB7

RB2
RB1
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    jmp   Loop 
  clrb    rb.7 
  inc     ButtStat 
  jmp     Loop 
  
:WaitForOff 
  snb     rb.2 
    jmp   Loop 
  setb    rb.7 
  clr     ButtStat 
  jmp     Loop 
 

The mainline program first clears the ButtStat variable that is used to control the state-engine 
handling the button states. Then Port B is configured: rb.2 and rb.1 are inputs with active pull-
up resistors, rb.0 is an output to drive the LED, and rb.7 is an output that feeds back into the 
RTCC input. 

We then turn on the LED, and set rb.7 (and the RTCC input) to high level. 

Then we enter the main loop. There, the jump table brings us to :WaitForOn or :WaitForOff, 
depending on ButtStat's contents. Initially, ButtStat is zero, so we enter :WaitForOn. This 
state remains active until the button's make contact closes the first time. In this case, rb.7 (and 
RTCC) is set to low, and ButtStat is set to one. 

Now, the jump table brings us to :WaitForOff. We stay in this state, until the button's break 
contact closes the first time. This happens when the button is released. In this case, rb.7 (and 
RTCC) is set to high, and ButtStat is cleared again. 

This perfectly de-bounces the button, and the negative edge, generated in :WaitForOn triggers 
the RTCC. 

The ISR is identical to the one in the previous example. 

 

You may have noticed that the mainline program originates at address $050 instead of $100 in 
this example program. The reason for this is that the jmp pc+w can only address targets that 
are located in the first half of a program memory page. The jmp pc+w instruction adds the 
contents of w to the lower eight bits of the program counter and clears bit 9. Therefore a 
calculated jump can only target an address in the range from $000 through $0ff (this is similar 
to subroutine calls). 

When using the jmp pc+w instruction, double-check that this condition is respected; 
otherwise, strange things will happen. 

Note that most assemblers report an error when you try to call a subroutine outside of the first 
half of a page, but they do not report an error when targets of jmp pc+w are "out of limits".

 



Programming the SX Microcontroller 

120 

In a "real-life" application, it is possibly not the best idea to keep the mainline program busy with 
de-bouncing a pushbutton that in the end supplies an interrupt reason. 

Before ending the chapter about interrupts, let's summarize the meaning of the OPTION register 
bits because their settings are important to configure the various interrupt features of the SX: 

1.9.2 The OPTION Register Bits and their Meaning 

 

Bit 7 - RTW: (RTCC or W) 
  1 = RTCC register can be accessed at $01 
  0 = W can be accessed at $01 
Bit 6 - RTI: (RTCC Interrupt) 
  1 = No interrupt on RTCC overflows 
  0 = Interrupt on RTCC overflows 
Bit 5 - RTS: (RTCC Source) 
               1 = RTCC counts external signals 
  0 = RTCC counts system clock cycles 
Bit 4 - RTE: (RTCC Edge) 
  1 = Negative edges trigger the RTCC 
  0 = Positive edges trigger the RTCC 
Bit 3 - PSA: (Prescaler Assignment) 
               1 = Prescaler is assigned to watchdog 
  0 = Prescaler is assigned to RTCC 
Bit 2...0:  Prescaler divide-by factor (1:2...1:256 for RTCC, 
  (1:1...1:128 for watchdog) 

Note that programs must contain an OPTIONX or STACKX directive when the RTW or RTI bits 
in the OPTION register shall be modified – otherwise, these bits are read-only. 
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1.10 The Watchdog - Reset Reasons - Conditional Assembly 

1.10.1 The Watchdog Timer 

 

(2.2.5.2 - 225) Even when you have carefully designed and thoroughly tested an SX program, 
it is still possible that it may contain bugs or that a specific combination of external events and 
signals will not be handled correctly because you had assumed that they can never occur. It is 
also possible that failures of external components or devices cause such an error situation. 

 

Microcontrollers like the SX are often used for process control systems, where it is very important 
to make sure that possible errors or malfunctions do not cause dangerous situations. Imagine 
what might happen if a motor running at full speed is not turned off in case of such an error! 

Typical SX applications continuously execute a main loop. In case of an error, it is most likely that 
the program "hangs" at a specific location or in a subroutine. This causes that the program no 
longer cycles through the main loop at all, or at another speed as usual. 

The watchdog timer (WDT) can help to detect such situations, and perform a system reset in case 
of a failure. Similar to an un-educated dog that would attack you unless you keep shouting: "Sit!", 
it is necessary to periodically reset the WDT to avoid a system reset. 

A watchdog timer works similar to the "dead-man" button in a railroad locomotive. Here, the 
engineer must hit the "dead-man" button regularly; if he doesn't, the train will automatically stop. 

Usually, resetting the WDT is done in a program loop that is cycled through periodically, and 
that is most likely to be stopped on a failure. When this happens, the WDT runs into time-out, 
and executes a system reset. 

The instruction 
clr !wdt 

is used to clear the watchdog timer. In addition, the WDT must be enabled. The setting of a bit in 
the Fuse Register enables or disables the WDT. By default it is disabled, and in order to enable it, 
add the 
DEVICE WATCHDOG 

directive to the program source code. This instructs the development system to set bit 3 (WDTE) 
in the Fuse register while programming the SX device. 

In addition, at program initialization, you must define the timeout period for the WDT. 

A special 8-bit counter is dedicated to the WDT, and a separate internal signal is generated to 
clock this counter. When the counter overflows, a system reset is performed. The clr !wdt in-
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struction resets the counter, i.e. if this instruction is always executed in time, before the WDT 
counter overflows, the program will run normally. 

As an option, the internal prescaler can be used to divide the internal clock signal in order to gen-
erate longer WDT timeout periods. In this case, the prescaler is no longer available for the RTCC. 
To activate the prescaler for the WDT, OPTION bit 3 (PSA) must be set: 

OPTION 
7 6 5 4 3 2 1 0 

RTW RTI RTS RTE PSA PS2 PS1 PS0
 

Here is a little example program (we assume that an LED is connected to RB0): 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT026.SRC 
; ================================================================= 
include "Setup28.inc" 
DEVICE   WATCHDOG 
RESET    Main 
 
org     $08 
Counter ds 3 
 
Main 
  clr   Counter 
  clr   Counter+1 
  clr   Counter+2 
  clr   rb 
  mov   !rb, #%11111110 
  mov   !option, #%11111111 
 
:Loop1 
  clr   !wdt 
  decsz Counter 
    jmp :Loop1 
  decsz Counter+1 
    jmp :Loop1 
  decsz Counter+2 
    jmp :Loop1 
  setb  rb.0 
 
:Loop2 
  jmp :Loop2 

 

The DEVICE WATCHDOG directive instructs the development system to set the WDTE bit in the 
Fuse register when programming the SX. 
mov !option, #%11111111 
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assigns the prescaler to the WDT, and sets the divide-by factor to 1:128. 

After reset, the LED connected to rb.0 is turned on. The program then enters into a three-level 
delay loop. Within the loop, the clr !wdt instruction is executed during each loop cycle. 

When the delay time has elapsed, the LED is turned off, and the program enters into an endless 
loop without clearing the WDT. 

Run the program at full-speed, and watch the LED. It should be on for about two seconds (while 
the delay loop is active). About two seconds, after the LED has been turned off, the WDT should 
time-out and reset the SX. After reset, the program is re-entered, and the LED should be on again.  

Note that SX development systems cannot run the debugger while the watchdog is enabled. 

The internal WDT clock is approximately 14 kHz, i.e. it has a period of 71.4 µs. The table below 
summarizes the WDT time-out periods, depending on the prescaler's divide-by factor. It also 
contains the settings for bits 2...0 (PS2...PS0) in the OPTION register: 

PS2 
 
 

PS1 
 
 

PS0 
 
 

Divide-by 
Factor for 
the WDT 

WD Timeout 
Period 

 
0 0 0 1:1 18 ms 
0 0 1 1:2 37 ms 
0 1 0 1:4 73 ms 
0 1 1 1:8 146 ms 
1 0 0 1:16 293 ms 
1 0 1 1:32 585 ms 
1 1 0 1:64 1,2 s 
1 1 1 1:128 2,3 s 

 

Note that - different from the RTCC factors - the divide-by factors range from 1:1 to 1:128 here. 

In the example program, we have selected a divide-by factor of 1:128, therefore, the WDT resets 
the SX about two seconds after the LED has been turned off. (Again, we have found a new 
method to blink an LED.) 
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1.10.2 Determining Reset Reasons 

In certain cases, an application should react differently on a power-on reset ("Cold-Boot") or a 
watchdog reset ("Warm-Boot"). 

At a Cold-Boot, for example, it might be necessary to clear all data registers, to configure the 
ports, and to initialize certain variables, while after a Warm-Boot it might only necessary to re-
configure the ports. 

Another option might be that the program enters a special "Safety Mode" when the WDT caused 
a reset. In this mode, all port outputs could stay inactive and - except generating an error signal - 
the program does not perform any other tasks. 

To find out if the WDT caused a reset, you can test bit 4 (TO - Time Out) in the STATUS register. 
After a WDT reset, this bit is clear, after a power-on reset, this bit is set. This bit is also set by the 
instructions clr !wdt and sleep (we'll discuss the sleep instruction later in this text). 

The next example program is based upon the previous one. It detects a WDT reset and generates 
an alarm beep in this case. We assume that a piezo buzzer is connected to pin RB7. If you don't 
have a piezo buzzer available, connect another LED to RB6 (not RB7) according to the schematic 
below: 

 

 

 

 

 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT027.SRC 
; ================================================================= 
include "Setup28.inc" 
SOUND 
DEVICE  WATCHDOG 
RESET   Main 
 
org     $08 
Counter ds  3 
 
Main 
  mov   !option, #%11111111 
  clr   Counter 
  clr   Counter+1 
  clr   Counter+2 
  sb    status.4 

RB6

470 Ω 

LED
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    jmp WarmBoot 
  clr   rb 
  mov   !rb, #%11111110 
 
:Loop1 
  clr   !wdt 
  decsz Counter 
    jmp :Loop1 
  decsz Counter+1 
    jmp :Loop1 
  decsz Counter+2 
    jmp :Loop1 
  setb  rb.0 
:Loop2 
  jmp   :Loop2 
 
WarmBoot 
 
ifdef SOUND 
  mov   !rb, #%01111111 
:Loop1 
  mov   Counter+1, #30 
:Loop2 
  clr   !wdt 
  decsz Counter 
    jmp :Loop2 
  decsz Counter+1 
    jmp :Loop2 
  xor   rb, #%10000000 
  jmp   :Loop1 
else 
  mov   !rb, #%10111111 
  setb  rb.6 
:Loop1 
  clr   !wdt 
  jmp   :Loop1 
endif 

 

At the very beginning of this program, we have inserted the label SOUND (we will explain its 
meaning later). 

After the usual initializations that are required after any kind of reset, we test status.4 and con-
tinue the program similar to the last example if this bit is set. 

In case the WDT has caused the reset, the bit is clear, and the program execution continues at 
WarmBoot. 

1.10.3 Conditional Assembly 

Following the label WarmBoot, you will notice the ifdef SOUND directive. This directive is used to 
control the conditional assembly. This means that the assembler translates the statements be-
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tween the line containing the ifdef and the line containing the else directive only when label 
SOUND is defined. 

In case label SOUND is not defined, the assembler will translate the statements between the else 
and the endif directive. 

In general, the else directive is optional. When it is missing, no instructions will be generated 
when the ifdef condition evaluates to false. 

In our example, we have placed the label SOUND right at the beginning of the program source, 
therefore the statements in the ifdef section are generated to drive the piezo buzzer. 

To drive the buzzer, we use a nested delay loop with two levels, and toggle the buzzer output 
whenever the delay time is over. While in this loop, it is important to clear the WDT in order to 
avoid another reset. 

In case you don't have the buzzer connected, but the LED at RB6 instead, simply out-comment 
the SOUND label with a leading semicolon. Now, the assembler generates the instructions in the 
else segment that turn on the LED at RB6 instead. 

To stop the buzzer, or to turn off the "Alarm LED", press the reset button on the prototype board, 
or disconnect the power supply. 

As you can see, conditional assembly can be used to generate different program versions from 
one source code. 

1.10.3.1 More Directives for Conditional Assembly 

Besides the ifdef...else...endif structure described before, there are more options for con-
ditional assembly:  
ifndef <Symbol> 

  <Code Block 1> 

[else 

  <Code Block 2>] 

endif 

Here, the instructions in <Code Block 1> are generated when <Symbol> is not defined, and the 
instructions in <Code Block 2> are generated when <Symbol> is defined. The else directive and 
<Code Block 2> are optional. 

 

A symbol that controls an ifdef or ifndef structure must be either a label (as in our 
example), or being defined with an EQU directive. Symbols that are defined with the SET or = 
directive are not accepted. 
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if <Condition> 

  <Code Block 1> 

[else 

  <Code Block 2>] 

endif 

Here, the instructions in <Code Block 1> are generated when <Condition> evaluates to true, 
otherwise the instructions in <Code Block 2> are generated. The else directive and <Code 
Block 2> are optional. 
rept <Count> 

  <Code Block> 

endr 

This structure repeats the instructions in <Code Block> as often as specified by <Count>. For 
example,  
rept 3 

  inc Counter 

  inc Counter+1 

endr 

causes the assembler to generate code for the following instructions: 
inc Counter 
inc Counter+1 
inc Counter 
inc Counter+1 
inc Counter 
inc Counter+1 

Within the <Code Block> you may use the percent sign that is replaced by the repeat counter. 
For example: 
rept 3 

  mov ra, #% 

endr 

generates 
mov ra, #1 
mov ra, #2 
mov ra, #3 
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The repeat count may also be defined elsewhere in the program, e.g. 
HowOften = 5 
rept HowOften 
  mov ra, #% 
endr 

Logical expressions for an if directive may use the following operands: 

Operands for Logical Expressions 
Symbol Meaning 
op1 = op2 op1 is equal to op2 
op1 <> op2 op1 is not equal to op2 
op1 < op2 op1 smaller than op2 
op1 > op2 op1 greater then op2 
op1 <= op2 op1 smaller than or equal to op2 
op1 >= op2 op1 greater than or equal to op2 
exp1AND exp2 Logical AND 
exp1 OR exp2 Logical OR 
exp1 XOR exp2 Logical Exclusive OR 
NOT exp Negation of exp 
 

Example for a logical expression: 
if Version >= 5 AND Version < 10 

1.10.4 "To Watchdog or not to Watchdog..." 

As mentioned before, debuggers don't work when the SX is configured with an enabled watch-
dog. This is not a problem of the debuggers, but it is due to the internal structure of the SX de-
vices. 

Place a global symbol DEBUG at the beginning of your program, and later insert the conditional 
ifndef DEBUG 
  DEVICE WATCHDOG 
endif 

This makes it easy to "switch" the program between the test and production version. 
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1.11 The Sleep Mode and Wake-up 
Low power consumption is an important issue for battery-powered systems. The power con-
sumption of the SX controller mostly depends on the system clock frequency. At 5 V VDD, the 
data sheet specifies a typical supply current of 60 mA at 50 MHz clock, but only 6 mA at 4 MHz 
internal clock. 

The sleep instruction sets the SX into "Sleep Mode". In this mode, the supply current drops down 
to about 10 µA when the watchdog timer is disabled. 

While in sleep mode, the system clock is halted, i.e. no more instructions are executed, but the 
contents of all registers are preserved. 

To exit the sleep mode, a "Wake-up Event" must occur. This can either be a signal edge at one of 
the Port B pins or a reset caused by the WDT. 

You may compare the sleep mode and possible wake-ups with a human that goes to sleep. To 
wake up in the morning early enough to go to work, you set an alarm clock to wake you up at a 
specific time. But while you are asleep, there may be several reasons that wake you up before the 
scheduled time: The baby might cry, the phone may ring, the burglar alarm could be triggered, 
you wake up and feel the need to go to the bathroom, etc. 

1.11.1 Wake-ups Caused by Port B Signal Edges 

Such wake-ups are similar to the "non-scheduled" wake-ups listed with the "human example" 
above. 

Waking up the SX by signals at Port B pins makes sense, when the SX shall react on certain exter-
nal events, like a pressed pushbutton, increase of a voltage above a certain level, etc. Because all 
eight Port B pins may be configured to trigger the wake-up, up to eight different external signals 
can be recognized. 

Together with interrupts, we already have shown how to configure the Port B inputs in order to 
generate an interrupt on positive or negative signal edges. Similarly, these signal edges may be 
used to trigger a wake-up. 

The following steps are required for configuration: 

• Load MODE with $0b (selects the WKEN_B register) 

• Clear the bits for the corresponding inputs in !rb that shall trigger a wake-up 
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In this configuration, negative signal edges are detected. In order to react on positive edges, ad-
ditional steps are required: 

• Load MODE with $0a (selects the WKED_B register) 

• Clear the bits for the corresponding inputs in !rb that shall react on positive edges. 

When the SX detects a wake-up, the PC is loaded with the highest program memory address, and 
program execution starts there, performing a jmp to the address specified with the RESET direc-
tive in the program source code. It is the same sequence that is executed at power-on reset, or 
when a watchdog reset occurs. 

In order to find out the reason for a reset, the STATUS register delivers the necessary informa-
tion. The sleep instruction clears STATUS bit 3 (PD - Power Down), i.e. if this bit is clear after a 
reset, it was caused by a wake-up event. 

In the previous chapter, we already mentioned STATUS bit 4 (TO - Time Out) that gives informa-
tion about a watchdog reset. The table below summarizes the events that set or clear these bits: 

Status Bits set or cleared by 
Value Bit 4 (TO - Time Out) Bit 3 (PD - Power Down) 

0 WDT Overflow sleep 
1 Power On, clr !wdt, sleep Power On, clr !wdt 

 

In order to find out the reset reason, these bits must be tested. The table below summarizes the 
reset reasons:  

Reset Reasons 
TO  PD Reason 

0 0 Wake-up by Watchdog 
0 1 Watchdog Timeout (System Fault) 
1 0 Wake-up by signal edge at an RB pin 
1 1 Power on 

 

The program below demonstrates how the sleep mode is activated, and how to react on a wake-
up (we assume that an LED is connected to rb.0 and that a pushbutton is connected to RB3 that 
pulls the input low when the button is pressed: 
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; ================================================================= 
; Programming the SX Microcontroller 
; TUT028.SRC 
; ================================================================= 
include "Setup28.inc" 
DEVICE   WATCHDOG 
RESET    Main 
 
TRIS    equ  $0f 
PLP     equ  $0e 
WKEN    equ  $0b 
WKED    equ  $0a 
WKPND_W equ  $09 
 
org           $08 
Counter       ds 4 
Time          ds 1 
 
org           $100 
Main 
  mov  w, #50 
  sb   status.3 
    mov w, #25 
  mov  Time, w 
   
  mode WKEN 
  mov  !rb, #%11111111 
  mode PLP 
  mov  !rb, #%11110111 
  mode TRIS 
  mov  !rb, #%11111110 
 
  clr  Counter 
  clr  Counter+1 
  clr  Counter+2 
  clrb rb.0 
   
  mov Counter+3, #11 
:Loop1 
    mov Counter+2, Time 
:Loop2 
    decsz Counter 
      jmp :Loop2 
    decsz Counter+1 
      jmp :Loop2 
    decsz Counter+2 
      jmp :Loop2 
    xor rb, #%00000001 
    decsz Counter+3 
      jmp :Loop1 
 
    mode WKED 
    mov  !rb, #%11111111 
    mode WKPND_W 
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    clr  w 
    mov  !rb, w 
    mode WKEN 
    mov  !rb, #%11110111 
    sleep 

 

To analyze this program, let's first look at the last statement: It reads sleep, i.e. after the program 
has performed the preceding instructions, the SX is entered into sleep mode. 

In the beginning of the program (after Main), we first must find out the reset reason. Here, we 
initialize w with 50 as the possible value to be copied to Time. 

Next, we test the Power Down bit in the STATUS register. When this bit is set, we have a power-
on reset. (As the watchdog is disabled here, this bit can never be set due to a watchdog event 
here.) In case of a wake-up, this bit is clear, and w is initialized to 25. w is then copied to Time, the 
variable that controls the LED blink frequency, i.e. after a power-on, the frequency is low, and 
after a wake-up, the frequency is high. 

We then set all WKEN_B bits temporarily, i.e. we disable the wake-up/interrupt functionality for 
the "regular" program execution, configure the LED output and activate a pull-up for the 
pushbutton. 

Next, we clear the counters, turn the LED on, and enter a nested delay loop that toggles the LED 
state five times. 

We then setup the Port B pins to react on negative signal edges (although this is the default, it is a 
good idea to make sure that the bits are really set), clear the WKPND_B register, and finally enable 
the wake-up function for the RB3 pin. 

Finally, the SX is set to sleep mode. 

Testing the program with the debugger requires some "tricks" to make the program work as ex-
pected. 

After the program has been assembled and transferred to the SX, turn off and on the power sup-
ply to make sure that status.3 (Power Down) is set. 

Then re-activate the debugger and check if bits 4 and 3 of the STATUS register are both set, and 
run the program at full speed. Now, the LED should slowly blink five times. During that time, 
the debugger should indicate that the program is running. When the LED stops blinking, the 
debugger should report that the sleep mode is active. 

Now press the button at RB3; the debugger should report an idle mode now, i.e. it does not 
automatically start the SX. Again, run the program at full speed - the LED should now blink five 
times at a higher frequency, before the SX enters the sleep mode again. 
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When you end the sleep mode by pressing the reset button, or by issuing a reset from the debug-
ger, the LED will blink at the higher frequency, i.e. the program has not detected a power-down. 
Therefore, you need to repeat the steps above to enter that state again (power off, power on, re-
start the debugger). 

 

When Port B pins are enabled for wake-up/interrupts during "regular" program execution, a 
signal edge at one of these pins will cause an interrupt (in our program example, this could 
happen when you press the pushbutton while the LED blinks). This can cause unpredictable 
results when no ISR is in place to handle such interrupts. Therefore, it is a good idea to enable 
the port pins for wake-up/interrupts immediately before entering the sleep mode. Never forget 
to clear the WKPD register before enabling wake-up/interrupts. 

 

In "real life", it is most likely that the SX must react on interrupts as well as on wake-up events. 
As long as interrupts are triggered by the RTCC, no special safety measures are required when 
you enable the wake-up port bits immediately before entering the sleep mode. 

When Port B inputs are used for interrupts and for wake-ups, it is necessary to let the ISR check 
the WKPD register to find out the interrupt reason. If none of these bits is set, the interrupt was 
caused by an RTCC overflow (in case this kind of interrupt is enabled). If one of the bits corre-
sponding to interrupt inputs are set, handle these events in the ISR and if one of the wake-up in-
puts caused the interrupt, simply ignore that event. However, the better solution is to disable the 
wake-up pins until the system is ready for sleep mode. 

In any case, do not forget to clear the WKPD register before returning from the ISR! 

1.11.2 Using the Watchdog Timer for Wake-ups 

This wake-up is similar to the "scheduled" wake-up in the "human" example above, i.e. it wakes 
up the SX after an elapsed time. 

For certain applications, it is not necessary that the SX is active all the time. For example, to 
monitor a temperature value that is changing very slowly. In this case it might be sufficient to 
read that value every second, and report changes only when the temperature has changed by 
more than one degree since the last report. 

The next program example is similar to the one we have used to demonstrate the watchdog 
timer. We have added the conditional assembly directive ifdef GO_SLEEP here: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT029.SRC 
; ================================================================= 
include "Setup28.inc" 
DEVICE   WATCHDOG 
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RESET    Main 
GO_SLEEP 
 
org     $08 
Counter ds 3 
 
Main 
clr     Counter 
clr     Counter+1 
clr     Counter+2 
clr     rb 
mov     !rb, #%11111110 
mov     !option, #%11111111 
 
:Loop1 
  clr   !wdt 
  decsz Counter 
    jmp :Loop1 
  decsz Counter+1 
    jmp :Loop1 
  decsz Counter+2 
    jmp :Loop1 
  setb  rb.0 
 
ifdef GO_SLEEP 
  sleep 
else 
:Loop2 
    jmp :Loop2 
endif 

 

When you run this program, the LED will turn on for about two seconds. Then the SX enters the 
sleep mode, and the watchdog timer will wake it up after another two seconds, i.e. the LED is 
turned on again. This cycle is repeated forever as long as the power supply is on. 

Now hook up a multi-meter in series with the VDD power supply line in order to measure the 
supply current, and comment out the clr rb instruction to disable the LED for that test (to avoid 
a measurement error caused by the LED current).  
Main 
clr     Counter 
clr     Counter+1 
clr     Counter+2 
; clr     rb 

Re-assemble the program and run it again watching the multi-meter. You will notice that the 
current readout changes between a high and a low value. The low value indicates that the SX is in 
sleep mode, and the high value indicates the "regular" program execution. 

In addition, now also comment out the GO_SLEEP label at the beginning of the program. When 
you re-assemble the program and run it again, the supply current will stay at the high level. This 
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is because now the SX stays in run-mode all the time, and the watchdog timer causes a reset in-
stead of a wake-up. 

Note: The readout may not actually indicate the current drawn by the SX. Depending on what 
prototype board you are using, other components like a power LED and a voltage regulator may 
add to the measured value. 

1.12 Macros - Expressions - Symbols - Device Configuration 

1.12.1 Macro Definitions 

Macro definitions allow you to define "your own" instructions that go beyond the regular instruc-
tions supported by the assembler. Here is an example: 
mul2 MACRO 1 
  clc 
  rl \1 
endm 

This defines a new "instruction", mul2 that has the following syntax: 
mul2 fr 

i.e. it expects the address of a file register. If you, for example, use 
mul2 $08 

to call that macro, the assembler generates the following instructions instead: 
clc 
rl $08 

The general syntax for a macro definition is 
<Macro Name> MACRO [<Argument Count>] 

  <Instructions> 

ENDM 

Each macro definition begins with a unique name that you will use later to call the macro. Next 
comes the keyword MACRO optionally followed by a number that specifies the number of argu-
ments to be passed to the macro (up to 64 arguments are allowed). 

Then, within the macro-body, the instructions follow. The assembler will replace the macro call 
by these instructions. The ENDM keyword terminates the macro definition. 

Here are some more examples for macro definitions: 
BusHigh MACRO 
  setb ra.0 
  setb ra.1 
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endm 

Macro call: BusHigh 

This macro does not expect any arguments; it sets both port pins RA0 and RA1 to high level. 
SwapRegs MACRO 2 
  mov w, \1 
  mov LocalTemp2, w 
  mov w, \2 
  mov \1, w 
  mov w, LocalTemp2 
  mov \2, w 
endm 

Macro call:  SwapRegs fr1, fr2  

Modifies:    w, LocalTemp2 

This macro expects two register addresses as arguments and it exchanges the contents of the two 
registers. 

Whenever the assembler finds the placeholder for the first argument (\1) in the macro body, it 
replaces it with the first argument of the macro call. Similarly, the placeholder for the second ar-
gument (\2) is replaced by the second argument of the macro call. 

For example, when you call the macro like this: 
SwapRegs, Val1, Val2 

The assembler replaces it with the following instructions: 
mov w, Val1 
mov localTemp2, w 
mov w, Val2 
mov Val1, w 
mov w, localTemp2 
mov Val2, w 

In addition, the assembler also replaces the symbolic names Val1 and Val2 by the addresses as-
signed to these symbols. We have left in the symbol names her for clarity. 

Within a macro definition, you may use other directives, like such for conditional assemblies, as 
in 
BusHigh MACRO 
  ifdef BUS_A 
    setb ra.0 
    setb ra.1 
  else 
    setb rc.0 
    setb rc.1 
  endif 
endm 
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When BUS_A is defined, the assembler will generate the instructions 
setb ra.0 
setb ra.1 

to replace the macro, otherwise it will generate the instructions 
setb rc.0 
setb rc.1 

There is another method how this macro could be defined: 
BusHigh MACRO 
  ifdef BUS_A 
    setb ra.0 
    setb ra.1 
    exitm 
  endif 
  setb rc.0 
  setb rc.1 
endm 

Here, the instructions setb ra.0 and setb ra.1 will be generated when BUS_A is defined. The 
EXITM directive terminates the definition of a macro. Here, this skips the setb rc.0 and setb 
rc.1 instructions. If BUS_A is not defined, these two instructions will be generated instead. 

The placeholder \0 has a special meaning. It is replaced by the macro's argument count. Here is 
an example: 
ClrRegs MACRO 3 
  rept \0 
  clr \% 
endm 

Macro call: ClrRegs fr1, fr2, fr3 

For example, the assembler will replace the macro call 
ClrRegs Counter, Sum, Temp 

with 
clr Counter 
clr Sum 
clr Temp 

(The symbolic addresses will be replaced by the actual register addresses as well). 

When you later decide to change the argument count for that macro, you will only have to 
change the count following the macro keyword, but there is no need to change the macro body. 
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A macro may also call other macros, no matter if these macros are defined before or after the 
macro, that calls them. In case you get an error message like "Macro Stack Overflow", it is most 
likely that you have tried to define a "recursive" macro, as in 
Mac1 MACRO 
  clr w 
  Mac1   ; Here, Mac1 "calls itself" 
endm 

Note that there may be a recursion across two or more macros as well: 
 
Mac1 MACRO 
  clr w 
  Mac2 
endm 
 
Mac2 MACRO 
  clr w 
  Mac1 
endm 

Here, Mac1 calls Mac2, where Mac2 calls Mac1 again. In this case, the assembler does not report an 
error when it reads the macro definitions, but if one of the two macros is referenced later in the 
program, an error will be reported. 

1.12.1.1 Macros or Subroutines? 

Similar to a subroutine, a macro combines a set of instructions, i.e. you don't have to place the 
same sequence of instructions several times throughout the program code. Instead, you place 
them once in the macro body, and refer to the macro in the remaining code. 

Instead of  
BusHigh MACRO 
  setb ra.0 
  setb ra.1 
endm 

you could define a subroutine instead: 
BusHigh 
  setb ra.0 
  setb ra.1 
ret 

In the remaining code, instead referring the macro you would then use call BusHigh instruc-
tions. 

In our short example, this is not very efficient because using a subroutine requires two extra pro-
gram words for the call and the ret plus six extra clock cycles at run-time, where the two "real" 
instructions require two program words and two clock cycles only. 
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When you define macros that contain a larger number of instructions, a subroutine might be 
more efficient. Using a macro means that this number of instructions will be repeated as often as 
the macro is referred to in the program. Using a subroutine means that these instructions only 
exist once in the subroutine-body (plus an extra ret instruction), and calling the subroutine re-
quires just one additional program word per call. 

On the other hand, macros don't require the extra six clock cycles for the call and ret instruc-
tions. 

As you can see, it is not easy to define a "rule of thumb" when to use macros or subroutines. 

 

This little example program is good for a surprise: 

org $08                ;  1 

flags  ds 1            ;  2 

 

LedOn MACRO            ;  3 

  clrb rb.0            ;  4 

ENDM                   ;  5 

 

Main                   ;  6  

:Loop                  ;  7 

 

; some instructions 

 

snb Flags.3            ;  8 

LedsOn                 ;  9 

jmp :Loop              ; 10 

The assembler will report, that :Loop is undefined in line 10 when you try to assemble the 
program. This looks strange because :Loop seems to be defined in line 6. 

The problem is caused by the miss-spelled macro call in line 9. Instead of LedOn, we have 
written LedsOn (with an extra "s"). This makes the assembler assume that LedsOn is a new 
global label, and therefore, :Loop in line 10 is local to LedsOn but it is no longer local to 
Main. 
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The example contains another possible pitfall in lines 8 and 9: 

Similar to compound instructions, that never must immediately follow a skip instruction, be 
careful when placing macros immediately after a skip. As long as the macro expands into just 
one instruction, like in the example above, you are in good shape, but trouble is guaranteed 
when you try the same, calling a "multi-line" macro. 

 

1.12.2 Expressions 

Whenever a value is expected as instruction argument, or as argument for a directive, you may 
use an expression instead. We have already made use of this when referring to multi-byte regis-
ters, as in 
org $08 
Counter ds 3 
 
clr Counter 
clr Counter+1 
clr Counter+2 

The symbol Counter represents a value of eight (the address of this variable in data memory). By 
adding one or two to this "base address", we could also refer to the two bytes following Counter 
in data memory. 

The table below summarizes the operators that can be used to build expressions: 

Expression Operators 
Symb. Meaning Remark 

+ Addition  
- Subtraction  
* Multiplication  
/ Division a / b returns the integer part of the division 

// Modulus a // b returns the remainder of a / b 
& log. AND returns false (0) or true (FFFFFFFF, -1) 
| log. OR returns false (0) or true (FFFFFFFF, -1) 
^ log. Exklus.-OR returns false (0) or true (FFFFFFFF, -1) 

<< Shift left w << n shifts w-bits by n digits to the left 
>> Shift right w >> n shifts w-bits by n digits to the right 
>< Swap nibbles  
|| Absolute value unary  
- Negative value unary 
~ Logical NOT unary, returns false (0) or true (FFFFFFFF, -1)  
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Numbers are allowed to a maximum size of up to 32 bits, and results may not have a size of more 
than 32 bits. As the SX processes 8-bit values, results that exceed the size of 8 bits are truncated. 
Therefore, make sure that truncation does not remove significant bits. 

Expressions are evaluated from left to right without respecting any operator hierarchy. For exam-
ple, the expression 
2 + 3 * 4 

yields in 20 and not in 14 as you might expect when applying standard algebraic rules. If another 
operator precedence is required, use parentheses. Thus, 
(2 + 3 ) * 4 

yields in 14. 

1.12.3 Data Types 

Numeric values may have the following formats in expressions: 

Numeric Formats 
Type Syntax Example Remark 

decimal xxxxx 1234  
hex $xxxx $abcd  
hex 0xxxxh 0abcdh old style 

binary %xxxx %10110110  
binary xxxxb 10110110b old style 
ASCII 'x' 'U'  

 

The "old style" formats are supported for compatibility reasons. We don't recommend using them 
in new source code. 

1.12.4 Symbolic Constants 

We have been using symbolic constants in many of the programs so far. At this place, we want to 
look at some more examples how symbolic constants can help to make programs more flexible, 
and more readable. 

According to Murphy's Law: "Constants are always variable", this will happen to you as well, 
while developing SX applications. You can be sure that requirements for modifications will come 
up after a program is out of beta, running perfectly, and has been finally released for production. 
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Maybe, it makes sense to change the port pin assignments in order to simplify the PCB layout. 
Maybe, a clock crystal with a slightly different frequency as the one you have based the timing on 
is cheaper, or whatever other reason it is - program adaptations are always the consequence. 

If you, for example, have "hard-coded" the port pins in the program, you now have the burden to 
go through all of the source code in order to change the pin assignments. Often, just changing a 
clrb rb.0 to clrb rb.1 is not enough to use Port B pin 1 now, instead of pin 0. 

Remember that the port configuration might be changed as well. Often port bits are "masked" out 
with an and instruction, i.e. the port masks must be changed as well, etc. 

The following code style makes such modifications a lot easier: 
;-------------------------------------- 
; Port assignment 
; 
Temperature    equ ra.0 ;-----------+    1 
                        ;           |    2 
TRIS_A         equ          %11111111 ;  3 
  
EmergencyOff1  equ rb.0 ;-----------+    4 
EmergencyOff2  equ rb.1 ;----------+|    5 
                        ;          ||    6 
TRIS_B         equ          %11111111 ;  7 
WKPEN_B        equ          %11111100 ;  8 
WKPED_B        equ          %11111101 ;  9 
  
SignalLED      equ rc.0 ;-----------+   10 
WarningLED     equ rc.1 ;----------+|   11 
Relay          equ rc.2 ;---------+||   12 
                        ;         |||   13 
TRIS_C         equ          %11111000 ; 14 
;-------------------------------------- 
 
TRIS           equ $0f   ; 15 
PLP            equ $0e   ; 16 
WKEN_B         equ $0b   ; 17 
WKED_B         equ $0a   ; 18 
WKPD_W         equ $09   ; 19 
 
; I/O port configuration 
; 
mode TRIS     ; 20 
mov  w, #TRIS_A    ; 21 
mov  !ra, w     ; 22 
mov  w, #TRIS_B    ; 23 
mov  !rb, w     ; 24 
mov  w, #TRIS_C    ; 25 
mov  !rc, w     ; 26 
  
; Wake-up/Interrupt configuration  
;  
mode WKPD_W     ; 27 
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clr  w ; 28 
mov  !rb, w     ; 29 
  
mode WKED_B     ; 30 
mov  w, #WKPED_B    ; 31 
mov  !rb, w     ; 32 
  
mode WKEN_B     ; 33 
mov  w, #WKPEN_B    ; 34 
mov  !rb, w     ; 35 
  
;  
; Hundreds of code lines later... 
;  
  
; Turn on signal LED  
;  
clrb SignalLED    ; 36 
  
; Activate the relay 
;  
clrb Relay     ; 37 
  
; Handle temperature status  
;  
sb   Temperature    ; 38 
  jmp :TooCold    ; 39 
  
;  
; More instructions  
;  
:TooCold     ; 40 

At the beginning of this program code, we define symbolic names for each I/O signal like 
Signal equ <Port>.<Bit> 

(see lines 1, 4, 5, 10, and 12). 

Later, when a port bit must be set or cleared, we use the symbolic names that were defined 
above. 

Because there are no instructions available that set or clear single bits in the port configuration 
registers, we have defined constant bit patterns (lines 3, 7, 8, 9, and 14) that are loaded into the 
!r? registers (lines 21, 23, 25, 31, and 34). 

If you consequently respect that scheme, changing port assignments later, is easy - changes are 
necessary in the initial definition section only. 

In addition, macros can help to make a program even more generic: In the example above, we 
have assumed negative logic for the outputs, i.e. an LED or the relay become active, when an 
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output goes low. In case your "Hardware Guru" finds out later that another inverting driver is re-
quired to drive the relay, the relay output must now assume positive logic.  

Having defined the macro 
RelayOn MACRO 
  clrb Relay 
ENDM 

at the beginning of the program and calling that macro instead of placing clrb Relay instruc-
tions in the code (see line 37) makes this modification easy: 

Just replace the clrb Relay instruction in the macro body with setb Relay, and you are all 
done. 

1.12.5 The DEVICE Directives 

Some of the available DEVICE directives have been used in the program examples already, be-
cause they were required to create the programs for debugging. 

 

(2.2.7 - 230) DEVICE directives instruct the development system to set or clear bits in the SX 
"Fuse" registers. These registers are located in EEPROM, i.e. its contents do not get lost when 
VDD is turned off. "Fuses" are used to configure the SX for a specific need. 

 

At this place, you can find a table that summarizes the most important DEVICE directives. The 
general syntax for a DEVICE directive is 
DEVICE <Configuration>[, <Configuration>...] 

The keyword DEVICE is followed by at least one more keyword that specifies a configuration. 
More words can be added in a comma-separated list. 

One program may have more than one line with DEVICE directives. 
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DEVICE Directives 
Keyword Description Default Remark 
BANKS1 Configures memory size, 1 page, 1 bank BANKS8  
BANKS2 Configures memory size, 1 page, 2 banks BANKS8  
BANKS4 Configures memory size, 4 pages, 2 banks BANKS8  
BANKS8 Configures memory size, 4 pages, 8 banks BANKS8  
BOR22 Brownout reset at VDD < 2,2 V BOROFF  
BOR26 Brownout reset at VDD < 2,6 V BOROFF  
BOR42 Brownout reset at VDD < 4,2 V BOROFF  
BOROFF Disable brownout BOROFF  
CARRYX ADD/SUB with Carry disabled  
IFBD0 Disable internal oscillator feedback resistor IFBD1  
IFBD1 Enable internal oscillator feedback resistor IFBD1  
IRCDIV1 Internal RC oscillator, 4 MHz IRCDIV1  
IRCDIV128 Internal RC oscillator, 32 kHz IRCDIV1  
IRCDIV32 Internal RC oscillator, 128 kHz IRCDIV1  
IRCDIV4 Internal RC oscillator, 1 MHz IRCDIV1  
OPTIONX Enable 8-level stack, and 8-bit OPTION register disabled 1 
OSC4MHZ Internal RC oscillator, 4 MHz OSC4MHZ  
OSC1MHZ Internal RC oscillator, 1 MHz OSC4MHZ  
OSC128KHZ Internal RC oscillator, 128 kHz OSC4MHZ  
OSC32KHZ Internal RC oscillator, 32 kHz OSC4MHZ  
OSCHS1 External oscillator, high-speed 1 OSCRC  
OSCHS2 External oscillator, high-speed 2 OSCRC  
OSCHS3 External oscillator, high-speed 3 OSCRC  
OSCLP1 External oscillator, low power 1 OSCRC  
OSCLP2 External oscillator, low power 2 OSCRC  
OSCRC External oscillator, RC network OSCRC  
OSCXT1 External oscillator, crystal 1 OSCRC  
OSCXT2 External oscillator, crystal 2 OSCRC  
PINS18 Specifies the SX device type PINS18  
PINS20 Specifies the SX device type PINS18  
PINS28 Specifies the SX device type PINS18  
PINS48 Specifies the SX device type PINS18  
PINS52 Specifies the SX device type PINS18  
PROTECT Program memory is read-protected unprotected  
SX18AC Specifies the SX device type PINS18  
SX20AC Specifies the SX device type PINS18  
SX28AC Specifies the SX device type PINS18  
SX48BD Specifies the SX device type PINS18  
SX52BD Specifies the SX device type PINS18  
SYNC Synchronized port-read (2 clock cycles delay for disabled  
TURBO Turbo mode enabled, 1 clock cycle/standarddisabled 1 
WATCHDOG Watchdog timer enabled disabled  
Remark:  1: SX 18/20/28 only 
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Note that the above device options are valid for the SASM Assembler. Depending on the version 
additional, or different options may be available. The SX-Key Assembler supports most of these 
options, but uses different keywords for some of them. Please refer to the documentation that 
comes with your assembler for more information about the device options. 

1.12.6 The FREQ Directive (SX-Key only) 

This directive is unique to the SX-Key. It specifies the clock frequency, the SX-Key probe shall 
generate. The syntax is 
FREQ <Frequency in Hz> 

Underscores are allowed (e.g. 50_000_000) for better readability. 

1.12.7 The ID Directive 

Within the SX EEPROM, there is room for eight characters that can optionally store any string of 
characters. This is a good place to store a program-id, and a version number. When you later read 
the program memory, you can identify the stored program. The syntax is: 
ID '<String>' 

for example: 
ID 'BLINK1.0' 

1.12.8 The BREAK Directive (SX-Key only) 

This directive sets a pre-defined breakpoint for the SX-Key debugger. This is useful when you 
need to have a breakpoint set on a specific program line for a longer debugging session (obvi-
ously, the BREAK will sit close to your "most beloved bug" in the program). 

The breakpoint will be set to the instruction in the line that comes next to the line with the BREAK.  

While in a debugging session, you can set the breakpoint on any other instruction at any time by 
left-clicking the new line in the Code window. 

There is only one BREAK directive at a time allowed in the source code. When you only change the 
position of the BREAK directive in the source code, it is not necessary to re-assemble the code, i.e. 
you may invoke the debugger using Debug (Reenter), or the Ctrl-Alt-D shortcut. 
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1.12.9 The ERROR Directive 

This directive is useful to catch errors in macros. 

The syntax for ERROR is: 
ERROR '<Message>' 

When the assembler comes across an ERROR directive, it stops compilation, and displays <Mes-
sage> in the status line. Here is an example: 
PINS = 18 
 
if PINS = 18 
  DEVICE SX18L 
else 
  if PINS = 28 
    DEVICE SX28L 
  else 
    ERROR 'Illegal value for PINS' 
  endif 
endif 

1.12.10 The END Directive 

This directive indicates the end of the program source code. Any text that follows the END is ig-
nored by the assembler. You can use this to add remarks and notes to the end of the source code 
file without the need to begin each line with a leading semicolon. 
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1.13 The Analog Comparator 
Each SX device comes with an integrated analog converter. The two comparator inputs can op-
tionally be accessed via Port B pins 1 and 2. An additional option connects the comparator output 
to Port B pin 0 when there is a need to control external components with the comparator output 
signal. 

When Port B pins are configured for comparator input or output, the standard I/O pins are dis-
abled. 

In order to configure port B for comparator use, there is another configuration register available, 
the CMP_B register. This register can be accessed via !rb when the MODE register is initialized to 
$08. 

The CMP_B register bits have the following meaning: 

CMP_B 
7 6 5 4 3 2 1 0 

EN OE - - - - - Res 
If bit 7 (EN - Enable) is clear, the comparator is enabled, and its inputs are fed through to pins 
RB1 and RB2. 

If bit 6 (OE - Output Enable) is clear in addition to bit 7, the comparator output is enabled, and 
fed through to pin RB0. 

In order to read the comparator output by software, a "trick" is used, that is similar to reading the 
WKPD_B register. The mov !rb, w instruction exchanges the contents of w and the CMP_B register 
(provided that MODE is set to $08), i.e. before mov !rb, w, the w register must contain the com-
parator configuration bits, and after mov !rb, w, bit w.0 represents the current comparator 
output status. 

The schematic below shows the circuit we will be using to test the comparator. 
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; ================================================================= 
; Programming the SX Microcontroller 
; TUT030.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET    Main 
CMP      equ $08 
 
Main 
mode CMP 
IFDEF CMPOUT 
  mov  !rb, #%00000000 
ELSE 
  mov  !rb, #%01000000 
ENDIF 
 
; Read the comparator output 
; 
:Loop 
mode CMP 
mov  !rb, #%00000000 
 
  
; w.0 now is set to the comparator 
; output state 
 
  mov $08, w                    ; <-- set a breakpoint here 
  jmp :Loop 

 

Please define a breakpoint at the marked line, and the run the program; it will stop at the break-
point. 

When you now turn the potentiometer slowly from one end to the other, the LED should change 
its state when the potentiometer is close to its center position (assuming, you are using a linear 
type). As you can see, the comparator keeps working even if the SX has halted program execu-
tion. 

The table below summarizes the relationship between the comparator output and the input volt-
ages: 

Comparator 
Input Output 

URB1 > URB2 low (0) 
URB1 < URB2 high (1) 
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Now run the program a couple of times, and note how the contents of w change when you in-
crease or decrease the voltage at RB1 by turning the potentiometer left and right, when the pro-
gram stops at the breakpoint. 

1.13.1 The Comparator and Interrupts  

Instead of polling the comparator output, it makes sense to trigger an interrupt when the com-
parator output state changes. 

As you know, Port B pins can be used to trigger interrupts when the associated bit in the WKEN_B 
register is cleared. In this case, a positive or negative signal edge at this pin (depending on the bit 
in the WKED_B register) causes an interrupt, and the associated bit in the WKPD_B register is set. 

If you clear bit 0 in the WKEN_B register when the comparator is enabled, a high-low edge of the 
comparator output state will cause an interrupt, in case the comparator output is enabled. 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT031.SRC 
; ================================================================= 
include "Setup28.inc" 
 
CMP     equ $08 
WKPEN   equ $0b 
WKPPD_W equ $09 
 
RESET   Main 
 
org     $000 
ISR 
  mode WKPPD_W 
  clr  w 
  mov  !rb, w           ; clear the "pending" bit 
  mode CMP 
  mov  !rb, w           ; re-init the comparator and 
                        ;  get the output state to w.0 
  mov $08, w            ; <-- set a breakpoint here 
  reti 
 
org     $100  
Main 
  mode CMP 
  clr  w 
  mov  !rb, w           ; Enable comparator inputs and output 
  mode WKPPD_W 
  mov  !rb, w           ; Clear any "pending" bits 
  mode WKPEN 
  mov  !rb, #%11111110  ; Enable rb.0 interrupts         
 
:Loop 
  jmp :Loop             ; Loop forever... 
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In this program example, we enable the comparator (including its output), and enable RB0 to 
trigger interrupts on negative signal edges (the default). Then the mainline program has done its 
work, entering into an endless holding pattern. 

When the comparator output state changes from high to low, the ISR is called. In the ISR, we 
clear the "pending" bit, and then re-initialize the comparator, exchanging the contents of the CMP 
register with w. Finally, we save the contents of w in $08 and return from the ISR. 

There may be cases that an interrupt shall be triggered when the comparator output changes 
from low to high, and when it changes from high to low. To achieve this, connect the RB0 pin to 
another available Port B pin (RB3...7). Configure this pin as input and clear the associated bits in 
the WKEN_B and WKED_B registers for that pin. Now, a positive comparator output edge triggers an 
interrupt through this input, and a negative edge triggers an interrupt through RB0, as before. 

In the ISR, you can test which bit in the WKPD_B register is set in order to find out which signal 
edge caused the interrupt. 

1.13.2 The Comparator and the Sleep Mode 

The comparator remains enabled in sleep mode when it was enabled before. If the comparator 
output is enabled, an output change can on one hand, control external components connected to 
RB0. On the other hand, this change can also wake up the SX, if RB0 is enabled in the WKEN_B 
register. 

Please note that the comparator, when enabled, causes higher power consumption. Therefore, if 
the comparator is not needed in sleep mode, it is a good idea to disable it before executing the 
sleep instruction. 
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1.14 System Clock Generation 
There are various methods how to generate the system clock for the SX: 

• Internal clock generator 

• Internal clock generator with external R-C network 

• Internal driver with external crystal or ceramic resonator 

• External clock signal 

1.14.1 The Internal Clock Generator 

The internal clock generator makes use of an internal R-C network. At a frequency of 4 MHz, it 
has a tolerance of ± 8%. The precision of the generated frequency depends on the ambient tem-
perature, the supply voltage, and on the tolerances of the internal components. 

An internal clock divider allows for lower clock frequencies. Bits 6 and 5 in the fuse register must 
be set according to the table below: 

Internal R-C Clock 
FUSE bits  

DIV1 (6) DIV0 (5) Frequency 
0 0 4 MHz 
0 1 1 MHz 
1 0 128 kHz 
1 1 33 kHz 

 

The assembler directives OSC4MHZ, OSC1MHZ, OSC128KHZ and OSC32KHZ can be used to instruct the 
development system to set the fuse bits accordingly when a program is transferred to the SX. 

When the internal clock generator is enabled, SX-pins OSC1 and OSC2 should be left open. 

 



Section I - Tutorial 

153 

1.14.2 Internal Clock Generator with External R-C Network 

The external R-C network is connected to the OSC1 pin according to the schematic below: 

 

 

 

 

 

In order to configure the SX for this clock mode, add the DEVICE OSCRC to your program. 

The SX datasheet recommends values between 3 kΩ and 100 kΩ for the resistor, and a capacitor 
greater than 20 pF. 

Again, the precision of the clock frequency depends on the ambient temperature, the supply volt-
age, and on the tolerances of the internal and external components. 

The SX datasheet does not specify the relationship between generated frequencies and R-C time 
constants. The "breadboard" system used to prepare this book generated a clock frequency of 
about 1.4 kHz with a 47 kΩ /10 nF R-C network, and 7 kHz with 10 kΩ /10 nF. 

1.14.3 External Crystal/Ceramic Resonator 

When you use an external crystal or a ceramic resonator, the accuracy of the clock frequency is 
remarkably increased, and clock frequencies up to the maximum value specified for the SX can be 
obtained. 

The internal driver's level can be adjusted to the requirements of individual crystals/resonators. 
Therefore, in most cases, no additional external components, like resistors or capacitors are re-
quired. The directives OPTION OSCXT... define how the fuse bits shall be set to obtain a specific 
level.  

Connect a crystal or ceramic resonator to the SX according to the schematics below: 
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Depending on the type of crystal or ceramic resonator you are using, it may be necessary to con-
nect an additional resistor to the OSC1 and OSC2 pins, and/or capacitors between ground and 
the OSC1, and OSC2 pins. Please refer to the data sheets published by Ubicom for more details.  

1.14.4 External Clock Signals 

When an external clock signal is available in a system, it may be used to clock the SX as well. This 
signal is fed into the OSC1 pin, and the OSC2 is left open in this case. 

1.14.5 External Clock Signal using a PLL 

An interesting method to generate an external clock signal is the use of special ICs, designed for 
this purpose, like the ICS501 "Micro Clock". These components allow generating clock frequen-
cies up to the maximum rate, using a cost-effective crystal.  

The schematic below shows the ICS501 configured to generate a 50 MHz clock, derived from a 
16.66 MHz crystal: 
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Depending on the levels at the S0 and S1 pins (VDD, VSS or open), various combinations multipli-
cation factors can be obtained (see the table below). 

ICS501 
S1 S2 Factor 
0 0 4 
0 H 5,3125 
0 1 5 
H 0 6,25 
H H 2 
H 1 3,125 
1 0 6 
1 H 3 
1 1 8 

0 = VSS, 1 = VDD, H = open 

 

 

The OE (Output Enable) pin is connected to VDD via an internal pull-up resistor. When 
connected to VSS, the clock output is disabled and goes to hi-Z. Nevertheless, this mode is not 
suited to isolate the SX OSC1 pin from the clock during programming because a voltage of 
12.5 V is applied to this pin when a program is transferred to the SX. Use a jumper to open the 
clock line while programming. 

 

1.14.6 Selecting the Appropriate Clock Frequency 

All SX devices allow for clock frequencies up to 50 MHz, some devices can even be clocked at 75 
MHz. 

Which clock frequency you should select depends on the specific application. Of course could 
you always drive the SX with the maximum allowed clock frequency, and use timer code to 
“slow it down” when necessary. 

Think of driving a car: Although you know that the engine can make up to say 6,000 Rpm, you 
normally drive the car at lower rates, just to save gas, and keep the environment a bit cleaner. 

Similarly, the SX consumes less power at lower clock rates. Especially for battery-driven systems, 
this is an important factor. Therefore, for a specific application, you should select a clock rate that 
is just fast enough to perform the required tasks in the expected time frame. 
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When you use a PLL clock generator as described in chapter 1.14.5, and if there are two free I/O 
pins available, you can even control the S0 and S1 inputs of the ICS501 chip with the SX I/O pins. 
This makes it possible that the SX can change its clock speed depending on certain events. 

As an example let’s assume that an application shall monitor the temperature in a room. When 
this temperature exceeds a certain limit, some characters shall be transmitted via RS-232 to a PC 
system. Again, when the temperature goes below this level, another string of characters shall be 
sent. 

You could use an NTC as temperature sensor in a voltage divider circuit, and feed the voltage 
across the NTC into one of the SX analog comparator inputs, where the other comparator input is 
fed with a reference voltage. 

Most of the time, the application program will run in a loop, checking if the comparator output 
has changed. This can be performed at a low rate because the room temperature usually changes 
quite slowly. 

When it comes to a case that characters must be sent via the serial line, the SX could increase its 
clock speed for that task, and slow down again after having sent the characters. 

While designing SX-based systems, you should also consider RFI problems. At clock speeds of 50 
MHz, or even higher, RFI is a critical factor when the board layout, shielding, and filtering is not 
done properly. Ubicom has released some application notes dealing with this topic that you can 
download from Ubicom’s site. 

Own experiences have shown that RFI problems are less critical when a ceramic resonator or a 
crystal is used instead of an external PLL clock generator due to the fact that the internal driver 
together with a ceramic resonator or a crystal produces a signal close to a sine wave on the OSC2 
pin, where PLLs generate a square wave signal with much more harmonics. 

 

External clock generators, like the ICS501 described before, usually generate square-wave 
output, where the SX together with a crystal, or ceramic resonator generates clock signals 
close to an ideal sine-wave. Always be aware of RFI problems that may arise at clock 
frequencies of 50 or 75 MHz. Harmonics of the clock may “nicely” fall in the range of VHF 
radio, or ATC frequencies. 
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1.15 The Program Memory 

1.15.1 Organizing the Program Memory 

 

(2.2.3 - 207) When we discussed subroutines, you have learned that the first instruction of a 
subroutine must be located in the first 256 words of the program memory because the instruc-
tion code of a call has space for eight address bits only. 

 

The instruction code of a jmp is 
101a aaaa aaaa 

Here, nine bits are available for a jump address, i.e. a jmp instruction can target 512 different 
words in program memory. 

Please test the following program in single steps: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT032.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET    Main 
 
org     $000 
Main 
  jmp   Far 
 
org     $1fe 
Far 
  jmp   TooFar 
 
org     $200 
TooFar 
  jmp   Main 
 

When you execute the jmp TooFar instruction, program execution is not continued at TooFar but 
at Main again. 

TooFar specifies the address $200 or %0010 0000 0000 but the 10th bit does not "fit" into the in-
struction code of the jmp. Therefore, the assembler has simply truncated that bit, and coded a jmp 
$000 instruction instead, i.e. the address represented by the Main label. 

It would be too bad if the SX did not allow a method to address the remaining 1,792 or 3,583 
words in the SX 18/20/28 or SX 48/52 devices. 
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To address the full range of program memory locations, a "trick" is used, similar to addressing 
the data memory. You certainly remember the "Crazy Parking Garage" we have used to explain 
the data memory organization. 

Program memory is similarly organized, but this time like a regular parking garage with 512 lots 
in four or eight decks. 

In order to address all memory locations, an 11-bit or 12-bit address is required: 
 000 0000 0000 = $000 
 111 1111 1111 = $7FF 
1000 0000 0000 = $800 (SX 48/52 
1111 1111 1111 = $FFF  only) 

The two or three bits marked gray are stored in the upper three bits of the STATUS register. 
These bits are called "Page Bits" because they select one page of 512 words in program memory. 

The full memory addresses for call or jmp instructions are composed of these page bits plus the 
bits contained in the instruction code. As a call instruction code only contains eight address bits, 
the ninth bit is always cleared, and so a call can only target the first 256 words in a page. 

After a reset, the upper three STATUS bits are cleared, i.e. by default the first 512 words in pro-
gram memory will be addressed. 

To select another page, it is necessary to set or clear the page bits in the STATUS register. You can 
do this with clrb and setb instructions, but there is an easier method available: 

1.15.1.1 The PAGE Instruction 

Similar to the bank instruction that allows switching data memory pages, the page instruction is 
used to change the upper three page bits in STATUS. Here is the previous example, now switch-
ing pages: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT033.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET    Main 
 
org     $000 
Main 
  jmp   Far 
 
org     $1fe 
Far 
  page  $200 
  jmp   TooFar 
 
org     $200 
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TooFar 
  page  $000 
  jmp   Main 

When you single-step this version, you will see that the jumps now perform as expected. Note 
how the page instructions change the upper bits in STATUS. 

The page instruction takes the upper three bits of the instruction argument and sets the upper 
three bits (the page select bits) in STATUS accordingly. The lower bits in the instruction argu-
ment are ignored, i.e. they can have any value. 

 

In the example above, the page instruction arguments are constants that specify the start of 
the two memory pages ($200 and $000). It makes more sense to define symbolic names for 
the memory pages, and then using these names instead, e.g.: 

org $200 

PageA equ $ 

;... 

page PageA 

As the lower bits of the instruction arguments are ignored, you may also pass any label that is 
defined within a memory page as instruction parameter, e.g. page Far or page TooFar in 
our example. 

 

 

It is a good idea to place page instructions immediately before the jmp or call instructions 
that require page switching, although it is possible to have other instructions between page 
and the jmp or call instructions, but this could be the seed for later disaster. 

Imagine what happens if you later insert a jmp that shall execute a jump within the current 
page following the page instruction! 
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Try what happens when you replace the org $1fe directive by org $1ff in the last 
program example. The assembler will display an error message like "Location already contains 
data" or "Overwriting same program counter location" for the line that contains the page $000 
instruction. 

This looks strange at first glance, so let's track the generated code: 

Address Code 

$1ff  page $200 

$200  jmp TooFar 

According to the org $1ff directive, the origin for the next instruction following that directive is 
$1ff - this is where the code for page $200 goes. The jmp TooFar instruction code is stored in 
the next location, which is at $200. 

Next, the org $200 directive sets the origin for the next instruction following that directive to 
$200, this is where the code for page $000 should go. As this location is already "occupied" by 
the code for jmp TooFar, the assembler is right to complain about that situation. 

 

1.15.1.2 The @jmp and @call Options 

The assembler accepts jmp and call instructions with a leading "@" sign. The @ instructs the 
assembler to automatically generate a page instruction before the jmp or call instruction code in 
order to select the correct page for the jmp or call. 

Using this feature makes our example look like this: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT034.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET    Main 
 
org     $000 
 
Main 
  jmp   Far 
 
org     $1fe 
 
Far 
  @jmp   TooFar 
 
org     $200 
 
TooFar 
  @jmp   Main 
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While single stepping this version, you will notice that the assembler has inserted the page in-
struction codes before the jmp TooFar and jmp Main codes. 

1.15.1.3 Subroutine Calls across Memory Pages 

For calling subroutines across memory pages, the same rules apply as for jumps across pages 
with the limitation that subroutines can only begin within the first half of any page. 

The memory address for a subroutine call is composed like this: 
 000 0000 0000  = $000 
 110 1111 1111  = $6FF 
1000 0000 0000  = $800  (SX 48/52 
1110 1111 1111  = $EFF  only) 

The bits marked gray are taken from the upper STATUS bits, the bits marked black are always 
cleared, and the lower eight bits are taken from the address part of the call instruction code. 

To call a subroutine that is not located in the current page, you must either place a page instruc-
tion before the call, or use the @call option to let the assembler generate the required page in-
struction for you. 

The program below does not yet work as expected, as you will see when you single-step it: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT035.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $100 
Main 
  jmp   Far 
 
org     $1fd 
Far 
  call  @Farther 
  jmp   Main 
 
org     $200 
Farther 
  clr   w 
  ret 

 

While you execute the first steps, the program seems to work as expected, but this will dramati-
cally change when you execute the jmp Main instruction that follows the subroutine call. 
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Instead jumping back to Main, the program counter points into "nowhere land" at address $300. 
When you look at the upper bits in the STATUS register, you will note the reason for the prob-
lem. Here, bit five is set, caused by the page $200 instruction that the assembler has generated 
before the subroutine call. As jmp Main is coded with an address of $100, the resulting full ad-
dress is 

%011 0000 0000, i.e. $300. 

According to the definition, the ret instruction restores the lower eight bits in PC from the stack. 
Fortunately, the stack does not only save the lower eight bits of an address, but the complete 
return address instead. There is an extended return instruction, retp (return with page) available 
that restores the lower eight bits in PC and the upper three bits in STATUS. 

Replace the ret by a retp instruction, and the program will work as expected. Note how bit 5 in 
status is reset when you step the retp instruction. 

 

The retp instruction can also be used to return from a subroutine that is located in the same 
page as the call instruction. Therefore, it is a good idea to use the retp instruction instead of 
ret when writing generic subroutines that might be placed in another memory page later or in 
other programs. There is actually no reason, why not using retp instead of ret throughout a 
program as retp does not require more program memory space or additional instruction 
cycles. 

 

Let's summarize the most important points you should take care of when you are using two or 
more program memory pages: 

• If the target of a jmp or call instruction lies in another page than in the current one, se-
lect the target page using the page instruction before doing the jmp or call. 

• A leading "@" sign in front of a jmp or call instructs the assembler to insert a page 
instruction before the jmp or call to automatically select the correct page. 

• Returning from a subroutine that is called from another page requires the retp instruc-
tion in order to restore the page select bits in the STATUS register. 

 

At first glance, it might be an idea to always use the "@"-option together with jmp and call in-
structions to make sure that the correct bank is selected. Please keep in mind that the current 
versions of the SX assemblers always insert a page instruction, no matter if it is required or not 
(i.e. when the jmp or call targets are located in the current page). This means that additional 
program memory and clock cycles are unnecessarily wasted. 
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(2.2.3 - 207)  The size of the "large" SX 48/52 controllers is 4,096 words. You can find more 
information about these devices in the reference part of this book.

 

1.15.2 How to Organize Program Memory 

As jumps and subroutine calls across memory pages require an additional word for the page in-
struction and one additional clock cycle, the parts of a program that belong together logically, 
should be placed in one memory page, together with any subroutines that are called from this 
part of the code only. 

Good "candidates" for a location in another memory page are program modules that are rarely 
called. 

If the lower half of a page is not large enough to hold all required subroutines, you might also 
consider placing such subroutines in another page. 

We already have discussed the possibility, just to place the entry-points of subroutines within the 
first half of the page, where the entry-points are jmp instructions that send the program execution 
to the upper half of the page. This method takes three additional clock cycles for the jump. When 
you place the complete subroutine in the first half of another bank, just one additional clock cycle 
is required for the bank instruction, and both the jmp and the bank instruction occupy one word 
in program memory. 

For now, discussing those "minor differences" seem to come close to "cookie cutting" however, as 
programs get larger and larger, and time resources less and less, you will understand the impor-
tance of such "space and time savers". 
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1.16 Tables - RETIW and IREAD 

1.16.1 Tables 

1.16.1.1 The RETW Instruction 

There are applications that require the conversion of one value into another value. Sometimes, 
this can be obtained by performing simple arithmetic calculations. However, if the two values are 
related by some non-linear function, things are getting more complicated. 

As an example, let's discuss a program for a sine-wave generator. We assume that the port pins 
RC7...RC0 are connected to an external 8-bit D/A converter. The program shall provide the re-
quired values at Port B so that the D/A converter output signal is a sine wave with a certain fre-
quency. You can find a simple D/A converter in the examples section of this book. 

  

 

 

 

 

 

 

 

 

 

 

 

The figure above shows the desired the RC output values as a function of time. In general, to 
generate a sine wave it would be sufficient to determine the required values for one quadrant. 
The other values can be obtained by mirroring. For simplicity reasons, we assume that here the 
values shall be determined for the full period. 

In the program, we will use a counter (Ix) that is incremented at fixed periods. The time it takes 
to count Ix from 0 up to 255 is equivalent to the sine wave's period. 

RC           U 

t 
1st Quadrant 

255 

 

 

 

 
128 

 

 

 

 
0 

π/2 



Section I - Tutorial 

165 

The contents of Ix follow a linear time function that must be transformed into a sine function in 
order to obtain the values that must be sent to the output port. Calculating the sine function us-
ing the available arithmetic instructions would be quite difficult and time-consuming. The solu-
tion to that problem is a table. Using a table allows us to make the required calculations "outside" 
the SX only once. If we then place the results in that table, the SX is fast enough to read the table 
items when necessary. 

In other words, the table must contain the values for f(Ix) where f(Ix) is ( sin( Ix / 255 * 2π ) + 1 ) 
* 128 here. 

To realize such tables, the SX offers the retw (return with w) instruction. Its syntax is 
retw <Constant> 

This is a variant of the "regular" ret instruction. Just like ret, retw returns from a subroutine, 
and program execution continues with the instruction following the call however, retw initializes 
w to the <Constant> specified as instruction argument before returning. 

This is similar to returning a value from a function in C, where usually integer return values are 
contained in the accumulator on function return. 

The subroutine in the next example is designed to return the first 16 table values: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT036.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
Ix      ds    1 
 
org     $000 
 
; Subroutine returns f(w) in w 
; 
WToSin 
  jmp   pc+w 
  retw  127 
  retw  130 
  retw  133 
  retw  136 
  retw  139 
  retw  143 
  retw  146 
  retw  149 
  retw  152 
  retw  155 
  retw  158 
  retw  161 
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  retw  164 
  retw  167 
  retw  170 
  retw  173 
   
Main 
  clr   Ix 
loop 
  mov   w, Ix 
  call  WToSin 
  inc   Ix 
  clrb  Ix.4 
  jmp   loop 

 

The mainline program allows you to test the program in single steps using the debugger. Ix is 
the "Index" into the table. As this table has 16 items only, the clrb Ix.4 instruction limits the 
possible contents of Ix to the range 0...15. 

The jmp pc+w instruction in the subroutine branches to one of the retw instructions that return 
the function value that is assigned to the corresponding value in Ix (passed to the subroutine in 
w). 

To make it easier, the assembler allows more than one instruction argument for retw instructions: 
retw <Constant>, <Constant>, <Constant>, ... 

For each <Constant> in the comma-delimited list, the assembler generates a separate retw in-
struction. 

This allows us to write the program for the complete table like this: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT037.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
Ix      ds    1 
Sin     ds    1 
  
org     $000 
 
; Subroutine returns f(w) in w 
; 
WToSin 
  jmp   pc+w 
  retw  127,130,133,136,139,143,146,149,152,155,158,161,164,167,170,173 
  retw  176,178,181,184,187,190,192,195,198,200,203,205,208,210,212,215 
  retw  217,219,221,223,225,227,229,231,233,234,236,238,239,240,242,243 
  retw  244,245,247,248,249,249,250,251,252,252,253,253,253,254,254,254 
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  retw  254,254,254,254,253,253,253,252,252,251,250,249,249,248,247,245 
  retw  244,243,242,240,239,238,236,234,233,231,229,227,225,223,221,219 
  retw  217,215,212,210,208,205,203,200,198,195,192,190,187,184,181,178 
  retw  176,173,170,167,164,161,158,155,152,149,146,143,139,136,133,130 
  retw  127,124,121,118,115,111,108,105,102, 99, 96, 93, 90, 87, 84, 81 
  retw   78, 76, 73, 70, 67, 64, 62, 59, 56, 54, 51, 49, 46, 44, 42, 39 
  retw   37, 35, 33, 31, 29, 27, 25, 23, 21, 20, 18, 16, 15, 14, 12, 11 
  retw   10,  9,  7,  6,  5,  5,  4,  3,  2,  2,  1,  1,  1,  0,  0,  0 
  retw    0,  0,  0,  0,  1,  1,  1,  2,  2,  3,  4,  5,  5,  6,  7,  9 
  retw   10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35 
  retw   37, 39, 42, 44, 46, 49, 51, 54, 56, 59, 62, 64, 67, 70, 73, 76 
  retw   78, 81, 84, 87, 90, 93, 96, 99,102,105,108,111,115,118,121,124 
   
Main 
  clr   Ix 
loop 
  mov   w, Ix 
  call  WtoSin 
  mov   Sin, w 
  inc   Ix 
  jmp   loop 

 

As this table contains 256 items now, it is no longer necessary to limit the range for Ix to 0...16. 

When your debugger can display a watch window, it is a good idea to let it display Ix and the 
new Sin variable in that window. 

Unfortunately, this program has a severe bug, as you will see: 

First, single step some loop cycles, and see how the subroutine obtains values from the table, how 
they are returned, and stored in the Sin variable. 

Then change the contents of Ix at address $08 to $fe and continue single stepping. Note what 
happens in the subroutine when Ix holds $ff. You will notice that the program "hangs" - it exe-
cutes the jmp pc+w instruction forever, and never returns from the subroutine. 

There are two reasons for that problem: 

The instruction jmp pc+w adds the 8-bit value in w to the program counter. The jmp pc+w instruc-
tion is located at address $000 in program memory, i.e. after reading the instruction, pc points to 
$001. 

When w contains $ff, the sum of pc and w should result in $100 which is the address of the last 
retw instruction in the table but internally, the addition pc+w is limited to eight bits, and so the 
overflow into bit 9 of pc is lost. This means that pc contains $000 after the addition, i.e. the ad-
dress of the jmp pc+w instruction. This is why the program keeps executing this instruction for-
ever. 
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Keep in mind that the instruction jmp pc+w only allows to address targets that are located in 
the lower half of a memory page. 

 

Because the jmp pc+w instruction itself "eats up" one memory location in the lower half of the 
page, one word is missing to implement a table of 256 items this way. In case jmp pc+w is not 
located at the beginning of a page, even more space for table items would get lost. 

Fortunately, there is a "trick" how to handle a 265-items table as shown in this example: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT038.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
Ix      ds    1 
Sin     ds    1 
 
org     $000 
 
; Subroutine returns f(w) in w 
; 
WtoSin 
  page  SinTable 
  jmp   w 
   
Main 
  clr   Ix 
loop 
  mov   w, Ix 
  call  WtoSin 
  page  Main 
  mov   Sin, w 
  inc   Ix 
  jmp   loop 
 
org     $200 
SinTable 
  retw  127,130,133,136,139,143,146,149,152,155,158,161,164,167,170,173 
  retw  176,178,181,184,187,190,192,195,198,200,203,205,208,210,212,215 
  retw  217,219,221,223,225,227,229,231,233,234,236,238,239,240,242,243 
  retw  244,245,247,248,249,249,250,251,252,252,253,253,253,254,254,254 
  retw  254,254,254,254,253,253,253,252,252,251,250,249,249,248,247,245 
  retw  244,243,242,240,239,238,236,234,233,231,229,227,225,223,221,219 
  retw  217,215,212,210,208,205,203,200,198,195,192,190,187,184,181,178 
  retw  176,173,170,167,164,161,158,155,152,149,146,143,139,136,133,130 
  retw  127,124,121,118,115,111,108,105,102, 99, 96, 93, 90, 87, 84, 81 
  retw   78, 76, 73, 70, 67, 64, 62, 59, 56, 54, 51, 49, 46, 44, 42, 39 
  retw   37, 35, 33, 31, 29, 27, 25, 23, 21, 20, 18, 16, 15, 14, 12, 11 
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  retw   10,  9,  7,  6,  5,  5,  4,  3,  2,  2,  1,  1,  1,  0,  0,  0 
  retw    0,  0,  0,  0,  1,  1,  1,  2,  2,  3,  4,  5,  5,  6,  7,  9 
  retw   10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35 
  retw   37, 39, 42, 44, 46, 49, 51, 54, 56, 59, 62, 64, 67, 70, 73, 76 
  retw   78, 81, 84, 87, 90, 93, 96, 99,102,105,108,111,115,118,121,124 
 

It is important that the table is originated at the beginning of a page ($200 in our example). 

The WtoSin subroutine now selects the bank where the table is located and then executes a jmp w 
instead of the jmp pc+w instruction. This instruction replaces the lower eight bits in the program 
counter by the contents of w, i.e. w should contain the offset to the instruction in the selected page 
that shall be target of the jump, and here, this can be a value from $00 through $ff, i.e. 256 differ-
ent values. 

As the complete return address is saved to the stack on subroutine calls, and because retw (simi-
lar to retp) restores the complete address to pc, the return to the main program works correctly. 
In order to make the jmp Loop instruction work properly, it is necessary to reset the page select 
bits that were changed by the WtoSin subroutine to address page $000 again. 

You can find more program examples how to generate waveforms using tables in the "Applica-
tion Examples" section of this book. 

1.16.1.2 Reading Program Memory Using the IREAD Instruction 

There is another method to build tables in program memory that are created with the dw direc-
tive, using the iread (immediate read) instruction. Different from the retw instruction that re-
turns an 8-bit value, iread makes it possible to read all 12 bits stored in a program memory loca-
tion. 

Using iread is a bit "tricky" - let's demonstrate it with the following program: 
; ================================================================= 
; Programming the SX Microcontroller 
; TUT039.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
  
org     $08 
Ix      ds 1 
Data    ds 2 
 
Main 
  mov   Ix, #Table 
 
Loop 
  mov   m, #Table >> 8 
 
  mov   w, Ix 
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  iread 
  mov   Data, w 
  mov   Data+1, m 
  inc   Ix 
  test  Data 
  sz 
    jmp Loop 
  test  Data+1 
  sz 
    jmp Loop 
  jmp   Main 
org     $400 
Table 
        dw    'PARALLAX' 
        dw    12, 123, 1234, 0 

 

When your debugger allows watching variables, configure a watch window that displays the 
contents of Data in character format as well as in 12-bit unsigned decimal format. 

At memory page $400, we have defined the table. As you can see, the dw directive is used for 
initializing locations in the program memory to constant values. The dw directive accepts charac-
ter strings, like 'PARALLAX'. In this case, for each character in the string, the lower eight bits of a 
memory location will be set to the ASCII code of that character (the upper four bits are cleared). 
The dw directive also accepts numerical constants like 12, 123, 1234, or 0. For each numerical con-
stant, the assembler initializes one 12-bit memory location with the specified value with the up-
per bits cleared when necessary. The greatest number that can be stored in a memory location is 
$fff or 4,095 in decimal. 

We use the Ix variable as table index. The instruction mov Ix, #Table copies the lower eight 
bits of the table address to Ix, i.e. Ix now "points" to the first table item. 

As Ix is only eight bits wide, this is not enough to fully address all table items. 

The expression Table >> 8 is calculated at assembly-time, and its result are the upper four bits 
of the table address. This value is stored in the m register's lower four bits 3...0. 

The contents of Ix are copied to w before executing the iread instruction. 

The iread instruction expects the address to be read in m:w. This means that the upper four ad-
dress bits are expected in the lower four bits (3...0) of m and the lower eight bits of the address are 
expected in w. In our example, this is the case because m and w were set accordingly before. 

The 12-bit contents of the addressed memory location is returned by iread in m:w. Similar to the 
format that was used to pass an address to iread, the result's upper four bits (11...8) are returned 
in the lower four bits of m (3...0) and the lower eight bits of the result (7...0) are returned in w. 

In our program, the return value is stored to Data (lower eight bits) and Data+1 (upper four bits). 
It then increments the table index Ix. 
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The program then tests if the value stored in Data+1:Data is $000. In this case, the program loops 
back to Main in order to re-initialize the table index Ix. Otherwise, the program stays in Loop by 
reading the next value from the table. 

If you test the program in single-step mode or in "slow-motion", you can see, the values read 
from the table displayed in the watch window. 

The size of a table read with iread is not limited to 256 items because the instruction uses direct 
addressing via m:w. 
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1.17 More SX Instructions 
In this chapter, we will briefly discuss those SX instructions that we have not used in example 
programs so far. The clock cycles specified are valid for "turbo mode". 

1.17.1 Compare Instructions 

This family of instructions consists of compound instructions, i.e. the assembler generates two or 
more instruction codes instead. 

 

Note that these instructions must not immediately follow a skip instruction. 

Please also note that the Carry flag must be set or cleared in case the CARRYX option is 
enabled. You will find the necessary clear or set instruction together with the instruction syntax 
in parentheses. 

Note that compound statements must not immediately follow next to any of the conditional skip 
instructions described here. 

 

1.17.1.1 CJA (Compare and Jump if Above) 

Syntax: (clc) 
cja op1, op2, Address 

A jump to the specified address will be executed when op1 is greater than op2. There are two 
variants of this instruction: 
cja fr, #Constant, Address 

cja fr1, fr2, Address 

The instructions require 4 words in memory and 4 clock cycles (6 if the jump is taken). The C, DC, 
and Z flags and the W register are changed. 

1.17.1.2 CJAE (Compare and Jump if Above or Equal) 

Syntax: (stc) 
cjae op1, op2, Address 

A jump to the specified address will be executed when op1 is greater than or equal to op2. There 
are two variants of this instruction: 
cjae fr, #Constant, Address 

cjae fr1, fr2, Address 
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The instructions require 4 words in memory and 4 clock cycles (6 if the jump is taken). The C, DC, 
and Z flags and the W register are changed. 

1.17.1.3 CJB (Compare and Jump if Below) 

Syntax: (stc) 
cjb op1, op2, Address 

A jump to the specified address will be executed when op1 is smaller than op2. There are two 
variants of this instruction: 
cjb fr, #Constant, Address 

cjb fr1, fr2, Address 

The instructions require 4 words in memory and 4 clock cycles (6 if the jump is taken). The C, DC, 
and Z flags and the W register are changed. 

1.17.1.4 CJBE (Compare and Jump if Below or Equal) 

Syntax: (clc) 
cjbe op1, op2, Address 

A jump to the specified address will be executed when op1 is smaller than or equal to op2. There 
are two variants of this instruction: 
cjbe fr, #Constant, Address 

cjbe fr1, fr2, Address 

The instructions require 4 words in memory and 4 clock cycles (6 if the jump is taken). The C, DC, 
and Z flags and the W register are changed. 

1.17.1.5 CJE (Compare and Jump if Equal) 

Syntax: (stc) 
cje op1, op2, Address 

A jump to the specified address will be executed when op1 is equal to op2. There are two variants 
of this instruction: 
cje fr, #Constant, Address 

cje fr1, fr2, Address 

The instructions require 4 words in memory and 4 clock cycles (6 if the jump is taken). The C, DC, 
and Z flags and the W register are changed. 
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1.17.1.6 CJNE (Compare and Jump if Not Equal) 

Syntax: (stc) 
cjne op1, op2, Address 

A jump to the specified address will be executed when op1 is not equal to op2. There are two 
variants of this instruction: 
cjne fr, #Constant, Address 

cjne fr1, fr2, Address 

The instructions require 4 words in memory and 4 clock cycles (6 if the jump is taken). The C, DC, 
and Z flags and the W register are changed. 

1.17.2 Decrement/Increment with Jump 

1.17.2.1 DJNZ (Decrement and Jump if Not Zero) 

Syntax: 
djnz fr, Address 

Register fr is decremented. If the content of fr is not zero after the decrement, the jump to the 
specified address will be executed. The instruction requires 2 words in memory and 2 clock cy-
cles (4 if the jump is taken). No flags are changed. 

1.17.2.2 IJNZ (Increment and Jump if Not Zero) 

Syntax: 
ijnz fr, Address 

Register fr is incremented. If the content of fr is not zero after the increment, the jump to the 
specified address will be executed. The instruction requires 2 words in memory and 2 clock cy-
cles (4 if the jump is taken). No flags are changed. 

1.17.3 Conditional Jumps 

1.17.3.1 JNB (Jump if Not Bit set) 

Syntax: 
jnb fr.Bit, Address 

When the specified bit in fr is clear, the jump to the specified address will be executed. The in-
struction requires 2 words in memory and 2 clock cycles (4 if the jump is taken). No flags are 
changed. 
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1.17.3.2 JNC (Jump if Not Carry set) 

Syntax: 
jnc Address 

When the carry flag is clear, the jump to the specified address will be executed. The instruction 
requires 2 words in memory and 2 clock cycles (4 if the jump is taken). No flags are changed. 

1.17.3.3 JNZ (Jump if Not Zero) 

Syntax: 
jnz Address 

When the zero flag is clear, the jump to the specified address will be executed. The instruction 
requires 2 words in memory and 2 clock cycles (4 if the jump is taken). No flags are changed. 

1.17.4 Conditional Skips 

1.17.4.1 CSA (Compare and Skip if Above) 

Syntax: (clc) 
csa op1, op2 

The next instruction will be skipped when op1 is greater than op2. There are two variants of this 
instruction: 
csa fr, #Constant 

csa fr1, fr2 

The instructions require 3 words in memory and 3 clock cycles (4 if the skip is executed). The C, 
DC and Z flags and the W register are changed.  

1.17.4.2 CSAE (Compare and Skip if Above or Equal) 

Syntax: (stc) 
csae op1, op2 

The next instruction will be skipped when op1 is greater than or equal to op2. There are two vari-
ants of this instruction: 
csae fr, #Constant 

csae fr1, fr2 

The instructions require 3 words in memory and 3 clock cycles (4 if the skip is executed). The C,  
DC and Z flags and the W register are changed. 
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1.17.4.3 CSB (Compare and Skip if Below) 

Syntax: (stc) 
csb op1, op2 

The next instruction will be skipped when op1 is smaller than op2. There are two variants of this 
instruction: 
csb fr, #Constant 

csb fr1, fr2 

The instructions require 3 words in memory and 3 clock cycles (4 if the skip is executed). The C, 
DC and Z flags and the W register are changed. 

1.17.4.4 CSBE (Compare and Skip if Below or Equal) 

Syntax: (stc) 
csbe op1, op2 

The next instruction will be skipped when op1 is smaller than or equal to op2. 

There are two variants of this instruction: 
csbe fr, #Constant 

csbe fr1, fr2 

The instructions require 3 words in memory and 3 clock cycles (4 if the skip is executed). The C, 
DC and Z flags and the W register are changed. 

1.17.4.5 CSE (Compare and Skip if Equal) 

Syntax: (stc) 
cse op1, op2 

The next instruction will be skipped when op1 is equal to op2. There are two variants of this in-
struction: 
cse fr, #Constant 

cse fr1, fr2 

The instructions require 3 words in memory and 3 clock cycles (4 if the skip is executed). The C, 
DC, and Z flags, and the W register are changed. 

1.17.4.6 CSNE (Compare and Skip if Not Equal) 

Syntax: (stc) 
csne op1, op2 
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The next instruction will be skipped when op1 is not equal to op2. There are two variants of this 
instruction: 
csne fr, #Constant 

csne fr1, fr2 

The instructions require 3 words in memory and 3 clock cycles (4 if the skip is executed). The C, 
DC, and Z flags, and the W register are changed. 

1.17.5 MOV and Conditional Skip 

1.17.5.1 MOVSZ (MOVe and Skip if Zero) 

Syntax: 
movsz w, ++fr 

movsz w, --fr 

The incremented or decremented value of the specified file register is copied to w. The next in-
struction will be skipped when w contains zero.  The instructions require 1 word in memory and 1 
clock cycle (2 if the skip is executed). The contents of fr remain unchanged and no flags are 
changed. 

1.17.6 NOP (No OPeration) 

Syntax: 
nop 

This instruction requires 1 word in memory and 1 clock cycle. It can be used to fine-tune the de-
lay time of a loop, for example. 

1.17.7 SKIP 

Syntax: 
skip 

This instruction unconditionally skips the next instruction, it must not be followed by a com-
pound instruction. It requires 1 word in memory and 2 clock cycles. 

You may wonder what an instruction is good for that always performs a skip over the next in-
struction, so here is an example: 
Delay1 
  mov w, #8 
  skip 
Delay2 
  mov w, #16 
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  mov Counter, w 
:Loop 
  decsz Counter 
  jmp :Loop 
  ret 

This is a subroutine having two entry-points, Delay1 and Delay2. When you call Delay1, a short 
delay will be the result, calling Delay2 causes a delay that is approximately twice as long. As you 
can see, when you call Delay1, the skip instruction is used to jump over the initialization of w for 
the longer delay time that is required for Delay2. 
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1.18 Virtual Peripherals 
This chapter deals with the most powerful feature of the SX controllers: The Virtual Peripherals, 
or shortly “VPs”. (“Virtual Peripheral”, and “VP” are trademarks of Ubicom.) 

Compared to other microcontrollers, there are no SX controllers available with various internal 
peripheral units like UARTs, A/D converters, I2C interfaces, PWM (pulse width modulation) 
drivers, etc. All SXes only come with a comparator, and the “larger” devices have an additional 
timer. (The new IP2020 devices also contain serializers/deserializers). 

This means that the number of different microcontroller devices offered by Ubicom is much 
smaller compared to the lists of other manufacturers. At Ubicom, you can only make a selection 
between devices with a different number of I/O ports, the maximum clock frequency, the ambi-
ent temperature, and the package. This makes it easy to keep an overview, and helps to reduce 
the required items on stock. 

Due to the fast throughput (up to 100 Mips) of the SX controllers, required peripheral units can 
be realized just in software as Virtual Peripherals. Some applications require a minimum of addi-
tional external components. 

In almost all cases, when VPs are realized in software, an exact timing is required. The timer-
controlled interrupts that are supported by the SX devices is an ideal basis for such timing. This 
concept also allows to run the VPs “in the background” as separate tasks. 

In general, the code of VPs needs not always to be executed within an interrupt service routine 
(ISR) – any program module that replaces a hardware peripheral can be called a VP. 

It is also possible to combine two or more VPs for different tasks within one application, as long 
as the timing is guaranteed for all VPs. 

Ubicom, and other sources offer a wide collection of Virtual Peripherals that you can download 
from the Internet free of charge. 

1.18.1 The Software UART, a VP Example 

As an example, lets analyze the code for a UART, realized as Virtual Peripheral. The original 
code was first published by Parallax, Inc. and it is a good example how a task can be realized 
with just a few instructions when they are combined in a clever way. 

Let’s first look at the most important points of serial data communications. 

The incoming serial data are fed into an input line of the UART, and then converted into parallel 
data, where the outgoing data are converted from parallel representation into a serial stream of 
bits that are available at an output line. 
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The following diagram shows the timing for transmitting one byte of data: 

 

 

 

 

The transfer speed is specified in Baud, where this value defines how many bits are sent per sec-
ond. A rate of 19,200 Baud means that 19,200 bits are sent per second, and so the transfer time (or 
the bit period) for each bit is 1/19,200 ≈ 52 µs. 

For each byte to be transferred, the signal line is pulled to low level for one bit period. This indi-
cates the start of a transmission, and therefore this first null bit is called the start bit. 

Next, the signal line is pulled to high or low eight times for each data bit, depending on the status 
of the bits. Please note that in most cases the bits are transferred in “reverse order”, i.e. the low 
order bit comes first, and the high order bit comes last. 

Finally, the signal line is pulled to high level for at least one bit period to indicate the end of 
transmission. Therefore, this bit is called the stop bit. 

This is the sample code: 
; ================================================================= 
; Programming the SX Microcontroller 
;TUT040 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
;************************ Program Variables ***************************** 
; 
; Port assignment: Bit variables 
; 
rx_pin          EQU     ra.2            ;UART receive input 
tx_pin          EQU     ra.3            ;UART transmit output 
 
;****** Register definitions (bank 0) 
 
                org     8               ;First register address in main memory 
                                        ;bank 
temp            ds      1               ;Temporary storage 
byte            ds      1               ;Temporary UART shift register 
flags           DS      1               ;Program flags register 
number_low      ds      1               ;Low receive byte 
number_high     ds      1               ;High receive byte 
hex             ds      1               ;Value of received hex number 
string          ds      1               ;Indirect pointer for text output 
 

Start-Bit Stop-Bit
  0     1     2     3     4     5     6     7 

Data Bits 
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rx_flag         EQU     flags.5         ;Signals reception of one byte 
 
                org     10h             ;Variables in bank 3 
serial          =       $               ;UART bank 
 
tx_high         ds      1               ;Low transmit byte 
tx_low          ds      1               ;High transmit byte 
tx_count        ds      1               ;Number of remaining bits to be sent 
tx_divide       ds      1               ;Counter for transmit timer (/16) 
rx_count        ds      1               ;Number of bits received 
rx_divide       ds      1               ;Counter for receive timer 
rx_byte         ds      1               ;Buffer for received bytes 
 
; The next three parameters determine the baud rate of the UART. 
; The values of baud_bit, and int_period control the baud rate as follows: 
;  
; Baud rate = 50 MHz/(2 ^ baud_bit * int_period * RTCC_prescaler) 
;     Important: - 1 <= baud_bit <= 7 
;                - int_period must be less than 256 and longer than 
;                  the total time required by the ISR instructions. Changing 
;                  int_period will also influence the timing of other VPs 
;                  that are possibly executed within the ISR. 
;                - start_delay must be set to (2 ^ baud_bit) * 1,5 + 1. 
; 
; Values for various baud rates: 
; 
; *** 2400 Baud (For baud rates below 2,400, the RTCC prescaler must be 
;                activated.) 
;baud_bit       =       7 
;start_delay    =       128+64+1 
;int_period     =       163 
; 
; *** 9600 baud 
;baud_bit        =      5 
;start_delay     =      16+8+1 
;int_period      =      163 
; 
; *** 19,200 Baud 
baud_bit        =       4 
start_delay     =       16+8+1 
int_period      =       163 
; 
; *** 38,400 baud 
;baud_bit       =       3 
;start_delay    =       8+4+1 
;int_period     =       163 
; 
; *** 57,600 baud 
;baud_bit       =       2 
;start_delay    =       4+2+1 
;int_period     =       217 
; 
; *** 115.2k baud 
;baud_bit       =       1 
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;start_delay    =       2+1+1 
;int_period     =       217 
; 
; *** 230.4k baud (for higher baud rates, int_period must be reduced - see 
;                  above!) 
;baud_bit       =       0 
;start_delay    =       1+0+0 
;int_period     =       217 
 
;************************************************************************ 
; Virtual Peripheral UART 
; 
; Length:  67 bytes (total) 
; Authors: Chip Gracey, President, Parallax Inc. 
;          modified by Craig Webb, 
;          Consultant to Scenix Semiconductor, Inc. 
; Written: 97/03/10 to 98/7/09 
; 
;************************************************************************ 
 
;**************************** ISR CODE **************************************** 
; Remark: The ISR code must always start at address §000. Time-critical 
;         VP code (e.g. for A/D converters) should be placed before the 
;         code of VPs that have a variable execution time, like this UART 
;         code. 
interrupt       ORG     $000 
; 
;**** Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART) 
; This routine sends and receives serial RS232 data. It is configured for 
; the frequently used "8-N-1" format (8 Bits, no parity, 1 stop bit). 
; RECEIVE:  The rx_flag will be set as soon as a valid data byte is available. 
;           It is then the responsibility of the code that processes the data 
;           byte to reset the rx_flag again. 
; TRANSMIT: The transmit routine expects the inverted data in the register- 
;           pair tx_high, and tx_low, where the byte to be sent must be 
;           inverted and stored in tx_high. In tx_low, Bit 7 must be set, 
;           and the other bits are ignored. Then the number of bits to be sent 
;           (10 = 1 start bit + 8 data bits + 1 stop bit) must be stored in 
;           tx_count. As soon as tx_count contains a value > 0, the transmitter 
;           starts sending the data. The calling application may test tx_count 
;           in order to determine if a transmission is still in progress, i.e. 
;           if tx_count > 0. 
; This VP has variable execution times. Therefore, it should be located behind 
; time-critical code (e.g. for A/D converters, timers, PWMs, etc.) in the ISR. 
; 
; Note: The transmit and receive code is independent from each other. If 
;       the transmitter or the receiver is not required in an application, 
;       its code may be deleted. Take care NOT to delete the initial  
;       bank serial instruction. 
; 
;       Input variables:  tx_low (bit 7 only) 
;                         tx_high, tx_count 
; 
;       Output variables: rx_flag, rx_byte 
; 
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;       Required clock cycles (in turbo mode): 
; 
;           Transmit:   9 cycles (while idle) 
;                      19 cycles (while sending) 
;                    +  1 cycle  for the common bank instruction 
; 
;           Receive:   9 cycles (while idle) 
;                     16 cycles (at start) 
;                     13 cycles (while reading the next bit) 
;                     17 cycles (at the end of reception) 
; 
   bank    serial                  ;Select the "serial" bank            ;  1 
:transmit 
   clrb    tx_divide.baud_bit      ;Clear transmit timer flag           ;  2 
   inc     tx_divide               ;Increment the counter               ;  3 
   stz                             ;Set Z flag for next instruction     ;  4 
   snb     tx_divide.baud_bit      ;Execute the transmit routine on     ;  5 
                                   ; (2 ^ baud_bit)-th interrupt. 
     test  tx_count                ;Are we sending data?                ;  6 
   jz      :receive                ; no, continue with the receiver     ;  7 
   clc                             ; yes, prepare stop bit, and         ;  8 
   rr      tx_high                 ; shift to next bit                  ;  9 
   rr      tx_low                                                       ; 10 
   dec     tx_count                ;Decrement bit counter               ; 11 
   movb    tx_pin, /tx_low.6       ;Output next bit                     ; 12 
 
:receive 
   movb    c, rx_pin               ;Store received bit in carry flag    ; 13 
   test    rx_count                ;Are we receiving?                   ; 14 
   jnz     :rxbit                  ; yes, continue receiving            ; 15 
   mov     w, #9                   ; no, prepare 9 bits                 ; 16 
   sc                              ; if no start bit, continue          ; 17 
     mov   rx_count, w             ; if start bit, set bit counter      ; 18 
   mov     rx_divide, #start_delay ;Set 1.5 bit periods                 ; 19 
 
:rxbit 
   djnz    rx_divide, :rxdone      ;In the "middle" of the next bit?    ; 20 
   setb    rx_divide.baud_bit      ; yes, set 1 bit period              ; 21 
   dec     rx_count                ;Last bit?                           ; 22 
   sz                              ; no,                                ; 23 
     rr    rx_byte                 ;  save bit                          ; 24 
   snz                             ; yes,                               ; 25 
     setb  rx_flag                 ;  set flag                          ; 26 
 
:rxdone 
     mov     w, #-int_period       ;Interrupt every int_period          ; 27 
                                   ; clock cycles 
                                   ; (163 for 19,200 Bd) 
:end_int 
     retiw                         ;Leave the ISR                       ; 28 
 
  
;***************************** PROGRAM DATA *********************************** 
; 
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; Character strings for user interface (must be located in the first half 
; of a program memory page). 
; 
_hello     dw      13,10,13,10,'SX 2400-230.4K UART Virtual Peripheral Demo' 
_prompt    dw      13,10,'>',0 
 
;***************************** SUBROUTINES ************************************ 
; 
; Read a byte from the UART 
; 
get_byte 
     jnb     rx_flag, $            ;Wait until a byte has been received ; 29 
     clrb    rx_flag               ;Reset rx_flag                       ; 30 
     mov     byte, rx_byte         ;Save Byte (w also contains Byte)    ; 31 
                                   ;"Fall through", to echo the received 
                                   ;character. 
 
; Send a byte via the UART 
; 
send_byte 
     bank    serial                                                     ; 32 
:wait 
     test    tx_count              ;Wait for a pause                    ; 33 
     jnz     :wait                                                      ; 34 
 
     not     w                     ;Prepare bits (negative logic)       ; 35 
     mov     tx_high, w            ; Save data byte                     ; 36 
     setb    tx_low.7              ; Set start bit                      ; 37 
     mov     tx_count, #10         ;1 start + 8 data + 1 stop bit       ; 38 
     retp                          ;Return with page adjust             ; 39 
 
; Send a character string that begins at the address in w. 
; 
send_string 
     mov     string, w             ;Save the address                    ; 40 
:loop 
     mov     w, string             ;Read next character                 ; 41 
     mov     m, #0                 ; using an indirect address.         ; 42 
     iread                         ;                                    ; 43 
     mov     m, #$0f               ;Adjust m register                   ; 44 
     test    w                     ;Last character?                     ; 45 
     snz                           ; No, continue                       ; 46 
     retp                          ; Yes, return with page adjust       ; 74 
     call    send_byte             ;Send character                      ; 48 
     inc     string                ;Address next character              ; 49 
     jmp     :loop                 ;Continue until the end of text      ; 50 
 
  
;***************************** MAIN PROGRAM CODE ****************************** 
; 
           ORG     100h                                                 ; 51 
; 
; Program execution after power-on or reset starts here. 
; 
Main 
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     mov     ra,  #%1011             ;Initialize port RA                ; 52 
     mov     !ra, #%0100             ;Set RA's inputs and outputs       ; 53 
 
include "Clr2x.inc" 
 
     mov     !option,#%10011111      ;Enable RTCC interrupt             ; 59 
 
; Main program loop 
     mov     w, #_hello              ;Send the hello string             ; 60 
     page    send_string                                                ; 61 
     call    send_string                                                ; 62 
 
:loop 
     call    get_byte                ;Get a byte from the UART          ; 63 
 
     ; <Add more program code here, as required> 
 
     jmp     :loop                   ;Loop back for next character      ; 64 
                
     END                             ;End of program code   ; 65 
 

 

A Virtual Peripheral should be designed in a way that performs its task “in the background”, so 
that the main application does not “see” it. For example, the send_byte subroutine tests 
tx_count in line 33 if it contains zero to find out if the UART is ready to send another byte. At 
this place, the subroutine does not “know” that the UART is realized in software. tx_count could 
be the status register of a hardware UART as well. The same rules apply to the remaining inter-
face to the UART VP. 

In this sample program, there are actually two Virtual Peripherals, one is the serial transmitter, 
and the other is the serial receiver. 

Now let’s analyze the details of the program code: 

1.18.1.1 The Transmitter 

The code for the transmitter is a bit easier to understand. Therefore, let’s have a look at it first. 
Important is the correct timing, and so we’ll find out how the transmitter timing is generated. 

At 19,200 Baud, the ISR is called every 163 clock cycles because retiw with w = - 163 is executed 
in line 28. At a system clock of 50 MHz, the ISR is called every 3,26 µs, and so, the ISR must be 
called 16 times for one bit period of ≈ 52 µs. 
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Lines 2 to 7 read 
   clrb    tx_divide.baud_bit      ;Clear transmit timer flag  ;  2 
   inc     tx_divide               ;Increment the counter   ;  3 
   stz                             ;Set Z flag for next instruction ;  4 
   snb     tx_divide.baud_bit      ;Execute the transmit routine on  ;  5 
                                   ; (2 ^ baud_bit)-th interrupt. 
     test  tx_count                ;Are we sending data?   ;  6 
   jz      :receive                ; no, continue with the receiver ;  7 

where baud_bit is 4 for 19,200 Baud, and tx_divide is the timer counter for the transmitter. 

In line 2 bit 4 (the baud_bit) in tx_divide is always cleared, and so, the contents of tx_divide 
can never become greater than 15, i.e. it can hold 16 different values from 0...15, and this equal to 
the number of 16 ISR calls mentioned above. 

In line 3, tx_divide is incremented, and in line 4 the Z flag is set “in preparation” (you’ll soon 
see why). When the value of tx_divide has not reached 16 (i.e. bit 4 is clear), the ISR was not 
called 16 times yet. In this case, line 6 is skipped, and execution continues with line 7. The jump 
to :receive will be executed because we have set the Z flag before. 

When bit 4 in tx_divide is set, it is time to send a bit in case there are more bits to be sent. There-
fore test tx_count in line 6 is executed. Now, the Z flag is set or cleared depending on the con-
tents of tx_count. If it is set, no more bytes are to be sent, and the jump to :receive is per-
formed. Otherwise, execution continues with line 8. 

This is an example for real clever coding! Setting the Z flag “in preparation” provides that the jz 
:receive instruction is executed when it is not yet time for another bit and when there are no 
more bits. 

The next lines read: 
   clc                             ; yes, prepare stop bit, and  ;  8 
   rr      tx_high                 ; shift to next bit   ;  9 
   rr      tx_low                  ; 10 
   dec     tx_count                ;Decrement bit counter   ; 11 
   movb    tx_pin, /tx_low.6       ;Output next bit    ; 12 

At this place it is important to know how the bits are arranged in tx_high and tx_low before send-
ing the start bit: 
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Let’s assume that we want to send the bit pattern 10011010 (or $9a). 

tx_high tx_low 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

0 1 1 0 0 1 0 1 1 x x x x x x x 

 

 

According to the definition of the transmitter interface, tx_high must contain the inverted value 
of the byte to be sent (i.e. instead of 10011010, we store 01100101), and bit 7 in tx_low must be set 
(the remaining bits are don’t care). 

In line 8, the carry flag is cleared, and so a zero bit is “rotated in” when rr tx_high is executed. 
The contents of tx_high is shifted one bit position to the right, and the contents of bit 0 is moved 
into the C flag. 

The rr tx_low instruction in line 10 shifts bit 7 to bit 6, and the former contents of bit 0 in 
tx_high (now in the C flag) is moved into bit 7 of tx_low. 

Bit 6 of tx_low is “connected” to the serial output of the transmitter. The state of this bit is copied 
to tx_pin in line 12. As the argument of the movb instruction is /tx_low.6, the bit is negated in 
order to compensate the negation when the send byte was stored in tx_high before. 

At start of a transmission for a new data byte, the output will go low in any case because bit 7 in 
tx_low is 1. This is how the start bit is generated. 

In line 11, tx_count with its initial contents of 10 is decremented in order to stop the transmitter 
after 10 cycles (see line 6). At the 10th (and last) cycle, the zero bit that was initially shifted into 
tx_high.7 has “arrived” at tx_low.6 (the output). So tx_pin will be finally set to high level, and 
this is how the stop bit is generated. 

It is amazing to see how a complete UART transmitter can be realized in just eleven lines of pro-
gram code! 

1.18.1.2 The Receiver 

Before getting into the receiver details, some initial thoughts are in order: 

• A start bit may occur at the receiver input at arbitrary times. Therefore, it is important to 
test the input line as often as possible. In the :receive section of the code, this is done at 
every call of the ISR, i.e. every 3.26 µs at 19,200 Baud. 

C flag = 0 

UART “Output”
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• When a start bit has been detected, a delay of 1.5 bit periods is necessary in order to “hit” 
the status of the first data bit in the “middle” of its period. 

• After reading the first data bit, the delay between the reads must be just one bit period in 
order to “hit” the status of the remaining bits in the “middle” of their periods. 

:receive 
   movb    c, rx_pin               ;Store received bit in carry flag ; 13 
   test    rx_count                ;Are we receiving?    ; 14 
   jnz     :rxbit                  ; yes, continue receiving  ; 15 
   mov     w, #9                   ; no, prepare 9 bits   ; 16 
   sc                              ; if no start bit, continue  ; 17 
     mov   rx_count, w             ; if start bit, set bit counter ; 18 
   mov     rx_divide, #start_delay ;Set 1.5 bit periods   ; 19 

In line 13, the status of the receiver input line is stored in the C flag, and in line 14, we test if the 
receiver is already active. This is the case when rx_count is greater than zero. In this case, exe-
cution continues in line 20 (:rx_bit). 

When the receiver is not yet active but when the C flag (holding the status of the input line) is 
clear, we have just received a start bit. In this case, rx_count is set to 9 (this value was stored in 
w “in preparation” before in line 16). 

 

As you know, you must not follow a skip instruction with a compound statement, like mov 
rx_count, #9. Lines 16 and 18 are a good example how to move a “constant” value into a 
register by storing this value in W before. 

 

Setting rx_count to a value greater than zero indicates that the receiver is active (this test is per-
formed in line 14, as described above). 

In line 19, rx_divide receives the value of start_delay. At 19,200 Baud, start_delay is defined 
as 25. The ISR is invoked every 3.26 µs, so this counter provides a delay of 81.5 µs. Bit period 
times 1.5 at 19,200 Baud is 1.5 * 52 µs = 78 µs. This means that at a delay of 81.5 µs the next bit is 
not exactly “hit” in the middle, but a bit later. Due to rounding errors, it is not possible to exactly 
generate a delay of 78 µs here, but it is still an acceptable timing. 

No matter if a start bit has been detected or not, to following lines will be executed: 
:rxbit 

   djnz    rx_divide, :rxdone      ;In the “middle” of the next bit? ; 20 
   setb    rx_divide.baud_bit      ; yes, set 1 bit period   ; 21 
   dec     rx_count                ;Last bit?    ; 22 
   sz                              ; no,     ; 23 
     rr    rx_byte                 ;  save bit    ; 24 
   snz                             ; yes,    ; 25 
     setb  rx_flag                 ;  set flag    ; 26 
:rxdone 
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As long as the receiver is not busy, rx_divide is loaded with 25 in line 19 each time the ISR is 
invoked. This means that rx_divide contains 24 after the decrement in line 20, and thus the jump 
to :rxdone will always be executed. 

While the receiver is active, rx_divide will reach a value of zero after 16 ISR calls (or 25 calls for 
the start bit). In this case, bit baud_bit in rx_divide is set in line 21. At 19,200 Baud, baud_bit is 
4. As rx_divide is zero here, setting its bit 4 changes its contents to 16, and this is exactly the 
value that is required for the “regular” bit period delay. 

In line 22 rx_count, the counter for the received bits is decremented. If it is not yet zero, rx_byte 
is shifted one bit position to the right in line 24, and the status of the newly received bit in the C 
flag is moved into bit 7 of rx_byte. 
 

 
Note that the C flag has already received the status of the input line in line 13. Therefore it is 
important that none of the instructions between lines 13 and 24 modify the C flag. 

 
When rx_count finally reaches zero, the instruction in line 26 is executed, and rx_flag is set. 
This is the signal for the calling routine that a new byte has been received which is available in 
rx_byte. 

Although a data byte only contains of 8 bits, the rr rx_byte instruction in line 24 was executed 9 
times. This is correct because the first bit read was the start bit, and after 9 shifts, this bit has 
“dropped off” bit 0 of rx_byte. 

Again, the code for the receiver with its 14 lines is surprisingly small due to the clever coding! 

Now let’s look at the rest of the program code that is used to test and demonstrate the UART VP. 

1.18.1.3 Utility Routines 
; Read a byte from the UART 
; 
get_byte 
     jnb     rx_flag, $            ;Wait until a byte has been received ; 29 
     clrb    rx_flag               ;Reset rx_flag    ; 30 
     mov     byte, rx_byte         ;Save Byte (w also contains Byte) ; 31 

This subroutine is used to receive one character from the UART VP. It keeps waiting in line 29 
until rx_flag is set to indicate that a new character is available. It is important to clear rx_flag 
in line 30. Finally, the new data byte is copied from rx_byte to byte. Because the mov instruction 
in line 31 is a compound instruction, the W register also contains the received byte. 

get_byte is not terminated with a ret instruction. Therefore, program execution “falls through” 
to line 32 to the send_byte subroutine which sends the character contained in W. 
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send_byte 
     bank    serial    ; 32 
 
:wait 
     test    tx_count              ;Wait for a pause    ; 33 
     jnz     :wait                       ; 34 
 
     not     w                     ;Prepare bits (negative logic)  ; 35 
     mov     tx_high, w            ; Save data byte    ; 36 
     setb    tx_low.7              ; Set start bit    ; 37 
     mov     tx_count, #10         ;1 start + 8 data + 1 stop bit  ; 38 
     retp                          ;Return with page adjust  ; 39 

The bank serial instruction in line 32 is important because the subroutine needs to access vari-
ables in this bank, and we cannot assume that this bank is always selected when the subroutine is 
called. (In get_byte, it is not necessary to select the serial bank because this subroutine refer-
ences variables in this bank only after the ISR was executed which selects this bank anyway). 

Lines 33 and 34 cause the send_byte subroutine to wait while the UART transmitter is still busy 
sending a character. 

According to the interface definition of the UART transmitter VP, the inverted byte to be sent 
must be stored in tx_high, and bit 7 in tx_low must be set. This happens in lines 35 to 37. In line 
38, the required bit count is stored in tx_count which actually starts the transmitter as soon as 
tx_count is greater than zero. 

The subroutine is terminated with a retp instruction in line 39. It makes sense to use retp in-
stead of ret here in order to place this generic subroutine into another page of program memory 
if necessary. 
send_string 
     mov     string, w             ;Save the address    ; 40 
 
:loop 
     mov     w, string             ;Read next character   ; 41 
     mov     m, #0                 ; using an indirect address.  ; 42 
     iread                         ;     ; 43 
     mov     m, #$0f               ;Adjust the m register   ; 44 
     test    w                     ;Last character?    ; 45 
     snz                           ; No, continue    ; 46 
     retp                          ; Yes, return with page adjust  ; 74 
     call    send_byte             ;Send character    ; 48 
     inc     string                ;Address next character   ; 49 
     jmp     :loop                 ;Continue until the end of text ; 50 

This subroutine is used to send a string of characters stored in program memory via the UART 
transmitter. Each character is read from program memory using the iread instruction in line 43 
and then sent by calling the send_byte subroutine. The program loop is repeated until a termi-
nating zero-byte is found in the string. 
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Again, this subroutine is terminated with a retp instruction which makes it “generic”, i.e. it may 
be located in any lower half of a page of program memory. 

1.18.1.4 The Main Program 

The main program begins in line 52 after the Main label. It first clears all registers in the data 
memory as explained before in chapter 1.5.6. Then the following instructions are executed: 
     mov     w, #_hello              ;Send the hello string  ; 60 
     page    send_string    ; 61 
     call    send_string    ; 62 
 
:loop 
     call    get_byte                ;Get a byte from the UART  ; 63 
 
 
     ; <Add more program code here, as required> 
 
     jmp     :loop                   ;Loop back for next character ; 64 

First, the string that is stored in program memory starting at _hello is sent via the UART trans-
mitter, and then the main program enters into an endless loop where it echoes all characters re-
ceived from the UART receiver back to the transmitter. 

The levels on the I/O pins (rx_pin, and tx_pin) of the SX device are 0 and +5 Volts. In order to 
connect these signals to a standard RS-232 port of a PC that runs a terminal program, it is nec-
essary to convert these levels to +12/-12 Volts. Some available prototype boards like the SX-Key 
Demo Board from Parallax have an RS-232 driver chip (MAX-232) installed on the board that 
interfaces the SX signals to a 9-pin SUB-D connector which allows you to directly connect the 
board to one of the PC’s COM ports. Configure the terminal program running on the PC to com-
municate with the right COM port, and set it to 19,200 Baud, 8-N-1. You should also turn the in-
ternal echo, and any handshaking off. 

When you start the program on the SX, the terminal program on the PC should display 
SX 2400-230.4K UART Virtual Peripheral Demo 
> 

When you then enter any characters via the PC keyboard, these characters should be echoed in 
the terminal display area. 
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If you want to supply the system clock from the SX-Key to the SX during this experiment, the 
PC’s COM port that controls the SX-Key cannot be used for communication. Therefore, you will 
need to use another COM port for the terminal program. 

As an alternative, you may use a crystal or ceramic resonator for clock generation for this 
experiment. When the demo board you are using has no connectors that allow you to plug in 
the resonator, it is a good idea to solder the resonator to a plug that fits on the header pins 
normally used to plug in the SX-Key. 

 

1.18.1.5 Handshaking 

The UART VP in this chapter does not handle any handshaking protocol. We simply assume that 
the receiver connected to our transmitter is fast enough to handle all characters we send at the 
highest possible speed. On the other hand, we “know” that we are fast enough to handle all in-
coming characters as we simply echo them back. 

In “real live”, the situation is not always that easy. The receiving device might take longer than 
we expect to process the data we send, and we might perform more complicated tasks on in-
coming data than just sending them back. 

Therefore, some kind of flow control called “handshaking” might be necessary to avoid that 
transmitted or received data bytes get lost. 

Such flow control can be realized by “hardware” or by “software”. 

Hardware handshaking requires two additional signal lines between the two devices that 
communicate via a serial line. Each device controls one of the two lines in order to “tell” the other 
device that it is ready to receive more data. On a standard serial RS-232 port, the CTS (Clear To 
Send) and RTS (Request To Send) lines are used for this purpose. Implementing hardware hand-
shaking in the UART VP code is quite easy. 

Software handshaking on the other hand does not require additional signal lines. Instead, special 
characters sent via the serial data stream are used to start and stop transmission of more data. 
Frequently used is the “XON/XOFF” protocol. The two communicating devices send an XOFF 
character when they are not able to receive more data, and an XON character when they are 
ready to receive new data. Implementing this protocol is a bit more complicated because it re-
quires filtering the XON/XOFF characters. In addition, it might be necessary to buffer any char-
acters that are sent from a device before it recognizes an XOFF character. In the application ex-
amples section of this book you can find the code for a FIFO buffer that is ideally suited for such 
purpose. 
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1.18.2 Conclusion 

Let’s summarize some important points about Virtual Peripherals (VPs) before ending this quite 
large chapter: 

• Software-VPs in SX controllers replace hardware-based peripheral units found in other 
microcontrollers. This makes it possible to “tailor” the peripherals to individual require-
ments. 

• VPs are usually executed within an Interrupt Service Routine (ISR) that is invoked at a 
timer-controlled constant repeat-rate. This rate controls the basic timing of all VPs de-
fined in the ISR. When an ISR contains two or more VPs, the timing must be adjusted to 
match the requirements of the most time-critical VP. 

• VPs that require an exact timing should be executed before any other VPs than have a 
variable execution time. If necessary, execution times of such VP-code can be adjusted by 
adding nop instructions. 

• The worst-case execution time of all VPs within an ISR must not be longer than the time 
period between two invocations of the ISR minus seven clock cycles. 

• VPs should communicate with the other parts of the application code via well-defined 
interfaces (e.g. using flags, and/or variables). The existence of VPs should be transparent 
to the other parts of the application code. 

• It is extremely important that VPs do not change the contents of registers that are used by 
other parts of the application, like the current memory bank selection.  

• If necessary, you may have VPs call subroutines but keep in mind that an interrupt-con-
trolled VP may be invoked at any time, even when the main program has recently called 
some nested subroutines. Make sure that the nesting depth of eight will never be ex-
ceeded because the return stack of the SX devices is limited to a maximum of eight levels. 

• It is possible (and often necessary) to store the code of VPs as subroutines in another pro-
gram memory bank. Keep in mind to call such “far” routines by using the @ modifier to-
gether with the call (or set the bank accordingly before), and don’t forget to terminate 
such subroutines with a retp instruction. 

 

MIDI devices usually communicate at a Baud rate of 31,250. Here are the required parameters 
for the UART VP to adjust it to the “MIDI rate”: 

baud_bit      = 3 

start_delay   = 13 

int_period  = 200 
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You can find more examples for Virtual Peripherals in the “Applications” section of this book, 
and it is a good idea to frequently visit the Internet sites of Ubicom, Parallax, and other SX-re-
lated areas when you are looking for new VPs. Keep in mind that in many cases somebody else 
has already “invented the wheel” just before you. 
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2 Section II - Reference 

2.1 Introduction 
The family of the SX Controllers consists of only a few members. The major difference between 
the SX types is the number of available I/O pins, and the memory size. There are no SX Control-
lers with special integrated peripherals like UARTs, ADCs, I2C/SPI interfaces, etc., except an 
analog comparator. In addition, the SX48/52 devices provide two integrated multi-function tim-
ers. The lack of integrated peripherals does not mean that you can't use them - they are "con-
structed" in software instead. 

Ubicom has developed the concept of "Virtual Peripherals(" to realize various peripherals for the 
SX controllers, and in the meantime, many Virtual Peripherals are available ranging from 
UARTs, ADCs up to the implementation of TCP/IP stacks. As peripherals in most cases are time-
critical, the SX controllers contain a clock counter (the RTCC - real-time clock counter) that allows 
to trigger interrupts in precisely timed periods. Due to the fact that even the "slowest" SX con-
troller can be clocked by up to 50 MHz, and that in "Turbo Mode", one instruction usually is exe-
cuted in only one clock cycle, there are enough resources to even run several Virtual Peripherals 
within one application. For higher speed demands, there are SX controllers available that can be 
clocked at 75 MHz. 

These are the most important features of the SX 18/20/28 devices: 

• 50, or 75 MIPS speed at 50, or 75 MHz clock. Clock frequencies may range from 0 up to 
the maximum frequency specified for the device. 

• 2048 * 12 or 4096 * 12 (SX 48/52) bits of EEPROM program memory that can be pro-
grammed through the device's clock inputs. 

• 136 or 262 (SX 48/52) bytes of static RAM for variable data. 

• Internal clock generator with an internal RC network that can also drive external RC net-
works, crystals or ceramic resonators. An external clock signal can also be applied. 

• Analog comparator. 

• Optional detection of supply voltage drops (brown-out) 

• Integrated watchdog timer with separate internal clock generator. 

• Sleep mode with minimum power consumption. Wake up can be triggered through 8 in-
put lines, or by the watchdog timer. 

• Instructions that allow reading the program memory for easy construction of tables. 
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• Most of the instructions are executed in one clock cycle (20 Nanoseconds at 50 MHz 
clock). 

• The 8-level stack memory allows nesting of subroutine calls up to that level. 

• Interrupt processing (one level) with automatic save and restore of the most important 
registers, and a defined response time (60 ns for internal, 100 ns for external interrupt 
events at 50 MHz clock). 

• All I/O lines can be separately programmed to function as inputs or outputs. Inputs can 
be programmed to have CMOS or TTL characteristics. Optional internal pull-up resistors 
can be activated for input lines, and most of the input lines can be programmed to act as 
Schmitt Trigger inputs. 

• Output lines can source or sink 30 mA. 

• Cost-effective development systems. 

In addition, the SX 48/52 devices have the following features: 

• 36 (SX 48) or 40 (SX 52) I/O lines. 

• 4096 * 12 bits of EEPROM program memory. 

• 262 bytes of static RAM 

• Two multi-function timers that can be used as PWMs, software timers, external event 
counters, or in capture/compare mode. 
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2.2 The SX internals (simplified) 
The SX controllers are complete computers on a silicon chip. This means that the internal struc-
ture is quite complex. Therefore, we will start with the most important components shown in the 
block diagram below. Later in this section, we will add more components as they are described. 

 

 

 

 

OSC 
Driver 

4 MHz 
RC Osc. 

Clock 
Selection 

Divider 1/4 or 1/1 

Power-On 
Reset 

Reset 

OSC1      OSC2 

/MCLR 

Internal Data Bus, 8 bits 

System 
Clock 

FSR
PC

SRAM 136 Bytes 

8

2K * 12 EEPROM 
8

12

 
Instruction 
Pipeline, 
4 Levels 

8 

12 88

Instruction
Read Data 

Write Data 

STATUS

SX18/20/28 
Simplified Block Diagram 



Programming the SX Microcontroller 

200 

Two important sections in the SX are the static RAM (SRAM) with 136 bytes (SX 48/52: 262 
bytes), and the EEPROM with 2048 words of 12 bits each (SX 48/52: 4096 words). The EEPROM is 
used to store the program instructions, and constant value tables, where the SRAM holds variable 
data managed by the application program. The data in the SRAM is stored as long as the device 
is connected to a power supply, and the data in the EEPROM remains intact even when power is 
disconnected. 

The SX controllers use the so-called Harvard architecture, i.e. program and data memory are 
separate blocks, addressed via separate lines. 

Addresses for the program memory are taken from the PC (Program Counter) register. The PC 
register is 11 bits wide (SX 48/52: 12 bits). The instruction code that is stored in program mem-
ory, currently addressed by the contents of the PC register is read and executed, and the PC reg-
ister is then incremented to point to the next memory location. 

To allow for program branches and subroutine calls, it is necessary to have instructions that 
change the contents of the PC register. Because each instruction code is always 12 bits wide, it 
cannot hold the complete address information for a branch or call. Instead, the PC register is 
loaded with a value composed of the three upper bits stored in the STATUS register, and the 
address bits that are part of the instruction code. 

The address for the data memory is composed of the three upper bits in the FSR (File Select Reg-
ister), and the address bits that are part of the instruction code. 

When the supply voltage is connected to the device, or when the /MCLR line is pulled to low 
level, the device is reset, i.e. some internal registers are loaded with defined values, and - most 
important - the PC register is loaded with the address of the topmost location in program mem-
ory. The instruction in that location causes a branch to the first instruction of the application pro-
gram. 

To execute the internal functions in correctly timed order, a clock signal is required that provides 
the necessary timing for those functions. This clock signal can either be generated by an internal 
generator, or supplied from an external source. 

The internal clock generator can generate frequencies up to 4 MHz, and external clocks may 
range from 0 up to 50, or 75 MHz depending on the device type. External clock signals are fed 
through the OSC1 pin. The internal generator can also drive external components connected to 
the OSC1 and OSC2 pins, like RC networks, crystals, or ceramic resonators. 

The divider that can be optionally activated divides the clock signal by four to reduce the speed 
for the so-called "Compatibility Mode" that is used to obtain a timing similar to other 
microcontrollers. For new applications, you will usually like to run the SX at full speed. The 
SX48/52 devices do not support this mode. 
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Higher clock frequencies cause an increased power consumption of the SX device. Therefore, if 
power consumption is a critical factor, the clock frequency should not be higher than necessary 
for the required execution speed. Lower clock frequencies also reduce RFI problems that might 
occur. 

Each instruction that is addressed by the PC register is executed in four steps: 

• Reading the instruction from program memory 

• Decoding the instruction 

• Executing the instruction 

• Saving the result 

Many microcontrollers perform these steps during four subsequent clock cycles, which means 
that the execution of one instruction usually takes four clock cycles. 

The SX controllers also require such four clock cycles for each instruction, but by using a four-
level instruction pipeline, the effective execution speed becomes one clock cycle per instruction. 
After a reset, the first instruction is stored in the first stage of the pipeline, but while this instruc-
tion is decoded, the next instruction is already read from program memory, and saved into the 
next stage of the pipeline. 

During the third clock cycle, the first instruction is executed, the second one is decoded, and a 
third one will be loaded. 

Finally, at the fourth clock cycle, the result of the first instruction is stored, the second instruction 
is executed, the third one is decoded, and a fourth instruction is loaded into the last stage of the 
pipeline. 

From now on, the pipeline is "full", and at each clock cycle, the result of one instruction will be 
stored, resulting in an effective speed of one instruction per clock cycle. This means that an SX 
with 50 MHz reaches a throughput of 50 MIPs (50 Mega Instructions Per second) - this is an ex-
traordinary value for a microcontroller! 

As long as the program code is "straight", i.e. the PC register is incremented after each instruction 
read, instructions keep "flowing" through the pipeline, as described above. 

When a program branch, or a subroutine call is performed, or an interrupt is triggered, the PC 
register is loaded with a new value, and the pre-loaded instructions in the pipeline must be dis-
carded in order to fill the pipeline with instructions starting at the new location in program 
memory. This means that branches, and subroutine calls require more clock cycles than "straight" 
instructions (3 cycles in worst-case). 
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2.2.1 How SX Instructions are Constructed 

The program memory is organized in a way that the PC register always addresses a word, 12 bits 
wide, and all basic SX instructions are defined as one-word instructions, i.e. there are no instruc-
tions that "share" two or more words in program memory. 

Let's take an inc instruction as an example: 
inc fr 

This instruction increments the contents of a byte in data memory, where fr (file register) stands 
for its address. The instruction code for inc fr is 
0010 101f ffff 

The first 7 bits will be decoded by the SX as the increment instruction, and the remaining 5 bits 
specify the address of the location in data memory whose value shall be incremented. This means 
that the five address bits allow to only specify 32 different locations. 

As the SX data memory is larger than 32 bytes, these five address bits do not allow to specify the 
full address for all locations in data memory. The full address is composed by these five bits (as 
low-order bits), and the three upper bits in the FSR (File Select Register). You can find a more 
detailed description in the next chapter. 

Another example is the jump instruction: 
jmp addr 

which ends the "straight" program execution and branches to another location in program mem-
ory specified by the addr argument. The instruction code for jmp is: 
101a aaaa aaaa 

The first three bits are decoded by the SX as a jump instruction, and the remaining nine bits spec-
ify the target. 

Nine bits allow to represent values from 0 (0 0000 0000) through 511 (1 1111 1111). 

Another instruction that leaves "straight" program execution is the subroutine call: 
call addr 

which is coded as 
1001 aaaa aaaa 

In this case, the address part of the instruction code is only eight bits wide, i.e. it can represent 
values from 0 (0000 0000) through 255 (1111 1111). 

In both cases, the available range of address values is not large enough to directly address all 
locations in program memory. To build a complete address, here the higher three bits stored in 
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the STATUS register are combined with the address bits read from the instruction code. In case of 
a call instruction, the "missing" 9th bit is always set to zero. You can find a more detailed de-
scription in the next chapter. 

2.2.2 Organization of the Data Memory and how to Address it 

2.2.2.1 SX 18/20/28 
Address Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 
$00 INDF INDF INDF INDF INDF INDF INDF INDF 
$01 RTCC RTCC RTCC RTCC RTCC RTCC RTCC RTCC 
$02 PC PC PC PC PC PC PC PC 
$03 STATUS STATUS STATUS STATUS STATUS STATUS STATUS STATUS 
$04 FSR FSR FSR FSR FSR FSR FSR FSR 
$05 Port A Port A Port A Port A Port A Port A Port A Port A 
$06 Port B Port B Port B Port B Port B Port B Port B Port B 
$07 Port C Port C Port C Port C Port C Port C Port C Port C 
$08 Reg $08 Reg $08 Reg $08 Reg $08 Reg $08 Reg $08 Reg $08 Reg $08 
$09 Reg $09 Reg $09 Reg $09 Reg $09 Reg $09 Reg $09 Reg $09 Reg $09 
$0a Reg $0a Reg $0a Reg $0a Reg $0a Reg $0a Reg $0a Reg $0a Reg $0a 
$0b Reg $0b Reg $0b Reg $0b Reg $0b Reg $0b Reg $0b Reg $0b Reg $0b 
$0c Reg $0c Reg $0c Reg $0c Reg $0c Reg $0c Reg $0c Reg $0c Reg $0c 
$0d Reg $0d Reg $0d Reg $0d Reg $0d Reg $0d Reg $0d Reg $0d Reg $0d 
$0e Reg $0e Reg $0e Reg $0e Reg $0e Reg $0e Reg $0e Reg $0e Reg $0e 
$0f Reg $0f Reg $0f Reg $0f Reg $0f Reg $0f Reg $0f Reg $0f Reg $0f 
$10 
$11 
$12 
$13 
$14 
$15 
$16 
$17 
$18 
$19 
$1a 
$1b 
$1c 
$1d 
$1e 
$1f 

        

 

In this table, all addresses are specified in hexadecimal notation with a leading $ sign. 
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The memory locations in the first 8 rows in column "Bank 0" contain the internal SX registers. The 
meaning of these registers will be explained in further sections of this book. Here, you should 
keep in mind that such memory locations may not be used to store arbitrary data. It is also im-
portant to note that the first 8 rows in column "Bank 1" through "Bank 7" do not represent differ-
ent physical memory locations. Instead, these addresses are always "mapped" to Bank 0. 

Memory locations in the next 8 rows in column Bank 0 contain general purpose registers $08...$0f 
that may be used to store any kind of data. Again, these rows in the other columns do not repre-
sent physical memory locations, they are "mapped" to Bank 0. 

As mentioned before, SX instruction codes provide only 5 bits to specify a file register address, 
i.e. they can only represent 32 unique values. 

As the block diagram shows, the FSR is used to hold the address of a data location. The lower 
five bits are used for indirect addressing, where the upper three bits are used to select a memory 
bank. You may use a mov instruction, setb or clrb instructions, or the special bank instruction to 
modify these three bits in the FSR. The bank instruction takes the upper three bits of its argu-
ment, and copies them into the upper three bits of the FSR without modifying the lower five bits. 

FSR 
7 6 5 4 3 2 1 0 

Bank Select Indirect Register Address 
 

The SX 18/20/28 controllers come with 136 bytes of data memory that can be addressed with an 
8-bit value. There are two addressing modes, direct, and indirect addressing. 

For direct addressing, the 8-bit address is composed of the upper three FSR bits (the "bank se-
lection bits"), and the five address bits contained in the instruction code as described above. 

When the five address bits in the instruction code are all zeroes, the virtual INDF register at loca-
tion $00 is addressed, and this causes the SX to take the contents of the eight bits in the FSR as the 
address for the data location to be accessed. This is called indirect addressing. Before using this 
addressing mode, it is necessary to load the FSR with the required address value. By increment-
ing or decrementing the FSR it is possible to access subsequent memory locations from within a 
program loop in order to manipulate a table or an array of registers. 

As long as the address part in an instruction ranges from $00 through $0f, the upper three bits in 
the FSR are ignored, and are cleared in the full address. This means that the registers physically 
located in Bank 0 from $00...$0f will always be accessed, no matter what bank is currently se-
lected. Therefore, these eight memory locations are handy to store "global data" that shall be ac-
cessed from various parts of the application program without the need to select a specific bank 
before. 
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2.2.2.2 SX 48/52 
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The SX 48/52 devices come with a data memory of 262 bytes, i.e. using an 8-bit address is not 
sufficient to address all memory locations. Therefore, the addressing modes have been enhanced. 

Direct addressing is used to access the global registers. In order to access the global registers, the 
address argument fr of an instruction must have bit 4 (the highest bit) cleared, i.e. fr must have 
a value from $00 through $0f. This is similar to addressing a global register with the SX 18/20/28 
devices. Other memory banks cannot be accessed using direct addressing. 

For semi-direct addressing, the address argument fr of an instruction must have bit 4 (the high-
est bit) set, i.e. fr must have a value from $10 through $1f. Again, this is similar to addressing a 
register in a memory bank with the SX 18/20/28 devices. The complete address is composed by 
the upper four FSR bits, and the lower four bits of the fr argument. Register banks 0 through F 
can be accessed, but not the global registers, i.e. 256 bytes. The upper four FSR bits select the 
bank, and the lower four fr bits select a register in that bank. 

Different from the SX 18/20/28 devices, the bank instruction in SX 48/52 devices copies bits 6...4 
of the argument into FSR bits 6...4. FSR bit 7 must be modified by a separate instruction, e.g. setb 
or clrb. 

As an alternative, the _bank macro can help making bank switching easier, which should be 
called instead of a bank instruction:  
_bank macro 1 
  bank \1   ; For SX18/20/28 change 

;  FSR bits 7...5, 
;  for SX48/52 change 
;  FSR bits 6...4 

  IFDEF SX48_52  ; For SX48/52 change 
    IF \1 & %10000000  ;  FSR bit 7 
      setb fsr.7 
    ELSE 
      clrb fsr.7 
    ENDIF 
  ENDIF 
endm 

Different from the diagram shown above, banks 0...F are divided into two sections of eight regis-
ters each, and FSR bit 7 selects the upper or lower section, and FSR bits 6...4 select the bank. In an 
application program, the physical location of the registers does not matter as long as each of them 
has a unique address, so you don't need to care about that detail. 

For indirect addressing, FSR is loaded with the address of the memory location that shall be ac-
cessed, and access is performed through the virtual register $00 (INDF). Again, 256 different 
memory locations can be accessed. Different from semi-direct addressing, the global registers, 
and not the registers in bank 0 will be accessed when FSR contains values from $00 through $0f. 
FSR contents from $10 through $ff access registers in banks 1...F. 
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2.2.3 Organization of Program Memory and how to Access it 

The program memory in SX 18/20/28 devices comes with 2048 words of 12 bits, and the memory 
locations have addresses from $000 through $7ff. These values can be represented by an 11-bit 
value. Actually, the PC register is 12 bits wide, but the highest bit is ignored in that devices. 

The SX 48/52 devices come with 4096 words of program memory with addresses from $000 
through $FFF, and all 12 bits in the PC are used. 

As mentioned before, a jmp instruction has only 9 bits available for the address information, so 
that two or three additional bits are required to compose a full address. These bits are stored in 
the upper three bits of the STATUS register, and it is necessary to make sure that those bits con-
tain the required value before executing a jmp. (The meaning of the other STATUS register bits 
will be explained later). 

For call instructions, the upper two or three bits are also taken from the upper STATUS register 
bits, the 9th bit will always be cleared, and the lower 8 bits are taken from the address argument 
of the call instruction. This means that subroutines can only begin within the lower half of a 
memory page. 

According to this information, the program memory is organized as shown in this diagram: 

Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 
$000 $200 $400 $600 $800 $a00 $c00 $e00 
        
        
$0ff $2ff $4ff $6ff $8ff $aff $cff $eff 
$100 $300 $500 $700 $900 $b00 $d00 $f00 
        
        
$1ff $3ff $5ff $7ff $9ff $bff $cff $fff 

 

Pages 0 through 3 are available in all SX controllers, where pages 4 through 7 are only available 
in SX 48/52 devices. 

In the lower half of each page (marked white or light gray), subroutines may begin, where the 
upper half of each page cannot be reached by call instructions. 
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The following figures show how addresses are composed for jmp and call instructions (the 
highest bit is only used in SX 48/52 devices):  

STATUS Register 
7 6 5 4 3 2 1 0 

 

 JMP addr 
s s s a a a a a a a a a 

 

PC Register 
s s s a a a a a a a a a 

 

STATUS Register 
7 6 5 4 3 2 1 0 

 

 CALL addr 
s s s  a a a a a a a a 

 

PC Register 
s s s 0 a a a a a a a a 

 

If a jmp or call shall be executed whose target lies in a memory page other than the one cur-
rently selected one, bits 7...5 or 6...5 in the STATUS register must first be set to the new page. In-
stead of using a mov instruction, or setb and clrb instructions to modify the upper bits in the 
STATUS register, you should use the page instruction instead, that only modifies bits 6 and 5 (SX 
18/20/28) or bits 7...5 (SX 48/52) in the STATUS register. 

As long as jmp or call instructions target locations within the currently selected page, there is no 
need to execute another page instruction unless the STATUS register bits (7,) 6, or 5 have been 
changed by some reason. 

As Bit 7 in the STATUS register is not needed to build addresses in the SX 18/20/28 devices, this 
bit may be used as general-purpose flag if it is not intended that an application shall be ported to 
an SX 48/52 device later. 
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2.2.4 The SX Special Registers and the I/O Ports 

The next block diagram shows some new components that will be described in this chapter. The 
components already explained are marked gray. 

 

2.2.4.1 The W Register 

The W register (Working Register) is a multi-purpose register used as temporary storage for data 
or results, or it is used to hold one operand for arithmetic or logical operations. The W register is 
somehow similar to the accumulator known in other systems. 
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2.2.4.2 The I/O Registers (Ports) 

The SX 18/20 controllers come with 12 I/O pins, the SX 28 controller comes with 20 I/O pins, 
and the SX 48/52 devices offer 36 or 40 I/O lines. 

Eight I/O lines are grouped together to make up a port that can be accessed similar to the other 
data registers. The port registers are mapped into memory bank 0 at address locations $05 (Port 
A, or ra), $06 (Port B, or rb), and $07 (Port C, or rc). In the SX 18, port C is not connected to out-
put pins, and it cannot be used as an I/O port. 

The SX 48/52 devices have two additional ports, Port D (rd) at address $08, and Port E (re) at 
address $09. 

With the exception of the SX52, the upper four lines of Port A are not connected to output pins. 

Because the port registers are mapped into the global register bank they can always be accessed, 
no matter what bank is currently selected (with the exception that the semi-direct addressing 
mode of the SX 48/52 devices does not allow access to the global registers). 

Port A has symmetrical output drivers that means the voltage drop across a load connected to 
one of the Port A outputs is equal, no matter if the output sources a current against VSS, or if it 
sinks a current from VDD. 

2.2.4.3 Read-Modify-Write Instructions 

Read-modify-write instructions are instructions that read a register, modify its value, and write 
back the result to the same register. Examples for such instructions are clrb fr.bit (clear a bit 
in fr), setb fr.bit (set a bit in fr), inc fr (increment fr), dec fr (decrement fr). 

It is obvious that the inc and dec instructions must read the register value, increment or decre-
ment it, and then write it back to the register, using the ALU to perform that operation. Instruc-
tions that manipulate the state of a single bit (like setb and clrb, but also stc, clc, stz, and clz) 
cannot directly access the bit in the register. Again, the register value is read, the bit is set or 
cleared using the ALU, and the result is written back to the register. 

When you manipulate port data registers, you must be careful when two or more successive 
read-modify-write instructions are executed. As "reading" a port means by default, that the levels 
at the port pins are read, there might be situations that the port level does not yet reflect the last 
setting when the next read is executed. This is especially true at high clock rates, like 50 MHz. 
Remember that the SX uses an instruction pipeline, i.e. while the result of an instruction is writ-
ten, the next instruction is already executed. 

In order to obtain correct results, either do not use successive read-modify-write instructions ac-
cessing the same port, or insert nop instructions in between in order to generate a short delay. 
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2.2.4.4 Port Block Diagram 

The block diagram below shows the function blocks that make up one Port B pin. The same dia-
gram applies to the other ports with the exception that Port A cannot be configured for Schmitt 
Trigger levels, i.e. the ST register and the associated logic is missing.  

 

The control registers TRIS through ST are write only in SX 18/20/28 devices, and read/write in 
SX 48/52 devices. These registers are all mapped into the data address space from $05 (Port A) 
through $09 (Port E) (ports D and E: SX 48/52 only). 

The content of the MODE register selects which control register is currently mapped into the data 
address space. To write to the selected control register, use the mov !r?, w instruction. 

When a bit in the TRIS register is set, the output buffer following the data register (also called 
"data latch") is set to high-impedance, i.e. the port pin is configured as an input. Clear that bit to 
enable the buffer in order to configure the pin as an output. Note that this does not disable the 
input circuitry, i.e. you can still read the port pin. By default, the actual level at the output pin is 
read. The SX 48/52 devices can be configured that the content of the data register is read instead. 
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When a bit in the PLP register is cleared, the internal pull-up resistor is connected between the 
port pin and VDD. 

To set an output pin to a certain level (provided that the output driver is enabled), the associated 
bit in the data register must be set (high level) or cleared (low level). 

The bits in the LVL register control the multiplexer, which selects one of the two input buffers. 
When a bit is set, the TTL buffer is enabled. A cleared bit selects the CMOS buffer. 

When a bit in the ST register is cleared, the second multiplexer selects the Schmitt Trigger buffer 
for input. In this case, the bit in the LVL register is ignored. 

After a reset, all bits in the control registers are set, i.e. all pins are configured as inputs with TTL 
level, no pull-up resistors, and the Schmitt Trigger buffers disabled, and the MODE register is set 
to $1F, i.e. the TRIS registers are selected. 

2.2.4.5 The Data Direction Registers 

The block diagram shows more registers stacked behind the port registers. These registers are 
required to configure the parameters of the I/O ports, as described before. The most important 
configuration register is the data direction register. Depending on the bits in the data direction 
register, the associated port pins (RA7...RA0) are configured either as an inputs, or as outputs.  

TRIS_A 
7 6 5 4 3 2 1 0 

RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0
 

The figure above shows the Port A data direction register. If a bit in this register is set, the asso-
ciated port line is configured as an input. If the bit is cleared, the line becomes an output. Bits 7...4 
are available in SX 52 devices only. 

The configuration of the other ports is similar to the Port A configuration: 

TRIS_B 
7 6 5 4 3 2 1 0 

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0
 

TRIS_C 
7 6 5 4 3 2 1 0 

RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0
 

The same scheme is also true for Ports D and E in the SX 48/52 devices. 
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The abbreviation TRIS is derived from "Three-State". If you "look" into an I/O line from the out-
side, it has either high (VDD) or low (VSS) level if configured as an output, or it has high imped-
ance (hi-Z) if configured as an input, and this is identical to the Three-State characteristics of 
other components. In applications, there are situations that SX I/O lines must act as Three-State 
outputs, and this can easily be accomplished be re-configuring port lines at run-time. 

After a reset, all bits in the TRIS registers are set, i.e. all I/O lines are configured as inputs to hi-Z 
state. This guarantees a save starting condition and avoids that lines wired to external signal out-
puts cause short circuits which could happen if they were randomly configured as outputs after 
reset. 

Lines that are configured as outputs can sink or source a maximum current of 30 mA. 

2.2.4.6 The Level Register 

Associated to each I/O port is another configuration register that allows to configure the thresh-
old of the high/low input levels to CMOS or TTL mode. These registers are called LVL_A, 
LVL_B, LVL_C, LVL_D, and LVL_E. 

To configure an input for TTL level, the associated bit in the level register must be set, and to 
configure for CMOS level, the bit must be cleared. 

When configured for TTL level, an input interprets voltages between 0 and 1.4 V as low level (0), 
and voltages above 1.4 V as high level (1). When configured for CMOS level, an input interprets 
voltages between 0 and VDD/2 as low level (0), and voltages above VDD/2 as high level. 

As long as an I/O line is configured as output, the level setting is ignored. After a reset, all LVL 
register bits are set, i.e. all inputs are configured to TTL level. 

2.2.4.7 Pull-up Enable Registers 

Another configuration register available for all ports is the pull-up enable register that allows to 
connect an internal resistor between an input line, and VDD. For example, pull-up resistors are 
required if a switch is connected between an input and VSS in order to pull the input line to a de-
fined level (VDD) in case the switch is open. Without the resistor, an open input would "float", i.e. 
having an undefined status. 

The registers are called PLP_A, PLP_B, PLP_C, PLP_D, and PLP_E. When a bit in a PLP register 
is cleared, the pull-up resistor for the associated input is activated. If the bit is set, the resistor is 
de-activated. After a reset, the bits in all PLP registers are set, i.e. the pull-up resistors are all de-
activated. When a port line is configured as output, the setting of the pull-up enable bit is ig-
nored, and the pull-up resistor is not active. 
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The internal pull-up resistors have values of about 20 kΩ. When using longer external signal lines 
it may be necessary to use external pull-up resistors to increase the noise immunity. 

2.2.4.8 The Schmitt Trigger Enable Registers 

In addition to the option of setting an input to CMOS or TTL level, all input lines (except the Port 
A lines) can be configured to act as Schmitt Trigger inputs. The Schmitt Trigger enable registers 
are called ST_B, ST_C, ST_D, and ST_E (ST_D, and ST_E available in SX 48/52 devices only). 

When an input has Schmitt Trigger characteristics, the levels shown in this diagram are valid: 

Starting at an input level of less than 15% of VDD, the input is considered to have a logical level 
of 0. When the voltage at the input is increased, the logical level remains at 0 until the voltage 
exceeds 85% of VDD. The logical level then changes to 1. When the input voltage is then reduced 
from this point on, the logical level remains at 1 as long as the voltage is above 15% of VDD. As 
soon as the input voltage goes below 15% of VDD, the logical level turns back to 0. 

When a bit is cleared in an ST register, the associated input has Schmitt Trigger characteristics, 
and the CMOS/TTL setting is ignored. If the bit is set, the setting of the LVL bit controls the be-
havior of the input. 

After a reset, all bits in the ST registers are set, i.e. no Schmitt Trigger characteristics are active on 
any input. 

Configuring an input as Schmitt Trigger, helps to reduce errors caused by external noise, and by 
slowly changing input levels. 

2.2.4.9 The Port B Wake Up Configuration Registers 

The SX controllers support the so-called "Sleep Mode". After a sleep instruction, program execu-
tion stops, and the device's power consumption is reduced. One method to "wake up" a "sleep-
ing" SX device is to generate a signal transition on a port B input line. The bits in the WKEN_B 
(Wake-up Enable B) register control which Port B input lines may wake up the SX. Inputs config-
ured as wake up inputs can also be used to trigger an interrupt at regular program execution. 

If a bit in the WKEN_B register is cleared, the associated input line is activated for wake up and 
interrupt trigger. If the bit is set, this feature is disabled for this line. 
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After reset, all bits in the WKEN_B register are set, i.e. no line will cause a wake up or an inter-
rupt event. 

Another register, called WKED_B (Wake-up Edge B) is used to configure which transition on an 
input line shall cause a wake up or an interrupt. If a bit in the WKED_B register is set, the associ-
ated input will cause a wake up or an interrupt on a negative, i.e. a high-to-low transition. If the 
bit is cleared, a positive, i.e. a low-to-high transition will cause a wake up or an interrupt. 

After reset, all bits in the WKED_B register are set, i.e. all Port B inputs are configured for nega-
tive transitions. 

Because up to eight Port B inputs can be configured to issue a wake up or an interrupt, it is im-
portant that the application program is able to determine which input caused an event. Therefore, 
another register, the WKPND_B (Wake-up Pending B) register is available. When a set bit is set in 
this register, this indicates that an event occurred on the associated input line since the bit was 
cleared last. 

The bits in the WKPND_B register are always set when a signal transition (as defined in the 
WKED_B register) has occurred on the associated input line, no matter if the associated bit in the 
WKEN_B register is cleared or set. 

As the bits in the WKPND_B register are not automatically cleared when an event occurred, it is 
important that the application program clears the bits in order not to miss any new events, or to 
avoid that a set bit immediately triggers another interrupt. 
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The blocks that make up the multi-input wake-up/interrupt circuit are shown in the block dia-
gram below:  

 

The MODE register is used to select one of the three configuration registers. Depending on its 
value, WKED_B ($0A), WKPND_B ($09), or WKEN_B ($0B) is selected. 

The bits in the WKEN_B register control if a port bit shall cause a wake-up/interrupt or not. In 
case a bit is cleared, its inverted state sets the associated AND gate's input to 1, i.e. the wake-
up/interrupt feature for this input is enabled. 
The bits in the WKED_B register control if a negative or a positive signal edge shall set the asso-
ciated bit in the WKPND_B register. When a bit is set, the negative signal edge is selected, other-
wise the positive edge. 

When a port input signal edge occurs that matches the setting in the WKED_B register, the asso-
ciated bit in the WKPND_B register is set, and the other input of the associated AND gate is set. 
Provided that the bit in WKEN_B is also set, the AND gate's output goes to 1, and the output of 
the OR gate goes to 1 too, and a wake-up or interrupt event is triggered. 

Note that the bits in the WKPND_B register remain set until they are cleared by a clr w - mov 
!rb, w instruction sequence. "Writing" w to WKPND_B actually means "exchanging" the contents 
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of WKPND_B and w, i.e. after execution of this instruction, WKPND_B is cleared, and w contains 
the former value of WKPND_B. This allows the application program to test which port input line 
has caused an interrupt or a wake-up, and to clear the flag at the same time. 

The SX 48/52 devices also allow for reading the WKED_B and WKEN_B registers. 

2.2.4.10 The Port B Analog Comparator 

The Port B lines RB0, RB1, and RB2 can be configured to connect the internal analog comparator 
to the "outside world". For this purpose, there is another configuration register available for Port 
B, called CMP_B (Comparator B). The bits in this register have the following meaning: 

CMP_B 
7 6 5 4 3 2 1 0 

EN OE - - - - - Res 
 

If bit 7, the EN (Enable) bit is cleared, the comparator is activated, i.e. port lines RB1, and RB2 act 
as comparator input lines. If bit 5, the OE (Output Enable) bit is cleared, the comparator output 
signal is connected to the RB0 line, making it possible that external components can be directly 
controlled by the comparator output signal. 

Bit 0 the Res (Result) bit indicates the status of the comparator output. This bit must be tested by 
the application program to determine the current comparator output status. The bit is set, when 
the voltage between RB2 and VSS is greater than the voltage between RB1 and VSS. When the 
comparator output on the RB0 line is active (bit OE in CMP_B cleared), a program can also test 
the status of bit rb.0 to determine the current comparator output. 

If the SX device enters the sleep mode with the comparator activated, the comparator remains 
active, i.e. if its output is enabled, this output changes according to the voltage difference be-
tween the two inputs. If this feature is not needed, it is recommended to de-activate the com-
parator before entering the sleep mode in order to reduce power consumption. 

2.2.4.11 More Configuration Registers (SX 48/52) 

The SX 48/52 devices come with two internal Multi-Function Timers that require additional con-
figuration registers associated to Ports B and C. A description of these registers can be found in 
the chapter 2.2.8. 
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2.2.4.12 Addressing the I/O Configuration Registers (SX 18/20/28) 

The configuration registers described before are not mapped into the address space of the data 
memory as the port registers are. 

To write a constant value into a port register, you usually would use the assembly instructions 
mov w, #Const 
mov r?, w 

First, the w register receives a value between 0 and 255, and then this value is copied into the 
specified port register ra, rb, or rc. 

When you replace the r? part of the second mov instruction by !r?, like in 
mov !ra, w 

this indicates that the contents of w shall not be copied into a port register but into one of the port 
configuration registers, but this does not specify which configuration register shall be the target. 

The contents of the MODE (or m) register determines which type of configuration register is cur-
rently available for the mov !r? instruction. In order to set the m register to a specific value, you 
might code 
mov m, #RegSelect 

or, as an alternative, you can use the mode instruction, like in  
mode RegSelect 

Please note that both instructions only copy the lower four bits of the instruction argument into 
the m register. As the SX 18/20/28 devices ignore the higher bits, this is fine with these types, but 
not for SX 48/52 devices that allow for greater values in the MODE register. 

The following diagram shows the contents of the m register required to access a specific port 
configuration register (SX 18/20/28): 

MODE (m) Port RA Port RB Port RC 
$xf TRIS_A TRIS_B TRIS_C 
$xe PLP_A PLP_B PLP_C 
$xd LVL_A LVL_B LVL_C 
$xc - ST_B ST_C 
$xb - WKPEN_B - 
$xa - WKPED_B - 
$x9 - WKPND_B  W - 
$x8 - COMP_B W - 
$x7...$x0 - - - 
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The "x" in the m column hex numbers means that the upper four bits are ignored and may have 
any value. In the following text, we assume that the bits are all cleared. 

After a reset, the MODE register is initialized to $0f, i.e. the port direction registers can be ac-
cessed by default without the need to write to the m register before. 

Here is a coding example: 
mode #$0f  ; access the TRIS registers 
mov  w, #%11110000 
mov  !rc, w  ; configure RC3...0 as outputs 
 
mode #0e  ; access the PLP registers 
mov  w, #%11111100 
mov  !rc, w  ; activate pull-ups for RC1 and RC0 
 
mode #0c  ; access the ST registers 
mov  w, #%00111111 
mov  !rb, w  ; Schmitt Triggers on RB7 and RB6 

A special method is used to access the COMP_B and WKPND_B registers for reading (m = $08 or 
$09). Instructions like 
mov !rb, w 

allow to copy the contents in w to a configuration register, but an instruction like 
mov w, !rb 

to copy the contents of a configuration register to the w register is not available. 

Nevertheless, there must be a way to "read" the contents of the COMP_B and WKPND_B regis-
ters in order to obtain the comparator result, and to find out which Port B input line caused a 
wake up or an interrupt. 

When the m register contains $08 or $09, and a 
mov !rb, w 

instruction is executed, the content of w is copied into the COMP_B or WKPND_B register, and 
the former content of the register is copied to w. All this is done within effectively one instruction 
cycle. This means that after execution of the mov !rb, w instruction, w contains the contents of 
the control register as it was before the mov. In other words, the contents of w and the control 
register are swapped. This is especially useful in case of the WKPND_B register to read the wake-
up pending bits, and to clear them "on the fly" by setting W to 0 before the mov. 

Here is an example: 
mov     m,   $09 ; Address WKPND_B. 
mov     w,   #0 
mov     !rb, w ; Clear bits WKPND_B and copy the 
   ; status of the wake-up bits to w to 
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   ; test for the wake-up or interrupt 
; reason. 

2.2.4.13 Addressing the SX 48/52 I/O Configuration Registers 

Similar to the SX 18/20/28 devices, instructions like mov !ra, w, mov !rb, w, etc. are used to 
access the control registers with the MODE register previously set to a value to select the correct 
register type. The possible values for the MODE register are shown in the table below: 

SX48/52 MODE (m) Register and mov !r?, w  
m mov !ra, w mov !rb, w mov !rc, w mov !rd, w mov !re, w 

$00  read T1CPL read T2PL   
$01  read T1CPH read T2CPH   
$02  read T1R2CML read T2R2CML   
$03  read T1R2CMH read T2R2CMH   
$04  read T1R1CML read T2R1CML   
$05  read T1R1CMH read T2R1CMH   
$06  read T1CNTB read T2CNTB   
$07  read T1CNTA read T2CNTA   
$08  exchange CMP_B    
$09  exchange WKPND_B    
$0a  write WKED_B    
$0b  write WKEN_B    
$0c  read ST_B read ST_C read ST_D read ST_E 
$0d read LVL_A read LVL_B read LVL_C read LVL_D read LVL_E 
$0e read PLP_A read PLP_B read PLP_C read PLP_D read PLP_E 
$0f read TRIS_A read TRIS_B read TRIS_C read TRIS_D read TRIS_E 
$10  clear Timer 1 clear Timer 1   
$11      
$12  write T1R2CML write T2R2CML   
$13  write T1R2CMH write T2R2CMH   
$14  write T1R1CML write T2R1CML   
$15  write T1R1CMH write T2R1CMH   
$16  write T1CNTB write T2CNTB   
$17  write T1CNTA write T2CNTA   
$18  exchange CMP_B    
$19  exchange WKPND_B    
$1a  write WKED_B    
$1b  write WKEN_B    
$1c  write ST_B write ST_C write ST_D write ST_E 
$1d write LVL_A write LVL_B write LVL_C write LVL_D write LVL_E 
$1e write PLP_A write PLP_B write PLP_C write PLP_D write PLP_E 
$1f write TRIS_A write TRIS_B write TRIS_C write TRIS_D write TRIS_E 

These abbreviations are used for the timer registers: 

T1CPH, T2CPH: Timer 1/2 capture (1), high byte 
T1CPL, T2CPL:  Timer 1/2 capture (1), low byte 
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T1R1CMH, T2R1CMH: Timer 1/2 register R1, high byte 
T1R1CML, T2R1CML: Timer 1/2 register R1, low byte 
T1R2CMH, T2R2CMH: Timer 1/2 register R2, high byte 
T1R2CML, T2R2CML: Timer 1/2 register R2, low byte 

In addition to the SX 18/20/28 devices, the SX 48/52 control registers can also be read. To do 
this, load the M register with the correct value, and then perform a mov !r?, w instruction. This 
does not change the contents of the specified control registers, but copies its contents into the W 
register. 

If the CMP_B or WKPND_B registers are written, the content of w is copied into the registers, 
and the former register contents are returned in w. 

The table shows, that m register values ranging from $10 through $1F are valid here, i.e. the m 
register bit 4 is set in this case. As the mode instruction only writes the lower four bits of the in-
struction argument into the M register, the mode instruction cannot be used to load values 
greater than $0F into m. 

You need to either use the two instructions 
mov w, #<M Value> 
mov m, w 

or the following macro definition:  
_mode MACRO 1 
  IFDEF SX48_52 
    mov w, #\1 
    mov m, w 
  ELSE 
    mov m, #\1 
  ENDIF 
ENDM 

 



Programming the SX Microcontroller 

222 

2.2.5 Interrupts, Watchdog and Brown-Out 

The block diagram below shows some more internal function blocks of the SX devices. 

 

2.2.5.1 Interrupts 

2.2.5.1.1 Interrupts Triggered by Level-Transitions on Port B 

Port B can be configured to detect level transitions by configuring the WKEN_B and the 
WKED_B registers (see the previous chapter). Such detected level transitions are combined in the 
MIWU (Master Interrupt and Wake Up) function block, and then passed to the interrupt control 
block, provided the device is not currently in sleep mode. 

When an interrupt is triggered the result of the currently executed instruction is written, and then 
a program branch to address $000 in program memory is performed. Further interrupts are dis-
abled until a reti, or retiw instruction is executed. The instruction at $000 and the following 
instructions make up the Interrupt Service Routine (ISR), which is a special kind of subroutine. 
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The ISR reacts on the interrupt and performs the necessary instructions to handle the interrupt 
event.  

When the ISR has done its job, it must terminate with a reti (return from interrupt) or a retiw 
(return from interrupt with w) instruction. This returns the program execution to the interrupted 
program segment, and enables new interrupts. There, the instruction immediately following the 
one that was last executed before the ISR was called will be executed next. Therefore, it is neces-
sary to save the address (i.e. the contents of the PC register) of that instruction before branching 
into the ISR. Fortunately, this is automatically performed by the SX controller, so there is no need 
for a specific instruction required in the application program. This return address is stored in a 
dedicated register, and not in the stack memory for subroutine return addresses. 

In most cases, the ISR needs to make use of some of the controller's special registers like W, 
STATUS, or FSR. At invocation of an ISR these registers are automatically saved in "shadow reg-
isters", and on execution of a reti or retiw instruction, the original register contents are auto-
matically restored from these shadow registers. This feature of the SX controllers is an important 
enhancement compared to other microcontrollers. It makes the design of ISRs much easier, and 
saves the additional execution time that would be required when the ISR would have to take care 
of saving and restoring these registers. 

2.2.5.1.2 Timed Interrupts 

Timed interrupts are interrupts that are invoked constantly after a certain time has elapsed. This 
type of interrupts is very important to realize Virtual Peripherals for the SX where precise timing 
very often is a key issue. 

To obtain a time basis, the system clock is used to clock the Real Time Clock Counter (RTCC). As 
an option, the system clock may be divided by the prescaler to obtain longer periods. The RTCC 
is incremented on each active transition on its input, and when the RTCC overflows from 255 to 
0, an interrupt will be triggered. 

The time between two interrupts is determined by the following factors: 

• System clock frequency 

• Prescaler divide-by factor 

• Contents of the RTCC at the end of the ISR (the RTCC can be set to any value between 0 
and 255 when the ISR terminates) 
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2.2.5.1.3 Interrupts Triggered After a Certain Number of Events 

This mode is similar to timed interrupts, but this time, the RTCC is clocked from an external sig-
nal at the RTCC input, and not by the system clock. Again, an interrupt is triggered when the 
RTCC overflows, and at termination of the ISR, the RTCC register should be set to a new initial 
value. 

Loading the RTCC with 255, for example, would cause an interrupt on each active transition on 
the RTCC input, loading it with 254 would generate an interrupt every second transition, etc. 

2.2.5.1.4 Configuring the Various Interrupt Modes 

To allow transitions on Port B inputs trigger an interrupt, the corresponding bits in the WKEN_B 
configuration register must be cleared, and WKED_B bits must be cleared if positive transitions 
shall trigger an interrupt. 

If transitions at Port B inputs shall only cause wake up events, it makes sense to clear the bits in 
the WKEN_B register immediately before entering the sleep mode in order to avoid interrupts 
caused by transitions on those lines during regular program execution. 

It is important that within the ISR the WKPND_B register bits are cleared even if there is no need 
to find out the interrupt reason, because otherwise a new interrupt would occur immediately 
after termination of the ISR. 

For timed interrupts the OPTION register bits must be configured as follows: 

OPTION 
7 6 5 4 3 2 1 0 

RTW RTI RTS RTE PSA PS2 PS1 PS0
1 X 0 0 X X X X 

 

RTW: 1 
RTI: 0 = Interrupts are enabled 
 1 = Interrupts are disabled 
RTS: 0 
RTE: 0 
PSA: 0 = use prescaler for RTCC 
 1 = no prescaler 
PS2...PS0: For PSA = 0, these bits determine 
 the prescaler divide by factor: 
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PS2

 
PS1

 
PS0

 
Divide by factor 
for the RTCC 

0 0 0 1:2 
0 0 1 1:4 
0 1 0 1:8 
0 1 1 1:16 
1 0 0 1:32 
1 0 1 1:64 
1 1 0 1:128 
1 1 1 1:256 

 

Note that OPTION bit 6 (RTI) is the "main switch" to turn interrupts on or off. 

For counting events, the OPTION register bits must be configured as follows: 

OPTION 
7 6 5 4 3 2 1 0 

RTW RTI RTS RTE PSA PS2 PS1 PS0 
1 X 1 X n.a. n.a. n.a n.a. 

 

RTW: 1 
RTI: 0 =  Interrupts are enabled 
 1 =  Interrupts are disabled 
RTS: 1 
RTE: 0 =  RTCC is incremented on positive transitions at the RTCC input 
 1 =  RTCC is incremented on negative transitions at the RTCC input 

Note that OPTION bit 6 (RTI) again is the "main switch" to turn interrupts on or off. 

2.2.5.2 The Watchdog Timer 

The watchdog timer (WDT) can be activated to reset the controller after a certain time-period in 
case the WDT is not cleared before that time has elapsed. This timer is an 8-bit counter, similar to 
the RTCC with the exception that the WDT is clocked by an internally generated separate clock 
signal of approximately 14 kHz. As an option, the prescaler can be used to divide down that fre-
quency (in this case, the prescaler is not available for timed interrupts). 

As soon as the WDT register overflows, it generates a reset, and program execution starts at the 
main entry point that is also executed first after power on. 
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During regular program execution, it is important to periodically clear the WDT in order to avoid 
resets caused by WDT overflows. The 
clr !wdt 

instruction is available to perform that task. Usually, this instruction is inserted at a location in 
the main application program that is executed often enough to reset the WDT in time as long as 
the application performs regularly. 

To assign the prescaler to the WDT, Bit 3 (PSA - Prescaler Assign) in the OPTION register must 
be set. Again, OPTION bits 2...0 (PS2...0) configure the divide by factor: 

 

PS2 
 

PS1 
 

PS0 
 

Divide by factor 
for the WDT 

0 0 0 1:1 
0 0 1 1:2 
0 1 0 1:4 
0 1 1 1:8 
1 0 0 1:16 
1 0 1 1:32 
1 1 0 1:64 
1 1 1 1:128 

 

Note that this time the divide by factors range from 1:1 up to 1:128. When the maximum divide 
by factor is configured, a reset is generated after approximately 2.3 seconds, and the shortest pe-
riod at a 1:1 ratio is approximately 18 ms. 

The watchdog timer can also be used to wake up the SX controller from sleep mode as the WDT 
continues to work (when activated) during sleep mode. This makes it possible to develop systems 
with a minimum of power consumption when monitoring external conditions is only required 
after a certain time period between 18 ms and 2.3 seconds. 

To activate the WDT, bit 2 in the "Fuse" register must be set (more about the fuse registers later in 
this section). The SX assemblers usually support a DEVICE WATCHDOG directive to control the 
setting of that bit. 

2.2.5.3 Additional Bits in the OPTION Register 

By default, the RTCC register is mapped into the global data register bank at location $01, and it 
may be accessed by read and write instructions. The W register cannot be accessed via a data 
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register address by default. Clearing the OPTION register bit 7 (RTW - RTCC or W) bit maps the 
W register to address $01 instead of the RTCC. 

As mentioned before, OPTION bit 6 (RTI - Real Time Interrupt) is the "main switch" to turn inter-
rupts generated by RTCC overflows on or off. 

By default, bits 7 and 6 in the OPTION register are configured as read-only, i.e. they cannot be 
modified by program instructions. To configure these bits for read/write, bit 7 in the FUSEX fuse 
register must be cleared (more about the Fuse registers later in this section). The SX assemblers 
usually support a DEVICE OPTIONX directive to control the setting of that bit. Usually, this di-
rective also enables the eight-level return stack, where the DEVICE STACKX directive usually 
also configures OPTION bits 7 and 6 as read/write, i.e. only one directive is required to activate 
the “enhanced” SX features. 

2.2.5.4 Monitoring VDD - The Brown-Out Detection 

The SX data registers are located in SRAM memory, i.e. they will loose their contents then the 
supply voltage VDD is turned off, and when VDD drops below a certain level, there is no guarantee 
that the registers keep their original contents. The same might be true for any external compo-
nents, connected to the SX controller. 

In case of a short VDD drop, it can happen that the status of external components changes, or that 
the SX registers loose their original contents. If this voltage drop is not long enough to cause a 
reset, it is most likely that the system will no longer function correctly. 

In order to capture such errors, the SX controllers have a "built-in" brown-out detection that 
causes a system reset if the supply voltage drops below a certain level. 

Use the DEVICE directive together with BOR42, BOR26, BOR22, or BOROFF to select a level of 
4.2, 2.6, 2.2 Volts, or to turn off the brown-out detection. 

To activate the brownout detection, bits 5 and 4 in the FUSEX fuse register must be configured 
accordingly (more about the Fuse registers later in this section).  

2.2.5.5 Determining the Reason for a Reset 

After resets caused by a power-on, or brown-out event, it is usually necessary to initialize certain 
registers in data memory to set up the status for a "clean" start. This situation is also called a "cold 
boot". 

When the watchdog timer causes a reset, there are chances that (depending on the application 
program) certain registers still contain valid data, i.e. in this case, the contents of such registers 
might not be reset. This situation is also called a "warm boot". 
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Furthermore it is possible that the WDT or transitions at port RB inputs cause a reset from sleep 
mode. This case is not an error condition, but an expected event, and it is most likely that none of 
the register contents should be re-initialized. 

The STATUS register bits 4 and 3 reflect the reason for a reset, and thus allow an application pro-
gram to perform the right actions: 

STATUS 
7 6 5 4 3 2 1 0 

PA2 PA1 PA0 TO PD Z DC C 
 

TO (Time Out): 

This bit is set when the power supply is turned on, and when the clr !wdt  and sleep instruc-
tions are executed. When the WDT causes a reset, this bit is cleared. 

When this bit is tested immediately after entering the main application program, the code may 
branch into the "cold boot section" if the bit is set, and into the "warm boot section", when the bit 
is cleared. 

PD (Power Down): 

This bit is set when the power supply is turned on, and when the clr !wdt  instruction is exe-
cuted, but it is cleared after sleep instruction. 

This allows the application program to test if the TO and PD bits are both cleared, which indi-
cates a wake up caused by the WDT or by a port B signal transition. In case the TO bit is cleared, 
and the PD bit is set, the WDT caused a reset due to an error. 
The ALU and the STATUS Register 

Arithmetic and logical operations are performed by the Arithmetic and Logical Unit (ALU) func-
tion block. The block diagram shows that the ALU takes two input values, one from the W regis-
ter, and one from a data register. Thus, the W register has a special importance for arithmetic and 
logical operations, as it "delivers" one of the two operands. 

The result of an arithmetic or logical operation is usually taken from the ALU, and it is stored in 
the data register specified together with the arithmetic or logical instruction, i.e. into the register 
that contained the second operand before. In addition, the SX controllers support several instruc-
tions that place the result into the W register, leaving the original contents of the data register 
unchanged. 

Depending on the result of arithmetic or logical instructions, the ALU generates a status informa-
tion that is stored in some of the STATUS register bits. The application program may later test 
these bits: 
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STATUS 
7 6 5 4 3 2 1 0 

PA2 PA1 PA0 TO PD Z DC C 
 

Z (Zero) The Z flag is set when an operation results in 0. This may be true after an 
addition, or subtraction as well as after an increment, or decrement op-
eration. The Z flag will also be set by some mov instructions when the 
register contains zero after the mov. 

C (Carry) The C flag is set then the result of an addition causes an overflow, i.e. 
when the result is greater than 255, otherwise, it will be cleared. After a 
subtraction, the C flag will be cleared if the result is negative, i.e. when 
the operation caused an underflow, otherwise, it will be set. 

   The C flag is also used as 9th bit for rotate instructions. 

DC (Digit Carry) The DC flag is set when an addition caused an overflow from bit 3 to bit 
4, otherwise, the flag will be cleared. After a subtraction, the bit will be 
cleared when the difference of the lower four bits results in a negative 
value, otherwise, the flag will be set. The DC flag is helpful when per-
forming BCD arithmetic operations. 

2.2.6 The Stack Memory 

To make sure that the calling program can be continued correctly after a subroutine call (similar 
to an interrupt), it is necessary to save the "return address", i.e. the address of the instruction in 
the calling program code that must be executed next after a return from the subroutine. When 
leaving the subroutine, this address must be moved into the PC register to resume "regular" pro-
gram execution. 

Usually, there are situations that one subroutine might call another subroutine, etc. In order to 
make that possible (extended to a certain level of "nested" subroutine calls), it is not sufficient to 
just save one PC register contents for later restore. In order to save more than one return address, 
usually a stack memory is used. The SX controllers maintain a return address stack that can hold 
up to eight return addresses, i.e. subroutine calls may be nested up to a level of eight. 

The management of the stack memory is internally handled by the SX controller, i.e. there is no 
need to add specific instructions in the application program. Whenever a call instruction is exe-
cuted, the return address is "pushed" on the stack, and a ret instruction "pops off" the most re-
cently saved return address from the stack releasing the stack memory for another "push". 
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It is important to know that there is no way to check for stack overflows, i.e. if more than 8 return 
addresses are "pushed" on the stack, the oldest address is lost, so the application program must 
be designed in a way that stack overflow situations may not occur. 

Also, there is no way to test for stack underflows. This may occur when a ret instruction is exe-
cuted in a program without a prior call. Unpredictable results are guaranteed in such cases. 

It is also important to configure the SX device to make the eight-level stack available by clearing 
bit 7 in the FUSEX fuse register. Otherwise, the stack memory is configured to the default that 
only allows for two return addresses. 

The stack memory in the SX controllers is only dedicated to store subroutine return addresses. It 
is not available as a temporary storage for variable data like in most microprocessors. 

2.2.7 The FUSE Registers 

2.2.7.1 The FUSE Registers (SX18/20/28) 

The fuse registers are assigned to dedicated memory areas in the EEPROM section of the SX con-
trollers that cannot be changed by program instructions. Instead, these memory locations are 
accessed during programming the SX EEPROM memory in order to configure the general device 
characteristics that are valid until the EEPROM memory is re-written during the next program-
ming cycle. 

The name "Fuse Registers" has a historical background, which comes from microcontrollers with 
program memory that could only be programmed once. Such devices contained "fuse links" for 
the device options. Similar to a fuse, these links were "burned" once, or left intact for a specific 
option. 

The SX devices come with three fuse registers (FUSE, FUSEX, and DEVICE) of 12 bits each. The 
meaning of the bits in those registers will be explained below. The fuse bits are set or cleared 
during device programming, and the assemblers usually support various DEVICE directives to 
control these bits from the application source code. When a DEVICE directive is not included in 
the source code, defaults are assumed. 

 

2.2.7.1.1 The FUSE register 

FUSE 
11 10 9 8 7 6 5 4 3 2 1 0 

/TURB
O 

/SYN
C 

res res /IRC DIV1, /IFBD DIV0, FOSC2 res /CP WDTE FOSC1 FOSC0 
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Bits marked with a leading slash (/) have negative logic, i.e. the designated function is active if 
the bit is cleared. 

Bits marked as "res" are reserved for future use. 

/TURBO: 0 = Turbo mode is active, i.e. execution of a "straight" instruction takes one clock 
cycle, i.e. the instruction pipeline is active. 

1 = "Compatibility mode" is active, i.e. execution of a "straight" instruction takes 
four clock cycles, i.e. the instruction pipeline is not active. 

Use the assembler directive DEVICE TURBO to activate the "turbo" mode (de-
fault: No turbo mode). 

/SYNC:  0 = Sync mode for port inputs is active (for debugging purposes). This feature is 
only available in turbo mode. 

  1 = Sync mode is not active. 

While sync mode is active, reading of input data is synchronized with the system 
clock. This mode is mainly required for debugging purposes. Use the assembler 
directive DEVICE SYNC to activate that mode (default: No sync mode). 

/IRC:  0 = Internal system clock generator is activated. 

1 = Internal system clock generator is not activated, pins OSC1 und OSC2 per-
form as configured by the FOSC2 and FOSC0 bits. 

When one of the assembler directives DEVICE IRCDIVx, or OSCxxxHz is speci-
fied, this bit is cleared to activate the internal clock generator (default: Disabled). 

DIV1...0: If the internal clock generator is active (/IRC = 0), these bits determine the divide 
by factor for this generator: 

 00 = 4 MHz 
  01 = 1 MHz 

 10 = 128 kHz 
  11 = 32 kHz 

Use the assembler directives DEVICE OSC4MHZ, OSC1MHZ, OSC128KHZ, or 
OSC32KHZ to select the desired clock frequency (default: 4 MHz). 

/IFBD:  (Internal Feedback Disable) If /IRC and /IFBD are both set, the internal resistor 
between OSC1 and OSC2 is enabled, if /IFBD is cleared, an external resistor must 
be used. Use the assembler directive DEVICE IFBD to set this option (default: En-
abled). 
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/CP:  (Code Protection) If this bit is cleared, the program code stored in the SX pro-
gram memory cannot be read back, but only deleted by reprogramming the 
EEPROM memory. Actually, reading the EEPROM memory is possible with the 
CP bit cleared, but scrambled data will be read instead of the actual contents of 
the program memory. 

Use the assembler directive DEVICE PROTECT to activate this mode (default: 
Disabled). 

WDTE:  0 = Watchdog Timer is disabled. 
  1 = Watchdog Timer is enabled. 

Use the assembler directive DEVICE WATCHDOG to enable the watchdog timer 
(default: Disabled). 

FOSC2...0: These three bits configure the external oscillator driver, i.e. they define how the 
SX controller shall interact with external oscillator components if the internal os-
cillator is disabled (/IRC=1), and FUSE register bit 5 is used as FOSC2 bit when 
the internal oscillator is disabled (/IRC=1). In this case, the three bits FOSC2...0 
configure the mode of the oscillator driver as follows, and the OSCxx DEVICE di-
rectives may be used to select a specific mode: 

  000 = LP1 - Crystal, low power, 32 kHz (OSCLP1) 
  001 = LP2 - Crystal/Resonator, low power, 32 kHz ... 1MHz (OSCLP2) 
  010 = XT1 - Crystal/Resonator, low power, 32 kHz ... 10 MHz (OSCXT1) 
  011 = XT2 - Crystal/Resonator, 1 MHz ... 24 MHz (OSCXT2) 
  100 = HS1 - Crystal/Resonator, 1 MHz ... 50 MHz (OSCHS1) 
  101 = HS2 - Crystal/Resonator, 1 MHz ... 50 MHz (OSCHS2) 

 110 = HS3 - Crystal/Resonator, 1 MHz ... 50 MHz (OSCHS3) 
 111 = EXTRC - External RC-network (OSCRC) 

Default: OSCRC 

 

2.2.7.1.2 The FUSEX Register 

FUSEX 
11 10 9 8 7 6 5 4 3 2 1 0 

IRCTrim2 Pins IRCTrim1 IRC-
Trim0 

/OPTIONX, 
/STACKX

/CF BOR1 BOR0 BOR 
TRIM1

BOR 
TRIM0

BP1 BP0 

 

IRCTrim: Bits IRCTrim2...0 are used to fine-tune the internal RC oscillator to the specified 4 
MHz clock frequency (±8%). Devices leave the factory un-tuned, and the pro-
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gramming system should test the clock frequency, and make the necessary ad-
justments. The lowest frequency is generated with all bits cleared, and the highest 
frequency can be obtained with all bits set. 

Pins:  Defines the number of pins the device has (18/20 or 28). Use the assembler direc-
tives like DEVICE PINS18,  SX18AX, PINS20, SX20AC, PINS28 or SX28AC to de-
fine the device type (default: PINS18). 

/OPTIONX, /STACKX: 

When this bit is set, OPTION bits 7 (RTW) and 6 (RTI) are read only, and the 
stack size is limited to two levels. In order to obtain an 8-level stack, and make 
the OPTION bits read/write, clear this bit using the assembler directive DEVICE 
OPTIONX, or STACKX (default: 2-level stack, bits 7 and 6 read-only). 

/CF:  When this bit is cleared, add and subtract operations use the carry flag as input. 
When the bit is set, the carry flag is ignored by such operations. Use the assem-
bler directive DEVICE CARRYX to clear that flag (default: Carry flag is ignored). 

BOR1, 0:  These bits configure the brownout reset function, and the threshold voltage: 

 00 = 4.2 V 
  01 = 2.6 V 

 10 = 2.2 V 
 11 = Brown-out reset disabled 

Use the assembler directives DEVICE BOR42, BOR26 or BOR22 to select a volt-
age, and BOROFF to disable this feature (default: Brownout disabled). 

BORTRIM: These bits are used to fine-tune the selected threshold. They are adjusted by the 
programming system. 

BP1, BP0: These bits are defined during the device fabrication process, and they should not 
be changed unless you want to limit the device's internal memory sizes to the 
following values: 

 00 = 1 Page, 1 Bank 
  01 = 1 Page, 2 Banks 

 10 = 4 Pages, 4 Banks 
 11 = 4 Pages, 8 Banks 

Reducing the memory size might result in a decrease of device programming 
time. Use the assembler directives DEVICE BANKS1, BANKS2, BANKS4, or 
BANKS8 to select a configuration (default: BANKS8). 
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2.2.7.1.3 The DEVICE Register 

DEVICE 
11 10 9 8 7 6 5 4 3 2 1 0 
Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

 

This register is read-only, and it contains information about the SX device type: $FFE = SX 
18/20/28. 

2.2.7.2 The Fuse Registers (SX 48/52) 

2.2.7.2.1 The FUSE Register 

FUSE 
11 10 9 8 7 6 5 4 3 2 1 0 
- /SYNC - - /IRC DIV1, /IFBD DIV0, FOSC2 XTLBUF_EN /CP WDTE FOSC1 FOSC0 

 

Bits marked with a leading slash (/) have negative logic, i.e. the designated function is active if 
the bit is cleared. 

/SYNC:  0 = Sync mode for port inputs is active (for debugging purposes). This feature is 
only available in turbo mode. 

 1 = Sync mode is not active. 

While sync mode is active, reading of input data is synchronized with the system 
clock. This mode is mainly required for debugging purposes. Use the assembler 
directive DEVICE SYNC to activate that mode (default: No sync mode). 

/IRC:  0 = Internal system clock generator is activated. 

1 = Internal system clock generator is not activated, pins OSC1 und OSC2 per-
form as configured by the FOSC2 and FOSC0 bits. 

When one of the assembler directives DEVICE IRCDIVx, or OSCxxxHZ is speci-
fied, this bit is cleared to activate the internal clock generator (default: Disabled). 

DIV1...0: If the internal clock generator is active (/IRC = 0), these bits determine the divide 
by factor for this generator: 

 00 = 4 MHz 
 01 = 1 MHz 
 10 = 128 kHz 
 11 = 32 kHz 
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Use the assembler directives DEVICE OSC4MHZ, OSC1MHZ, OSC128KHZ or 
OSC32KHZ to set up the divide by factor (default: 4 MHz). 

/IFBD:  (Internal Feedback Disable) If /IRC and /IFBD are both set, the internal resistor 
between OSC1 and OSC2 is enabled, if /IFBD is cleared, an external resistor must 
be used. Use the assembler directive DEVICE IFBD to set this option (default: En-
abled). 

XTLBUF_EN: When this bit is set, the internal buffer for crystal or ceramic resonator clock de-
vices is activated. If you do not use such device, clear the bit to reduce power 
consumption. 

/CP:  (Code Protection) If this bit is cleared, the program code stored in the SX pro-
gram memory cannot be read back, but only deleted by reprogramming the 
EEPROM memory. Actually, reading the EEPROM memory is possible with the 
CP bit cleared, but scrambled data will be read instead of the actual contents of 
the program memory. 

Use the assembler directive DEVICE PROTECT to activate this mode (default: 
Disabled). 

WDTE:  0 = Watchdog Timer is disabled. 
 1 = Watchdog Timer is enabled. 

Use the assembler directive DEVICE WATCHDOG to activate this mode (default: 
Disabled). 

FOSC2...0: These three bits configure the external oscillator driver, i.e. they define how the 
SX controller shall interact with external oscillator components if the internal os-
cillator is disabled (/IRC=1), and FUSE register bit 5 is used as FOSC2 bit when 
the internal oscillator is disabled (/IRC=1). In this case, the three bits FOSC2...0 
configure the mode of the oscillator driver as follows, and the OSCxx DEVICE di-
rectives may be used to select a specific mode: 

  000 = LP1 - Crystal, low power, 32 kHz (OSCLP1) 
  001 = LP2 - Crystal/Resonator, low power, 32 kHz ... 1MHz (OSCLP2) 
  010 = XT1 - Crystal/Resonator, low power, 32 kHz ... 10 MHz (OSCXT1) 
  011 = XT2 - Crystal/Resonator, 1 MHz ... 24 MHz (OSCXT2) 
  100 = HS1 - Crystal/Resonator, 1 MHz ... 50 MHz (OSCHS1) 
  101 = HS2 - Crystal/Resonator, 1 MHz ... 50 MHz (OSCHS2) 

 110 = HS3 - Crystal/Resonator, 1 MHz ... 50 MHz (OSCHS3) 
 111 = EXTRC - External RC-network (OSCRC) 

Default: OSCRC 
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2.2.7.2.2 The FUSEX Register 

FUSEX 
11 10 9 8 7 6 5 4 3 2 1 0 

IRCTrim2 /SLEEPCLK IRCTrim1 IRCTrim0 - /CF BOR1 BOR0 BOR TRIM1 BOR TRIM0 DRT1 DRT0 

 

IRCTrim:  Bits IRCTrim2...0 are used to fine-tune the internal RC oscillator to the specified 4 
MHz clock frequency (±8%). Devices leave the factory un-tuned, and the pro-
gramming system should test the clock frequency, and make the necessary ad-
justments. The lowest frequency is generated with all bits cleared, and the highest 
frequency can be obtained with all bits set. 

/SLEEPCLK: When this bit is cleared, clock generation continues while the device is in sleep 
mode (for fast wake up). Set this bit if this feature is not required in order to re-
duce power consumption in sleep mode. Use the assembler directive DEVICE 
SLEEPCLK to enable the clock (default: Clock disabled). 

/CF:  When this bit is cleared, add and subtract operations use the carry flag as input. 
When the bit is set, the carry flag is ignored by such operations. Use the assem-
bler directive DEVICE CARRYX to clear that flag (default: carry flag is ignored). 

BOR1, 0:  These bits configure the brownout reset function, and the threshold voltage: 

 00 = 4,2 V 
 01 = 2,6 V 
 10 = 2,2 V 
 11 = Brown-out reset disabled 

Use the assembler directives DEVICE BOR42, BOR26 or BOR22 to select a volt-
age, and BOROFF to disable this feature (default: Brownout disabled). 

BORTRIM: These bits are used to fine-tune the selected threshold. They are adjusted by the 
programming system. 

DRT1/0: These two bits define the delay reset timer timeout period: 

 00 = 60 ms (WDRT60) 
  01 = 1 s (WDRT960) 

 10 = 0.25 ms (WDRT006) 
 11 = 18 ms (WDRT184) 

Use the assembler directives DEVICE WDRTxxx, as specified in parentheses 
above to select a delay time (default: 18 ms). 
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2.2.7.2.3 The DEVICE Register 

DEVICE 
11 10 9 8 7 6 5 4 3 2 1 0 
Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 

 

This register is read-only, and it contains information about the SX device type: $001 = SX 48/52. 

2.2.8 The SX 48/52 Multi-Function Timers 

In addition to the standard timers (RTCC and watchdog), the SX 48/52 devices come with two 
Multi-Function Timers T1 and T2. These timers are useful to replace a software solution for gen-
erating PWM signals, counting events, and generating longer time delays. 

Each timer comes with a free-running 16-bit counter. At reset, the counters are initialized with 
$0000, and then, they start continuously counting upwards. The counters can either be clocked 
from the system clock (through an 8-bit prescaler), or from an external transition at the external 
clock pin. This input can be configured to sense positive, or negative transitions. 

Each counter has associated 16-bit capture, and comparison registers. As an option, various 
events can be used to trigger an interrupt, or to generate an output signal. 

The block diagram shows the components of one timer: 

 

Compare 
Interrupt

 

Multiplexer 

   16-Bit Comparison R2 
or Capture Register (2) 

16-Bit Comparison Register 
R1 

 

8-Bit Prescaler 16-Bit Comparator 

 16-Bit Counter 

  16-Bit Capture Register (1) 

Output (RB6/RC2)

Capture 2 (RB5/RC1) 

Capture 1 (RB4/RC0) 

External Clock 

System Clock 

Capture 
Interrup
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Registers R1, R2, and the capture registers can be accessed by mov !rb, w (Timer1), or mov !rc, 
w (Timer2) instructions, where the remaining registers cannot be accessed via software. 

Timer 1 shares its input and output lines with the Port B pins 4...7, and timer 2 shares its input 
and output lines with the Port C pins 0...3. If a timer is active, those pins can no longer used for 
"regular" I/O purposes. 

2.2.8.1 PWM Mode 

In this mode, the timer generates a square wave signal with programmable frequency, and duty 
cycle. For this purpose, the contents of the two comparison registers determine for how long the 
signal is high, and low. 

The 16-bit counter starts with a contents of 0, and keeps incrementing until it has reached the 
value of R1. The counter is reset to 0, the output is toggled, and (if enabled) an interrupt is gener-
ated. 

Next, the counter keeps incrementing until it now has reached the value of R2. Again, the counter 
is reset to 0, the output signal is toggled, and an interrupt is triggered (if enabled). 

These two steps are repeated continuously. The contents of R1 and R2 determine the frequency 
and the duty cycle of the generated output signal. When R1 and R2 contain the same value, a 
square wave with a duty cycle of 50% is generated. In order to generate a signal with a constant 
frequency, and a varying duty cycle, the sum R1+R2 must remain constant, i.e. to change the 
duty cycle, increase the value of one register, and decrease the value of the other register by the 
same amount. 

In PWM mode, the 16-bit counter is clocked through the prescaler from the system clock. The 
prescaler can be set to divide-by factors from 1 to 256 in steps of powers of two. 

2.2.8.2 Software Timer Mode 

This mode is similar to the PWM mode with the difference that the output signal is not toggled. 
Instead, the application program must react on the interrupts that indicate a match between the 
counter and R1, or between the counter and R2. An additional interrupt is generated when the 
counter overflows from $ffff to $0000. 

2.2.8.3 External Event Counter 

Again, this mode is similar to the PWM mode, but here, the 16-bit counter is clocked from an 
external signal instead from the system clock. The external input can be configured in order to 
have positive or negative transitions increment the counter. 
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2.2.8.4 Capture/Compare Mode 

In this mode, the 16-bit counter is clocked by the prescaled system clock, and it keeps increment-
ing without being reset. A valid transition at one of the two inputs causes that the current counter 
contents is stored in the associated capture register. This makes it easy to determine the time dif-
ference between two external events. 

In addition, the counter contents are continuously compared against the contents of register R1. If 
both are equal, an interrupt is generated (if enabled), and the output signal is toggled. Different 
from the PWM mode, the counter is not reset in this case but it keeps incrementing. 

In order to obtain a fixed period between the interrupts and output toggles, the ISR must load a 
new value into R1 whenever an interrupt is triggered. 

The two inputs Capture 1 and Capture 2 can be configured to have positive or negative transi-
tions trigger the capture. 

Capture register 1 is a separate register dedicated to capture the counter contents only, where 
Register R2 is used for the capture register 2. 

As an option, each capture event can also issue an interrupt, and various flags allow the ISR to 
determine the interrupt reasons. 

In addition, a 16-bit counter overflow can also trigger an interrupt, and set a flag. This is impor-
tant when the time between two external events is long enough to allow for one or more counter 
overflows. If the ISR keeps track of the number of overflows, it is possible to calculate the time 
elapsed between two external events. 

2.2.8.5 The SX48/52 Timer Control Registers 

The various modes for each of the two timers are configured by bits in two 8-bit control registers: 

 

2.2.8.5.1 The T1CNTA Register 

T1CNTA Register 
7 6 5 4 3 2 1 0 

T1CPF2 T1CPF1 T1CPIE T1CMF2 T1CMF1 T1CMIE T1OVF T1OVIE 
 

T1CPF2: Timer 1 Capture Flag 2 - This flag is automatically set in the capture/compare 
mode when a capture event occurs at capture input 2. It remains set until cleared 
by the application software. 
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T1CPF1:  Timer 1 Capture Flag 1 - This flag is automatically set in the capture/compare 
mode when a capture event occurs at capture input 1. It remains set until cleared 
by the application software. 

T1CPIE: Timer 1 Capture Interrupt Enable - If this bit is set, a valid transition at the cap-
ture inputs 1 or 2 generates an interrupt. 

T1CMF2: Timer 1 Comparison Flag 2 - This bit is automatically set when the contents of the 
16-bit counter, and of R2 match, in case R2 is configured as comparison register. 
It remains set until cleared by the application software. 

T1CMF1:  Timer 1 Comparison Flag 1 - This bit is automatically set when the contents of the 
16-bit counter, and of R1 match. It remains set until cleared by the application 
software. 

T1CMIE:  Timer 1 Comparison Interrupt Enable - If this bit is set, a match between the 16-
bit counter, and R1 or R2 generates an interrupt. 

T1OVF:  Timer 1 Overflow Flag - This bit is automatically set when the contents of the 16-
bit counter overflows from $FFFF to $0000. It remains set until cleared by the ap-
plication software. 

T1OVIE:  Timer 1 Overflow Interrupt Enable - If this bit is set, an overflow of the 16-bit 
counter generates an interrupt. 

 

2.2.8.5.2 The T1CNTB Register 

T1CNTB Register 
7 6 5 4 3 2 1 0 

RTCCOV T1CPEDG T1EXEDG T1PS2...T1PS0 T1MC1...T1MC0 
 

RTCCOV: RTCC Overflow Flag - This bit is automatically set, when the Real Time Clock 
Counter overflows from $FF to $00. It remains set until cleared by the application 
software. This flag is not directly associated to the Multi-Function Timers, but it 
makes it easier to find out the interrupt reason in the ISR. 

T1CPEDG: Timer 1 Capture Edge - This bit determines which transition at inputs 1 and 2 
shall trigger an event. If the bit is set, positive (low-high) transitions are recog-
nized, and if the bit is cleared, negative (high-low) transitions are sensed. 

T1EXEDG: Timer 1 External Event Clock Edge - This bit determines which transition at the 
external clock input shall increment the 16-bit counter. If the bit is set, positive 
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(low-high) transitions are sensed, and if the bit is cleared, negative (high-low) 
transitions are sensed instead. 

T1PS2...0: Timer T1 Prescaler - These three bits configure the prescaler divide-by factor: 

 000 - 1/1 
 001 - 1/2 
 010 - 1/4 
 011 - 1/8 
 100 - 1/16 
 101 - 1/32 
 110 - 1/64 
 111 - 1/128 

T1MC1...0:  Timer 1 Mode Control - These two bits configure the timer 1 mode: 

  00 - Software Timer Mode 
 01 - PWM Mode 
 10 - Capture/Compare Mode 
 11 - External Event Counter 

 

2.2.8.5.3 The T2CNTA Register 

T2CNTA Register 
7 6 5 4 3 2 1 0 

T2CPF2 T2CPF1 T2CPIE T2CMF2 T2CMF1 T2CMIE T2OVF T2OVIE 
 

T2CPF2: Timer 2 Capture Flag 2 - This flag is automatically set in the capture/compare 
mode when a capture event occurs at capture input 2. It remains set until cleared 
by the application software. 

T2CPF1:  Timer 2 Capture Flag 1 - This flag is automatically set in the capture/compare 
mode when a capture event occurs at capture input 1. It remains set until cleared 
by the application software. 

T2CPIE: Timer 2 Capture Interrupt Enable - If this bit is set, a valid transition at the cap-
ture inputs 1 or 2 generates an interrupt. 

T2CMF2: Timer 2 Comparison Flag 2 - This bit is automatically set when the contents of the 
16-bit counter, and of R2 match, in case R2 is configured as comparison register. 
It remains set until cleared by the application software. 
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T2CMF1:  Timer 2 Comparison Flag 1 - This bit is automatically set when the contents of the 
16-bit counter, and of R1 match. It remains set until cleared by the application 
software. 

T2CMIE:  Timer 2 Comparison Interrupt Enable - If this bit is set, a match between the 16-
bit counter, and R1 or R2 generates an interrupt. 

T2OVF:  Timer 2 Overflow Flag - This bit is automatically set when the contents of the 16-
bit counter overflows from $FFFF to $0000. It remains set until cleared by the ap-
plication software. 

T2OVIE:  Timer 2 Overflow Interrupt Enable - If this bit is set, an overflow of the 16-bit 
counter generates an interrupt. 

 

2.2.8.5.4 The T2CNTB Register 

T1CNTB Register 
7 6 5 4 3 2 1 0 

PORTDR T2CPEDG T2EXEDG T2PS2...T2PS0 T2MC1...T2MC0 
 

PORTRD: Port Read Mode - This bit is not associated to Timer 2. It is used to configure how 
data is read from the I/O ports RA...RE. When the bit is clear, data is read di-
rectly from the port pins, and if the bit is set, data is read from the port registers. 
Under regular conditions, it makes no difference, which mode is used, but if - for 
example - a port line is configured as an output, and the port bit is set, the line is 
pulled to high level. When by some reason, an external component pulls the line 
down to low level, it makes a difference: Reading the port bit returns a 0, but 
reading the port register returns a 1. 

T2CPEDG: Timer 2 Capture Edge - This bit determines which transition at inputs 1 and 2 
shall trigger an event. If the bit is set, positive (low-high) transitions are recog-
nized, and if the bit is cleared, negative (high-low) transitions are sensed. 

T2EXEDG: Timer 2 External Event Clock Edge - This bit determines which transition at the 
external clock input shall increment the 16-bit counter. If the bit is set, positive 
(low-high) transitions are sensed, and if the bit is cleared, negative (high-low) 
transitions are sensed. 
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T2PS2...0: Timer T2 Prescaler - These three bits configure the prescaler divide-by factor: 

 000 - 1/1 
 001 - 1/2 
 010 - 1/4 
 011 - 1/8 
 100 - 1/16 
 101 - 1/32 
 110 - 1/64 
 111 - 1/128 

T2MC1...0:  Timer 2 Mode Control - These two bits configure the timer 2 mode: 

  00 - Software Timer Mode 
 01 - PWM Mode 
 10 - Capture/Compare Mode 
 11 - External Event Counter 
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3 Section III – Quick Reference 

3.1 SX Pin Assignments 
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Note: Some of the types/packages are no longer produced – they have been included here for 
completeness. 

3.2 Commonly used Abbreviations 
The table below lists abbreviations that are used in technical documents for the SX controllers. 

Abbreviation Meaning 
ADC Analog-Digital Converter – A device that converts an analog value (e.g. 

a voltage) into a digital representation. 
C Carry bit  – This bit in the Status register is set when certain instruction 

results cause an overflow. 
CMP_B Comparator B control register – The bits in this register control the SX 

analog comparator at port B, and return the output status of the com-
parator. 

CPU Central Processing Unit – The part of a computer/controller that per-
forms the execution of the program instructions. 

DC Digit Carry bit – This bit in the Status register is set when certain in-
struction results cause an overflow from bit 3 to bit 4.  

EEPROM Electrically Erasable Programmable Read Only Memory – A memory 
device that can be read at high speed, and that maintains the stored 
contents even when it is not powered. The device can be erased and re-
programmed by special electrical signals. 

FR File Register – A storage in the SX data memory. 
FSK Frequency Shift Keying – A method to transmit serial digital data by 

varying the frequency of a carrier signal depending whether a high or 
low status is to be transmitted (mostly used by modems). 

FSR File Select Register – This register contains an indirect data address or 
the bits that select the current data memory bank. 

HTTP Hyper Text Transfer Protocol – The protocol, most commonly used to 
transfer web pages via the Internet. 

I/O Input/Output – The operation of reading data from an input line, or 
sending data to an output line. 

ICMP Internet Control Message Protocol – A protocol for diagnostic mes-
sages. 

IND, INDF Indirect through FSR – This instruction argument is used to indicate 
indirect addressing. 

IP Internet Protocol – The fundamental Internet protocol. 
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Abbreviation Meaning 
LVL_A, LVL_B, 
LVL_C, LVL_D, 
LVL_E 

Level registers – The bits in these registers select whether a port input 
line shall have TTL or CMOS characteristics. 

MCU Microcontroller Unit 
MIPS Mega instructions per second – A measure, how many instructions a 

controller or computer can execute per second. 
MIWU Multi-Input Wake-up 
  
PC Program Counter – The register that addresses the instruction in pro-

gram memory to be executed. 
PD Power Down – This bit in the Status register is set upon power-up and 

cleared by the SLEEP instruction. 
PDM Pulse Duration Modulation – A method to impose a signal on a carrier 

signal by varying the pulse duration of the carrier signal. 
PLP_A, 
PLP_B,  
PLP_C,  
PLP_D, 
PLP_E 

Pull-up registers – The bits in these registers activate or de-activate the 
internal pull-up resistors of the port input lines. 

POP3 Post Office Protocol version 3 – The protocol, most commonly used to 
receive e-mail via the Internet. 

PPP Point-to-Point Protocol – A protocol for point-to-point links, like be-
tween modems via a telephone line. 

PS2:PS0 Prescaler Divide-By Factor – These bits in the OPTION register select 
the prescaler divide-by factor. 

PSA Prescaler Assignment – This bit in the OPTION register selects if the 
prescaler shall be assigned to the RTCC, or to the watchdog timer. 

PSK Phase Shift Keying – A method to transmit serial digital data by vary-
ing the phase of a carrier signal depending whether a high or low status 
is to be transmitted. 

PWM Pulse Width Modulation – A method to impose a signal on a carrier 
signal by varying the duty cycle of the carrier signal. 

R/C Resistor/Capacitor – A combination of a resistor and a capacitor to 
generate a time-constant. 

RA, RB,  
RC, RD,  
RE 

Register A (B, C, D, E) – The port data latch registers. 

RFC Request For Comments – The name of documents that describe and 
define Internet-related standards and methods. 
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Abbreviation Meaning 
RISC Reduced Instruction Set Controller – The Ubicom microcontrollers use 

a RISC-based architecture, i.e. a limited set of instructions that can be 
executed at high speed. 

RTC_ES RTCC Input Edge Select – This bit in the OPTION register selects if a 
rising or falling edge at the RTCC input pin shall increment the RTCC 
register content. 

RTS RTCC Trigger Selection – This bit in the OPTION register selects if the 
RTCC shall be incremented by transitions on the RTCC input pin, or by 
the system clock. 

RTW RTCC or W – This bit in the OPTION register controls if the RTCC or 
the W register shall be mapped into address $01 of the data memory. 

SMTP Simple Mail Transfer Protocol – The protocol, most commonly used to 
send e-mail via the Internet. 

SRAM Static Random Access Memory – Read/Write storage that maintains 
the stored contents as long as the device is powered, without the need 
of any dynamic read/write/refresh cycles. 

ST_B, ST_C, 
ST_D, ST_E 

Schmitt Trigger registers – The bits in these registers control whether a 
port input line shall have Schmitt Trigger characteristics or not. 

STATUS The Status Register – This Register contains various flags that indicate 
certain instruction results. It also contains the program memory page 
select bits. 

TCP Transmission Control Protocol – A connection-based protocol for full-
duplex end-to-end communication channels. 

TO Time Out – This bit in the Status register is cleared in case the SX has 
been reset by the watchdog timer. 

UART Universal Asynchronous Receiver Transmitter – A device that receives 
and sends serial data. 

UDP User Datagram Protocol – A connection-less protocol to send data from 
a transmitter to a receiver. 

VP Virtual Peripheral™ – An implementation of a peripheral by software. 
W Working Register – The “Accumulator” of the SX controller. This reg-

ister is used to hold an operand or temporary values. 
WKED_B Wake-up edge B register – The bits in this register select the active sig-

nal edges at port B input that shall trigger a wake-up or an interrupt. 
WKPND_B Wake-up pending B register – The bits in this register indicate which 

port B input line has recently caused a wake-up or an interrupt. 
Z Zero bit – This bit in the Status register is set when certain instructions 

return a zero result. 
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3.3 Instruction Overview 

3.3.1 Comments on the Instruction Overview Tables 

If the “Cycles” column contains two values, the first one is valid when the branch is not taken, 
and the second one specifies the number of clock cycles required when the branch is executed. 
All values respect the “Turbo Mode” – for the “Compatibility Mode”, multiply the values by 
four. 

Instructions marked light gray must not follow a skip or conditional skip instruction. 

Before execution of instructions that are marked dark gray in the left column, the C flag must be 
set to a defined value in case the CARRYX option has been activated. You can find the required 
instruction (stc) or (clc) in the “Operations” column set in parentheses.  

Footnotes: 

(1)  Prescaler = 0, if assigned to the WDT. 
(2)  Push – Return address is saved to the stack. 
(3)  Pop – Return address is restored from the stack. 
(4)  Restore – w, STATUS and FSR are restored. 
(5)  Restore Page – Bits PA2...0 are restored. 

Abbreviations: 

Addr = Address 
C = C- (Carry-) Flag 
DC = DC- (Digit Carry-) Flag 
fr = File Register 
Const = Constant 
pc = Program Counter 
(pc) = pc will only be changed when a condition evaluates to true 
PA = Page Address Bit 
PD = Power Down Bit 
TO = Time Out Bit 
Z = Z- (Zero-) Flag 
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3.3.2 Instructions in Alphabetic Order 

SX Assembly Instructions in Alphabetic Order 
Instruction Words Cycles Changes Operation 
ADD fr, #Const 2 2 fr, w, C, DC, Z fr = fr + Const (CLC) 
ADD fr, w 1 1 fr, C, DC, Z fr = fr + w  (CLC) 
ADD fr1, fr2 2 2 fr, w, C, DC, Z fr1 = fr1 + fr2 (CLC) 
ADD w, fr 1 1 w, C, DC, Z w = w + fr  (CLC) 
ADDB fr1, /fr2.Bit 2 2 fr1, Z fr1 = fr1 + NOT fr2.Bit 
ADDB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 + fr2.Bit 
AND fr, #Const 2 2 fr, w, Z fr = fr AND Const 
AND fr, w 1 1 fr, Z fr = fr AND w 
AND fr1, fr2 2 2 fr1, w, Z fr1 = fr1 AND fr2 
AND w, #Const 1 1 w, Z w = w AND Const 
AND w, fr 1 1 w, Z w = w AND fr 
BANK fr 1 1 fsr fr.(7-5) -> fsr.(7-5) 
CALL Addr 1 3 pc pc = Addr, Push (2) 
CJA fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr > Const (CLC) 
CJA fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 > fr2 (STC) 
CJAE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr >= Const (STC) 
CJAE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 >= fr2 (STC) 
CJB fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr < Const (STC) 
CJB fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 < fr2 (STC) 
CJBE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr <= Const (CLC) 
CJBE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 <= fr2 (STC) 
CJE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr = Const (STC) 
CJE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 = fr2 (STC) 
CJNE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr <> Const (STC) 
CJNE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 <> fr2 (STC) 
CLC 1 1 C C-Flag = 0 
CLR !wdt 1 1 wdt, TO, PD !wdt = 0, TO = 1, PD = 1 (1) 
CLR fr 1 1 fr, Z fr = 0 
CLR w 1 1 w, Z w = 0 
CLRB fr.Bit 1 1 fr.Bit fr.Bit = 0 
CLZ 1 1 Z Z = 0 
CSA fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr > Const (CLC) 
CSA fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 > fr2 (STC) 
CSAE fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr >= Const (STC) 
CSAE fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 >= fr2 (STC) 
CSB fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr < Const (STC) 
CSB fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 < fr2 (STC) 
CSBE fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr <= Const (CLC) 
CSBE fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 <= fr2 (STC) 
CSE fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr = Const (STC) 
CSE fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 = fr2 (STC) 
CSNE fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr <> Const (STC) 
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SX Assembly Instructions in Alphabetic Order 
Instruction Words Cycles Changes Operation 
CSNE fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 <> fr2 (STC) 
DEC fr 1 1 fr, Z fr = fr – 1 
DECSZ fr 1 1/3 fr fr = fr - 1, pc++, if fr = 0 
DJNZ fr, Addr 2 2/4 fr, (pc) fr = fr - 1, pc = Addr, if fr <> 0 
Instruction Words Cycles Changes Operation 
IJNZ fr, Addr 2 2/4 fr, (pc) fr = fr + 1, pc = Addr, if fr <> 0 
INC fr 1 1 fr, Z fr = fr + 1 
INCSZ fr 1 1/3 fr, (pc) fr = fr + 1, pc++, if fr = 0 
IREAD 1 4 w, m (m:w) -> m:w 
JB fr.Bit, Addr 2 2/4 (pc) pc = Addr, if fr.Bit = 1 
JC Addr 2 2/4 (pc) pc = Addr, if C = 1 
JMP Addr 1 3 pc pc = Addr 
JMP pc+w  1 3 pc, C, DC, Z pc = Addr+w                            (CLC) 
JMP w 1 3 pc pc = w 
JNB fr.Bit, Addr 2 2/4 pc pc = Addr, if fr.Bit = 0 
JNC Addr 2 2/4 pc pc = Addr, if C = 0 
JNZ Addr 2 2/4 pc pc = Addr, if Z = 0 
JZ Addr 2 2/4 pc pc = Addr, if Z = 1 
MODE Const 1 1 m m = Const 
MOV !option, #Const 2 2 Option, w Option = Const 
MOV !option, fr 2 2 Option, w, Z Option = fr 
MOV !option, w 1 1 Option Option = w 
MOV !port, #Const 2 2 !port, w Port-Config. = Const 
MOV !port, fr 2 2 !port, w, Z Port-Config. = fr 
MOV !port, w 1 1 !port Port-Config. = w 
MOV fr, #Const 2 2 fr, w  fr = Const 
MOV fr, w 1 1 fr fr = w 
MOV fr1, fr2 2 2 fr1, w, Z fr1 = fr2 
MOV m, #Const 1 1 m m = Const 
MOV m, fr 2 2 m, w, Z m = fr 
MOV m, w 1 1 m m = w 
MOV w, #Const 1 1 w w = Const 
MOV w, fr 1 1 w, Z w = fr 
MOV w, /fr 1 1 w, Z w = NOT fr 
MOV w, ++fr 1 1 w, Z w = fr + 1 
MOV w, <<fr 1 1 w, C w = RL fr 
MOV w, <>fr 1 1 w w = SWAP fr 
MOV w, >>fr 1 1 w, C w = RR fr 
MOV w, --fr 1 1 w, Z w = fr – 1 
MOV w, fr-w 1 1 w, C, DC, Z w = fr – w                               (STC) 
MOV w, m 1 1 w w = m 
MOVB fr1.Bit, /fr2.Bit 4 4 fr1.Bit fr1.Bit = NOT fr2.Bit 
MOVB fr1.Bit, fr2.Bit 4 4 fr1.Bit fr1.Bit = fr2.Bit 
MOVSZ w, ++fr 1 1 w w = fr + 1, pc++, if w = 0 
MOVSZ w, --fr 1 1 w w = fr – 1, pc++, if w = 0 
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SX Assembly Instructions in Alphabetic Order 
Instruction Words Cycles Changes Operation 
NOP 1 1  -  - 
NOT fr 1 1 fr, Z fr = fr XOR $FF 
NOT w 1 1 w, Z w = w XOR $FF 
OR fr, #Const 2 2 fr, w, Z fr = fr OR Const 
OR fr, w 1 1 fr fr = fr OR w 
OR fr1, fr2 2 2 fr1, w, Z fr1 = fr1 OR fr2 
OR w, #Const 1 1 w, Z w = w OR Const 
OR w, fr 1 1 w, Z w = w OR fr 
PAGE Addr 1 1 PA2-0 PA2...PA0 = Addr.(11...9) 
RET 1 3 pc Pop (3) 
RETI 1 3 pc, C, DC, Z Pop, Restore (3) (4) 
RETIW 1 3 pc, C, DC, Z Pop, Restore, RTCC += w (3) (4) 
RETP 1 3 pc Pop, Restore Page (5) 
RETW Const 1 3 pc w = Const, Pop (3) 
RL fr 1 1 fr, C fr.(7..1) = fr.(6..0), fr.0 = C, C = fr.7 
RR fr 1 1 fr, C fr.(6..0) = fr.(7..1), fr.7 = C, C = fr.0 
SB fr.Bit 1 1/2 (pc) pc++, if fr.Bit = 1 
SC 1 1/2 (pc) pc++, if C = 1 
SETB fr.Bit 1 1 fr.Bit fr.Bit = 1 
SKIP 1 2 pc pc++ 
SLEEP 1 1 TO, PD TO = 1, PD = 0, Stop clock 
SNB fr.Bit 1 1/2 (pc) pc++, if fr.Bit = 0 
SNC 1 1/2 (pc) pc++, if C = 0 
SNZ 1 1/2 (pc) pc++, if Z = 0 
STC 1 1 C C = 1 
STZ 1 1 Z Z = 1 
SUB fr, #Const 2 2 fr, w, C, DC, Z fr = fr – Const (STC) 
SUB fr, w 1 1 fr, C, DC, Z fr = fr – 1 (STC) 
SUB fr1, fr2 2 2 fr1, w, C, DC, Z fr1 = fr1 - fr2 (STC) 
SUBB fr1, /fr2.Bit 2 2 fr1, Z fr1 = fr1 - NOT fr2.Bit (STC) 
SUBB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 - fr2.Bit (STC) 
SWAP fr 1 1 fr fr.(7..4) = fr.(3..0), fr.(3..0) = fr(7..4) 
SZ 1 1/2 (pc) pc++, if Z = 1 
TEST fr 1 1 Z Z = 1, if fr = 0 
TEST w 1 1 Z Z = 1, if w = 0 
XOR fr, #Const 2 2 fr, W, Z fr = fr XOR Const 
XOR fr, w 1 1 fr, Z fr = fr XOR w 
XOR fr1, fr2 2 2 fr, W, Z fr1 = fr1 XOR fr2 
XOR w, #Const 1 1 w, Z w = w XOR Const 
XOR w, fr 1 1 w, Z w = w XOR fr 
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3.3.3 Instructions by Functions 

SX Assembly Instructions by Functions 
Logical Instructions 

Instruction Words Cycles Changes Operation 
AND fr, #Const 2 2 fr, w, Z fr = fr AND Const 
AND fr, w 1 1 fr, Z fr = fr AND w 
AND fr1, fr2 2 2 fr1, w, Z fr1 = fr1 AND fr2 
AND w, #Const 1 1 w, Z w = w AND Const 
AND w, fr 1 1 w, Z w = w AND fr 
NOT fr 1 1 fr, Z fr = fr XOR $FF 
NOT w 1 1 w, Z w = w XOR $FF 
OR fr, w 1 1 fr fr = fr OR w 
OR fr1, fr2 2 2 fr1, w, Z fr1 = fr1 OR fr2 
OR w, #Const 1 1 w, Z w = w OR Const 
OR w, fr 1 1 w, Z w = w OR fr 
XOR fr, #Const 2 2 fr, W, Z fr = fr XOR Const 
XOR fr, w 1 1 fr, Z fr = fr XOR w 
XOR fr1, fr2 2 2 fr, W, Z fr1 = fr1 XOR fr2 
XOR w, #Const 1 1 w, Z w = w XOR Const 
XOR w, fr 1 1 w, Z w = w XOR fr 

 

SX Assembly Instructions by Functions 
Arithmetic and Shift Instructions 

Instruction Words Cycles Changes Operation 
ADD fr, #Const 2 2 fr, w, C, DC, Z fr = fr + Const (CLC) 
ADD fr, w 1 1 fr, C, DC, Z fr = fr + w (CLC) 
ADD fr1, fr2 2 2 fr, w, C, DC, Z fr1 = fr1 + fr2 (CLC) 
ADD w, fr 1 1 w, C, DC, Z w = w + fr (CLC) 
ADDB fr1, /fr2.Bit 2 2 fr1, Z fr1 = fr1 + NOT fr2.Bit 
ADDB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 + fr2.Bit 
CLC 1 1 C C-Flag = 0 
CLR !wdt 1 1 wdt, TO, PD !wdt = 0, TO = 1, PD = 1 (1) 
CLR fr 1 1 fr, Z fr = 0 
CLR w 1 1 w, Z w = 0 
CLZ 1 1 Z Z = 0 
DEC fr 1 1 fr, Z fr = fr – 1 
DECSZ fr 1 1/2 fr fr = fr - 1, pc++, if fr = 0 
DJNZ fr, Addr 2 2/4 fr, (pc) fr = fr - 1, pc = Addr, if fr <> 0 
IJNZ fr, Addr 2 2/4 fr, (pc) fr = fr + 1, pc = Addr, if fr <> 0 
INC fr 1 1 fr, Z fr = fr + 1 
INCSZ fr 1 1/2 fr, (pc) fr = fr + 1, pc++, if fr = 0 
RL fr 1 1 fr, C fr.(7..1) = fr.(6..0), fr.0 = C, C = fr.7 
RR fr 1 1 fr, C fr.(6..0) = fr.(7..1), fr.7 = C, C = fr.0 
STC 1 1 C C = 1 
STZ 1 1 Z Z = 1 
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SX Assembly Instructions by Functions 
Arithmetic and Shift Instructions 

Instruction Words Cycles Changes Operation 
SUB fr, #Const 2 2 fr, w, C, DC, Z fr = fr – Const (STC) 
SUB fr, w 1 1 fr, C, DC, Z fr = fr – 1 (STC) 
SUB fr1, fr2 2 2 fr1, w, C, DC, Z fr1 = fr1 - fr2 (STC) 
SUBB fr1, /fr2.Bit 2 2 fr1, Z fr1 = fr1 - NOT fr2.Bit (STC) 
SUBB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 - fr2.Bit (STC) 
SWAP fr 1 1 fr fr.(7..4) = fr.(3..0), fr.(3..0) = fr(7..4) 

 

SX Assembly Instructions by Functions 
Bit Manipulation 

Instruction Words Cycles Changes Operation 
ADDB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 + fr2.Bit 
ADDB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 + fr2.Bit 
CLRB fr.Bit 1 1 fr.Bit fr.Bit = 0 
MOVB fr1.Bit, /fr2.Bit 4 4 fr1.Bit fr1.Bit = NOT fr2.Bit 
MOVB fr1.Bit, fr2.Bit 4 4 fr1.Bit fr1.Bit = fr2.Bit 
SB fr.Bit 1 1/2 (pc) pc++, if fr.Bit = 1 
SETB fr.Bit 1 1 fr.Bit fr.Bit = 1 
SUBB fr1, /fr2.Bit 2 2 fr1, Z fr1 = fr1 - NOT fr2.Bit (STC) 
SUBB fr1, fr2.Bit 2 2 fr1, Z fr1 = fr1 - fr2.Bit (STC) 
SNB fr.Bit 1 1/2 (pc) pc++, if fr.Bit = 0 

 

SX Assembly Instructions by Functions 
MOV Instructions 

Instruction Words Cycles Changes Operation 
MOV !option, #Const 2 2 Option, w Option = Const 
MOV !option, fr 2 2 Option, w, Z Option = fr 
MOV !option, w 1 1 Option Option = w 
MOV !port, #Const 2 2 !port, w Port-Config. = Const 
MOV !port, fr 2 2 !port, w, Z Port-Config. = fr 
MOV !port, w 1 1 !port Port-Config. = w 
MOV fr, #Const 2 2 fr, w  fr = Const 
MOV fr, w 1 1 fr fr = w 
MOV fr1, fr2 2 2 fr1, w, Z fr1 = fr2 
MOV m, #Const 1 1 m m = Const 
MOV m, fr 2 2 m, w, Z m = fr 
MOV m, w 1 1 m m = w 
MOV w, #Const 1 1 w w = Const 
MOV w, fr 1 1 w, Z w = fr 
MOV w, /fr 1 1 w, Z w = NOT fr 
MOV w, ++fr 1 1 w, Z w = fr + 1 
MOV w, <<fr 1 1 w, C w = RL fr 
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SX Assembly Instructions by Functions 
MOV Instructions 

Instruction Words Cycles Changes Operation 
MOV w, <>fr 1 1 w w = SWAP fr 
MOV w, >>fr 1 1 w, C w = RR fr 
MOV w, --fr 1 1 w, Z w = fr – 1 
MOV w, fr-w 1 1 w, C, DC, Z w = fr – w                               (STC) 
MOV w, m 1 1 w w = m 
MOVB fr1.Bit, /fr2.Bit 4 4 fr1.Bit fr1.Bit = NOT fr2.Bit 
MOVB fr1.Bit, fr2.Bit 4 4 fr1.Bit fr1.Bit = fr2.Bit 
MOVSZ w, ++fr 1 1 w w = fr + 1, pc++, if w = 0 
MOVSZ w, --fr 1 1 w w = fr – 1, pc++, if w = 0 

 

SX Assembly Instructions by Functions 
Program Flow 

Instruction Words Cycles Changes Operation 
CALL Addr 1 3 pc pc = Addr, Push (2) 
CJA fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr > Const (CLC) 
CJA fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 > fr2 (STC) 
CJAE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr >= Const (STC) 
CJAE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 >= fr2 (STC) 
CJB fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr < Const (STC) 
CJB fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 < fr2 (STC) 
CJBE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr <= Const (CLC) 
CJBE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 <= fr2 (STC) 
CJE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr = Const (STC) 
CJE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 = fr2 (STC) 
CJNE fr, #Const, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr <> Const (STC) 
CJNE fr1, fr2, Addr 4 4/6 w, C, DC, Z, (pc) pc = Addr, if fr1 <> fr2 (STC) 
CSA fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr > Const (CLC) 
CSA fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 > fr2 (STC) 
CSAE fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr >= Const (STC) 
CSAE fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 >= fr2 (STC) 
CSB fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr < Const (STC) 
CSB fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 < fr2 (STC) 
CSBE fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr <= Const (CLC) 
CSBE fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 <= fr2 (STC) 
CSE fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr = Const (STC) 
CSE fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 = fr2 (STC) 
CSNE fr, #Const 3 3/6 w, C, DC, Z, (pc) pc++, if fr <> Const (STC) 
CSNE fr1, fr2 3 3/6 w, C, DC, Z, (pc) pc++, if fr1 <> fr2 (STC) 
DECSZ fr 1 1/3 fr fr = fr - 1, pc++, if fr = 0 
DJNZ fr, Addr 2 2/4 fr, (pc) fr = fr - 1, pc = Addr, if fr <> 0 
IJNZ fr, Addr 2 2/4 fr, (pc) fr = fr + 1, pc = Addr, if fr <> 0 
INCSZ fr 1 1/3 fr, (pc) fr = fr + 1, pc++, if fr = 0 
JB fr.Bit, Addr 2 2/4 (pc) pc = Addr, if fr.Bit = 1 
JC Addr 2 2/4 (pc) pc = Addr, if C = 1 
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SX Assembly Instructions by Functions 
Program Flow 

Instruction Words Cycles Changes Operation 
JMP Addr 1 3 pc pc = Addr 
JMP pc+w  1 3 pc, C, DC, Z pc = Addr+w                                 (CLC) 
JMP w 1 3 pc pc = w 
JNB fr.Bit, Addr 2 2/4 pc pc = Addr, if fr.Bit = 0 
JNC Addr 2 2/4 pc pc = Addr, if C = 0 
JNZ Addr 2 2/4 pc pc = Addr, if Z = 0 
JZ Addr 2 2/4 pc pc = Addr, if Z = 1 
MOVSZ w, ++fr 1 1 w w = fr + 1, pc++, if w = 0 
MOVSZ w, --fr 1 1 w w = fr – 1, pc++, if w = 0 
PAGE Addr 1 1 PA2-0 PA2...PA0 = Addr.(11...9) 
RET 1 3 pc Pop (3) 
RETI 1 3 pc, C, DC, Z Pop, Restore (3) (4) 
RETIW 1 3 pc, C, DC, Z Pop, Restore, RTCC += w (3) (4) 
RETP 1 3 pc Pop, Restore Page (5) 
RETW Const 1 3 pc w = Const, Pop    (3) 
SB fr.Bit 1 1/2 (pc) pc++, if fr.Bit = 1 
SC 1 1/2 (pc) pc++, if C = 1 
SKIP 1 2 pc pc++ 
SNB fr.Bit 1 1/2 (pc) pc++, if fr.Bit = 0 
C 1 1/2 (pc) pc++, if C = 0 
SNZ 1 1/2 (pc) pc++, if Z = 0 
SZ 1 1/2 (pc) pc++, if Z = 1 
TEST fr|w 1 1 Z Z = 1, if fr = 0 

 

SX Assembly Instructions by Functions 
System Control 

Instruction Words Cycles Changes Operation 
MODE Const 1 1 m m.(3-0) = Const 
BANK fr 1 1 Fsr fr.(7-5) -> fsr.(7-5) 
IREAD 1 4 w, m (m:w) -> m:w 
SLEEP 1 1 TO, PD TO = 1, PD = 0, Stop clock 

 

SX Assembly Instructions by Functions 
Miscellaneous Instructions 

Instruction Words Cycles Changes Operation 
NOP  1 1  -   - 
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3.4 Special Registers 

3.4.1 Option 

OPTION 
7 6 5 4 3 2 ... 0 

Prescaler Divide-by 
3 2 1 RTCC Watchdog 
0 0 0 1/2 1/1 
0 0 1 1/4 1/2 
0 1 0 1/8 1/4 
0 1 1 1/16 1/8 
1 0 0 1/32 1/16 
1 0 1 1/64 1/32 
1 1 0 1/128 1/64 

RTW 
 
 
 
 

1 = $01: RTCC 
0 = $01: W 

RTI 
RTCC 

Interrupt 
 
 

1 = disabled 
0 = enabled 

RTS 
RTCC-Clock 

 
 
 

1 = extern 
0 = intern 

RTE 
RTCC 

External 
Clock Edge 

 
1 = negative
0 = positive 

PSA 
Prescaler

 
 
 

1 = WDT
0 = RTCC

1 1 1 1/256 1/128 
 

3.4.2 Status 

STATUS 
7 ... 5 4 3 2 1 0 

Program Memory 
Page Address 

7 6 5 Page 
0 0 0  0 = $000-$1ff 
0 0 1  1 = $200-$3ff 
0 1 0  2 = $400-$5ff 
0 1 1  3 = $600-$7ff 
1 0 0  4 = $800-$9ff 
1 0 1  5 = $a00-$bff 
1 1 0  6 = $c00-$dff 
1 1 1  7 = $e00-$fff 

TO 
 

 0 = Watchdog Timeout
 1 = Power Up, 
  clr !wdt, 
  sleep 

PD 
 

 0 = sleep, 
 1 = Power Up,
  clr !wdt 

Z 
 

Zero 
Flag 

DC 
 

Digit 
Carry 

C 
 

Carry 
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3.4.3 FSR 

FSR 
7 ... 5 4 ... 0 

Data Memory 
Bank Address 

7 6 5 Bank 
0 0 0  0 = $00-$1f 
0 0 1  1 = $20-$3f 
0 1 0  2 = $40-$5f 
0 1 1  3 = $60-$7f 
1 0 0  4 = $80-$9f 
1 0 1  5 = $a0-$bf 
1 1 0  6 = $c0-$df 
1 1 1  7 = $e0-$ff 

Register Address 
 

 

 

3.5 Addressing the Port Control Registers 

3.5.1 SX 18/20/28 

Before writing to a port control register using a mov !r?, w instruction, the MODE (m) register 
must be loaded with a value in order to access the desired control register. The following table 
lists the allowed values for m, and which control registers are affected by a subsequent mov !r?, 
w instruction for SX 18/20/28 controllers. 

MODE (m) Register and mov !r?, w (SX18/20/28) 
m mov !ra, w mov !rb, w mov !rc, w 

$00    
$01    
$02    
$03    
$04    
$05    
$06    
$07    
$08  exchange CMP_B  
$09  exchange WKPND_B  
$0a  write WKED_B  
$0b  write WKEN_B  
$0c  write ST_B  write ST_C  
$0d write LVL_A  write LVL_B  write LVL_C  
$0e write PLP_A  write PLP_B  write PLP_C  
$0f write TRIS_A  write TRIS_B  write TRIS_C  
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3.5.2 SX 48/52 

The table below lists the allowed values for m, and which control registers are affected by a sub-
sequent mov !r?, w instruction for SX 48/52 controllers. 

MODE (m) Register and mov !r?, w (SX48/52) 
m mov !ra, w mov !rb, w mov !rc, w mov !rd, w mov !re, w 

$00  read T1CPL  read T2PL    
$01  read T1CPH  read T2CPH    
$02  read T1R2CML  read T2R2CML    
$03  read T1R2CMH  read T2R2CMH    
$04  read T1R1CML  read T2R1CML    
$05  read T1R1CMH  read T2R1CMH    
$06  read T1CNTB  read T2CNTB    
$07  read T1CNTA  read T2CNTA    
$08  exchange CMP_B    
$09  exchange WKPND_B    
$0a  write WKED_B     
$0b  write WKEN_B     
$0c  read ST_B  read ST_C  read ST_D  read ST_E  
$0d read LVL_A  read LVL_B  read LVL_C  read LVL_D  read LVL_E  
$0e read PLP_A  read PLP_B  read PLP_C  read PLP_D  read PLP_E  
$0f read TRIS_A  read TRIS_B  read TRIS_C  read TRIS_D  read TRIS_E  
$10  clear Timer 1 clear Timer 2   
$11      
$12  write T1R2CML  write T2R2CML    
$13  write T1R2CMH  write T2R2CMH    
$14  write T1R1CML  write T2R1CML    
$15  write T1R1CMH write T2R1CMH   
$16  write T1CNTB  write T2CNTB    
$17  write T1CNTA write T2CNTA    
$18  exchange CMP_B    
$19  exchange WKPND_B    
$1a  write WKED_B     
$1b  write WKEN_B     
$1c  write ST_B  write ST_C  write ST_D  write ST_E  
$1d write LVL_A  write LVL_B  write LVL_C  write LVL_D  write LVL_E  
$1e write PLP_A  write PLP_B  write PLP_C  write PLP_D  write PLP_E  
$1f write TRIS_A  write TRIS_B  write TRIS_C  write TRIS_D  write TRIS_E  
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These abbreviations are used for the timer registers: 
T1CPH, T2CPH: Timer 1/2 capture (1), high byte 
T1CPL, T2CPL:  Timer 1/2 capture (1), low byte 
T1R1CMH, T2R1CMH: Timer 1/2 register R1, high byte 
T1R1CML, T2R1CML: Timer 1/2 register R1, low byte 
T1R2CMH, T2R2CMH: Timer 1/2 register R2, high byte 
T1R2CML, T2R2CML: Timer 1/2 register R2, low byte 
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3.6 Port Control Registers 

3.6.1 TRIS (Direction) 

TRIS_? (Direction) Register 
 7 6 5 4 3 2 1 0 

A 1= Input 
0 = Output 

1= Input 
0 = Output 

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output 

B 1= Input 
0 = Output 

1= Input 
0 = Output 

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output 

C 1= Input 
0 = Output 

1= Input 
0 = Output 

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output 

D 1= Input 
0 = Output 

1= Input 
0 = Output 

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output 

E 1= Input 
0 = Output 

1= Input 
0 = Output 

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output

1= Input 
0 = Output 

Dark gray:  SX 52 only 
Light gray: SX 48/52 only 

 

3.6.2 LVL (Level Configuration) 

LVL_? (Level Configuration) Register 
 7 6 5 4 3 2 1 0 

A 1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS 

B 1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS 

C 1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS 

D 1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS 

E 1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS 

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS

1 = TTL 
0 = CMOS 

Dark gray:  SX 52 only 
Light gray: SX 48/52 only 
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3.6.3 PLP (Pull-up Configuration) 

PLP_? (Pull-up Configuration) Register 
 7 6 5 4 3 2 1 0 

A 1 = inactive 
0 = active 

1 = inactive 
0 = active 

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive 
0 = active 

1 = inactive
0 = active

B 1 = inactive 
0 = active 

1 = inactive 
0 = active 

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive 
0 = active 

1 = inactive
0 = active

C 1 = inactive 
0 = active 

1 = inactive 
0 = active 

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive 
0 = active 

1 = inactive
0 = active

D 1 = inactive 
0 = active 

1 = inactive 
0 = active 

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive 
0 = active 

1 = inactive
0 = active

E 1 = inactive 
0 = active 

1 = inactive 
0 = active 

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive
0 = active

1 = inactive 
0 = active 

1 = inactive
0 = active

Dark gray:  SX 52 only 
Light gray: SX 48/52 only 

 

3.6.4 ST (Schmitt Trigger Configuration) 

ST_? (Schmitt Trigger Configuration) Register 
 7 6 5 4 3 2 1 0 

B 1 = disable 
0 = enable 

1 = disable 
0 = enable 

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable 
0 = enable 

1 = disable
0 = enable

C 1 = disable 
0 = enable 

1 = disable 
0 = enable 

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable 
0 = enable 

1 = disable
0 = enable

D 1 = disable 
0 = enable 

1 = disable 
0 = enable 

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable 
0 = enable 

1 = disable
0 = enable

E 1 = disable 
0 = enable 

1 = disable 
0 = enable 

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable 
0 = enable 

1 = disable
0 = enable

Dark gray:  SX 52 only 
Light gray: SX 48/52 only 

 

3.6.5 WKEN_B (Wake Up Enable) 

WKEN_B (Wake Up Enable) Register 
 7 6 5 4 3 2 1 0 

B 1 = disable 
0 = enable 

1 = disable 
0 = enable 

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable
0 = enable

1 = disable 
0 = enable 

1 = disable
0 = enable
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3.6.6 WKED_B (Wake Up Edge Configuration) 

WKED_B (Wake Up Edge Configuration) Register 
 7 6 5 4 3 2 1 0 

B 1 = neg. 
0 = positive 

1= neg. 
0 = positive 

1= neg. 
0 = positive

1= neg. 
0 = positive

1= neg. 
0 = positive

1= neg. 
0 = positive

1= neg. 
0 = positive

1= neg. 
0 = positive 

 

3.6.7 WKPND_B (Wake Up Pending Flags) 

WKPND_B (Wake Up Pending Flags) Register 
 7 6 5 4 3 2 1 0 

B 1= Edge 
0 = none 

1= Edge 
0 = none 

1= Edge 
0 = none 

1= Edge 
0 = none 

1= Edge 
0 = none 

1= Edge 
0 = none 

1= Edge 
0 = none 

1= Edge 
0 = none 

mov !rb, w copies the contents in w to WKPND_B, and moves the previous contents 
of WKPND_B into w. 

 

3.6.8 CMP_B (Comparator) 

CMP_B (Comparator) Register 
 7 6 5 4 3 2 1 0 

B Comparator 
1 = disable 
0 = enable 

Output 
1 = disable 
0 = enable 

     Result 
1 = URB2 > URB1  
0 = URB2 < URB1 

mov !rb, w copies the contents in w to CMP_B, and moves the previous contents of 
CMP_B into w. 
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3.6.9 T1CNTA (Timer 1 Control A) (SX 48/52 only) 

T1CNTA Register 
7 6 5 4 3 2 1 0 

T1CPF2 T1CPF1 T1CPIE T1CMF2 T1CMF1 T1CMIE T1OVF T1OVIE 
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* This bit remains set until cleared by the application. 

 

3.6.10 T1CNTB (Timer 1 Control B) (SX 48/52 only)  
T1CNTB-Register 

7 6 5 4 ... 2 1 ... 0 
RTCCOV T1CPEDG T1IEXEDG T1PS2 ... 0 (Prescaler) T1MC1 ... 0 (Mode) 

4 3 2 Divide-by 1 0 Mode 

0 0 0 1/1 0 0 Software Timer 

0 0 1 1/2 0 1 PWM 

0 1 0 1/4 1 0 Capture/Compare

0 1 1 1/8 1 1 External event 

1 0 0 1/16 

1 0 1 1/32 

1 1 0 1/64 

 
 1
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w
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1 1 1 1/128 

 

* This bit remains set until cleared by the application. 
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3.6.11 T2CNTA (Timer 2 Control A) (SX 48/52 only) 

T2CNTA-Register 
7 6 5 4 3 2 1 0 

T2CPF2 T2CPF1 T2CPIE T2CMF2 T2CMF1 T2CMIE T2OVF T2OVIE 
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* This bit remains set until cleared by the application. 

 

3.6.12 T2CNTB (Timer 2 Control B) (SX 48/52 only) 

T2CNTB Register 
7 6 5 4 ... 2 1 ... 0 

PORTRD T1CPEDG T1IEXEDG T1PS2 ... 0 (Prescaler) T1MC1 ... 0 (Mode) 
4 3 2 Divide-by 1 0 Mode 

0 0 0 1/1 0 0 Software Timer 

0 0 1 1/2 0 1 PWM 

0 1 0 1/4 1 0 Capture/Compare 

0 1 1 1/8 1 1 External Event 

1 0 0 1/16 

1 0 1 1/32 

1 1 0 1/64 
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4 Section IV - Applications 
This part of the book presents various application examples that have all been tested in “real 
life”. Nevertheless, these are not “the ultimate solutions” – they have been included to give you 
some ideas and hints for your own applications and projects. 

Please note that neither the author nor the publisher can make any guarantee that the shown examples are 
free of errors, functionally suited for specific applications, or save. If you plan to use any of these applica-
tions, or parts of the software presented here in life support systems, or under conditions where failure of 
the software would endanger the life or safety of the user, it is your own obligation to decide if the software 
or parts of it are suitable for such applications.  

As an important source for ideas, ready-to-use Virtual Peripherals, and tutorial material, you 
should visit Ubicom’s Web Site frequently as it is regularly updated with new information, appli-
cation notes, and links to other URLs that offer valuable information about the SX. 

4.1 Function Generators with the SX 
If you hook up a D/A converter to the SX’s port pins, digital values that are output to those pins 
can be converted into analogue signals.  

There are a great number of various DACs available in the market that can be used together with 
the SX, so you should be able to find the right parts quite easily.  

Depending on what precision is asked for, 8-bit converters can be used, but an interesting alter-
native is the use of 12-bit converters. As you know, the SX is able to read data tables from its pro-
gram memory using the iread instruction. After an iread, the lower 8 bits of the memory read 
can be found in w, and the higher 4 bits are stored in m. ready to be sent to a 12-bit DAC connected 
to “1 ½” ports. 

Other precisions as 16 bits are also possible, finally limited by the number of free port pins avail-
able. 
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4.1.1 A Simple Digital-Analog Converter 

For your first tries, hooking up a simple R-2R network to the SX is fine enough: 

 

Please note that the output of this circuit cannot drive heavy loads, and that the linearity and pre-
cision mainly depends on the resistor tolerances. 

If you “spend” an additional OP-amp, the output can drive higher loads without loss of linearity: 

 

You can test the following program examples with each of the two DACs. In case you have a 
“better” one on hand, you could use it as well. 

The sample programs are designed to drive the DAC through port C. 

Depending on what signal you want to generate, it might be necessary to filter the output 
through a low pass (if you are using the OP amp version, you could add a capacitor parallel to 
the feedback resistor to turn the OP amp into a low pass filter. For the first tests, there is no need 
for filtering though. 

RC7        RC6       RC5     RC4     RC3       RC2       RC1      RC0

Output 

2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ

1 kΩ 1 kΩ 1 kΩ 1 kΩ 1 kΩ 1 kΩ 1 kΩ
2 kΩ 

RC7      RC6        RC5      RC4      RC3      RC2        RC1       RC0 

2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 

1 kΩ 1 kΩ 1 kΩ 1 kΩ 1 kΩ 1 kΩ 1 kΩ 
2 kΩ 

Output - 
+

1 kΩ 
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4.1.2 A Ramp Generator 

Generating a ramp signal is an easy task: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP001.SRC 
; ================================================================= 
include "Setup28.inc" 
 
RESET   Main 
 
org     $000 
 
Main 
  clr rc 
  mov !rc, #0 
 
Loop 
  inc rc          ; 1 
  jmp Loop        ; 3 

 

This simple program configures all Port C pins as outputs, and keeps incrementing the Port C 
data register that periodically goes through the values from 0 to 255. 

If you hook up an oscilloscope to the DAC output, you can check the output signal. 

The program loop requires 4 clock cycles, i.e. 80 ns (at  50 MHz clock frequency). Therefore, after 
256 * 80 ns rc has counted from 0 to 255, resulting in a frequency of approximately 49 kHz for the 
ramp signal. 

4.1.2.1 A Ramp Generator With a Pre-defined Frequency 

In most cases, a frequency of 49 kHz is not what you really want, therefore, this simple program 
requires some enhancements in order to generate a pre-defined frequency. 

The first idea would be to add some delay loops inside the main loop to reduce the frequency, 
but we should keep in mind that one of the real strengths of the SX controller is its capability of 
precisely timed interrupts that allow for time-controlled Virtual Peripherals. Therefore, let’s 
make use of this feature to come to a general-purpose solution. 

Before starting the editor to type in the new program, some planning, and calculations are a good 
time investment, so let’s first define the specs for the Virtual Peripheral: 

• Generate a ramp signal as a “background task” 
• Desired Frequency, e.g. 1 kHz 
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• Interface to the mainline program: Bit 0 in variable Flags is used to control the generator: 
set = generator active, clear = generator disable  

In the next step, it is necessary to figure out the correct timing. A frequency of 1 kHz means a 
period of 1 ms, i.e. rc must go through the values from 0…255 within one millisecond, and this 
means that rc must be incremented every 1 ms/256  ≈ 3.9 µs. If we assume a system clock of 50 
MHz, each clock cycle takes 20 ns, and if we calculate 3.9 µs/20 ns, we end up in 195. This means 
rc must be incremented every 196 clock cycles. 

When we reverse this calculation to find out the generated frequency, the result is 1/(195 * 256 * 
20 ns) = 998.4 Hz. The reason for the difference from the expected 1 kHz is caused by some 
rounding errors we have made. 

If we accept that the generated signal amplitude is less than VDD, we can easily generate exactly 1 
kHz by reducing the maximum value in rc from 255 to 249, i.e. we only do 250 rc increments per 
signal period, and do an increment every 200 clock cycles. The resulting frequency is now 1/(200 
* 250 * 20 ns) = 1 kHz. 

Now let’s write the program: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP002.SRC 
; ================================================================= 
include  "Setup28.inc" 
 
id      'RampGen'                              
reset   Main 
 
             org  $08 
 
flags0       ds 1 
flags1       ds 1 
localTemp0   ds 1 
localTemp1   ds 1 
localTemp2   ds 1 
isrTemp      ds 1 
 
dacEnable    equ  flags0.0 
 
toggleDac  macro 
  xor        flags0, #%00000001 
endm 
 
             org  $10 
bank0        =    $ 
dacOutVal    ds   1 
 
 
;*********************************************************************** 
; Port Assignment 
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;*********************************************************************** 
 
RC_latch     equ   %00000000 ; Port C latch init 
RC_DDIR      equ   %00000000 ; Port C DDIR value  
       
  
;*********************************************************************** 
; Port and pin definitions 
;*********************************************************************** 
 
DAC_PORT     equ   rc 
 
;*********************************************************************** 
; Program constants 
;*********************************************************************** 
 
int_period   equ   200 ;RTCC Interrupt rate 
DDIR_W       equ   $0F ;Write Port Direction 
 
INTERRUPT_ORG      equ $000 
MAIN_ORG           equ $1fb 
MAIN_PROGRAM_ORG   equ $600 
 
      org    INTERRUPT_ORG 
            
;*********************************************************************** 
ISR 
;*********************************************************************** 
 
      bank dacOutVal 
      snb   dacEnable 
      jmp   :Continue 
      clr   dacOutVal 
      jmp   :dacOut 
:Continue 
      inc   dacOutVal 
      cjb   dacOutVal, #250, :dacOut 
      clr   dacOutVal 
:dacOut 
      mov   DAC_PORT, dacOutVal 
     
isrOut 
      mov   w, #-int_period 
      retiw 
                                     
      org   MAIN_ORG 
       
Main     
      page  _Main 
      jmp   _Main 
 
      org   MAIN_PROGRAM_ORG 
       
_Main 
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      mov   w, #RC_latch ;Initialize RC data latch 
      mov   rc, w       
      mode DDIR_W   ; point MODE to write DDIR register 
      mov   w, #RC_DDIR  ; Setup RC Direction register 
      mov   !rc, w        
 
include "Clr2x.inc" 
 
RTCC_ON      =  %10000000   ; Enables RTCC at address $01 (RTW hi) 
                            ; *WREG at address $01 (RTW lo) by 
     ; default 
RTCC_PS_OFF  =  %00001000  ; Assigns prescaler to RTCC (PSA lo) 
PS_111       =  %00000111  ; RTCC = 1:256, WDT = 1:128 
 
OPTIONSETUP  equ RTCC_ON | RTCC_PS_OFF | PS_111 
 
      mov   !option, #OPTIONSETUP 
      bank localTemp0 
      setb  dacEnable 
mainLoop 
      decsz localTemp0 
        jmp mainLoop 
      decsz localTemp1 
        jmp mainLoop 
      decsz localTemp2 
        jmp mainLoop 
      toggleDac 
      jmp   mainLoop   
 
END 

 

In this program, we do not increment rc directly, but use a separate variable dacOutVal. This is 
because we need to test if the increment has exceeded the maximum value, i.e. if the variable 
content has reached 250. In this case, we reset dacOutVal to 0. If we would reset rc directly, the 
value 250 would be sent to the output lines for some clock cycles before it goes to 0. This is not a 
big deal here, but in general, it is a good idea to avoid “spikes” on the output lines, 

At the beginning of the ISR, we check if the dacEnable bit is set. If this is not the case, we force 
dacOutVal to 0, and skip the instructions that are responsible for ramp generation. Forcing 
dacOutVal to 0 is important to avoid that the DAC output signal remains “stuck” at some arbi-
trary level when the generator is turned off, depending on the contents of dacOutVal at that time. 

At the end of the ISR, dacOutVal is copied into rc, to send the current output value to the DAC, 
and we return from the interrupt with w initialized to -200 to make sure that the ISR gets called 
again after 200 clock cycles. 

As the mainline program has nothing else to do, we keep it busy by counting through a 3-level 
delay loop, and toggle the generator on/off flag when the delay has ended, just to demonstrate 
that the on/off toggle works as expected. 
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4.1.3 Generating a Triangular Waveform 

The next step from a ramp to a triangular waveform is not too difficult. All we have to do is con-
tinuously increment the DAC value from 0 to a maximum, and back to 0 again. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP003.SRC 
; ================================================================= 
include "Setup28.inc" 
id      'TriGen'                              
reset   Main 
 
             org   $10 
flags0       ds 1 
flags1       ds 1 
localTemp0   ds 1 
localTemp1   ds 1 
localTemp2   ds 1 
isrTemp      ds 1 
 
dacSlope     equ   flags0.0 
 
             org   $10 
bank0        =     $ 
 
dacOutVal    ds    1 
 
;*********************************************************************** 
; Port Assignment 
;*********************************************************************** 
 
RC_latch     equ    %00000000  ; Port C latch init 
RC_DDIR      equ    %00000000  ; Port C DDIR value  
       
;*********************************************************************** 
; Port and pin definitions 
;*********************************************************************** 
 
DAC_PORT     equ   rc 
 
;*********************************************************************** 
; Program constants 
;*********************************************************************** 
 
int_period   equ   100   ; RTCC Interrupt rate 
 
DDIR_W       equ   $0F   ; Write Port Direction 
 
  
       org    $000 
          
;*********************************************************************** 
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ISR 
;*********************************************************************** 
 
      snb   dacSlope   ; If Flags.0 set, negative slope 
        jmp :Down 
      inc   dacOutVal   ; Generate positive slope 
      cjb   dacOutVal, #250, isrOut  ; Continue if less than 250, 
      dec   dacOutVal   ;  else reset to 249     
      setb  dacSlope   ; Set flag for negative slope 
:Down      ; Generate negative slope    
      dec   dacOutVal 
      sz     ; Continue is greater than 0, 
        jmp isrOut    ;  else 
      clrb  dacSlope   ;  clear the slope direction flag 
     
isrOut 
      mov   w, #-int_period 
      retiw 
                                     
      org   $1fb 
Main     
      page  _Main 
      jmp   _Main 
 
      org   $600 
_Main 
      mov   w, #RC_latch   ; Initialize RC data latch 
      mov   rc, w       
      mode DDIR_W    ; point MODE to write DDIR register 
      mov   w, #RC_DDIR   ; Setup RC Direction register 
      mov   !rc, w        
 
include "Clr2x.inc" 
 
RTCC_ON      =  %10000000     ; Enables RTCC at address $01 (RTW high) 
                              ; *WREG at address $01 (RTW low) by 
      ; default 
RTCC_PS_OFF  =  %00001000     ; Assigns prescaler to RTCC (PSA low) 
PS_111       =  %00000111     ; RTCC = 1:256, WDT = 1:128 
 
OPTIONSETUP  equ RTCC_ON | RTCC_PS_OFF | PS_111 
 
      mov   !option, #OPTIONSETUP 
      bank localTemp0 
mainLoop 
      jmp   mainLoop   
END 

 

The Triangle VP makes use of Flags.0 as the “Slope Direction Flag” to keep track of the slope that 
is currently generated. If the flag is set, a negative slope is generated (i.e. dacOutVal is decre-
mented). Otherwise, dacOutVal is incremented, resulting in a positive slope. 
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Please note how the change between the slopes is performed. If while generating the positive 
slope, dacOutVal has reached 250, the slope direction must be reversed. As rc already outputs 
249, the next value to be sent to rc is 248. Therefore, dacOutVal is decremented from 250 to 249, 
and the instructions for the negative slope are executed before leaving the ISR, thus dacOutVal is 
decremented once more before its contents (248) is copied to rc. 

If dacOutVal reaches 0 during the negative slope generation, the dacSlope flag is cleared. At this 
time, rc outputs 0, i.e. the next time the ISR is called, rc must be set to one. This is the case be-
cause dacOutVal is incremented at the next interrupt before it is copied to rc. 

As it takes 250 steps to generate the positive slope, and another 250 steps to generate the negative 
slope, it takes 500 steps to generate one complete period of the triangular signal. Therefore, it is 
necessary to call the ISR twice as often, i.e. every 100 clock cycles in order to maintain a frequency 
of 1 kHz. 

4.1.4 Generating Non-linear Waveforms 

The approach to generate non-linear waveforms by calculating f(t) in real-time is not a practical 
solution in many cases because the available arithmetical instructions of the SX are not powerful 
enough to perform the necessary calculations fast enough. 

Using a table to store enough points of the required waveform is a good alternative because ta-
ble-lookups can be performed very fast. 

Let’s pick up the example shown in the tutorial section of this book, and use it to generate a sine 
wave. For the first approach, we use a table that contains points for the sine function in the range 
from 0 up to 2π. 
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4.1.4.1 Sine Wave 

 

 

 

 

 

 

 

 

 

 

 

 
 
; ================================================================= 
; Programming the SX Microcontroller 
; APP004.SRC 
; ================================================================= 
include    "Setup28.inc" 
 
id         'SinGen1'   
reset       Main 
 
           org  $08 
 
dacIndex   ds 1 
 
;*********************************************************************** 
; Port Assignment 
;*********************************************************************** 
 
RC_latch   equ   %00000000      ; Port C latch init 
RC_DDIR    equ   %00000000      ; Port C DDIR value 
 
;*********************************************************************** 
; Pin Definitions       
;*********************************************************************** 
DAC_PORT   equ   rc 
 
  
;*********************************************************************** 

RC  U 

t
1. Quadrant 
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; Program constants 
;*********************************************************************** 
 
int_period equ   195  ; RTCC Interrupt rate 
 
DDIR_W     equ   $0F  ; Write Port Direction 
 
      org   $000 
ISR 
      mov  w, dacIndex  ; Load parameter for WtoSin 
      call WtoSin   ; Subroutine returns f(w) in w 
      page ISR   ; Adjust the page 
      mov  DAC_PORT, w  ; Output the value 
      inc  dacIndex   ; Next Index 
   
isrOut 
       mov  w, #-int_period 
       retiw 
WtoSin 
       page SinTable 
       jmp  w 
 
       org  $1fb 
     
Main     
       page _Main 
       jmp  _Main 
 
;*********************************************************************** 
       org  $400 
;*********************************************************************** 
SinTable 
  retw 127,130,133,136,139,143,146,149,152,155,158,161,164,167,170,173 
  retw 176,178,181,184,187,190,192,195,198,200,203,205,208,210,212,215 
  retw 217,219,221,223,225,227,229,231,233,234,236,238,239,240,242,243 
  retw 244,245,247,248,249,249,250,251,252,252,253,253,253,254,254,254 
  retw 254,254,254,254,253,253,253,252,252,251,250,249,249,248,247,245 
  retw 244,243,242,240,239,238,236,234,233,231,229,227,225,223,221,219 
  retw 217,215,212,210,208,205,203,200,198,195,192,190,187,184,181,178 
  retw 176,173,170,167,164,161,158,155,152,149,146,143,139,136,133,130 
  retw 127,124,121,118,115,111,108,105,102, 99, 96, 93, 90, 87, 84, 81 
  retw  78, 76, 73, 70, 67, 64, 62, 59, 56, 54, 51, 49, 46, 44, 42, 39 
  retw  37, 35, 33, 31, 29, 27, 25, 23, 21, 20, 18, 16, 15, 14, 12, 11 
  retw  10,  9,  7,  6,  5,  5,  4,  3,  2,  2,  1,  1,  1,  0,  0,  0 
  retw   0,  0,  0,  0,  1,  1,  1,  2,  2,  3,  4,  5,  5,  6,  7,  9 
  retw  10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35 
  retw  37, 39, 42, 44, 46, 49, 51, 54, 56, 59, 62, 64, 67, 70, 73, 76 
  retw  78, 81, 84, 87, 90, 93, 96, 99,102,105,108,111,115,118,121,124 
   
  
;*********************************************************************** 
       org  $600 
;*********************************************************************** 
_Main 
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      mov   w,#RC_latch  ; Initialize RC data latch 
      mov   rc,w       
      mode DDIR_W   ; point MODE to write DDIR register 
      mov   w,#RC_DDIR  ; Setup RC Direction register 
      mov   !rc,w        
 
include "Clr2x.inc" 
 
RTCC_PS_OFF  =  %00001000  ; Assigns prescaler to RTCC (PSA lo) 
PS_111       =  %00000111  ; RTCC = 1:256, WDT = 1:128 
 
OPTIONSETUP  = RTCC_PS_OFF | PS_111 
 
      mov   !option, #OPTIONSETUP 
      jmp   @mainLoop 
 
;*********************************************************************** 
; MAIN PROGRAM CODE  
;*********************************************************************** 
 
mainLoop 
      jmp   mainLoop 
END 

 

To generate a complete sine wave period, all 256 values in the table must be read in ascending 
order and sent to rc. We use dacIndex as an index into the table, and dacIndex is incremented at 
each ISR call. As the ISR is called after 195 clock cycles, we can calculate the frequency of the sine 
wave: 1/(195 * 256 * 20ns) = 1.0016 kHz. 

4.1.4.2 Sine Generator with a Defined Frequency 

If the tolerance of 1.6 Hz is not acceptable, we cannot simply reduce the maximum value for 
dacIndex to 249, and call the ISR every 200 clock cycles, as in the ramp generator sample above. 
In this case, the table would not be completely scanned, resulting in a partly sine wave. One 
method to increase the precision of the generated signal frequency is to reduce the table item 
count to 250 items. This requires a re-calculation of all the table values. 

A helpful tool to calculate the values for such tables is a spreadsheet program like Microsoft’s 
Excel (any other program will do the job as well, as long as it has the required functions avail-
able). Put the table index values into subsequent cells in one column, and let the spreadsheet 
program calculate the rounded function results into the cells of another column. Then use the 
export function of the program to save the contents of the result column to an ASCII file. You can 
then edit and re-format this file and finally paste it into the SX assembly source code file. 

Here are the necessary modifications: 
id    'SinGen2' 
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int_period equ   200   ; Call the ISR every 4 µs 
 
      org   $000 
ISR 
      mov  w, dacIndex 
      call WtoSin 
      page ISR 
      mov  DAC_PORT, w 
      inc  dacIndex 
      cjb  dacIndex, #250, isrOut 
      clr  dacIndex 
isrOut 
       mov  w, #-int_period 
       retiw 
 
;*********** Table for sin(x/249) for 0 >= x/249 <= 2π *************** 
; 
SinTable 
  retw 127,130,133,137,140,143,146,149,152,155,159,162,165,168,171,174 
  retw 177,180,183,185,188,191,194,196,199,202,204,207,209,212,214,216 
  retw 218,221,223,225,227,229,231,232,234,236,238,239,241,242,243,244 
  retw 246,247,248,249,250,250,251,252,252,253,253,254,254,254,254,254 
  retw 254,254,254,253,253,252,252,251,250,250,249,248,247,246,244,243 
  retw 242,241,239,238,236,234,232,231,229,227,225,223,221,218,216,214 
  retw 212,209,207,204,202,199,196,194,191,188,185,183,180,177,174,171 
  retw 168,165,162,159,155,152,149,146,143,140,137,133,130,127,124,121 
  retw 117,114,111,108,105,102, 99, 95, 92, 89, 86, 83, 80, 77, 74, 71 
  retw  69, 66, 63, 60, 58, 55, 52, 50, 47, 45, 42, 40, 38, 36, 33, 31 
  retw  29, 27, 25, 23, 22, 20, 18, 16, 15, 13, 12, 11, 10,  8,  7,  6 
  retw   5,  4,  4,  3,  2,  2,  1,  1,  0,  0,  0,  0,  0,  0,  0,  0 
  retw   1,  1,  2,  2,  3,  4,  4,  5,  6,  7,  8, 10, 11, 12, 13, 15 
  retw  16, 18, 20, 22, 23, 25, 27, 29, 31, 33, 36, 38, 40, 42, 45, 47 
  retw  50, 52, 55, 58, 60, 63, 66, 69, 71, 74, 77, 80, 83, 86, 89, 92 
  retw  95, 99,102,105,108,111,114,117,121,124 

Using this ISR, and the modified table together with the sample program should result in a sine 
wave signal of exactly 1 kHz. 

4.1.4.3 Superimposed Sine-Waves 

Please look at this modified ISR: 
id    'SinGen3'       
 
int_period equ   200   ; Call the ISR every 4 µs 
 
dacIndex  ds 2    ; Note: dacIndex now takes 2 bytes! 
dacOut    ds 2    ; New variable, 2 bytes 
 
      org   $000 
ISR 
  mov  w, dacIndex    ; First index 
  call WtoSin     ; Get the function value and 
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  page ISR 
  mov  dacOut, w    ;  save it  
  inc  dacIndex    ; Next table item    
  sb   dacIndex.0    ; If index is even, don't 
    jmp :Output    ;  touch the second index 
  mov  w, dacIndex+1   ; Second index  
  call WtoSin     ; Get the function value and 
  page ISR 
  mov  dacOut+1, w    ;  save it  
  inc  dacIndex+1    ; Next table item    
:Output 
  clc 
  rr   dacOut     ; First value / 2 
  clc 
  mov  w, >>dacOut+1   ; Second value / 2 -> w 
  add  dacOut, w    ; Add values and 
  mov  DAC_PORT, dacOut   ;  pass the sum to the outputs 
   
isrOut 
       mov  w, #-int_period 
       retiw 

This ISR contains two sine wave generators, where the second one works “at half speed” because 
it is only executed when the first generator’s index counter contains an odd value. 

Starting at label :Output, the current values of both signals are divided by two, summed, and 
then sent to the output port. 

Instead of dividing both function values by two, you could use a table where the amplitude is 
limited to 127 instead of 255. 

4.1.4.4 Generating a Sine Wave from a 1st Quadrant Table 

As a sine wave is symmetric in all four quadrants, it makes sense to use a table that only contains 
the function values for one quadrant. The values for the remaining three quadrants can be gener-
ated quite easily. In this example, we use a table with values for the 1st quadrant, limited to an 
amplitude of 127. 

For the first and third quadrant, the table index value must be incremented from 0 to the highest 
table item, and for the second and fourth quadrant, the index must be decremented from the 
highest table item down to 0. 

For the first and second quadrant, an offset of 128 is added to the table values to find the output 
value. For the third and fourth quadrant, the output value is calculated by subtracting the table 
value from the 128 offset. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP005.SRC 
; ================================================================= 
include "Setup28.inc" 
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RESET   Main 
 
org    $08 
Ix     ds    1 
Flags  ds    1 
Offset ds    1 
 
Q13    equ   Flags.0 
Q34    equ   Flags.1 
 
org    $000 
 
;**** VP to generate a sine wave from a 1st quadrant table *********** 
; 
; Output:    Signal is generated at Port C, 
;            Values: 0...255 
; 
; Uses:      Ix, Flags, Offset 
;  
Sine1Q 
  snb  Q13    ; If not 1st or 3rd quadrant, con- 
    jmp :Down    ;  tinue at :Down (2nd/4th quadr.) 
  inc  Ix    ; Next index 
  sz     ; If no overflow, continue and  
    jmp :Continue   ;  read the table 
  dec  Ix    ; Adjust Ix 
  setb Q13    ; Activate 2nd/4th quadrant 
:Down     ; Find index for 2nd/4th quadr. 
  dec  Ix    ; Previous index 
  sz     ; If not 0, continue and 
    jmp :Continue   ;  read the table 
  clrb Q13    ; De-select 2nd/4th quadrant 
  xor  Flags, #%00000010  ; Toggle 1st, 2nd and 3rd, 4th  
     ;  quadrant 
:Continue 
  mov  w, Ix    ; Get table index 
  call WtoSin    ; Read function value 
  page Sine1Q    ; Adjust page 
  sb Q34    ; If not 3rd/4th quadrant, 
    jmp :Quadr1_2   ;  go to 1st/2nd quadrant 
  mov w, Offset-w   ; Offset - f(Ix) 
  jmp :Output 
 
:Quadr1_2    ; 1st/2nd quadrant 
  add  w, Offset   ; Offset + f(Ix) 
 
:Output 
  mov  rc, w    ; Send the result to rc 
  mov  w, #-200   ; Call the ISR every 4 µs 
  retiw 
 
;** Subroutine to read the wave table ******************************** 
; 
WToSin 



Programming the SX Microcontroller 

286 

  page SinTable_1Q 
  jmp  w 
 
org  $100 
 
;** Mainline program ************************************************* 
; 
Main 
  clr  rc    ; Initialize Port C 
  clr  Ix 
  clr  Flags 
  mov  Offset, #128 
  mov  !rc, #0   ; All rc pins are outputs 
  mov  !option,#%10011111  ; Enable RTCC interrupt 
 
Loop     ; Just loop... 
  jmp  Loop 
 
org    $200 
 
;*********** Table for sin(x/255) for 0 >= x/255 <= pi/2 ************** 
; 
SinTable_1Q 
  retw   0,  1,  2,  2,  3,  4,  5,  5,  6,  7,  8,  9,  9, 10, 11, 12 
  retw  12, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 23, 23, 24 
  retw  25, 26, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 36, 36 
  retw  37, 38, 39, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 47, 47, 48 
  retw  49, 50, 50, 51, 52, 52, 53, 54, 54, 55, 56, 57, 57, 58, 59, 59 
  retw  60, 61, 61, 62, 63, 64, 64, 65, 66, 66, 67, 68, 68, 69, 69, 70 
  retw  71, 71, 72, 73, 73, 74, 75, 75, 76, 77, 77, 78, 78, 79, 80, 80 
  retw  81, 81, 82, 83, 83, 84, 84, 85, 86, 86, 87, 87, 88, 88, 89, 90 
  retw  90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98 
  retw  98, 99, 99,100,100,101,101,102,102,103,103,104,104,105,105,105 
  retw 106,106,107,107,108,108,108,109,109,110,110,110,111,111,112,112 
  retw 112,113,113,113,114,114,114,115,115,115,116,116,116,117,117,117 
  retw 118,118,118,118,119,119,119,120,120,120,120,121,121,121,121,121 
  retw 122,122,122,122,123,123,123,123,123,124,124,124,124,124,124,125 
  retw 125,125,125,125,125,125,125,126,126,126,126,126,126,126,126,126 
  retw 126,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127 

 

The frequency of the resulting sine wave signal is 1/(200 * 4 * 256 * 20 ns) ≈ 244 Hz. 

This sample program reads a table with 256 items containing the values for one quadrant of the 
sine function. This means that this table has a resolution factor of four compared to the table that 
represents a complete sine wave period of four quadrants. 

If you don’t need that resolution, you can reduce the number of table items in order to fine-tune 
the signal frequency. Try to reduce the table item count to just a few items, and add a low pass 
filter to the DAC output instead, and you will notice that “good quality” sine waves can be ob-
tained with just a few table items. 
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4.1.4.5 Generating Other Waveforms 

By changing the contents of the data tables, the sample programs can be used to generate any 
other periodical waveform as well. If you need higher resolutions above 256 table items, you can 
use the iread instruction to read a table located in program memory. 
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4.2 Pulse Width Modulation (PWM) with the SX Controller 
A square wave signal with varying duty-cycle can be used to control the brightness of LEDs, the 
speed of DC motors, the temperature of a heating element, and for many other purposes. If the 
PWM signal is fed through a low pass filter, it can also be used to build a Digital/Analog Con-
verter. 

The SX can only drive loads with low power consumption, like LEDs, but using the right driver 
allows to control whatever load is necessary. As the driver only needs to switch between the two 
stages “on” or “off”, the power dissipation is much less compared to analog drivers. 

 

The diagram above shows the square wave signal at a PWM output for various duty cycles. 

4.2.1 Simple PWM VP 

The next program uses a simple algorithm to control the pulse width of the generated signal with 
the disadvantage that its frequency varies when the pulse width is changed, i.e. the output signal 
does not follow the waveform shown in the above diagram. (The algorithm is based upon a sam-
ple application published by Parallax, Inc.) 
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; ================================================================= 
; Programming the SX Microcontroller 
; APP006.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
PwmAcc  ds 1    ; Current value for PWM 
PwmVal  ds 1    ; Contents determines pulse width 
rbBuff  ds 1    ; Buffer for Port B output data 
Timer   ds 2    ; Delay counter (for demonstration 
     ;  purposes) 
 
org     $000 
 
;** PWM Virtual Peripheral ************************************* 
 
; This part of the ISR defines the current pulse width. 
; 
  clr   rbBuff   ; Clear port data in advance 
  add   PwmAcc, PwmVal  ; Set current PWM value 
  snc     ; Time to toggle the output ? 
    setb rbBuff.0 
 
; This part of the ISR is for demonstration purposes only, it con- 
; tinuously modifies the contents of PwmVal, i.e. the pulse width. 
; 
:Change_PW 
  decsz Timer    ; Decrement 1st timer 
    jmp :Exit    ; No underflow, so exit 
  decsz Timer+1   ; Decrement 2nd timer 
    jmp :Exit    ; No underflow, so exit 
 
  mov Timer+1, #10   ; Re-initialize the 2nd timer 
  dec PwmVal    ; Decrease pulse width 
; 
; End of demo part 
 
:Exit     
  mov   rb, rbBuff   ; Output port data 
  mov   w, #-200 
  retiw 
 
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
  mov   PwmVal, #$80 
  mov   !rb, #%11111110 
  mov   !option,#%10011111  ; Enable RTCC interrupt 
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Loop     ; Keep looping... 
  jmp Loop 

 

To test the program, connect an LED between pin RB0 and VDD via a current-limiting resistor (220 
Ω is a good value). 

While the program is running, the LED should change its brightness from dark to bright periodi-
cally. 

The current pulse width is determined by the contents of PwmVal. The demo part of the ISR dec-
rements PwmVal after a time delay and so its contents go through all possible values from 255 
down to 0. 

If you check the output signal with an oscilloscope, you will notice that the pulse width, and the 
frequency of the generated signal are changing over a large range. 

This is caused by the fact that the time intervals between calls of the ISR, and an overflow of 
PwmAcc are not in a constant ratio. 

4.2.2 PWM VP with constant Period 

The following VP generates a PWM signal with a constant period and frequency and variable 
pulse width. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP007.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
PwmAcc  ds 1     ; Current value for pulse width 
PwmVal  ds 1     ; Contents determines pulse width 
rbBuff  ds 1     ; Buffer for Port B output 
Timer   ds 1     ; Delay counter (for demonstration 
      ;  purposes) 
Incr    ds 1     ; Increment value for demonstration 
 
PwmPin  equ rbBuff.0   ; PWM bit in the buffer 
Trigger equ rb.1    ; Trigger output for Oscilloscope 
 
org     $000 
 
;** PWM VP (constant frequency) ******************************** 
 
; This part of the ISR does the PWM part 
; 
  setb  Trigger    ; Set oscilloscope trigger 
  setb  PwmPin    ; Set PWM bit in advance 
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  csb   PwmAcc, PwmVal   ; If PWM value reached,  
    clrb  PwmPin    ;   clear PWM bit 
  inc   PwmAcc    ; Increment current value 
  mov   w, ++PwmAcc    ; Test if PwmAcc = 255 
  snz      ;  if so, 
    clr PwmAcc    ;  clear PwmAcc 
  sz 
    jmp :Exit 
   
; This part of the ISR is for demonstration purposes only, it con- 
; tinuously modifies the contents of PwmVal, i.e. the pulse width. 
; 
:Timers 
  decsz Timer     ; Decrement timer 
    jmp :Exit     ; If no underflow, continue  
  mov Timer, #15    ; Re-initialize the timer  
  add PwmVal, Incr    ; Increment or decrement PwmVal 
  sz      ; If PwmVal = 0 toggle increment/ 
    jmp :Exit     ;  decrement 
  sb Incr.7     ; If increment = -1, 
    jmp :Minus 
  inc Incr     ;  set it to 
  inc Incr     ;  +1 
  jmp :Exit 
:Minus 
  dec Incr     ; If increment = +1, set it 
  dec Incr     ;   to -1 
  dec PwmVal     ; Adjust PwmVal from 0 
  dec PwmVal     ;  to 254 
; 
; End of demo part 
 
:Exit     
  mov   rb, rbBuff    ; Output port data 
  clrb  Trigger    ; Clear oscilloscope trigger 
  mov   w, #-195 
  retiw 
 
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
  mov   PwmVal, #0 
  clr   PwmAcc 
  clr   Timer 
  clr   Timer+1 
  mov   Incr, #1 
  mov   !rb, #%11111100 
  mov   !option,#%10011111   ; Enable RTCC interrupt 
 
Loop 
  jmp Loop 
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This VP generates a positive edge at the PWM output after 255 ISR calls. The time difference be-
tween the positive and negative edges depends on the contents of PwmVal. 

If PwmVal contains 0, the output remains continuously low, and if PwmVal contains 255, the output 
remains continuously high. To allow for the special case PwmVal = 255, PwmAcc is only incre-
mented up to 254. 

Based on the timing shown in the program the period of the generated signal is 195 * 255 * 20 ns = 
994,5 µs, and its frequency is approximately 1 kHz (1,005.53 Hz). 

The demo section in the ISR continuously changes the duty cycle from 0% up to 100%, and then 
from 100% down to 0%. You will notice the “smooth” brightness changes of the LED  connected 
to RB0. 

You may hook up an oscilloscope to monitor the PWM output signal at RB.0. In order to get a 
steady display on the oscilloscope when the duty cycle reaches 0% or 100%, a trigger signal is 
provided at the RB1 output. Connect this pin to the external trigger input of the scope. 

4.2.3 More Areas Where PWM is Useful 

If you sent the PWM signal through a low pass filter, PWM can be used as a “low cost” DAC. 
Typical applications are the generation of DTMF signals for telephones, or FSK signals for mo-
dems, etc. 

 

When you use PWM to control safety-critical systems, you must take care that the PWM output 
can never remain “stuck” at a level that keeps the driven item at full load (e.g. a motor running 
at full speed) when the program “hangs” by some reason. 

Using the watchdog timer is one method to reset the system to a save state. 

An additional safety measure is to feed the PWM signal into the driver through a capacitor that 
is large enough not to round the PWM signal slopes (see the diagram below). Now, if the PWM 
output remains “stuck” at high level, the level at the other end of the capacitor drops down to 0 
according to the time-constant made up by the capacitor, and the input resistance of the driver. 
If the input resistance is relatively large, it may be necessary to add an extra resistor to reduce 
the time constant to an acceptable value. 

 

 

 

 

 

PWM 
Signal
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4.3 Analog-Digital Conversion with the SX 
Although digital systems are all around, most of the natural parameters are still analogue, and 
this will obviously not change in the near future. In order to process such analog data with the SX 
an analog to digital conversion is required. 

Due to its high speed, in many cases, the SX itself can be used to perform the necessary conver-
sion without the need of an externally connected ADC. 

4.3.1 Reading a Potentiometer Setting 

A simple solution to convert the value of a resistor into a digital value makes use of a simple RC 
network, as shown in the diagram below: 

 

When the port pin is configured as a CMOS input, i.e. when it has high impedance, the capacitor 
will be charged through resistor R. After a certain time, the voltage across the capacitor C reaches 
the threshold level of 50% VDD, so reading the port bit results in a change from 0 to 1. 

If the port pin is configured as an output with low level, C is discharged across RS relatively fast. 
RS is used to limit the current the output must sink below 30 mA, a save value for RS is 220Ω. 

RA0

VDD

R 

RS

470 Ω 

RB0 
C 

220 Ω
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The diagram above shows the voltage across C as a function of time, where at t0 the port pin is 
switched to high impedance. The voltage rises up to VDD following an exponential function. Be-
fore the time interval ∆t has elapsed, reading the port input returns 0, and after ∆t the port bit is 
set to 1. Where ∆t is a function of R and C, and if we assume that C has a constant value, ∆t is 
almost proportional to R. 

When the port pin changes to low level, C is discharged down to a small voltage relatively fast. 

Before writing the software, we should make some calculations to find out the right timing, and 
the values for R and C. 

If we assume that the analogue value shall be converted into a digital value in the range from 
0…255, an 8-bit counter would have to be incremented exactly up to 255 within ∆t. Special care 
should be taken that the counter does not overflow within that time, or the result would be use-
less. 

When we also assume that the counter will be incremented within an ISR that is called every 200 
clock cycles, i.e. every 4 µs (at 50 MHz system clock), counting from 0 up to 255 takes 4 µs * 256 ≈ 
1 ms which is the value for ∆t. 

If we set the port input to CMOS, the threshold will be at 2.5 V (for VDD = 5 V). 

When we use a potentiometer with a maximum value of 100 kΩ, we now need to calculate what 
capacitance is required to reach a voltage of 2.5 V after 1 ms. The formula is 

C = ∆t / ( -ln(1-Umax/US) * R ) 

 0 

VDD 

US 

∆t
t0
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Using the values defined, the calculation is 1ms / ( -ln( 1 – 2.5 / 5 ) * 100kΩ ) ≈ 14.43 nF, so a 12 
nF capacitor is a good approximation. 

Choosing a slightly smaller capacity adds an additional safety against counter overflow because 
∆t is reduced. 

The demo program below shows how the ADC is implemented as Virtual Peripheral. We also 
have included the PWM VP in order to control the brightness of the LED connected to RB0. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP008.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
IsrPer  equ 200    ; The number of clock cycles  
      ;  defines how often the ISR will 
      ;  be called. Adjust this value 
 ;  if necessary. 
 
TRIS    equ  $0f 
LVL     equ  $0d 
 
org     $08 
ADCVal  ds 1     ; ADC Result 
ADCStat ds 1     ; Status bits for ADC control 
Timer   ds 1     ; Time counter for the ADC 
raMask  ds 1     ; Current data for TRIS_A 
PWMAcc  ds 1     ; Counter for PWM 
 
Charge  equ ADCStat.0   ; Mode Flag for ADC (0 = discharge, 
      ;                    1 = charge) 
Trigger equ ADCStat.1   ; Flag gets set during charge 
      ;  when threshold is reached 
ADCPin  equ ra.0    ; Port pin for ADC 
PWMPin  equ rb.0    ; Port pin for PWM output 
 
org     $000 
 
;** VP to read a potentiometer setting ************************* 
; 
ADC 
 
snb   Charge     ; Jump to handle the current ADC 
  jmp :Charge     ;  mode 
 
:Discharge     ; Discharge C during 256 ISR calls 
  incsz Timer     ; Still discharging, so  
    jmp :ADCExit    ;   continue 
  setb Charge     ; Change mode, and set 
  xor raMask, #%00000001   ;  port pin to 
  mov !ra, raMask    ;  input 
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:Charge     ; Conversion - charge C 
  sb ADCPin     ; When the voltage across C is 
      ;  less than the threshold, 
    jmp :Continue    ;  keep charging 
 
  snb Trigger     ; If threshold flag already set,  
      ;   continue 
    jmp :Continue 
  setb Trigger    ; Set the threshold flag, and  
  mov ADCVal, Timer    ;  save the contents of counter 
      ;  as result 
:Continue 
  incsz Timer     ; Increment the counter and 
    jmp :ADCExit    ;  continue if no overflow 
 
  mov w, #$ff     ; Initialize w to $FF 
  sb Trigger     ; If threshold flag was set during 
      ;  conversion, we have a good value 
      ;  otherwise, we set the result  
    mov ADCVal, w    ;  to the maximum 
 
  clr ADCStat     ; Set mode to discharge, and clear 
      ;  the threshold flag 
  xor raMask, #%00000001   ; Set RA.0 as output 
  mov ra, raMask    ;   with low level to discharge 
  mov !ra, raMask    ;   C 
 
:ADCExit 
 
;** PWM VP, pulse width is controlled by the ADC result ******** 
; 
PWM 
 
  setb  PwmPin    ; Set PWM bit in advance 
  csb   PwmAcc, ADCVal 
    clrb  PwmPin 
  inc   PwmAcc 
  mov   w, ++PwmAcc 
  snz 
    clr PwmAcc 
 
  mov   w, #-IsrPer 
  retiw 
 
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
  clr  ADCStat    ; Initialize variables 
  clr  Timer 
  mode LVL     ; Set RA.0 to 
  mov  !ra, #%11111110   ;  CMOS 
  mode TRIS 
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  mov  !rb, #%11111110   ; rb.0 is PWM output 
  mov  raMask, #%11111110   ; Initialize Port A mask and 
  clrb ra.0     ; set RA.0 to low to  
      ;  discharge C and 
  mov  !ra, raMask    ;  set RA.0 as output 
 
  mov  !option,#%10011111   ; Enable RTCC interrupt 
 
Loop      ; Nothing to do here for now... 
  jmp Loop 

 

Due to the initialization at the beginning of the mainline program, the ADC VP starts in the dis-
charge mode, i.e. ra.0 is output with low level, and it remains in that state for 256 ISR calls. Then 
the Charge flag gets set, and ra.0 becomes an input. 

At the next ISR call, the execution continues at :Charge because the Charge flag is set now. Here, 
ra.0 is tested, and if the bit is set, the voltage across the capacitor has reached the input thresh-
old. In this case, the content of Timer is copied to ADCVal, and the Trigger flag is set. This flag 
indicates that ADCVal already contains a value when the ISR is called the next times in order to 
avoid that Timer is copied to ADCVal again. 

Each time the ISR is called, Timer is incremented until it overflows. If at that time, Trigger is not 
set, the voltage across C did not reach the input threshold, and this is an “out-of-range” situation. 
In this case, ADCVal is set to $ff. 

Finally, the flags Charge and Trigger are cleared, and RA.0 becomes an output with low level 
for the discharge mode. 

The next routine in the ISR is the PWM VP that we already described before. Here, the pulse 
width is controlled by ADCVal to change the brightness of an LED driven from the rb.0 pin. 

If you test this application, it might be necessary to either change the value of the capacitor, or the 
definition of IsrPer at the beginning of the program so that the full potentiometer range influ-
ences the LED’s brightness. This is caused by the tolerances of the components and the threshold 
of the SX inputs. 

You will also note that – when the LED is quite dim – its brightness even changes when you don’t 
change the potentiometer position. As with all ADCs, at least the lowest digit is uncertain, and 
may therefore randomly toggle between 0 and 1 for each conversion. 

You can improve this relatively simple ADC by increasing the time constant of the RC network 
by giving C a greater capacity. This increases ∆t, and you will need to use a 16-bit Timer counter. 
By rotating right the ADC result one or two bits, you can eliminate the uncertain lower bits. 
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4.3.1.1 Reading more Potentiometer Settings 

The previous example application can easily be extended to read up to 16 different potentiometer 
settings with an SX 28, having two port bits available to communicate with other units, e.g. via 
RS-232 or I2C. 

One end of all potentiometers is connected to the capacitor, but the other ends of the potenti-
ometers are not connected to VDD but to separate port pins. These port pins are configured as 
inputs (hi-Z) by default, except the one connected to the potentiometer currently read. This pin is 

configured as output set to high level. 

 
The following program assumes that eight potentiometers are connected the Port C, and uses 
Port A.0 as read/discharge line. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP009.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
IsrPer  equ 200    ; The number of clock cycles 
      ;  defines how often the ISR will 
      ;  be called. Adjust this value 
      ;  if necessary. 
TRIS    equ  $0f 
LVL     equ  $0d 
org     $08 
Std     equ $ 
ADCVal  ds 1     ; ADC Result                  
ADCStat ds 1     ; Status bits for ADC control 
Timer   ds 1     ; Time counter for the ADC    
raMask  ds 1     ; Current data for TRIS_A     
pMask   ds 1     ; Mask selects pot to read 
PotId   ds 1     ; Number of pots to read 
 
Charge  equ ADCStat.0   ; Mode Flag for ADC (0 = discharge, 
      ;                    1 = charge)    

RC7           RC6    ..................................    RC0

RA0 
R7 

RS 

R0 

C
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Trigger equ ADCStat.1   ; Flag gets set during charge       
      ;  when threshold is reached         
ADCGo   equ ADCStat.3   ; ADC enabled when this bit is set 
ADCPin  equ ra.0    ; Port pin for ADC 
 
org     $30 
Pots    ds 8     ; Storage for 8 pot readings 
 
org     $000 
 
;** VP to read a potentiometer setting ************************* 
; 
ADC 
 
sb    ADCGo     ; Don't convert if ADCGo is     
  jmp :ADCExit    ;  clear 
snb   Charge     ; Branch to the current 
  jmp :Charge     ;  ADC mode 
 
:DisCharge     ; Discharge C during 256 ISR calls 
  incsz Timer     ; Still discharging, so   
    jmp :ADCExit    ;  continue       
                                                                  
  setb Charge     ; Change mode, and set 
  xor raMask, #%00000001   ;  Port pin to   
  mov !ra, raMask    ;  input                 
  clrb ADCGo     ; Stop the ADC 
                                                                  
:Charge     ; Conversion - charge C 
  sb ADCPin     ; When the voltage across C is 
      ;  less than the threshold, 
    jmp :Continue    ;  keep charging 
 
  snb Trigger     ; If threshold flag already set, 
      ;  continue 
    jmp :Continue 
  setb Trigger    ; Set the threshold flag, and 
      ;  save the contents of counter 
  mov ADCVal, Timer    ;  as result 
 
:Continue 
  incsz Timer     ; Increment the counter and 
    jmp :ADCExit    ;  continue if no overflow 
  mov w, #$ff     ; Initialize w to $FF 
  sb Trigger     ; If threshold flag was set during 
      ;  conversion, we have a good value 
      ;  otherwise, we set the result  
    mov ADCVal, w    ;  to the maximum 
 
  clr ADCStat     ; Set mode to discharge, and clear 
      ;  the threshold flag 
  mov !rc, #$ff    ; Turn off potentiometer 
  xor raMask, #%00000001   ; Set RA.0 as output 
  mov ra, raMask    ;  with low level to discharge 
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  mov !ra, raMask    ;  C 
 
:ADCExit 
 
  mov   w, #-IsrPer 
  retiw 
 
;** Insert the subroutine to send a changed pot reading here 
; 
SendValue 
  ret 
 
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
 
  ; Clear the data memory 
  ; 
  clr fsr 
 
include "Clr2x.inc" 
 
  mode LVL ; Set RA.0 to 
  mov  !ra, #%11111110   ;  CMOS 
   
  mode TRIS 
  mov  !rc, #%11111111   ; RC7...0 are inputs first 
  mov  raMask, #%11111110   ; Initialize Port A mask and 
  mov  !ra, raMask    ; set RA.0 to low to  
  clrb ra.0     ;   discharge C 
  clr  PotId     ; Pot Id = 0 
  mov  pMask, #%11111110   ; Mask for pot 0 
  mov  !option,#%10011111   ; Enable RTCC interrupt 
 
:Loop 
  mov  !rc, pMask    ; Configure one Port C pin as output 
  mov w, /pMask 
  mov rc, w 
  setb ADCGo     ; Enable the ADC 
 
:Wait      ; Wait until ADC is ready 
  snb  ADCGo 
    jmp :Wait 
   
  mov  w, #Pots    ; Indirectly address the storage 
  add  w, PotId    ;  for the last pot reading 
  mov  fsr, w 
  cje  ind, ADCVal, :SameValue  ; If the reading has changed,  
  mov  ind, ADCVal    ;  save new reading, and 
  call SendValue    ;  send the new reading (Value is   
      ;  in w and in ADCVal) 
:SameValue 
  inc  PotId     ; Select next potentiometer 
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  clrb PotId.3    ; Allow 0...7 only 
  stc      ; Rotate the pot mask 
  rl   pMask     ;   to the left 
  sc      ; If the 0 has "arrived" in C, 
    clrb pMask.0    ;  clear bit 0 
 
  jmp  :Loop     ; Next reading 

 

The ADC VP is almost identical to the previous example with the exception that it only does a 
conversion when the ADCGo flag is set, and the VP clears that flag when the conversion is finished. 
The mainline program can test that flag to test if a conversion is still in progress. After a conver-
sion, the VP sets all Port C pins to hi-Z, i.e. all potentiometers are disconnected from VDD while 
the capacitor is discharged. 

Here, the mainline program takes control to select the potentiometer being read, to start the ADC, 
and to save the readings in the table Pots. If a potentiometer reading has changed since the last 
conversion, it calls SendValue subroutine. In this sample program, the routine is “empty” – in  
real-life applications, the routine could send information about the reading change to other mod-
ules via RS-232, for example. The new reading is stored in w and in ADCValue and the potenti-
ometer id is stored in PotId when the subroutine is called. 

4.3.2 A/D Converter Using Bitstream Continuous Calibration 

The next ADC VP code was published by Ubicom and Parallax. It shows an interesting approach 
how to do A/D conversion, and it has a higher precision as the previously shown method. On 
the other hand, it requires two port pins per ADC instead of one. The diagram below shows the 
required components. (The SX-Key Demo Board has these components already in place, except 
the potentiometer): 

 

 

 

 

 

 

 

For testing, you may connect the potentiometer to the ADC0 input, alternatively, you can feed a 
variable voltage (0…5 +V) into the ADC0 input. 
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The program below contains two ADC VPs, and a PWM VP used to control the LED’s brightness 
depending on the result of ADC0. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP010.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS    equ $0f 
LVL     equ $0d 
PWMPin  equ rb.6   ; Port pin for PWM output 
 
IntPer  equ 163 
 
org     $08 
PWMAcc  ds  1    ; Counter for PWM 
 
org     50h    ; Bank 2 variables 
analog  equ $    ; ADC bank 
port_buff  ds 1   ; Buffer used by all ADCs 
adc0       ds 1   ; ADC0 - Value 
adc1       ds 1   ; ADC1 - Value 
adc0_acc   ds 1   ; ADC0 - Accumulator 
adc1_acc   ds 1   ; ADC1 - Accumulator 
adc0_count ds 1   ; Time counter 
 
  
org     $000 
 
  bank analog    ;Select ADC bank 
 
;** VP for two A/D Converters **************************************** 
; 
ADC 
            
  mov   w, >>rc   ; Read current state of ADCs      
  not   w    ; Turn inputs to outputs          
  and   w, #%01010000  ; Mask ADC1 and ADC0 
  or    port_buff, w  ; Save new value in buffer 
  mov   rc, port_buff  ; Refresh charge/discharge lines 
 
  sb    port_buff.4   ; ADC0 above threshold ? 
    incsz adc0_acc   ; If so, increment accumulator, 
  inc   adc0_acc   ;   and avoid overflow by skipping 
  dec   adc0_acc   ;   the second inc instruction 
 
  sb    port_buff.6   ; ADC0 above threshold ? 
  incsz adc1_acc   ; If so, increment accumulator, 
    inc adc1_acc   ;  and avoid overflow by skipping 
  dec   adc1_acc   ;  the second inc instruction 
 
  inc   adc0_count   ; Increment time counter 
  jnz   :done_adcs   ; Continue if not yet done 
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  mov   adc0, adc0_acc  ; Update ADC0 value 
  mov   adc1, adc1_acc  ; Update ADC1 value 
  clr   adc0_acc   ; Clear ADC0 accumulator 
  clr   adc1_acc   ; Clear ADC1 accumulator 
 
:done_adcs 
 
;** PWM VP, controlled by ADC0 *************************************** 
; 
PWM 
  setb  PwmPin   ; Set PWM bit in advance  
  csb   PwmAcc, adc0  ; If PWM value reached,   
    clrb  PwmPin   ;   clear PWM bit         
  inc   PwmAcc   ; Increment current value 
  mov   w, ++PwmAcc   ; Test if PwmAcc = 255    
  snz     ;  if so,                 
    clr PwmAcc   ;  clear PwmAcc           
 
  clr   port_buff   ; Clear PWM port buffer 
 
  mov   w, #-IntPer   ; Call ISR every 'IntPer' cycles 
  retiw 
 
  
org     $100 
 
;** The mainline program ********************************************* 
Main   
 
  clr     rc     ; Initialize Port C 
  mov     !rc, #%10101111   ; Configure Port C I/O pins 
  mov     !rb, #%10111111   ; Configure Port B output for LED 
  mode    LVL     ; Set Port C inputs to 
  mov     !rc,#0    ;  CMOS 
  mode    TRIS    ; Restore MODE to direction 
    
include "Clr2x.inc" 
 
mov     !option,#%10011111   ; Enable RTCC interrupt 
 
:loop 
  jmp   :loop 

 

Port C pins 7 and 5 are configured as CMOS inputs, i.e. both inputs have a threshold level of 
about 2.5 V. 

Port C pins 6 and 4 are configured as outputs. If an output is set to high level, the connected ca-
pacitor will be charged through the 10 kΩ resistor. When the output is low, the capacitor will be 
discharged through the same 10 kΩ resistor. Charging and discharging times depend on the in-
put voltage that is fed through another 10 kΩ resistor.  
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If the input voltage is high, the charging time is short, and the discharge time is long, and vice 
versa. 

Inputs RC7 and RC 5 reverse status whenever the voltage across the capacitors reaches the input 
threshold of approximately 50% VDD. By setting the levels at outputs RC6 and RC4 to high and 
low accordingly, the voltages across the capacitors “hover” around the threshold levels of the 
inputs RC7 and RC5. 

The program determines the ratio between the capacitor charge and discharge times where this 
ratio depends on, and is proportional to the input voltage. 

Each conversion takes 256 ISR calls, and the calls are counted in adc0_count for both ADCs. 
When this counter overflows, the conversion is finished, the contents of the variables adc0_acc 
and adc1_acc are copied to the result variables adc0 und adc1 and finally, adc0_acc and 
adc1_acc are cleared. 

During a conversion, the following instructions are executed: 
  mov   w, >>rc   ; Read current state of ADCs      
  not   w    ; Turn inputs to outputs          
  and   w, #%01010000  ; Mask ADC1 and ADC0 
  or    port_buff, w  ; Save new value in buffer 
  mov   rc, port_buff  ; Refresh charge/discharge lines 

At program start, rc was cleared, i.e. outputs RC6 and RC4 both are at low level, and the dis-
charge phase is active. 

When the previous instructions are executed, bits 6 and 4 of Port C are set now, i.e. the outputs 
are set to high level, and the charge phase begins. 

These instructions are executed each time the ISR is called, but the state of the outputs at RC6 and 
RC4 don’t change as long as the inputs at RC7 and RC5 are still low. 

However, if – for example – the voltage at RC5 exceeds the threshold level, the following results 
are obtained:.                 
                     port_buff = 0000 0000 
                     rc        = 0111 xxxx 
 
mov w, >>rc       :  w         = 0011 1xxx 
not w             :  w         = 1100 0xxx 
and w, #%01010000 :  w         = 0100 0000 
or  port_buff, w  :  port_buff = 0100 0000 
mov rc, port_buff :  rx        = 0100 0000 

Caused by input RC5 that is set now, output bit RC4 is cleared now, so the discharge phase be-
comes active. Similarly, if RC7 would be set, the same result would occur at output RC6. 

This sequence of instructions demonstrates how operations for several port bits can be performed 
with just a few instructions when the port assignment is done the right way. If you would hook 
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up the same RC network to Port C bits 3…0, the same sequence of instructions could control two 
additional ADCs. 

After taking care of the output lines, the following instructions are executed for ADC0: 
sb    port_buff.4   ; ADC0 above threshold ? 
  incsz adc0_acc   ; If so, increment accumulator, 
inc   adc0_acc   ;   and avoid overflow by skipping 
dec   adc0_acc   ;   the second inc instruction  sb     

When input bit 5 was previously set (i.e. the voltage across C was greater then the input thresh-
old), bit 4 in port_buff is cleared now, i.e. the instruction incsz adc0_acc will be executed as 
well as the following inc and dec instructions, i.e. in the end, adc_acc0 will be incremented by 
one. 

In the special case when adc0_acc contains $ff, incsz adc0_acc changes its contents to $00. This 
means that the inc instruction will be skipped, and only the dec instruction will be executed. The 
result in this case is that adc0_acc will not be changed at all in order to avoid an overflow. This is 
a very “clever” sequence of instructions to keep a register from overflowing. 

The same sequence of instructions is then executed for ADC1. 

In the last part of the ADC VP, the time counter adc0_count is incremented: 
inc   adc0_count    ; Increment time counter 
jnz   :done_adcs    ; Continue if not yet done 
 
mov   adc0, adc0_acc   ; Update ADC0 value 
mov   adc1, adc1_acc   ; Update ADC1 value 
clr   adc0_acc    ; Clear ADC0 accumulator 
clr   adc1_acc    ; Clear ADC1 accumulator 

When it overflows after 256 ISR calls, the readings are saved, and the adc0_acc and adc1_acc 
registers are cleared for a new conversion. 

The next VP in the ISR is the PWM VP that we already have described. Here, the VP is controlled 
from the adc0 variable, and it is used to control the brightness of the LED connected to RB.6. 

Some important points you should note: 

For best precision, it is important that the ADC VP is executed after a constant number of clock 
periods. Therefore, other VPs with varying execution times must be executed after the ADC VP is 
finished. Therefore, it makes sense to place that VP at the very beginning of the ISR. 

On the other hand, this VP has variable execution times that might influence time-critical VPs 
following the ADC VP in the ISR. You can find an alternate version of this ADC VP in Ubicom’s 
VP library that has a constant execution time. 
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The impedance of the ADC inputs is determined by the 10 kΩ resistors, where the other ends of 
these resistors are connected to a voltage of approximately 0.5 * VDD. 
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4.4 Timers as Virtual Peripherals 
Almost every microcontroller application requires constant time intervals, and the SX controllers 
allow the “construction” of all kinds of timers easily as VPs, executed in the ISR. 

4.4.1 A Clock Timer – an Example 

The program below maintains several timers that are intended to control a digital clock. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP011.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
Flags   ds 1 
 
org     $50 
Timers  equ $ 
us4     ds 1    ; 4us counter 
Msec    ds 1    ; 1/1000 sec counter 
HSec    ds 1    ; 1/100 sec counter  
TSec    ds 1    ; 1/10 sec counter   
Sec     ds 1    ; 1 sec counter      
Sec10   ds 1    ; 10 sec counter     
Min     ds 1    ; 1 min counter      
Min10   ds 1    ; 10 min counter     
Hour    ds 1    ; 1 hour counter     
Hour10  ds 1    ; 10 hour counter    
 
TickOn MACRO 
  setb Flags.0   ; Turn ticker on 
ENDM 
 
TickOff MACRO 
  clrb Flags.0   ; Turn ticker off 
ENDM 
 
SkipIfTick MACRO   ; Skip if ticker is on 
  sb Flags.0 
ENDM 
 
org     $000 
 
;** Clock VP ********************************************************* 
; 
Clock 
 
  Bank Timers 
  mov   w, #250   ; 4ms * 250 = 1 ms 
  dec   us4 
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  snz 
    mov us4, w 
  snz 
    TickOn 
  snz 
    inc Msec    ; every millisecond 
  mov w, #10    ;                          1 
  mov w, MSec-w   ; Z if MSec = 10 
  snz 
    clr Msec 
  snz 
    inc Hsec    ; every 1/100 sec 
  mov w, #10 
  mov w, HSec-w   ; Z if HSec = 10 
  snz 
    clr Hsec 
  snz  
    inc Tsec    ; every 1/10 sec 
  mov w, #10 
  mov w, TSec-w   ; Z if TSec = 10 
  snz 
    clr Tsec 
  snz 
    inc Sec    ; every second 
  mov w, #10  
  mov w, Sec-w   ; Z if sec = 10 
  snz 
    clr Sec 
  snz 
    inc Sec10    ; every 10 seconds 
  mov w, #6 
  mov w, Sec10-w   ; Z if Sec10 = 6  
  snz 
    clr Sec10 
  snz 
    inc Min    ; every minute 
  mov w, #10 
  mov w, Min-w   ; Z if  Min = 10 
  snz 
    clr Min 
  snz 
    inc Min10    ; every 10 minutes 
  mov w, #6 
  mov w, Min10-w 
  snz 
    clr Min10 
  snz 
    inc Hour    ; every hour 
  mov w, #10 
  mov w, Hour-w 
  snz 
    clr Hour 
  snz 
    inc Hour10   ; every 10 hours 
  mov w, #3 
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  mov w, Hour10-w   ; Z if Hour10 = 3 
  snz 
    clr Hour10   ; every day 
 
 
  mov   w, #-200   ; Call ISR every 4us 
  retiw 
 
org     $100 
 
;** Main program ***************************************************** 
; 
Main 
 
include "Clr2x.inc" 
 
  mov   !rb, #%00110000    ; Set Port B outputs 
  mov   !option, #%10011111   ; Enable RTCC interrupt 
  bank  TimerS     ; Select timer bank 
 
:Loop 
 
  SkipIfTick      ; The timer sets the tick flag 
    jmp :Loop      ;  every Millisecond 
 
  ; Output various timer bits for test purposes 
  ; 
  movb rb.0, /Sec.0 
  movb rb.7, /Sec.0     ; Seconds tick to buzzer 
  movb rb.1, /Sec10.0 
  movb rb.2, /Min.0 
  movb rb.3, /Min10.0 
  movb rb.6, Hour.0     ; This LED has positive logic 
 
  TickOff      ; Clear the tick flag 
  jmp :Loop 

 

For demonstration purposes, the mainline program drives various LEDs, and a small loud-
speaker. Each of the LEDs hooked up to outputs RB0…RB3 is connected to VDD via a current-lim-
iting resistor,  the LED at RB6 is connected to VSS via a current-limiting resistor, and the loud-
speaker is driven by RB7. If you use an SX-Key Demonstration board, these components are al-
ready in place on the board. 

If you use another prototyping system you might have to change the mainline program in order 
to correctly control the LEDs and the buzzer. 

The Timer VP shown here, does not use any jmp instructions, but conditional skip instructions 
only. Therefore, the execution time of this VP is always constant, i.e. it can be located “in front” of 
other time-critical VPs in the ISR code. 
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The ISR is called every 200 clock cycles, i.e. every 200 * 20 ns = 4 µs.  

When you multiply this time with a factor of 250, the resulting time interval is 1 ms. 
  mov   w, #250  ; 4ms * 250 = 1 ms 
  dec   us4 
  snz 
    mov us4, w 
  snz 
    TickOn 
  snz 
    inc Msec   ; every millisecond 

To count this interval, us4 is used and decremented at each invocation of the ISR. When its con-
tents reaches 0, the mov us4, w resets it to 250, and because this instruction does not change the 
zero flag, the TickOn macro, and the inc Msec instruction are only executed when us4 was zero 
before. 

TickOn is a macro that sets the “Tick Flag”. The mainline program may check that flag to execute 
an action every millisecond, e.g. refreshing a display, and the mainline program must reset the 
tick flag again. 

Msec is the counter for the millisecond intervals. The instructions 
  mov w, #10 
  mov w, MSec-w  ; Z if MSec = 10 
  snz 
    clr Msec 
  snz 
    inc Hsec   ; every 1/100 sec 

take care that Msec is reset when its contents is greater than 9, and in this case Hsec, the counter 
for 1/100 seconds is incremented. 

Similarly, the counters for the other time intervals up to the 10-hours counter are updated. 

The contents of these counters hold the time information that is required to control the digits of a 
digital clock, and there is no need to make any binary to decimal conversions. 

We will use this Timer VP in two other chapters to build a stopwatch and a digital alarm clock. 

While the program is running, you can watch the LEDs to see how the contents of the seconds, 
minutes and the one-hour counters change (the LEDs each display the contents of the lowest bit 
of the assigned counter) and the buzzer generates a sound similar to a mechanical clock. 

The mainline program tests the tick flag and updates the LED display every microsecond only. 
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4.4.2 General Timer VPs und Timed Actions 

Based upon the example above, you can derive timers for other time intervals quite easily, but 
sometimes, it requires some clever combination of divide ratios, and ISR calling intervals to end 
up with the required time especially when the ISR calling intervals are “dictated” by other VPs in 
the ISR. 

In most cases, it is necessary to perform a certain action if the time interval has elapsed. There are 
several possibilities how and where to perform that action: 

4.4.2.1 Execution within the ISR 

The instructions 
decsz Timer 
  jmp :Continue 
mov Timer, #InitValue 
call Action 
:Continue 

decrement the timer, and when its contents reaches 0, it is reset to the initial value, and a sub-
routine is called that performs the required action (instead of calling the subroutine, you might 
consider to add the necessary instructions directly). 

Here, you must keep in mind that the instructions that make up the subroutine, or the instruc-
tions inserted directly, “eat up” available ISR clock cycles, i.e. additional clock cycles are “stolen” 
from the mainline program, and you must make sure that the maximum number of possible ISR 
clock cycles is not exceeded. 

Performing the action directly from within the ISR also makes it difficult to maintain a constant 
execution time whether the action is taken or not, and therefore no other time-critical VPs can 
follow this part of the code in the ISR. 

4.4.2.2 Testing the Timers in the Mainline Program 

When the mainline program executes a main loop often enough, the timer can be checked within 
this loop. When it reaches a specific value, 0 for example, the necessary action can be performed 
from the mainline program. 

Here, it is important to make sure that a timer overflow is detected in the mainline program in 
any case. If the code in the ISR looks like this 
decsz Timer 
  jmp :Continue 
mov Timer, #InitValue 
:Continue 

it does mot make sense to do a test in the mainline program like this: 
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:Loop 
  test Timer 
  sz :Loop 
    call Action 
  ; 
  ; mode instructions 
  ; 
  jmp :Loop 

As the overflow is detected by the ISR, and the timer is assigned its initial value in this case, the 
mainline program will never “see” the zero value in Timer. 

This test is an improvement: 
:Loop 
  mov w, #InitValue 
  mov w, Timer-w 
  sz :Continue 
    call Action 
  ; 
  ; more instructions 
  ; 
  jmp :Loop 

Here, the mainline program tests if Timer contains the initial value, and performs the action in 
this case, but this method can cause problems as well. 

If the mainline program does not execute the main loom fast enough, it may happen that the ISR 
has decremented Timer from the initial value down to the next value before the mainline pro-
gram has “seen” the initial value at all. 

On the other hand, if the execution of the action is fast enough that Timer still holds the initial 
value at the next run through the main loop, so the action would be executed again, although no 
new timer overflow happened in the meantime. 

When the Timer VP sets a flag like in 
decsz Timer 
  jmp :Continue 
mov Timer, #InitValue 
setb Timeout              ; Set timeout flag 
:Continue 

and the mainline program checks this flag, and resets it like in  

:Loop 
  sb Timeout              ; Check the timeout flag 
    jmp :Continue 
  call Action 
  clrb Timeout 
 
:Continue 
  ; 
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  ; more instructions 
  ; 
  jmp :Loop 

the problem to avoid multiple calls of the action is solved. In the Clock Timer example, you al-
ready saw the use of the “Tick Flag” that is used in the mainline program to trigger the action of 
updating the LED display and the buzzer output. 
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4.5 Controlling 7-Segment LED Displays 
The diagram, below left, shows a usual 7-segment LED display unit with an additional LED for 
the decimal point. The diagram, below right, shows how six display units with common anode 
can be connected to the SX controller. 

 

 
 

 

 

 

 

 

In this diagram, the eight cathode rows are connected to the port pins RB7…0 across the 220 Ω 
resistors, and the six separate anodes are connected to port pins RC5…0. 

In other words, the segment LEDs and the decimal point LEDs are located in a matrix where the 
cathodes are connected to the rows, and the anodes to the columns. Actually, it does not matter 
which cathode row is connected to what port pin as a table in the software makes the necessary 
assignments. The connections shown here are just an example. 

To turn on a segment at a certain matrix position, the column line is set to high, and the row line 
to low level. For example, to turn on segment g in the leftmost display position, set RC5 to high, 
and RB5 to low level. 

To control the matrix, each of the column lines is set to high level periodically to select a display 
digit, and each time, the row lines of the segments to be turned on are set to low level. 

Each column line should be activated at least 100 times per second to avoid a flickering display. 

When you determine the value for the current-limiting resistors, you must consider the worst 
case that all eight LEDs in a digit might be on, and the port output for the column must source 
the total current for eight LEDs. 

With the 7-segment units used to build the prototype for this book, with 220 Ω resistors, the cur-
rent per LED was limited to 14.7 mA. This means a total current of approximately 118 mA at 
worst case. 
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Because each RC output is turned on during 1/6th of each scan, the effective current is less than 
20 mA. 

The SX data sheet specifies a maximum current of 30 mA per output, but it does not specify if 
higher peak currents are allowed. While testing this application and other applications, it never 
happened that an output was damaged due to the current peaks. Nevertheless, if higher currents 
are to be handled, you might consider adding transistors or special driver components to increase 
the possible current load. 

When you test the application in single step mode, it can happen that the program stops at a po-
sition where all LEDs in a 7-segment unit remain turned on. In this case, the port output must 
source the current for all 8 LEDs for a longer time. 

In the prototype, the total current in this case was 48 mA although the multiplication of 8 * 14.7 
mA yields in about 118 mA. Obviously did the port output limit the current to the value of 48 
mA, but for a “long life” of your SX controller, you should avoid such situations. If you are run-
ning the program in Debug “Run” mode, you should do a “Reset” rather than a “Stop” to hold 
the program. 

In “real life” it makes sense to activate the watchdog timer to avoid, that the program remains 
“stuck” with LEDs turned on. 

The following program is an example how to control the 7-segment display matrix: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP012.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
Std     = $ 
Counter ds 3    ; Counter for time delay in the 
     ;  mainline program (for demo 
     ;  only) 
org     $30 
Leds    = $    ; The LED bank 
Column  ds 1    ; Column mask 
Digit   ds 1    ; Current display digit 
Digits  ds 6    ; Digits buffer 
 
org     $50 
Timers  = $ 
Millsec ds 1    ; Counter for Milliseconds 
 
  
org     $000 
 
;** VP to drive a 7-segment LED display matrix with 6 digits ********* 
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; 
Seg_7 
 
  bank Timers 
  mov  w, #250   ; Initialization value in w 
  dec  Millsec   ; When 1 ms has elapsed, 
  snz     ;  re-initialize the counter     
    mov Millsec, w   ;  and 
  sz     ;  refresh the display, else 
    jmp :LedExit   ;  no action 
 
  bank Leds 
  mov  w, #Digits   ; Indirectly read data for  
  add  w, Digit   ;  the current digit 
  mov  fsr, w    ; 
  mov  w, ind    ;  
  and  w, #%00001111  ; Don't allow values > 15 
  call Decode    ; Decimal --> 7-Segment 
  clr  rc    ; Set all columns to low 
  mov  rb, w    ; Set the segment rows 
  bank Leds 
  mov  rc, Column   ; Set one column line to high 
  clc     ;  and prepare for 
  rl   Column    ;  next column and for 
  inc  Digit    ;  next digit 
  mov  w, #6    ; If digit > 5,  
  mov  w, Digit-w 
  snz 
    clr Digit    ;  digit = 0, 
  mov  w, #1 
  snz 
    mov Column, w   ;  and column mask = %00000001 
 
:LedExit 
  mov   w, #-200   ; Call the ISR every 4us 
  retiw 
 
;** Subroutine returns the 7-cegment coding in w when called with 
;   a hexadecimal digit in w. 
;    
;   Note:  : Negative logic - 0-Bits turn on the associated LED 
; 
Decode 
  jmp pc+w 
 
  ; Segments 
  ;     dcgbe.fa 
  retw %00100100 ; 0 
  retw %10101111  ; 1 
  retw %01000110  ; 2 
  retw %00001110 ; 3 
  retw %10001101 ; 4 
  retw %00011100 ; 5 
  retw %00010100 ; 6 
  retw %10101110 ; 7 
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  retw %00000100 ; 8 
  retw %00001100 ; 9 
  retw %10000100 ; A 
  retw %00010101 ; b 
  retw %01110100 ; C 
  retw %00000111 ; d 
  retw %01010100 ; E 
  retw %11010100 ; F 
 
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
 
include "Clr2x.inc" 
 
  mov    rb, #$ff 
  mov    !rb, #0    ; Outputs for cathodes 
  clr    rc 
  mov    !rc, #%11000000   ; Outputs for anodes 
 
  bank Leds 
  mov  Column, #1    ; Initialize the column mask  
  mov  !option, #%10011111   ; Enable RTCC interrupt 
 
  mov Counter+2, #8    ; Initialize the time delay 
 
Loop 
 
  bank Timers 
  sb   Millsec.1    ; "Borrow" bit 1 of millisecs 
    jmp Loop 
  decsz Counter    ; Time delay 
    jmp Loop     ; 
  decsz Counter +1    ; 
    jmp Loop     ; 
  decsz Counter +2    ; 
    jmp Loop     ; 
 
  mov Counter+2, #8    ; Re-initialize the time delay 
 
  bank Leds 
 
  inc Digits     ; Increment the lowest digit, 
  sb Digits.4     ;  if > 15, 
    jmp Loop     ; 
  clrb Digits.4    ;  reset it to 0, and 
  inc Digits+1    ;  increment next digit 
  sb Digits+1.4    ; 
    jmp Loop     ;  etc. ... 
  clrb Digits+1.4 
 
  inc Digits+2 
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  sb Digits+2.4 
    jmp Loop 
  clrb Digits+2.4 
 
  inc Digits+3 
  sb Digits+3.4 
    jmp Loop 
  clrb Digits+3.4 
 
  inc Digits+4 
  sb Digits+4.4 
    jmp Loop 
  clrb Digits+4.4 
 
  inc Digits+5 
  sb Digits+5.4 
    jmp Loop 
  clrb Digits+5.4 
  jmp Loop 
 

The VP executed in the ISR takes care of driving the display matrix, so the mainline program 
must not take care of that task. Values copied into the Digits registers are automatically dis-
played.  

The mainline program “borrows” a bit of the Millisec timer counter in the ISR to clock a three 
level delay loop for demonstration purposes. When the time delay has elapsed, the Digits reg-
isters are incremented. It is important to limit the contents of each Digit register to a maximum 
of 15 ($F) as each position can only display digits from 0…9 and letters from a…f. 

The ISR is called every 4 µs, and the Millisec counter is initialized to 250, i.e. it overflows after 1 
ms, and the display routine is then executed. 
  bank Leds 
  mov  w, #Digits   ; Indirectly read data for  
  add  w, Digit   ;  the current digit 
  mov  fsr, w    ; 
  mov  w, ind    ;  
  and  w, #%00001111  ; Don't allow values > 15 
  call Decode    ; Decimal --> 7-Segment 

The contents of Digits register are read into w for the current display position, and the higher for 
bits are reset as a safety measure to avoid values > 15. Then follows a call of the Decode subrou-
tine. 
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Decode 
  jmp pc+w 
 
  ; Segments 
  ;     dcgbe.fa 
  retw %00100100   ; 0 
  retw %10101111    ; 1 
  ; 
  ; etc. 
  ; 
  retw %11010100   ; F 

This subroutine reads the bit pattern that is required to turn on the LEDs for the value in w, and it 
returns that pattern in w. When you have connected the segment rows to port outputs other than 
shown in the schematic, you need to adapt this table accordingly. If you only want to display the 
10 decimal digits 0…9, the last 6 table entries can be removed. 

Here you can see why it is important not to allow a value in w that is larger than the number of 
table elements minus one, otherwise the jmp pc+w instruction might lead into “nowhere land”. 

The final instructions in the VP 
  clc      ;  and prepare for 
  rl   Column     ;  next column and for 
  inc  Digit     ;  next digit 
  mov  w, #6     ; If digit > 5,  
  mov  w, Digit-w 
  snz 
    clr Digit     ;  digit = 0, 
  mov  w, #1 
  snz 
    mov Column, w    ;  and column mask = %00000001 

set the next higher bit in the column mask and select the next display digit. If the highest digit is 
exceeded, the lowest digit is selected again, and the column mask is reset to the first column. 

The selected timing of 1 ms means that every millisecond a new digit is driven, and each digit is 
refreshed every 6 ms which results in a frequency of approximately 167 Hz – fast enough that 
you will not notice a flickering display. 

The instructions 
  clr  rc    ; Set all columns to low 
  mov  rb, w    ; Set the segment rows 
  bank Leds 
  mov  rc, Column   ; Set one column line to high 

drive the current 7-segment unit. It makes sense to first turn off the last activated unit before acti-
vating the next one by using the clr rc instruction in order to avoid that the “old” digit has the 
LEDs for the “new” digit turned on for a short while. Here, a “short while” means just two in-



Programming the SX Microcontroller 

320 

struction cycles, i.e. 40 ns, so you will definitely not see this “glitch”, but it is always a good idea 
to avoid un-necessary spikes in order to reduce noise. 

We will use the 7-Segment VP in some other applications for more important tasks than just to 
display the contents of a counter as shown in this program. 

4.5.1 Program Variations 

With a simple enhancement, the program can be used to display the contents of any three SX 
registers in hexadecimal on the 6-digits display: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP013.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
;** Macro copies the contents of a register into two positions 
;   of the display buffer. 
; 
;   Call:      MovDisp <First Display Buffer Register>, <Register> 
; 
;   Uses:    : w 
; 
MovDisp MACRO 2 
  mov w, \2     ; Display value -> w 
  mov Digits + (\1 * 2), w   ; Save value to left and right 
  mov Digits + 1 + (\1 * 2), w  ;  display buffer item 
  swap Digits + 1 + (\1 * 2)  ; Exchange upper and lower    
      ;  nibble in left digit 
ENDM 
 
org     $08 
Std     = $ 
Value   ds 3     ; Three registers for demonstration 
      ;  purposes 
org     $30 
Leds    = $ 
Column  ds 1     ; The LED bank          
Digit   ds 1     ; Column mask           
Digits  ds 6     ; Current display digit 
; Digits buffer         
 
org     $50 
Timers  = $ 
Millsec ds 1     ; Counter for Milliseconds 
 
org     $000 
 
  MovDisp 0, Value    ; Refresh the display 
  MovDisp 1, Value+1   ;  Buffer 
  MovDisp 2, Value+2   ; 
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;** VP to control a 7 segment LED matrix with 6 Digits *************** 
; 
Seg_7 
 
  bank Timers 
  mov  w, #250  
  dec  Millsec  
  snz  
    mov Millsec, w  
  sz  
    jmp :LedExit  
 
  bank Leds    
  mov  w, #Digits    ; Indirectly read data for       
  add  w, Digit    ;  the current digit             
  mov  fsr, w     ;                                
  mov  w, ind     ;                                
  and  w, #%00001111   ; Don't allow values > 15        
  call Decode     ; Decimal --> 7-Segment                         
  clr  rc     ; Set all columns to low                        
  mov  rb, w     ; Set the segment rows         
  bank Leds                                                       
  mov  rc, Column    ; Set one column line to high  
  clc      ;  and prepare for             
  rl   Column     ;  next column and for         
  inc  Digit     ;  next digit                  
  mov  w, #6     ; If digit > 5,                
  mov  w, Digit-w                                                 
  snz                                                             
    clr Digit     ;  digit = 0,                  
  mov  w, #1                                                      
  snz                                                             
    mov Column, w    ;  and column mask = %00000001 
                                                                  
:LedExit                            
  mov   w, #-200    ; Call the ISR every 4us 
  retiw                                                     
                                    
;** Subroutine returns the 7-cegment coding in w when called with 
;   a hexadecimal digit in w. 
;    
;   Note:  : Negative logic - 0-Bits turn on the associated LED 
; 
Decode 
  jmp pc+w 
 
; Segments 
; 
;       dcgbe.fa 
  retw %00100100 ; 0 
  retw %10101111  ; 1 
  retw %01000110  ; 2 
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  retw %00001110 ; 3 
  retw %10001101 ; 4 
  retw %00011100 ; 5 
  retw %00010100 ; 6 
  retw %10101110 ; 7 
  retw %00000100 ; 8 
  retw %00001100 ; 9 
  retw %10000100 ; A 
  retw %00010101 ; b 
  retw %01110100 ; C 
  retw %00000111 ; d 
  retw %01010100 ; E 
  retw %11010100 ; F 
 
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
 
include "Clr2x.inc" 
 
  mov    rb, #$ff 
  mov    !rb, #0    ; Outputs for cathodes 
  clr    rc 
  mov    !rc, #%11000000   ; Outputs for anodes 
 
  bank Leds 
  mov  Column, #1    ; Initialize the column mask 
  mov  !option, #%10011111   ; Enable RTCC interrupt 
 
  mov  Value,   #$ef 
  mov  Value+1, #$cd 
  mov  Value+2, #$ab 
 
Loop 
  jmp Loop 

 

At the beginning of the program, we have defined the MovDisp macro that copies the contents of 
the register to be displayed into two subsequent positions in the display buffer. As the 7-Segment 
VP clears the upper four bits in a value, we don’t need to take care about it here in the macro. 

In this example program, we have reserved three bytes for the Value variable that is initialized 
with $abcdef. 

At start of the ISR, the MovDisp macro is called for each byte of Value to copy its contents to the 
display buffer. As the contents of Value is constant in this example, it would be sufficient to do 
this copy just once, but in “real life”, we must assume that the contents of Value might change at 
any time. 
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A bit more complex is the task to display the contents of two registers in decimal on three display 
digits each: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP014.SRC; 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
Std     = $ 
Value    ds 2    ; Test values 
BCD     ds 3    ; Buffer for BCD digits 
Hex     ds 1    ; Buffer for Hex value 
 
org     $30 
Leds    = $    ; The LED bank 
Column  ds 1    ; Column mask 
Digit   ds 1    ; Current display digit 
Digits  ds 6    ; Digits buffer 
 
org     $50 
Timers  = $ 
Millsec ds 1    ; Counter for Milliseconds 
 
org     $000 
 
;** VP to control a 7 segment LED matrix with 6 Digits *************** 
; 
Seg_7 
 
  bank Timers 
  mov  w, #250  
  dec  Millsec  
  snz  
    mov Millsec, w  
  sz  
    jmp :LedExit  
 
  bank Leds    
  mov  w, #Digits   ; Indirectly read data for       
  add  w, Digit   ;  the current digit             
  mov  fsr, w    ;                                
  mov  w, ind    ;                                
  and  w, #%00001111  ; Don't allow values > 15        
  call Decode    ; Decimal --> 7-Segment                               
  clr  rc    ; Set all columns to low                              
  mov  rb, w    ; Set the segment rows         
  bank Leds                                                       
  mov  rc, Column   ; Set one column line to high  
  clc     ;  and prepare for             
  rl   Column    ;  next column and for         
  inc  Digit    ;  next digit                  
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  mov  w, #6    ; If digit > 5,                
  mov  w, Digit-w                                                 
  snz                                                             
    clr Digit    ;  digit = 0,                  
  mov  w, #1                                                      
  snz                                                             
    mov Column, w   ;  and column mask = %00000001 
                                                                  
:LedExit                            
  mov   w, #-200   ; Call the ISR every 4us 
  retiw 
 
;** Subroutine returns the 7-cegment coding in w when called with 
;   a hexadecimal digit in w. 
;    
;   Note:  : Negative logic - 0-Bits turn on the associated LED 
; 
Decode 
  jmp pc+w 
 
; Segments 
; 
;       dcgbe.fa 
  retw %00100100 ; 0 
  retw %10101111  ; 1 
  retw %01000110  ; 2 
  retw %00001110 ; 3 
  retw %10001101 ; 4 
  retw %00011100 ; 5 
  retw %00010100 ; 6 
  retw %10101110 ; 7 
  retw %00000100 ; 8 
  retw %00001100 ; 9 
 
;** Subroutine converts value in Hex into a 3-digits BCD number and 
;   stores the result in BCD+2...BCD 
;    
HexToBCD 
  clr BCD+2    ; Clear the 
  clr BCD+1    ; 
  clr BCD    ;  BCD buffer 
  mov w, #100    ; Determine leftmost digit 
:Loop100 
  sub Hex, w 
  snc 
    inc BCD+2 
  snc 
    jmp :Loop100 
  add Hex, w 
  mov w, #10    ; Determine middle digit 
:Loop10 
  sub Hex, w 
  snc 
    inc BCD+1 
  snc 
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    jmp :Loop10 
  add Hex, w 
  mov BCD, Hex   ; The remainder goes into the 
  ret     ;  rightmost digit 
 
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
 
include "Clr2x.inc" 
 
  mov    rb, #$ff 
  mov    !rb, #0   ; Outputs for cathodes 
  clr    rc 
  mov    !rc, #%11000000  ; Outputs for anodes 
  bank Leds 
  mov  Column, #1   ; Initialize the column mask 
  mov  !option, #%10011111  ; Enable RTCC interrupt 
 
  mov  Value,   #123 
  mov  Value+1, #234 
 
  mov  Hex, Value 
  call HexToBCD 
 
Loop 
  mov Hex, Value   ; Display Value in Digits+2... 
  call HexToBCD   ;  Digits as decimal number 
  mov Digits,   BCD 
  mov Digits+1, BCD+1 
  mov Digits+2, BCD+2 
 
  mov Hex, Value+1   ; Display Value+1 in Digits+5... 
  call HexToBCD   ;  Digits+3 as decimal number 
  mov Digits+3, BCD 
  mov Digits+4, BCD+1 
  mov Digits+5, BCD+2 
 
  jmp Loop  

 

To convert a byte into a 3-digits decimal representation, we need to convert a hex number into its 
BCD (Binary Coded Decimal) representation. This is done in the HexToBCD subroutine by re-
peated subtraction of 100 and 10, i.e. first, we divide the value by 100 and the integer part of the 
result goes into the leftmost digit. Then we divide the remainder by 10, and the integer part goes 
into the middle digit. The remainder finally goes into the rightmost digit. 

Again, we display the constant contents of two registers (Value, and Value+1) in this demo pro-
gram. This time, the display buffer is refreshed in the mainline program. 
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4.6 An SX Stopwatch 
The VPs presented in the previous chapters for a clock timer, and to control a 7-segment, 6-digits 
display is a good basis to “construct” a stopwatch. 

In addition to the components shown in the 7-segment diagram, we need two pushbuttons that 
should be connected according to the following diagram: 

 

Here we use pushbuttons with a make and a break contact in order to make de-bouncing easy. 

Next, we should define the functions of the stopwatch: 

• Precision 1/100 second, Display from 00:00:00 to 59:59:59. 

• Start with BT1, display of running time. If the last stop time was not cleared before, add 
new stop time to this time. 

• Stop with BT1, display the new stop time. 

• Display an elapsed time when BT2 is pressed, and blink the decimal point in the right-
most digit to indicate that the clock is still running. 

• Display a new elapsed time when BT2 is pressed, the clock is still running, and an 
elapsed time is currently displayed. 

• Display the running time again when BT1 is pressed, the clock is running, and an elapsed 
time is currently displayed. 

• Clear the stop time with BT2 when the clock is stopped. 

Clock timing and display control is handled by the two VPs we have already shown, and the 
user-interface is handled in the mainline program. 

RA0
RA1

RA2
RA3

BT1 BT2
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It is a good idea to design the mainline program as a  “State Engine” because, according to the 
specifications, there are different reactions on button presses required, depending on the status of 
the stopwatch: 

• Clock stopped 
o BT1 = Start the clock 
o BT2 = Clear the stop time 

• Clock is running, running time is displayed 
o BT1 = Stop the clock 
o BT2 = Display elapsed time, keep clock running 

• Clock is running elapsed time is displayed 
o BT1 = Display running time 
o BT2 = Display new elapsed time 

 

Here comes the stopwatch program: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP015.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS    = $0f 
PLP     = $0e 
 
;** Macro definitions ************************************************ 
; 
SkipIfBT1IsUp MACRO  ; Skip if BT1 is not pressed 
  snb ra.0 
ENDM 
 
SkipIfBT2IsUp MACRO  ; Skip if BT2 is not pressed 
  snb ra.2 
ENDM 
 
SkipIfBT1IsDown MACRO ; Skip if BT1 is pressed 
  snb ra.1 
ENDM 
 
SkipIfBT2IsDown MACRO ; Skip if BT2 is pressed 
  snb ra.3 
ENDM 
 
TickOn MACRO   ; Turn 1 ms ticker on 
  setb Flags.0 
ENDM 
 
TickOff MACRO   ; Turn 1 ms ticker off 
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  clrb Flags.0 
ENDM 
 
SkipIfTick MACRO  ; Skip if ticker is on 
  sb Flags.0 
ENDM 
 
BlinkOn MACRO   ; Turn on blink mode 
  setb Flags.3 
ENDM 
 
BlinkOff MACRO  ; Turn off blink mode 
  clrb Flags.3 
ENDM 
 
SkipIfBlink MACRO  ; Skip if blink mode is on 
  sb Flags.3 
ENDM 
 
ClockOn MACRO   ; Turn the clock timer on 
  setb Flags.1 
ENDM 
 
ClockOff MACRO  ; Turn the clock timer off 
  clrb Flags.1 
ENDM 
 
SkipIfClockIsOn MACRO ; Skip if the clock timer is on 
  sb Flags.1 
ENDM 
 
SetWaitRelease MACRO ; Turn on mode "Wait for button 
  setb Flags.2  ;  release" 
ENDM 
 
ClrWaitRelease MACRO ; Turn off mode "Wait for button 
  clrb Flags.2    release" 
ENDM 
 
SkipIfWaitRelease MACRO ; Skip is mode "Wait for button 
  sb Flags.2   ;  release" is on 
ENDM 
 
org      $08 
Std      = $ 
Temp     ds 1   ; Temporary storage 
Ix       ds 1   ; Index variable 
State    ds 1   ; State for "State Engine" 
Flags    ds 1   ; Various flags 
FsrSave  ds 1   ; Temporary Storage for FSR 
 
org     $30 
Leds    = $   ; Variables for the 7-Segment VP 
Column  ds 1   ; Column mask 
Digit   ds 1   ; Current display position 
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Digits  ds 6   ; Digits buffer 
 
org     $50 
Timers  = $   ; Timer bank 
us4     ds 1   ; 4us counter        
Msec    ds 1   ; 1/1000 sec counter 
HSec    ds 1   ; 1/100 sec counter  
TSec    ds 1   ; 1/10 sec counter   
Sec     ds 1   ; 1 sec counter      
Sec10   ds 1   ; 10 sec counter     
Min     ds 1   ; 1 min counter      
Min10   ds 1   ; 10 min counter     
 
org     $000 
 
;** Timer-VP for the stopwatch *************************************** 
; 
:Timer 
 
  Bank Timers   
  mov   w, #250  ; 4ms * 250 = 1 ms  
  dec   us4 
  snz 
    mov us4, w 
  snz 
    TickOn   ; Set 1ms ticker 
     
  SkipIfClockIsOn  ; If clock is off, continue with 
    jmp :Display  ;   7-Segment VP 
  snz 
    inc Msec   ; every millisecond 
  mov w, #10 
  mov w, MSec-w  ; Z if MSec = 10 
  snz  
    clr Msec 
  snz  
    inc Hsec   ; every 1/100 sec 
  mov w, #10 
  mov w, HSec-w  ; Z if HSec = 10 
  snz  
    clr Hsec 
  snz  
    inc Tsec   ; every 1/10 sec 
  mov w, #10 
  mov w, TSec-w  ; Z if TSec = 10 
  snz  
    clr Tsec 
  snz  
    inc Sec   ; every second 
  mov w, #10  
  mov w, Sec-w  ; Z if sec = 10 
  snz  
    clr Sec 
  snz  
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    inc Sec10   ; every 10 seconds 
  mov w, #6 
  mov w, Sec10-w  ; Z if Sec10 = 6  
  snz  
    clr Sec10 
  snz  
    inc Min   ; every minute 
  mov w, #10 
  mov w, Min-w  ; Z if  Min = 10 
  snz  
    clr Min 
  snz  
    inc Min10   ; every 10 minutes 
  mov w, #6  
  mov w, Min10-w 
  snz 
    clr Min10 
 
;** VP to control a 7-segment, 6-digits LED display ****************** 
; 
:Display 
  SkipIfTick   ; Action only if the timer has 
    jmp :ISRExit  ;  set the 1ms tick            
  TickOff   ; Clear the tick flag          
  bank Leds   ; Get value for current digit  
  mov  w, #Digits  ;  from Digits                 
  add  w, Digit  ; 
  mov  fsr, w   ; 
  mov  w, ind   ;  indirect and 
  call Decode   ;  7-seg pattern to W 
  clr  rc   ; Turn off the current digit 
  mov  rb, w 
  SkipIfBlink   ; If blinking is on, 
    jmp :NoBlink  ; 
  test Digit   ;  check if 1/100 seconds digit is 
  sz    ;  the current one, and  
    jmp :NoBlink   
  bank Timers   ;  if so, get bit 0 of the 
  movb c, TSec.0  ;  1/10 seconds timer to C. 
  bank Leds 
  snc    ;  If set, turn on the DP 
    clrb rb.2   ;  LED. 
     
:NoBlink 
  mov  rc, Column  ; Output column data 
  bank Leds 
  clc    ; Select next column 
  rl   Column  
  inc  Digit   ; Select next digit 
  mov  w, #6   ; If we are past digit 5, 
  mov  w, Digit-w  ; 
  snz ; 
    clr Digit   ;  activate digit 0,       
  mov  w, #1   ;  and select 
  snz ;   
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    mov Column, w  ;  column 0 too. 
 
:ISRExit 
  mov   w, #-200  ; Call the ISR every 4us 
  retiw 
 
;** Subroutine returns the 7-seg pattern for a decimal digit in w 
; 
Decode 
  jmp pc+w 
  retw %00100100 ; 0 
  retw %10101111 ; 1 
  retw %01000110 ; 2 
  retw %00001110 ; 3 
  retw %10001101 ; 4 
  retw %00011100 ; 5 
  retw %00010100 ; 6 
  retw %10101110 ; 7 
  retw %00000100 ; 8 
  retw %00001100 ; 9 
 
org     $100 
 
;** Mainline program ************************************************* 
; 
Main 
 
include "Clr2x.inc" 
 
  mode PLP 
  mov  !ra, #%11110000 ; Pull-up for buttons 
  mode TRIS 
  mov  rb, #$ff 
  mov  !rb, #0  ; Outputs for cathodes 
  clr  rc 
  mov  !rc, #%11000000 ; Outputs for anodes 
 
  bank Leds 
  mov  Column, #1  ; Initialize column mask 
  mov  !option, #%10011111 ; Enable RTCC interrupt 
  jmp  @MainLoop  ; Continue with main program loop 
 
  org $200 
;** Subroutine copies the current time information into the  
;   display buffer. 
; 
TimeToDisp 
  mov FSRSave, fsr  ; Save FSR 
  mov Ix,      #5  ; Initialize index 
 
:Copy 
  mov w,       #Hsec ; Timer base address --> w, 
  add w,       Ix  ;  add offset, 
  mov fsr,     w  ;  setup indirect address, 
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  mov Temp,    ind  ;  copy timer variable to Temp. 
  mov w,       #Digits ; Digits base address --> w, 
  add w,       Ix  ;  add offset, 
  mov fsr,     w  ;  setup indirect address, 
  mov ind,     Temp  ;  copy timer variable --> Digits. 
  dec Ix   ; Next lower index 
  sb  Ix.7   ; If not < 0, 
    jmp :Copy   ;  copy more digits 
  mov fsr, FSRSave  ; Restore FSR 
ret ; Done... 
 
;** Subroutine clears all timer registers 
; 
ClrTime 
  mov FSRSave, fsr  ; Save FSR 
  mov Ix,      #7  ; Initialize index 
 
:Clear 
  mov w,       #Hsec ; Timer base address --> w, 
  add w,       Ix  ;  add offset, 
  mov fsr,     w  ;  setup indirect address,  
  clr ind   ;  clear timer variable. 
  dec Ix   ; Next lower index 
  sb  Ix.7   ; If not < 0, 
    jmp :Clear  ;  clear mode variables 
  mov fsr, FSRSave  ; Restore FSR 
ret ; Done... 
 
;** Main program loop 
; 
MainLoop 
 
  mov  w, #2   ; If State <> 2 (elapsed time), 
  mov  w, State-w  ;   
  sz 
    call TimeToDisp  ;  copy and display the time 
 
  SkipIfWaitRelease  ; Wait for button release if 
    jmp :ExecModes  ;  flag is set. 
  SkipIfBT1IsUp  ; BT1 not released, 
    jmp MainLoop     ;  continue waiting... 
  SkipIfBT2IsUp  ; BT2 not released, 
    jmp MainLoop  ;  continue waiting 
  ClrWaitRelease  ; Clear the wait flag 
       
:ExecModes   ; "State Engine" 
  mov  w, State  ; Select mode according to current 
  jmp  pc+w   ;  state 
  jmp  ModeStop 
  jmp  ModeRun 
  jmp  ModeElap 
   
ModeStop   ; Clock is stopped 
  SkipIfBT1IsDown  ; BT1 not pressed, check 
    jmp :TestBT2  ;  BT2 
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  ClockOn   ; BT1 pressed, turn clock on, and 
  SetWaitRelease  ;  activate mode "Wait for Button 
    ;  Release" 
  inc State   ; Next state is "ModeRun" 
  jmp MainLoop 
     
:TestBT2   ; Check BT2  
  SkipIfBT2IsDown  ; BT2 not pressed, 
    jmp MainLoop  ;   no action 
  call ClrTime  ; BT2 pressed, clear time and 
  SetWaitRelease  ;  activate mode "Wait for Button 
    ;  Release" 
  jmp  MainLoop 
   
ModeRun   ; Clock is running 
  SkipIfBT1IsDown  ; BT1 not pressed, check 
    jmp :TestBT2  ;  BT2 
  ClockOff   ; BT1 pressed, stop the clock, and 
  SetWaitRelease  ;  activate mode "Wait for Button 
    ;  Release" 
  clr State   ; Next State is ModeStop 
  jmp MainLoop 
 
:TestBT2   ; Check BT2 
  SkipIfBT2IsDown  ; BT2 not pressed,  
    jmp MainLoop  ;  no action 
  inc State   ; BT2 pressed, next State is 
    ;  ModeElap 
  BlinkOn   ; Set the blink flag to make DP 
    ;  in the rightmost digit blink 
  SetWaitRelease  ; Activate mode "Wait for Button 
    ;  Release" 
  jmp  MainLoop 
   
ModeElap   ; Display elapsed time 
  SkipIfBT1IsDown  ; BT1 not pressed, check 
    jmp :TestBT2  ;  BT2 
  SetWaitRelease  ; Activate mode "Wait for Button 
    ;  Release" 
  BlinkOff   ; BT1 pressed, clear the blink flag 
  dec State   ; Next state is ModeRun 
  jmp MainLoop 
 
:TestBT2   ; Check BT2 
  SkipIfBT2IsDown  ; BT2 not pressed,  
    jmp MainLoop  ;  no action 
  call TimeToDisp  ; Display new elapsed time 
  SetWaitRelease  ; Activate mode "Wait for Button 
    ;  Release" 
  jmp  MainLoop  ; again, and again... 
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At the beginning of the program, several macros are defined that make it easier to read the re-
mainder of the program, and that allow an easier change of the port pin assignments. In this case, 
you only need to change the macros, while the rest of the code needs no modifications. 

The Timer VP has been enhanced by two lines: 
  SkipIfClockIsOn      ; If clock is off, continue with 
    jmp :Display      ;   7-Segment VP 

in order to enable and disable the timer. The milliseconds timer is always active, no matter what 
the state of the Clock flag is so that the Tick flag is set as this is required by the 7-Segment VP. 

The remainder of the Timer VP is identical to the previously shown program code, except that we 
have removed the hours timers as they are not needed here. 

The 7-Segment VP is also almost identical to the version already shown. We have added the fol-
lowing instructions: 
  SkipIfBlink ; If blinking is on, 
    jmp :NoBlink ; 
  test Digit ;  check if 1/100 seconds digit is 
  sz ;  the current one, and  
    jmp :NoBlink   
  bank Timers ;  if so, get bit 0 of the 
  movb c, TSec.0 ;  1/10 seconds timer to C. 
  bank Leds 
  snc ;  If set, turn on the DP 
    clrb rb.2 ;  LED. 
     
:NoBlink 

These instructions make the decimal point in the rightmost digit blink when the display shows an 
elapsed time. This feature is controlled by the Blink flag bit of the Flags variable, and it is tested 
here by calling the SkipIfBlink Macro. 

Only when the rightmost digit is active (Digit = 0) the decimal point must eventually be turned 
on. If this is the case, the contents of bit 0 in the 1/10 seconds timer is “borrowed” to turn DP on 
or off. 

The mainline program first clears all data registers, initializes the ports, enables the RTCC inter-
rupt, and then enters into the main program loop that is located in the second program memory 
page. 

In this second page, you first find the Subroutines TimeToDisp that copies the current timer con-
tents into the display buffer, and ClrTime that clears the timer registers. 

The main program loop begins with the following instructions: 
Main 
 
  mov  w, #2 ; If State <> 2 (elapsed time), 
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  mov  w, State-w   ;   
  sz 
    call TimeToDisp   ;  copy and display the time 

The current timer contents are copied to the display buffer registers except when the content of 
State is 2 (Display Elapsed Time). Then it eventually waits for BT1 and/or BT2 to be released: 
  SkipIfWaitRelease ; Wait for button release if 
    jmp :ExecModes ;  flag is set. 
  SkipIfBT1IsUp ; BT1 not released, 
    jmp Main     ;  continue waiting... 
  SkipIfBT2IsUp ; BT2 not released, 
    jmp Main ;  continue waiting 
  ClrWaitRelease ; Clear the wait flag 

This is an intermediate state of the “State Engine”. During that state, the 7-segment display is still 
updated (in case the clock is running, and does not show an elapsed time), but further actions are 
“put on hold” until the buttons are released (this is how de-bouncing is handled here). 
:ExecModes ; "State Engine" 
  mov  w, State ; Select mode according to current 
  jmp  pc+w ;  state 
  jmp  ModeStop 
  jmp  ModeRun 
  jmp  ModeElap 

These instructions act as “State Selector”, i.e. depending on the current state the necessary in-
structions are executed. 

While in the “Stop” state, the instructions 
ModeStop ; Clock is stopped 
  SkipIfBT1IsDown ; BT1 not pressed, check 
    jmp :TestBT2 ;  BT2 
  ClockOn ; BT1 pressed, turn clock on, and 
  SetWaitRelease ;  activate mode "Wait for Button 
 ;  Release" 
  inc State ; Next state is "ModeRun" 
  jmp Main 
     
:TestBT2 ; Check BT2  
  SkipIfBT2IsDown ; BT2 not pressed, 
    jmp Main ;   no action 
  call ClrTime ; BT2 pressed, clear time and 
  SetWaitRelease ;  activate mode "Wait for Button 
 ;  Release" 
  jmp  Main 

are executed. If BT1 is pressed, the clock will start, and the “Run” state is activated. The macro 
SetWaitRelease activates the intermediate state that waits for button releases. 

When BT2 is pressed, all timer registers are cleared, i.e. the stop time is reset to zero, and again, 
the intermediate mode to wait for button releases is activated. 
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During the “Run” mode, the clock keeps running, and the following instructions take care of the 
necessary actions: 
ModeRun ; Clock is running 
  SkipIfBT1IsDown ; BT1 not pressed, check 
    jmp :TestBT2 ;  BT2 
  ClockOff ; BT1 pressed, stop the clock, and 
  SetWaitRelease ;  activate mode "Wait for Button 
 ;  Release" 
  clr State ; Next State is ModeStop 
  jmp Main 
 
:TestBT2 ; Check BT2 
  SkipIfBT2IsDown ; BT2 not pressed,  
    jmp Main ;  no action 
  inc State ; BT2 pressed, next State is 
 ;  ModeElap 
  BlinkOn ; Set the blink flag to make DP 
 ;  in the rightmost digit blink 
  SetWaitRelease ; Activate mode "Wait for Button 
 ;  Release" 
  jmp  Main 

When BT1 is pressed, the macro ClockOff stops the timer, but the timer register contents are 
still maintained and displayed, i.e. the current stop time. clr State resets the state to “Stop”, 
and because a button was pressed, we need to wait for the button release. 

When BT2 is pressed, the user wants to see an elapsed time. Therefore, the next state, ModeElap is 
set, BlinkOn “informs” the 7-Segment VP to blink the rightmost decimal point. As the contents of 
State is 2 now, the instruction call TimeToDisp at the beginning of the main loop is skipped 
now, i.e. the time display is no longer refreshed, but the timer continues to update the time „in 
the background“. Again, we need to wait for the button to be released. 

While an elapsed time is displayed, the following instructions are executed: 
ModeElap ; Display elapsed time 
  SkipIfBT1IsDown ; BT1 not pressed, check 
    jmp :TestBT2 ;  BT2 
  SetWaitRelease ; Activate mode "Wait for Button 
 ;  Release" 
  BlinkOff ; BT1 pressed, clear the blink flag 
  dec State ; Next state is ModeRun 
  jmp Main 
 
:TestBT2 ; Check BT2 
  SkipIfBT2IsDown ; BT2 not pressed,  
    jmp Main ;  no action 
  call TimeToDisp ; Display new elapsed time 
  SetWaitRelease ; Activate mode "Wait for Button 
 ;  Release" 
  jmp  Main ; again, and again... 
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When BT1 is pressed, the blink flag is cleared and the “Run” state becomes active, i.e. the display 
buffer will be updated from the timer registers again. 

If BT2 is pressed, the current content of the timer running in the „background“ is copied to the 
display buffer in order to display a new elapsed time. 

In both cases, we need to wait for the buttons to be released. 

 

(Stop)Watch Out – The Macro “Pitfall” !  

Macros are a nice aid to make a program mode readable, and more “generic”, on the other 
hand, they can also add a “pitfall” to the programmer’s hard life: 

Just for fun, see what happens if you change the name of the SkipIfClockIsOn macro in 
the definition to SkpIfClockIsOn (remove the “i” in “Skip”) and re-assemble the program. 
When you are using the SASM Assembler you may get an error reporting that labels must 
begin in column 1 for the line where the SkipIfClockIsOn macro is called. The SX-Key 
assembler will not complain at all, and SASM will also be happy if you happen to have not 
entered the leading space in before the SkipIfClockIsOn macro call. 

This macro is used to skip the Timer VP in case the clock is in “Stop” state. 

SkipIfClockIsOn 

  jmp :Display 

snz 

Now that SkipIfClockIsOn is no longer defined as a macro, but SkpIfClockIsOn instead, 
the Assembler “assumes” that SkipIfClockIsOn is a global label now, and so the jmp 
:Display instruction will always be executed, and the Timer VP is never active.. 
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4.7 A Digital SX Alarm Clock 
The step from a stopwatch to a “real” digital clock with alarm function is not too large but the 
program requires some additional enhancements that are necessary to set the time, and the alarm 
time. 

The schematic for the digital clock is the same as for the stopwatch. If you like, you could connect 
a loudspeaker to port pin RC7 in order to generate an acoustic alarm. 

Again, it makes sense to develop a state engine that handles the user interface, but before writing 
the engine, we first should define the functions for the two buttons (we call them “Mode” (BT1), 
and “Set” (BT2) here): 

• Default “Clock mode” – The current time is displayed, and if an alarm is enabled, the two 
decimal points in the seconds digits shall be on. When the alarm time has been reached, the 
two decimal points shall blink, and the buzzer shall generate an intermittent tone alarm 
sound. 
o No alarm active: 

 “Mode” activates the “Set clock” function to adjust the time. 
 “Set” activates setting of the alarm time. 

o Alarm active: 
 Any button press stops the alarm. 

 
• “Set clock” mode – The display shows the time when “Mode” was pressed, and the digit that 

can be currently changed is marked with a blinking decimal point (starting with the one-sec-
onds digit). 
o “Set” increments the current decimal. 
o “Mode” activates the next digit to be changed.  
o When “Mode” is held down when the 10-hours digit is active, and “Set” is pressed while 

“Mode” is down, the entered time will be accepted, and the clock starts with this new time 
as soon as both buttons are released. 

o When Mode” is pressed and released and “Set” was not pressed while “Mode” was down, 
the entered time will be discarded, and the former clock setting remains unchanged, i.e. 
the display shows the current clock time again that was updated in the background during 
the “Set clock” mode. 

 
• “Set alarm” mode – The display shows the last entered alarm time, and the digit that can be 

currently changed is marked with a steady decimal point (starting with the one-seconds 
digit). 
o “Set” increments the current decimal. 
o “Mode” activates the next digit to be changed.  
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o When “Mode” is held down when the 10-hours digit is active, and “Set” is pressed while 
“Mode” is down, the entered time will be accepted as the new alarm time, and the alarm is 
enabled. 

o When Mode” is pressed and released and “Set” was not pressed while “Mode” was down, 
the entered alarm time will be discarded, and the alarm will be disabled. 

As you can see, the state engine is more complex than the one controlling the stopwatch user 
interface. There are three major states: the “Clock” state, the “Set clock” state, and the “Set alarm” 
state. Within these major states, there are different sub-states, depending on the major state, but 
most of the sub-states in “Set clock”, and “Set alarm” are identical. 

This is the program listing: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP016.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS    = $0f 
PLP     = $0e 
 
Buzzer  = rc.7 
 
;** Macro Definitions ************************************************ 
; 
DotOn MACRO   ; Decimal point LED on 
  clrb rb.2 
ENDM 
 
SkipIfModeIsUp MACRO ; Skip if "Mode" button released 
  snb ra.0 
ENDM 
 
SkipIfModeIsNotDown MACRO ; Skip if "Mode" button not pressed 
  sb ra.1 
ENDM 
 
SkipIfSetIsNotDown MACRO ; Skip if "Set" button pressed 
  sb ra.3 
ENDM 
 
SkipIfSetIsUp MACRO  ; Skip if "Set" button released 
  snb ra.2 
ENDM 
 
SkipIfSetIsDown MACRO ; Skip if "Set" button pressed 
  snb ra.3 
ENDM 
TickOn MACRO   ; Turn ticker on 
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  setb Flags.0 
ENDM 
 
TickOff MACRO   ; Turn Ticker off 
  clrb Flags.0 
ENDM 
 
SkipIfTick MACRO  ; Skip if ticker is on 
  sb Flags.0 ;   
ENDM 
 
BlinkOn MACRO ; Turn blink on 
  setb Flags.1 
ENDM 
 
BlinkOff MACRO  ; Turn blink off 
  clrb Flags.1 
ENDM 
 
SkipIfBlink MACRO  ; Skip if blink is on 
  sb Flags.1 
ENDM 
 
ArmAlarm MACRO  ; Enable the alarm function 
  setb Flags.2 
ENDM 
 
ClrAlarm MACRO  ; Disable the alarm function 
  clrb Flags.2 
  clrb Flags.3 
ENDM 
 
SkipIfAlarmSet MACRO ; Skip if alarm is enabled 
  sb Flags.2 
ENDM     
 
SkipIfAlarm MACRO  ; Skip if alarm is triggered 
  sb Flags.3 
ENDM 
 
SetAlarm MACRO  ; Trigger the alarm 
  setb Flags.1 
  setb Flags.3 
ENDM 
 
SettingClock MACRO  ; Set mode flag "Set Clock" 
  setb Flags.4 
ENDM 
 
SettingAlarm MACRO  ; Set mode flag "Set alarm" 
  clrb Flags.4 
ENDM 
 
SkipIfSettingClock MACRO ; Skip if mode "Set Clock" is 
  sb Flags.4   ;  active 
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ENDM 
 
org      $08 
Std      = $ ; Global memory bank 
Temp     ds 1 ; Temporary storage 
Ix       ds 1 ; Index variable 
State    ds 1 ; Current mode of state engine 
SubState ds 1 ; Current sub-mode of state engine 
Flags    ds 1 ; Various flags 
 
org     $30 
Leds    = $ ; LED bank 
Column  ds 1 ; Column mask 
Digit   ds 1 ; Current display digit 
Digits  ds 6 ; Digits buffer 
Alarm   ds 6 ; Storage for alarm time 
 
org     $50 
Timers  = $ ; Timer bank 
us4     ds 1 ; 4us counter 
Msec    ds 1 ; 1/1000 sec counter 
HSec    ds 1 ; 1/100 sec counter 
TSec    ds 1 ; 1/10 sec counter 
Sec     ds 1 ; 1 sec counter 
Sec10   ds 1 ; 10 sec counter 
Min     ds 1 ; 1 min counter 
Min10   ds 1 ; 10 min counter 
Hour    ds 1 ; 1 hour counter 
Hour10  ds 1 ; 10 hour counter 
 
org     $000 
 
;** Clock VP ********************************************************* 
; 
:Timers 
 
  Bank Timers 
  mov   w, #250 ; 4ms * 250 = 1 ms 
  dec   us4 
  snz 
    mov us4, w 
  snz 
    TickOn 
  snz 
    inc Msec  ; every millisecond 
  mov w, #10 
  mov w, MSec-w ; Z if MSec = 10  
  snz 
    clr Msec 
  snz 
    inc Hsec  ; every 1/100 sec 
  mov w, #10 
  mov w, HSec-w ; Z if HSec = 10 
  snz 
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    clr Hsec 
  snz  
    inc Tsec  ; every 1/10 sec 
  mov w, #10 
  mov w, TSec-w ; Z if TSec = 10 
  snz 
    clr Tsec 
  snz 
    inc Sec  ; every second 
  mov w, #10  
  mov w, Sec-w ; Z if sec = 10 
  snz 
    clr Sec 
  snz 
    inc Sec10  ; every 10 seconds 
  mov w, #6 
  mov w, Sec10-w ; Z if Sec10 = 6  
  snz 
    clr Sec10 
snz 
    inc Min  ; every minute 
  mov w, #10 
  mov w, Min-w ; Z if  Min = 10 
  snz 
    clr Min 
  snz 
    inc Min10  ; every 10 minutes 
  mov w, #6 
  mov w, Min10-w 
  snz 
    clr Min10 
  snz 
    inc Hour  ; every hour 
  mov w, #10 
  mov w, Hour-w 
  snz 
    clr Hour 
  snz 
    inc Hour10 ; every 10 hours 
  mov w, #3 
  mov w, Hour10-w 
  snz 
    clr Hour10 ; every day 
 
;** VP to control a 7-segment, 6-digits LED display ****************** 
; 
:Display 
  SkipIfTick  ; Action only if the timer has  
    jmp :ISRExit ;  set the 1ms tick        
  TickOff  ; Clear the tick flag 
  bank Leds  ; Get value for current digit 
  mov  w, #Digits ;  from Digits 
  add  w, Digit ; 
  mov  fsr, w  ; 
  mov  w, ind  ;  indirect 
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  and  w, #%01111111 ; Mask bit 7 (the blink id)      
  call Decode   ; 7-seg pattern to W            
  clr  rc   ; Turn off the current display 
  mov  rb, w   ; Output line data           
  SkipIfBlink   ; If dots shall blink,        
    jmp :DotOn  ; 
  bank Timers   ;  "borrow" from TSec, and      
  movb c, TSec.0  ;   save bit 0 in C 
  bank Leds 
  sc    ; If TSec.0 is set, "On Phase", 
    jmp :NoBlink  ;   else "Off Phase" for blinking 
     
:DotOn     
  bank Leds   ; Turn on if bit 7 is set in 
  snb  ind.7               ;  the digit's data storage  
    DotOn 
     
:NoBlink 
  mov  rc, Column  ; Output column data 
  SkipIfAlarm   ; If alarm is triggered,    
    jmp :NoBeep  ; 
  bank Timers   ; 
  snb Sec.0   ;  send a 500 Hz signal to the 
    jmp :NoBeep  ;  buzzer every other second 
  movb Buzzer, MSec.0 
   
:NoBeep     
  bank Leds 
  clc 
  rl   Column   ; Select next column 
  inc  Digit   ; Select next digit 
  mov  w, #6   ; If we are past digit 5, 
  mov  w, Digit-w  ; 
  snz ; 
    clr Digit   ;  activate digit 0 
  mov  w, #1   ; 
  snz ; 
    mov Column, w  ;  and select column 0    
 
:ISRExit 
  mov   w, #-200  ; Call the ISR every 4us 
  retiw 
 
;** Subroutine returns the 7-seg pattern for a decimal digit in w 
; 
Decode 
  jmp pc+w 
  retw %00100100 ; 0 
  retw %10101111 ; 1 
  retw %01000110 ; 2 
  retw %00001110 ; 3 
  retw %10001101 ; 4 
  retw %00011100 ; 5 
  retw %00010100 ; 6 
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  retw %10101110 ; 7 
  retw %00000100 ; 8 
  retw %00001100 ; 9 
 
org     $100 
 
;** Mainline program ************************************************* 
; 
Main 
 
; Clear the data memory 
; 
  clr    fsr 
ClearRam 
  sb     fsr.4 
    Setb fsr.3 
  clr    ind 
  ijnz   fsr, ClearRam 
 
  mode PLP 
  mov  !ra, #%11110000 ; Pull-up for buttons 
  mode TRIS 
  mov rb, #$ff  ; Set all RB outputs to high 
  mov !rb, #0   ; Enable segment outputs 
  clr rc 
  mov !rc, #%01000000 ; Outputs for anodes and buzzer 
 
  bank Leds 
  mov Column, #1   ; Initialize column mask      
  mov   !option, #%10011111 ; Enable RTCC interrupt 
  jmp @MainLoop   ; Continue with main program loop 
 
  org $200 
 
;** Subroutine waits until the "Mode" button is released 
; 
WaitReleaseM 
  SkipIfModeIsUp 
    jmp WaitReleaseM 
  ret 
 
;** Subroutine waits until the "Set" button is released 
; 
WaitReleaseS 
  SkipIfSetIsUp 
    jmp WaitReleaseS 
  ret 
 
;** Subroutine waits until both buttons are released 
; 
WaitReleaseBoth 
  SkipIfSetIsUp 
    jmp WaitReleaseBoth 
  SkipIfModeIsUp 
    jmp WaitReleaseBoth 
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ret 
 
;** Main program loop 
; 
MainLoop 
  mov  w, State  ; Jump table for state engine 
  jmp  pc+w 
  jmp  Clock 
  jmp  SetClock 
  jmp  SetAlarmTime 
 
;** Handle state "Clock is running" 
; 
Clock 
  mov  Ix, #5   ; Copy the current time information 
:Copy    ;  to the display buffer 
  mov  w, #Sec  ; Base is the Hour10 timer register, 
  add  w, Ix   ;  add the index, 
  mov  fsr, w   ;  address the timer register and 
  mov  Temp, ind  ;  read it indirect 
  mov  w, #Digits  ; Base is Digits+5 
  add  w, Ix   ;  add the index, 
  mov  fsr, w   ;  and  
  mov  ind, Temp  ;  write data indirect 
  dec  Ix   ; Next lower position 
  sb   Ix.7   ; If Ix <> -1, 
    jmp  :Copy  ;  copy more digits 
     
  SkipIfAlarmSet  ; If the alarm is enabled, 
    jmp :NoAlarm 
  setb Digits.7  ;  turn on the decimal points in 
  setb Digits+1.7  ;  the seconds digits 
   
  ;** Check if it is time to trigger the alarm 
  ; 
  mov Ix, #5   ; For this test, the current con- 
:CheckAlarm     ;  tents of all 6 digits is com- 
  mov w, #Digits  ;  pared with the contents of 
  add w, Ix   ;  the alarm time buffer. 
  mov fsr, w 
  mov Temp, ind 
  clrb Temp.7 
  mov w, #Alarm 
  add w, Ix 
  mov fsr, w 
  mov w, ind 
  mov w, Temp-w 
  sz 
    jmp :NoAlarm  ; If any digit is different, cancel 
  dec Ix   ;  the compare 
  sb  Ix.7 
    jmp :CheckAlarm   
  SetAlarm   ; Trigger the alarm if all digits 
      ;  are equal 
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:NoAlarm     
  SkipIfAlarm   ; If the alarm is not triggered, 
    jmp :CheckButtons ;  check the buttons 
  SkipIfModeIsNotDown ; If the alarm is triggered,  
    jmp :StopAlarm  ;  it can be turned off with 
  SkipIfSetIsNotDown ;  any of the buttons 
    jmp :StopAlarm 
  jmp MainLoop 
   
:StopAlarm   ; Turn off the alarm 
  ClrAlarm   ;  Clear the flag, and wait 
  call WaitReleaseBoth ;  until both buttons are released 
  jmp MainLoop 
           
:CheckButtons       ; Read the buttons   
  SkipIfModeIsNotDown ; If the "Mode" button is pressed, 
    inc State   ;  set state to "Set Clock" 
  mov  w, #2 
  SkipIfSetIsNotDown ; If the "Set" button is pressed, 
    mov State, w  ;  set state to "Set Alarm"  
  jmp  MainLoop 
 
;** Handle state "Set Clock" 
; 
SetClock 
  mov  w, SubState  ; Jump table for sub-states 
  jmp  pc+w 
  jmp  InitSetClock  ; Do the initializations 
  jmp  MarkDigit  ; Display the decimal point 
  jmp  CheckButtons  ; Read the buttons 
  jmp  NextDigit  ; Select next digit 
 
;** Handle state "Set Alarm" 
; 
SetAlarmTime 
  mov  w, SubState  ; Jump table for sub-states 
  jmp  pc+w 
  jmp  InitSetAlarm  ; Do the initializations 
  jmp  MarkDigit  ; Display the decimal point 
  jmp  CheckButtons  ; Read the buttons 
  jmp  NextDigit  ; Select next digit 
 
;** Initializations for "Set Clock" 
; 
InitSetClock  
  SettingClock  ; Set the mode flag 
  bank Timers 
  BlinkOn   ; Enable blink in the display VP 
  bank Leds 
  clrb Digits+1.7  ; Clear the decimal point in the 
    ;  10 seconds buffer as it might 
InitCommon   ;  be set when alarm is enabled 
  clr  Ix   ; Index = 0 
  inc  SubState  ; Next sub-state: "MarkDigit" 
  jmp  MainLoop 
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;** Initializations for "Set Alarm" 
; 
InitSetAlarm 
  SettingAlarm  ; Set the mode flag 
  ClrAlarm   ; Disable the alarm 
  mov  Ix, #5   ; Copy the saved alarm time to 
:Copy    ;  the display buffer 
  mov  w, #Alarm 
  add  w, Ix 
  mov  fsr, w 
  mov  Temp, ind 
  mov  w, #Digits 
  add  w, Ix 
  mov  fsr, w 
  mov  ind, Temp 
  dec  Ix 
  sb   Ix.7 
    jmp  :Copy 
  call WaitReleaseS  ; Wait until the "Set" button is 
    ;  released 
  jmp  InitCommon  ; Continue with common instructions 
 
;** Turn the decimal point on 
; 
MarkDigit 
  mov  w, #Digits  ; Indirectly address the current 
  add  w, Ix   ;  digit, and set the decimal 
  mov  fsr, w   ;  point flag 
  setb ind.7 
  call WaitReleaseM  ; Wait until the "Mode" key is 
    ;  released 
  inc  SubState  ; Next sub-state: CheckButtons 
  jmp  MainLoop 
 
;** Read the buttons, and increment the current digit 
; 
CheckButtons 
  SkipIfModeIsNotDown ; If "Mode" button pressed, 
    inc SubState  ;  next sub-state: NextDigit 
  SkipIfSetIsDown  ; If "Set" button pressed, 
    jmp MainLoop 
  mov  w, #Digits  ;  increment current digit, so 
  add  w, Ix   ;  indirectly address that digit, 
  mov  fsr, w   ;   
  mov  Temp, ind  ;  copy it to Temp, 
  clrb Temp.7   ;  clear the decimal point flag, 
  inc  Temp   ;  and increment it 
 
  mov  w, Ix   ; Depending on the current digit, 
  jmp  pc+w   ;  check for the maximum value: 
  jmp  :Max9   ;  0...9 (1 seconds) 
  jmp  :Max5   ;  0...5 (10 seconds) 
  jmp  :Max9   ;  0...9 (1 minutes) 
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  jmp  :Max5   ;  0...5 (10 minutes) 
  jmp  :Max9   ;  0...9 (1 hours) 
  jmp  :Max2_1  ;  0...1 or 0...2 (10 hours) 
:Max9 
  mov w, #10   ; If digit > 9, 
  mov w, Temp-w 
  snz 
    clr Temp   ;  digit = 0 
  jmp :Continue 
:Max5 
  mov w, #6   ; If digit > 5, 
  mov w, Temp-w 
  snz 
    clr Temp   ;  digit = 0 
  jmp :Continue 
:Max2_1 
  dec fsr   ; If 1 hours <= 4, 
  mov w, #4 
  mov w, ind-w 
  mov w, #3   ;  10 hours < 3 are valid, 
  snc    ;  else 10 hours < 2 
    mov w, #2   ;  are valid only 
  inc fsr 
  mov w, Temp-w  ; If digit > 2 or 1 
  snz 
    clr Temp ;  digit = 0 
     
:Continue 
  setb Temp.7   ; Set the decimal point flag 
  mov  ind, Temp  ; Copy the new value to the display 
   ;  buffer, and 
  call WaitReleaseS  ;  wait for "Set" button released 
  jmp  MainLoop 
 
;** Select next digit, and terminate the "Set???" mode if necessary 
; 
NextDigit 
  mov  w, #Digits  ; Indirectly address the current 
  add  w, Ix   ;  digit, and 
  mov  fsr, w   ; 
  clrb ind.7   ;  clear the decimal point flag 
  mov  SubState, #1  ; Next sub-state is: MarkDigit 
  mov  w, #6 
  inc  Ix   ; Set index to next digit 
  mov  w, Ix-w  ; If Ix < 6, 
  sz 
    jmp MainLoop  ;  enter MarkDigit, else 
    ;  terminate the "Set???" mode 
 
;** When the "Set" button is pressed while the "Mode" button is held 
;   down, copy the display digits to the clock registers, or to the 
;   alarm time buffer (depending on the "Set???" mode). 
; 
  clr  Ix   ; Ix is used as the "copy" flag 
    ;  here, if Ix = 0, don't copy 
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  mov  w, #5   ; "Prepare" w for "mov Ix, w" 
 
:WaitRelease   ; Wait for button release(s) 
  SkipIfSetIsNotDown ; If "Set" is pressed, set 
    mov Ix, w   ;  Ix = 5 
  SkipIfModeIsUp  ; If "Mode" is still held, 
    jmp :WaitRelease ;  continue waiting for release, 
  call WaitReleaseBoth ;  else wait until all buttons 
 ;  are released 
  sb Ix.0   ; If Ix = 0, don't copy 
    jmp :ExitSet 
 
:Copy    ; Copy the display buffer to the 
  mov  w, #Digits 
  add  w, Ix 
  mov  fsr, w 
  mov  Temp, ind 
  mov  w, #Sec  ; Timer registers 
  SkipIfSettingClock ; or the 
    mov  w, #Alarm  ; alarm time buffer 
  add  w, Ix 
  mov  fsr, w 
  mov  ind, Temp 
  dec  Ix 
  sb   Ix.7 
    jmp  :Copy 
  SkipIfSettingClock ; If an alarm time was set,  
    ArmAlarm   ;  enable the alarm 
   
:ExitSet 
  BlinkOff   ; Turn off blinking 
  clr State   ; Reset state and 
  clr SubState  ;  sub-state 
  jmp MainLoop  ; Repeat the main loop forever... 

 

The Timer VP was taken from the chapter “A Clock Timer – an Example” without modifications, 
so there is no need to discuss the details again here. 

The 7-Segment VP has one additional feature: If bit 7 in one of the Digits registers is set, the 
decimal point for this digit will be turned on, and if the Blink flag is also set, the decimal point 
will blink. Here are the new instructions: 
  and  w, #%01111111 ; Mask bit 7 (the blink id)      
  call Decode ; 7-seg pattern to W            
  clr  rc ; Turn off the current display 
  mov  rb, w ; Output line data           
  SkipIfBlink ; If dots shall blink,        
    jmp :DotOn ; 
  bank Timers ;  "borrow" from TSec, and      
  movb c, TSec.0 ;   save bit 0 in C 
  bank Leds 
  sc ; If TSec.0 is set, "On Phase", 
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    jmp :NoBlink ;   else "Off Phase" for blinking 
     
:DotOn     
  bank Leds ; Turn on if bit 7 is set in 
  snb  ind.7 ;  the digit's data storage  
    clrb rb.2 
     
:NoBlink 

Because now bit 7 of a Digits register may be set, it is important to clear that bit before calling 
the Decode subroutine to avoid a jump into “Nowhere Land”. 

After :DotOn, bit 7 of the current Digits register is checked, and if this is the case, the DotOn 
macro is invoked to turn the decimal point row on. 

If you use port assignments that differ from the stopwatch schematic, you need to change that macro. 

If the Blink flag is set, :DotOn will only be reached, when bit 0 in TSec is currently set to obtain a 
blinking decimal point for the “Set clock” state. 

In addition, the 7-segment VP does the job of sounding the buzzer in case of an alarm: 

  SkipIfAlarm ; If alarm is triggered,    
    jmp :NoBeep ; 
  bank Timers ; 
  snb Sec.0 ;  send a 500 Hz signal to the 
    jmp :NoBeep ;  buzzer every other second 
  movb Buzzer, MSec.0 
  :NoBeep     

When no alarm is active, the program continues at :NoBeep, otherwise bit 0 of the seconds timer 
(Sec.0) is used to turn the intermittent buzzer sound on or off. If the bit is set, the current state of 
Msec.0 is sent to the buzzer output to generate a 500 Hz sound.  

If you use port assignments that differ from the stopwatch schematic, you need to change the definition for 
Buzzer. 

The mainline program first clears the data memory, initializes the ports and the column mask 
Column next, enables the RTCC interrupt, and then enters into the main program loop. 

This loop begins with the main state selection for the state engine: 
Main 
  mov  w, State ; Jump table for state engine 
  jmp  pc+w 
  jmp  Clock 
  jmp  SetClock 
  jmp  SetAlarmTime 

 

The “Clock” state first updates the time display, and then checks if an alarm is enabled. In this 
case, the instructions 
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  setb Digits.7   ; turn on the decimal points in 
  setb Digits+1.7   ; the seconds digits 

turn on the decimal points in the seconds digits, and the current time is compared against the 
alarm time. 

Next, the program checks if an alarm has been released, and in this case, both buttons are 
checked for the “button down” state that turns off the alarm. If no button is pressed, this check is 
repeated each time the main loop is executed until the user finally wakes up, and hits one of the 
buttons. 

When no alarm is active, the buttons are checked “regularly”, and if the user has pressed one of 
the buttons, the main state is changed to SetClock, or to SetAlarm. 

The SetClock mode uses another jump table to select one of the sub-states: 
SetClock 
  mov  w, SubState ; Jump table for sub-states 
  jmp  pc+w 
  jmp  InitSetClock ; Do the initializations 
  jmp  MarkDigit ; Display the decimal point 
  jmp  CheckButtons ; Read the buttons 
  jmp  NextDigit ; Select next digit 

The first sub-state is InitSetClock where the necessary flags are being set, variables are initial-
ized, and the blink mode for decimal points is turned on before activating the next sub-state 
MarkDigit. When the main loop is executed the next time, the instructions 
MarkDigit 
  mov  w, #Digits ; Indirectly address the current 
  add  w, Ix ;  digit, and set the decimal 
  mov  fsr, w ;  point flag 
  setb ind.7 
  call WaitReleaseM ; Wait until the "Mode" key is 
 ;  released 
  inc  SubState ; Next sub-state: CheckButtons 
  jmp  Main 

will be executed, Here, it is important to wait for the release of the “Mode” button first, as it is 
most likely that it is held down for a while, or possibly bounces. This makes sure that the next 
sub-state CheckButtons will not be activated before the button is released as this state would 
immediately react on the still pressed “Mode” button. 

Other than in the stopwatch program, waiting for button releases is handled by a subroutine call 
here, i.e. the program is “on hold” until the user decides to release a button. This is fine because it 
is not necessary here to update the time display while waiting for a button release. 

The next sub-state CheckButtons takes care of controlling the digits entry. 
CheckButtons 
  SkipIfModeIsNotDown ; If "Mode" button pressed, 
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    inc SubState ;  next sub-state: NextDigit 
  SkipIfSetIsDown ; If "Set" button pressed, 
    jmp Main 
  mov  w, #Digits ;  increment current digit, so 
  add  w, Ix ;  indirectly address that digit, 
  mov  fsr, w ;   
  mov  Temp, ind ;  copy it to Temp, 
  clrb Temp.7 ;  clear the decimal point flag, 
  inc  Temp ;  and increment it 

When the user presses the “Mode” button, the sub-state is incremented to NextDigit in order to 
make the next display digit active for modification. When the user hits the “Set” button instead, 
the contents of the current digit will be incremented that is stored in the Temp variable. 

Depending on the current digit that is subject to be changed, different maximum values are al-
lowed before the digit is reset to zero again: 

For the one-seconds and one-minutes all values 0…9 are valid, but the ten-seconds and ten-min-
utes digits shall allow values 0…5 only. The one-hour digit can also accept all values from 0 
through 9, while the ten-hour digit is a bit “tricky”: 

If the one-hour digit contains a value less than 4, the maximum value is 2 for the hours 20, 21, 22, 
and 23, but if the one-hour digit is above 3, the ten-hours digit may only accept values of 0 and 1 
for the hours 00 up to 19. The following instructions take care of this: 
  mov  w, Ix ; Depending on the current digit, 
  jmp  pc+w ;  check for the maximum value: 
  jmp  :Max9 ;  0...9 (1 seconds) 
  jmp  :Max5 ;  0...5 (10 seconds) 
  jmp  :Max9 ;  0...9 (1 minutes) 
  jmp  :Max5 ;  0...5 (10 minutes) 
  jmp  :Max9 ;  0...9 (1 hours) 
  jmp  :Max2_1 ;  0...1 or 0...2 (10 hours) 
:Max9 
  mov w, #10 ; If digit > 9, 
  mov w, Temp-w 
  snz 
    clr Temp ;  digit = 0 
  jmp :Continue 
:Max5 
  mov w, #6 ; If digit > 5, 
  mov w, Temp-w 
  snz 
    clr Temp ;  digit = 0 
  jmp :Continue 
:Max2_1 
  dec fsr ; If 1 hours <= 4, 
  mov w, #4 
  mov w, ind-w 
  mov w, #3 ;  10 hours < 3 are valid, 
  snc ;  else 10 hours < 2 
    mov w, #2 ;  are valid only 
  inc fsr 
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  mov w, Temp-w ; If digit > 2 or 1 
  snz 
    clr Temp ;  digit = 0 

Finally, the decimal point flag must be restored and the new value needs to be copied to the 
Digits buffer before waiting for the release of the “Set” button. Then the main loop is executed 
again without changing the sub-state in order to allow more changes of the current digit. 
:Continue 
  setb Temp.7 ; Set the decimal point flag 
  mov  ind, Temp ; Copy the new value to the display 
   ;  buffer, and 
  call WaitReleaseS ;  wait for "Set" button released 
  jmp  Main 

In case the user has hit the “Mode” button instead of the “Set” button, NextDigit is the next sub-
state that usually selects the next display digit for modification before returning to the 
CheckButtons sub-state: 
NextDigit 
  mov  w, #Digits   ; Indirectly address the current 
  add  w, Ix    ;  digit, and 
  mov  fsr, w    ; 
  clrb ind.7    ;  clear the decimal point flag 
  mov  SubState, #1   ; Next sub-state is: MarkDigit 
  mov  w, #6 
  inc  Ix    ; Set index to next digit 
  mov  w, Ix-w   ; If Ix < 6, 
  sz 
    jmp Main    ;  enter MarkDigit, else 
     ;  terminate the "Set???" mode 

When the user hits the “Mode” button while the 10-hours digit is active for modification, things 
are different. In this case, the time entry is finished, and in case the “Set” button was pressed with 
“Mode” still down, the entered time must be copied either into the alarm time buffer, or into the 
timer registers, depending on the current main state. 
  clr  Ix ; Ix is used as the "copy" flag 
 ;  here, if Ix = 0, don't copy 
  mov  w, #5 ; "Prepare" w for "mov Ix, w" 
 
:WaitRelease ; Wait for button release(s) 
  SkipIfSetIsNotDown ; If "Set" is pressed, set 
    mov Ix, w ;  Ix = 5 
  SkipIfModeIsUp ; If "Mode" is still held, 
    jmp :WaitRelease ;  continue waiting for release, 
  call WaitReleaseBoth ;  else wait until all buttons 
 ;  are released 
  sb Ix.0 ; If Ix = 0, don't copy 
    jmp :ExitSet 
 
:Copy ; Copy the display buffer to the 
  mov  w, #Digits 
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  add  w, Ix 
  mov  fsr, w 
  mov  Temp, ind 
  mov  w, #Sec ; Timer registers 
  SkipIfSettingClock ; or the 
    mov  w, #Alarm ; alarm time buffer 
  add  w, Ix 
  mov  fsr, w 
  mov  ind, Temp 
  dec  Ix 
  sb   Ix.7 
    jmp  :Copy 
  SkipIfSettingClock ; If an alarm time was set,  
    ArmAlarm ;  enable the alarm 
   
:ExitSet 
  BlinkOff ; Turn off blinking 
  clr State ; Reset state and 
  clr SubState ;  sub-state 
  jmp Main ; Repeat the main loop forever... 

The last instructions following :ExitSet turn off the Blink flag, and clear the status values in 
order to activate the default “Clock” state when the main loop is executed next time. 

The major state SetAlarmTime is identical to the SetClock state with the exception of the initiali-
zation state. For all other sub-states, the same sub-state handlers can be used for both major 
states, and because the NextDigit sub-state handler uses the SkipIfSettingClock  to determine 
whether the new time entered shall be copied into the alarm time buffer or into the timer regis-
ters, this sub-mode handler can also be used for both major states. As mentioned before, the ini-
tialization handler for SetAlarmTime is different from the one required for the SetClock major 
state: 
InitSetAlarm 
  SettingAlarm ; Set the mode flag 
  ClrAlarm ; Disable the alarm 
  mov  Ix, #5 ; Copy the saved alarm time to 
:Copy ;  the display buffer 
  mov  w, #Alarm 
  add  w, Ix 
  mov  fsr, w 
  mov  Temp, ind 
  mov  w, #Digits 
  add  w, Ix 
  mov  fsr, w 
  mov  ind, Temp 
  dec  Ix 
  sb   Ix.7 
    jmp  :Copy 
  call WaitReleaseS ; Wait until the "Set" button is 
 ;  released 
  jmp  InitCommon ; Continue with common instructions 

The SettingAlarm macro sets a flag to “inform” the copy routine where to copy the time data. 
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The currently saved alarm time is copied to the display buffer, so that the alarm time entered last 
can be modified instead of starting with 00:00:00. The remaining actions are the same for both 
“Set” states, therefore the jmp InitCommon branches to the common instructions of the SetClock 
sub-state handler. 

4.7.1 When the Clock is Wrong... 

Caused by tolerances of the crystal or ceramic resonator that controls the system clock, it may 
happen that the clock is too slow or too fast. 

Instead of exchanging the crystal or ceramic resonator, a simple software solution can solve that 
problem, and for this example, let’s assume that the clock is slow by 2 Seconds per day: 

2 Seconds/Day at a system clock of 50 MHz are equivalent to an error of 2s/20*10-9 = 100 * 106 
clock cycles/day. 

One day has 86.4 * 103 Seconds, and because the ISR gets called every 4 µs, the error is equal to 
86.4 * 103 / 4 * 10-6 = 21,6 * 109 ISR calls/day. 

If we divide the number of ISR calls per day by the clock cycles per day, we yield 21.6 * 109 / 100 
* 106 = 216, i.e. at each 216th ISR call, the ISR must be called one clock cycle earlier than usual to 
correct the error. 

As this value cannot be derived from the time counters in the Clock VP, it makes sense to add a 
new timer counter for this error correction that keeps track of how often the ISR has been called: 
org     $50 
Timers  = $ ; Timer bank 
CorrT   ds 1 ; Counter for error correction 
us4     ds 1 ; 4us counter 

To initialize this counter, and to define the correction factor, it makes sense to define constants at 
the beginning of the program code: 
Beeper   = rc.7 
CorrInit = 216 
ISRCorr  = 1 

The following macros are useful as well: 
SetAdjust MACRO 
  setb Flags.5 
ENDM   
 
ClrAdjust MACRO 
  clrb Flags.5 
ENDM 
 
SkipIfNoAdjust MACRO 
  snb Flags.5 
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ENDM 

To first initialize CorrT, add the following instructions in the mainline program: 
  bank Timers 
  mov  CorrT, #CorrInit 
  bank Leds 
  mov Column, #1 ; Initialize column mask 
 
Modify the first instructions of the ISR as follows: 
 
  Bank Timers 
  mov  w, #CorrInit 
  dec   CorrT 
  snz 
    mov CorrT, w 
  snz 
    SetAdjust 
  mov   w, #250 
 
The ISR routine “exit” should be enhanced by the instructions 
 
:ISRExit 
  mov   w, -200 
  bank  Timers 
  SkipIfNoAdjust 
    mov w, #(ISRCorr -200) 
  ClrAdjust 
  retiw 

When the CorrT counter underflows in the ISR, the SetAdjust macro is called to set the Adjust 
flag. In this case, the value defined for ISRCorr is added to the default retiw return value of -
200, i.e. in our example, the ISR will be called after 199 clock cycles now. Because the ClrAdjust 
macro is called before exiting the ISR, subsequent ISR calls will again return –200 in w before the 
Adjust flag is set anew after the ISR has been called CorrInit times. 

In case the clock is too fast, the ISR call period must be extended from time to time, i.e. in this 
case, ISRCorr must be defined to represent a negative value. 

If you like, you may enhance the program so that the clock speed correction can be entered by the 
user instead of using the “hard coded” approach, as shown before. 



Section IV - Applications 

357 

4.8 Voltage Converters 

4.8.1 A Simple Voltage Converter 

 

In some applications, a voltage higher than VDD is required for external components. When only 
little power is required, and a free port pin is available at the SX, this voltage can be generated 
using a Villard voltage multiplier circuit. To drive the voltage multiplier, the SX controller must 
generate a square wave signal with a 50% duty cycle at the port pin. 

The resistor RV might be necessary to limit the maximum current drawn from the SX output. A 
value of 180 Ω limits the current to less than 30 mA. 

The size of the capacitors depends on the frequency of the square wave signal. They should be 
large enough to filter out that signal. 

In the test circuit, four silicon diodes, and capacitors of 33 nF each were used. Without load, the 
resulting voltage UA was approximately 13 V, and with a load of 18 kΩ, the voltage dropped 
down to about 12 V, i.e. the output current was approx. 0.6 mA. 

This is the simple program to drive the circuit: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP017.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
Timer   ds 1 
 
org     $000 
 
ISR 
  xor rc, #%10000000  ; Toggle rc.7 
 
  mov   w, #-100   ; Call the ISR every 1 us 

RC7

VDD

RV
RL

+

+

+

+
UA
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  retiw 
  
org     $100 
 
Main 
  mov   Timer, #250 
  clr   rc 
  mov   !rc, #%01111111 
  mov   !option,#%10011111  ; Enable the RTCC interrupt 
 
Loop 
  jmp Loop 

4.8.2 A Regulated Voltage Converter 

If another port pin is available, the SX can be used to stabilize the output voltage to a certain ex-
tend. The schematic shows the additional components that are required: 

 

Here, we use a voltage divider (33 kΩ / 10 kΩ) to feed part of the output voltage into port pin 
RC6 that is configured as a CMOS input. 

To drive the voltage multiplier, we now use a PWM VP in order to control the output voltage by 
changing the pulse width of the square wave signal. 

As long as the voltage at RC6 is below VDD/2 the port bit reads 0, and at voltages above that 
value, the port bit reads 1. 

Using this information, the pulse width is increased or decreased, and this logic builds a closed 
loop that stabilizes the output voltage (within certain limits) to a value that depends on the ratio 
of the voltage divider. 

Using the values above, the test circuit generated an output voltage of 10 V that changed by less 
than 0.1% when an output current of 2 mA was drawn. 

This is the program: 

RC7 

VDD 

RV 
RL 

+

+

+

+ UA

RC6 
10kΩ 

33kΩ
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; ================================================================= 
; Programming the SX Microcontroller 
; APP018.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
LVL      = $0d 
TRIS     = $0f 
SensePin = rc.6   ; Port pin for sense voltage 
 
org     $08 
PwmAcc  ds 1    ; Current PWM value 
PwmVal  ds 1    ; Contents defines pulse width 
rcBuff  ds 1    ; Buffer for port C output 
 
org     $000 
 
Stabilization 
  sb  SensePin   ; Read the divided voltage 
    jmp :TooLow   ; -> too low 
  dec PwmVal    ; Too high, reduce pulse width 
  snz     ; If PwmVal is 0, force it 
    inc PwmVal   ;  to 1 
  jmp PWM 
 
:TooLow    ; Voltage too low, 
  inc PwmVal    ;  increase pulse width 
  clrb PwmVal.7   ; Don't allow values above 127 for 
       ;  a maximum duty cycle of 50% 
 
PWM 
  clrb  rcBuff.7   ; Clear the PWM bit in advance 
  add   PwmAcc, PwmVal  ; Set current PWM value 
  snc     ; Need to toggle the output ? 
    setb rcBuff.7 
 
  mov   rc, rcBuff   ; Output port data 
  mov   w, #-100 
  retiw 
 
org     $100 
 
Main 
  clr   PwmVal 
  clr   PwmAcc 
  mode  LVL 
  mov   !rc, #%10111111  ; rc.6 is CMOS input 
  mode  TRIS 
  mov   !rc, #%01111111  ; rc.7 is PWM output 
  mov   !option,#%10011111  ; Enable RTCC interrupt 
 
Loop ; Nothing to do here 
  jmp Loop ;  for now... 
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To generate the PWM signal, we use the PWM VP that we already have discussed. 

In the Stabilizer VP, we test rc.6. If this bit reads 0, the output voltage is below the desired value. 
In this case, we need to increase the pulse width. On the other hand, if rc.6 reads 1, the output 
voltage is too high, so that we must reduce the pulse width. 

The maximum output voltage can be achieved when the square wave signal has a duty cycle of 
50%. Therefore, it only makes sense to change the duty cycle in the range from 1% up to 50%, and 
this is why PWMVal is limited to that range in the program. 
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4.9 Testing Port Outputs 
While “bread boarding” SX applications, it may happen that you short-circuit a port pin that cur-
rently is configured as an output with high level by accident, or that you connect two “offending” 
outputs (one on high level, and the other on low level). 

During many experiments with the SX that were done to prepare this book, the outputs always 
survived such “stress situations” (it even “survived” a wrong power supply polarity). 

Nevertheless, there are chances to “kill” an output, and when you don’t notice this, it is most 
likely that you blame the software first for the problem. After some hours of debugging, you 
might consider exchanging the SX, and – voila – now the system works as expected. 

This simple test circuit helps to find out it the port outputs are working properly: 

 

When a port pin is configured as an input, i.e. Hi-Z, the two resistors make up a voltage divider, 
and the oscilloscope input “sees” VDD/2. 

When the port pin is configured as output, the oscilloscope input is either pulled up to almost 
VDD when the output has high level, or pulled down close to 0 Volts when the output has low 
level. 

When a port pin is set to the various states in the order high – hi-Z – low – hi-Z, the oscilloscope 
will display the following signal: 

 

 

 

The program below sends this pattern to all port pins from Port A through Port C: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP019.SRC 
; ================================================================= 

VDD 
0,5 VDD 

0 

Port Pin Oscilloscope

VDD

2 * 180 Ω
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include "Setup28.inc" 
RESET    Main 
 
org      $08 
PortId   ds 1   ; Address of the port under test 
PinMask  ds 1   ; Mask for port pin under test 
Timer    ds 2   ; Delay counter 
Temp     ds 1   ; Temporary storage 
TrisMask ds 1   ; Mask for TRIS register 
 
;** Main program ***************************************************** 
; 
Main 
  mov PortId,   #5  ; Start the test at port ra 
 
:PortLoop 
  mov PinMask, #%00000001 ; Start the test with pin 0 
 
:PinLoop 
  mov fsr, PortId  ; Indirectly address the port 
  mov w, PinMask  ;  register, and write 
  mov ind, w   ;  the pin mask 
  not w   ; Invert the pin mask for the  
  mov TrisMask, w  ;  TRIS register and save it 
  call SetDir   ; Set port as output, high level 
    ;  and delay 
  call SetInput  ; Set port as input,  
    ;   and delay 
  mov fsr, PortId  ; Indirectly address the port 
  mov w, /PinMask  ;   register, and write the 
  mov ind, w   ;   inverted pin mask 
  mov TrisMask, w  ; Save inverted mask in the  
    ;   TRIS register 
  call SetDir   ; Set port as output, low level 
    ;   and delay 
  call SetInput  ; Set port as input,  
    ;   and delay 
  clc 
  rl PinMask   ; Rotate left the  
  sc    ;  after 8 RLs, the C flag is set 
    jmp :PinLoop  ; Not yet 8 tests, select next port 
    ;  pin for test in this port 
  inc PortId    ; Next port 
  sb PortId.3   ; PortId > 7 ? 
    jmp :PortLoop  ;  If not, test this port, 
    ;  else repeat the test 
  jmp Main   ;  for port ra 
 
;** Subroutine sets all pins of the port <PortId> to inputs (hi-Z) 
; 
SetInput 
  mov TrisMask, #$ff 
 
;** Subroutine sets the !R? register of port <PortId> to the value 
;   contained in <TrisMask> 
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; 
;   Call: :    PortId = port address, TrisMask = data 
;   Uses:      Temp 
; 
SetDir 
  mov Temp, PortId  ; PortId -> Temp 
  sub Temp, #4  ; Make PortId 1-based 
  mov w, TrisMask  ; TrisMask -> w 
  dec Temp 
  snz ; If Temp = 0, 
    mov !ra, w  ;  Port A, else 
  dec Temp 
  snz ; if Temp = 0, 
    mov !rb, w  ;  Port B, else 
  dec Temp 
  snz ; if Temp = 0, 
    mov !rc, w  ;  Port C 
 
  mov Timer+1, #20  ; Time delay 
:Loop 
  decsz Timer 
    jmp :Loop 
  decsz Timer+1 
    jmp :Loop 
  ret 

 

This program can be used to test the SX 18/20/28 controllers. if you want to test the SX 48/52 
devices, you can easily enhance the program to address ports RD and RE (addresses $08 and $09) 
as well. 

It is an idea to build a special probe with the two 180 Ω resistors built in, that is connected to the 
oscilloscope through a coaxial cable, and connected to VDD and VSS via two wires with two plugs 
or crocodile clips at the other end. 
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4.10 Reading Keyboards 
In the examples before, we have only used two pushbuttons, each with a make and a brake con-
tact to make de-bouncing easy. In many cases, it is necessary to read a lot more keys, and it is not 
possible to assign two port pins for each key. 

Similar to scanning a 7-Segment LED matrix, the keys to be read can be arranged in a matrix: 

 

The diagram shows a matrix of four rows and four columns. With an SX 28, you can extend the 
matrix up to 8 by 8 to read 64 keys if the remaining four I/O pins are enough to do the rest of the 
job, like serial communications, etc. 

When designing a system, it is important that hardware and software designers work together. 
Unfortunately, there are cases that the “Hardware Specialist” wants to assign the port pins in a 
way that makes the PCB design easier, but if the port pins are arbitrarily assigned, the software 
design may become a nightmare. 

The schematic shows that the column lines and the row lines are both assigned to Port C pins. On 
the first glance, it might be better to have one group of lines assigned to another port (e.g. the 
columns to Port B). But this means that 4 bits of Port B, and 4 bits of Port C would be assigned to 
the key matrix where the remaining 4 bits on each port are free for other purposes, and in order 
to “sort out” the right bits, it is necessary to mask out the other bits for both ports. 

RC0 

RC1 

RC2 

RC3 

RC4 

RC5 

RC6 

RC7 
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If you use one port nibble for inputs, and the other nibble for outputs, it often makes sense to use 
the lower nibble for the inputs, and the higher one for the outputs as the input data are directly 
available as binary value when you mask out the higher nibble. 

To control the column lines that are connected to outputs, one zero bit must “rotate” through the 
higher nibble, a task that can easily be achieved.  

Usual pushbutton keys require de-bouncing in most cases, and therefore, some timing consid-
erations are in order: 

To avoid a delay between pressing a key and the action following on that key press, it is impor-
tant to read all the keys often enough. A save value is to activate each column every 1 to 10 ms. 

To de-bounce a key, a delay between 20 to 40 ms between the first registered key press and the 
actual reading of the key is sufficient for most button types. There are two options how the soft-
ware can handle the de-bouncing: Either is pauses further key scans until the de-bouncing for the 
registered key is finished, or is continues scanning the other keys in the meantime. 

The first option is easier to program because the second option requires separate de-bounce timer 
counters for each single key. 

De-bouncing is necessary when a key is pressed, but also when the key is released again. 

Another design question is if it is sufficient to inform the “rest of the world” about a key-down 
event only, or if it is also important to report a “key up” event as well. This might be necessary, if 
the time between key-down, and key-up plays a role, e.g. to initiate an auto-repeat. 

In addition, it is important how to react if two or more keys are pressed at the same time. Because 
most people have 10 fingers, the following rule is an extent to Murphy’s Law: 

 
“If a device has more than one key, the user will press more than one key at a time!” 

 
First, this brings us to the method how to drive the column lines. If the program would pull one 
column line output to low, and all the other column lines to high level, it can happen that port 
outputs will be damaged. If, for example, the user would press the keys RC3/RC4, and RC3/RC5 
at the same time with RC4 high, and RC5 low, these two offending outputs are connected via the 
two pressed buttons. (This is a good reason why you should build the output tester described 
before.) 

To avoid this situation, all inactive columns should be set to the hi-Z state, and only the active 
column line should have low level.  

Note that this requires pull-up resistors between VDD and the row lines. 
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Besides the fact that multiple pressed keys may cause short circuits, another question is of im-
portance: How should the software deal with two or more keys pressed at the same time?  

Actually, it is almost impossible that two or more keys are really pressed at the same time. Usu-
ally, there is a slight time difference between the key-presses. However, it is of course possible 
that the user presses and holds down two or more keys for a certain period.  

The easiest solution is just to report the key that was recognized first, and to ignore all other keys 
until all keys have been released again. Especially for keyboards that are designed in a typewriter 
style, this is not acceptable in most cases because “fast fingers” tend to hit the next key before the 
previously pressed key is completely released. 

As an example, if you press two keys on a PC keyboard at the same time, and hold them down, 
you will notice that both characters assigned to these keys are displayed, and that after a while, 
an auto-repeat starts for the character that was detected last. When you try to press more than 
two keys at the same time you will notice that to a certain number of keys the assigned characters 
are displayed in the order, the PC has recognized the single key-down events. On the PC used to 
write this book, this worked for up to five keys, but six keys held down together did not cause 
any screen output, and the system speaker generated a beep. 

The feature to handle more than one key is called n-key rollover. When a system can handle just 
two overlapping key-presses, we can talk about a 2-key rollover behavior, and this is the mini-
mum, a typewriter-style keyboard should be able to handle. 

To support an n-key rollover (with say n being 5), it is important that no keystroke gets lost, and 
that the system maintains the correct order of the key-down events. For this purpose, a tempo-
rary storage with FIFO (first in, first out) characteristic is required (we will discuss a FIFO later in 
this book). 

Let’s start with a simple program version first. Later, we will enhance this version by some addi-
tional features. 

Because scanning of the keyboard matrix should be performed in fixed periods, it makes sense to 
use the SX’s RTCC interrupt in order to obtain a correct timing. In general, it is possible to exe-
cute the code that is required to scan and to decode the key matrix within the ISR if the number 
of available ISR clock cycles is large enough, but it often makes more sense to install a timer VP in 
the ISR, and to handle the keyboard tasks in the mainline program. This leaves enough “room” in 
the ISR for other VPs, e.g. for an UART that sends the key events to another device. 
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4.10.1 Scanning a Key Matrix, First Version 
; ================================================================= 
; Programming the SX Microcontroller 
; APP020.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS    = $0f 
PLP     = $0e 
 
TickOn MACRO 
  setb Flags.0   ; Macro to set the tick flag 
ENDM 
 
TickOff MACRO 
  clrb Flags.0   ; Macro to clear the tick flag 
ENDM 
 
SkipIfTick MACRO 
  sb Flags.0 
ENDM 
 
org     $08 
Flags   ds 1    ; Register for various flags 
 
org     $30 
Keys    equ $ 
Column  ds 1    ; Current scan column 
DebCnt  ds 1    ; De-bounce counter 
KeyId   ds 1    ; Id of pressed key 
 
org     $50 
Timers  equ $ 
us5     ds 1    ; Counter for 5 us 
Msec    ds 1    ; Counter for 1 ms 
 
org     $000 
 
;** Timer-VP ********************************************************* 
; 
Clock 
  Bank Timers 
  mov   w, #250   ; 5us * 250 = 1,25 ms 
  dec   us5 
  snz 
    mov us5, w 
  mov w, #2 
  snz 
    dec Msec 
  snz 
    mov MSec, w 
  snz 
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    TickOn ; Every 2,5 ms 
 
  mov   w, #-250   ; Call ISR every 5 us 
  retiw 
 
;** Subroutine reads the Column variable and returns the column mask 
;   in w. 
; 
Col2Mask 
  mov w, Column 
  jmp pc+w 
  retw %11101111 
  retw %11011111 
  retw %10111111 
  retw %01111111 
 
;** This subroutine would send the key code in "real live" 
;   
SendKey 
  mov w, KeyId   ; This is just an anchor to set 
     ;  a breakpoint 
  ret 
   
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
 
include "Clr2x.inc" 
 
;** Initialize the data ports 
; 
  mode PLP 
  mov  !rc, #%11110000  ; Pull-up at rc.3...0 
  mode TRIS 
  mov  !rc, #$ff   ; All lines Hi-Z for now 
  clr  rc    ; pre-initialize rc with all zeros 
  bank Keys 
  clr  Column 
  mov  !option, #%10011111  ; Enable the RTCC interrupt 
 
;** Main program loop 
; 
Loop 
  SkipIfTick    ; Wait for the 2.5 ms tick 
    jmp Loop 
 
  TickOff    ; Clear the tick flag 
  inc  Column    ; Next column, but don't 
  clrb Column.2   ;  allow values > 3 
  call Col2Mask   ; Get the column mask, 
  mov  !rc, w    ;  and set the Port C TRIS register 
  mov  w, /rc    ; Complement the row data, and 
  and  w, #$0f   ;  mask out the rows 
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  sz     ; 0, if no keys are pressed in that 
       ;  column 
    jmp :Key    ; Key(s) pressed in the column,  
         ;  go, and decode the key 
  jmp Loop      ; Continue waiting for a tick and 
       ;  a key 
 
;** Decode a key 
; 
:Key 
  mov KeyId, w   ; Save column information 
  mov DebCnt, #4   ; De-bounce = 4 * 5 ms = 20 ms 
 
:Debounce 
  SkipIfTick    ; Wait for the 2,5 ms tick 
    jmp :Debounce 
  TickOff    ; Clear the tick flag 
  decsz DebCnt   ; De-bounce counter - 1 
    jmp :Debounce 
 
  mov w, /rc    ; Read, invert, and  
  and w, #$0f    ;  mask out the rows again 
  mov w, KeyId-w    ; Same as before de-bouncing ? 
  sz     ; If yes, continue decoding, 
    jmp Loop    ;  else, we had a bounce 
 
  ;** Convert row and column info into key id 
  ; 
  clc 
  rr  KeyId    ; Convert 8, 4, 2, 1 to 4, 2, 1, 0 
  mov w, #3  
  snb KeyId.2 ; Convert 4 to 3 and end up in 
   ;  3, 2, 1, 0 
    mov KeyId, w 
 
  clc 
  rl KeyId    ; KeyId = KeyId * 4 + Column 
  rl KeyId 
  or KeyId, Column 
 
  call SendKey   ; Send key Id 
   
;** Wait for key release 
; 
:WaitRelease   
  mov DebCnt, #4   ; De-bounce time = 20 ms 
 
:RelDebounce 
  SkipIfTick    ; Wait for 2,5 ms tick 
    jmp :RelDebounce   
  TickOff    ; Clear the tick flag 
   
  mov w, /rc    ; Read inverted row data, and 
  and w, #$0f    ;  mask out the rows 
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  sz 
    jmp :WaitRelease  ; It's a bounce, de-bounce again 
  decsz DebCnt   ; De-bouncing time (20 ms) ended? 
    jmp :RelDebounce  ; No, keep on de-bouncing 
         
  jmp Loop    ; Wait for next key down 

 

This first program version continues scanning the keyboard matrix until it recognizes a key down 
in a column. In this case, scanning is suspended until the recognized key has been de-bounced, 
decoded and sent via SendKey, and is finally released. 

The SendKey subroutine in this sample program just contains one instruction so that a breakpoint 
can be set there – in a real application, this routine would send the id of a pressed key to the 
“outside world”. 

Incrementing the column number is done at the beginning of the main loop Loop, to re-enter the 
loop from any place within the loop (when a key-bounce has been detected). 

4.10.1.1 Decoding the Key Number 

SendKey expects a number from 0 through 15 in KeyId that identifies the pressed key. The col-
umn code is contained in Column (0…3), but reading the row lines returns a value of 1, 2, 4, or 8 
in case just one key is pressed in the active column. These numbers must be converted into 0, 1, 2, 
or 3 in order to be combined with the column number. When we rotate right the values 1, 2, 4, or 
8 the result is 0, 1, 2, or 4, i.e. all values are already correctly adjusted except the 4. The instruc-
tions 
  mov w, #3  
  snb KeyId.2 
  mov KeyId, w 

provide the necessary adjustment. 

Finally, this value is multiplied by 4, and the column number is added to yield the key id. 

The table below shows the resulting values for KeyId: 

 RC4 RC5 RC6 RC7
RC0 0 4 8 12 
RC1 1 5 9 13 
RC2 2 6 10 14 
RC3 3 7 11 15 

 

The method to decode the key rows shown above has one drawback because it will return wrong 
results when more than one key is pressed in one column. If, for example, the keys in rows RC1 
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and RC2 were held down at the same time when the column line RC4 is active, the decoding 
would result in 3. On the other hand, this can only happen if both keys were pressed within the 
10 ms period while the other columns are scanned because otherwise this would be interpreted 
as a key bounce. 

The change shown below makes sure that  multiple key-presses are handled correctly: 
  ;** Convert row and column info into key id 
  ; 
  mov DebCnt, #-1 ; DebCnt is used as temporary storage 
 ; here 
:Decode 
  inc DebCnt ; First row number (0) 
  rr  KeyId ; Rotate row info -> 
  sc ; If C=1, a key is pressed in this row  
    jmp :Decode 
 
  mov KeyId, DebCnt ; DebCnt contains row number 
  clc 
  rl KeyId ; KeyId = KeyId * 4 + Column 
  rl KeyId 
  or KeyId, Column 

To convert a column number into a bit pattern that is stored in the rc TRIS control register, we 
call the Col2Mask subroutine here, instead of rotating a register contents, as we did for the 7-
segment display. The method used here adds some extra safety because the pattern is derived 
from the column number variable. 

4.10.1.2 Initial “Quick Scan“ 

The previous version of the program keeps scanning the key matrix until a key-down is recog-
nized, i.e. the instructions 
Loop 
  SkipIfTick ; Wait for the 2.5 ms tick 
    jmp Loop 
 
  TickOff ; Clear the tick flag 
  inc  Column ; Next column, but don't 
  clrb Column.2 ;  allow values > 3 
  call Col2Mask ; Get the column mask, 
  mov  !rc, w ;  and set the Port C TRIS register 
  mov  w, /rc ; Complement the row data, and 
  and  w, #$0f ;  mask out the rows 
  sz ; 0, if no keys are pressed in that 
   ;  column 
    jmp :Key ; Key(s) pressed in the column,  
     ;  go, and decode the key 
  jmp Loop   ; Continue waiting for a tick and 
   ;  a key 
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and the subroutine Col2Mask are executed all the time, even if no key is pressed, wasting clock 
cycles. 

To improve the program by a “Quick-Scan Mode”, the ISR could check if any key in any column 
is pressed, and “inform” the mainline program about that fact by setting a flag. To allow the ISR 
to do that check, all column lines must be pulled to low level. Now, when a key is down, no 
matter in what row or what column, reading the row port bits results in a value other than $0f. 
Keeping the column lines “quiet” as long as no key is down also helps to reduce unnecessary 
noise. 

4.10.2 Quick-Scan and 2-Key Rollover 

The next program below uses the “Quick-Scan Mode”, and allows for a 2-key rollover. It also 
saves the last 16 key Ids in a buffer for debugging purposes. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP021.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS    = $0f 
PLP     = $0e 
 
TimerOn MACRO 
  setb Flags.0  ; Turn the timer on 
ENDM 
 
TimerOff MACRO 
  clrb Flags.0  ; Turn the timer off 
ENDM 
 
SkipIfTimeout MACRO  ; Skip if timer is done 
  snb Flags.0 
ENDM 
 
SkipIfTimer MACRO  ; Skip, if timer is active 
  sb Flags.0 
ENDM 
 
QuickScanOn MACRO  ; Turn on Quick Scan 
  setb Flags.1 
ENDM 
 
QuickScanOff MACRO  ; Turn off Quick Scan 
  clrb Flags.1 
ENDM 
 
SkipIfQuickScan MACRO ; Skip if Quick Scan active 
  sb Flags.1 
ENDM 
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SkipIfKeyDown MACRO ; Skip if key is pressed 
  snb Flags.1 
ENDM 
org     $08 
Flags   ds 1   ; Register for various flags 
KeyId   ds 1   ; Id of pressed key 
Ix      ds 1   ; Index for KeyId buffer 
 
org     $30 
Keys    equ $ 
Column  ds 1   ; Current scan column 
Row     ds 1   ; Current scan row 
RowMask ds 1   ; Mask for the row decoded last 
 
org     $50 
Timers  equ $ 
us5     ds 1   ; Counter for 5 us 
Msec    ds 1   ; Counter for Milliseconds 
 
org     $70 
Buffer  ds 16   ; Buffer for key IDs (debug only) 
 
 
org     $000 
 
;** Timer and Quick Scan ********************************************* 
; 
Clock 
  SkipIfQuickScan  ; If Quick Scan is off, go ahead 
    jmp :Timer  ;  with the Timer 
  mov  w, /rc   ; Read inverted row bits, and  
  and  w, #$0f  ;  mask out the row lines 
  sz    ; If a key is pressed, 
    QuickScanOff  ;  turn off Quick Scan 
 
:Timer 
  SkipIfTimer   ; If timer is off, 
    jmp :ISRExit  ;  no action 
  Bank Timers 
  mov  w, #250  ; 5us * 250 = 1,25 ms 
  dec  us5 
  snz 
    mov us5, w 
  mov w, #16   ; 1,25 ms * 16 = 20 ms 
  snz 
    dec Msec 
  snz 
    mov MSec, w 
  snz 
    TimerOff   ; After 20 ms 
 
:ISRExit 
  mov   w, #-250  ; Call ISR every 5 us 
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  retiw 
  
;** Subroutine reads the Column variable and returns the column mask 
;   in w. 
; 
Col2Mask 
  mov w, Column 
  jmp pc+w 
  retw %11101111 
  retw %11011111 
  retw %10111111 
  retw %01111111 
 
;** This subroutine will send the recognized key IDs to some exter- 
;   nal device in "real life". Here, we save 16 Key IDs in a buffer 
;   for debugging purposes. As the buffer contains all zeros at 
;   program start, we increment all key IDs by one, i.e. 1...16 
;   are the "transformed" key IDs in order to make a difference 
;   between an empty buffer register and the lowest key ID. 
;   
SendKey 
  mov  w, #Buffer  ; Buffer base address + 
  add  w, Ix   ;  Index = 
  mov  fsr, w   ;  indirect address 
  mov  ind, KeyId  ; Save the key ID, and  
  inc  ind   ;  increment it 
  inc  Ix   ; Next buffer register index, 
  clrb Ix.4   ;  but not above 15 
  bank Keys 
  ret 
   
org     $100 
 
;** Mainline program ******************************************* 
; 
Main 
 
include "Clr2x.inc"  
 
;** Initialize the data ports 
; 
  mode PLP 
  mov  !rc, #%11110000 ; Pull-up at rc.3...0 
  mode TRIS 
  mov  !rc, #$ff  ; All lines Hi-Z for now 
  clr  rc   ; pre-initialize rc with all zeros 
  bank Timers 
  mov  us5, #250 
  mov  MSec, #16 
  bank Keys 
  mov   !option, #%10011111 ; Enable the RTCC interrupt 
 
  
;** Main program loop 
; 
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Loop 
  mov  !rc, #%00001111 ; All columns low 
  QuickScanOn   ; Turn on Quick Scan, and 
:WaitForKey     ;  wait for a key 
  SkipIfKeyDown 
    jmp :WaitForKey 
  clr  Column   ; Start with column 0 
:Scan   
  call Col2Mask  ; Get the column mask, 
  mov  !rc, w   ;   and set the Port C TRIS register 
  clr KeyId   ; The contents of KeyId are not 
    ;  important here, therefore, we 
    ;  use it as a counter 
:Delay    ; Wait until signals are stable, 
  decsz KeyId   ;  i.e. do a pre-de-bounce here 
    jmp :Delay 
  mov  w, /rc   ; Complement the row data 
  and  w, #$0f  ;   and mask them out 
  sz    ; 0 if no key is down in this col. 
    jmp :Key   ; A key is down, decode it 
  inc  Column   ; Next column 
  snb  Column.2  ; If column > 3, we have a bounce, 
    jmp Loop 
  jmp :Scan     ;  therefore, no action 
 
;** De-bounce and decode the key 
; 
:Key 
  mov KeyId, w  ; Save row info 
  TimerOn   ; Turn the timer on 
:Debounce 
  SkipIfTimeout  ; Wait for the 20 ms tick 
    jmp :Debounce 
 
  mov w, /rc   ; Read inverted row info again, 
  and w, #$0f   ;  and mask it out 
  mov w, KeyId-w   ; Still same value ? 
  sz    ; If yes, go ahead, and decode it 
    jmp Loop   ; If no, we have a bounce 
 
  ;** Convert row and column info into the key ID 
  ; 
  mov Row, #-1 
:Decode 
  inc Row   ; First row number (0) 
  rr  KeyId   ; Rotate row info -> C  
  sc    ; If C=1, a key is down in that row 
    jmp :Decode 
 
  mov KeyId, Row  ; Row contains row number 
  clc 
  rl KeyId   ; KeyId = KeyId * 4 + Column 
  rl KeyId 
  or KeyId, Column 
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  inc Row   ; Set the bit in RowMask that 
  clr RowMask   ;  corresponds to the detected 
  stc ;  key 
:SetupMask 
  rl RowMask 
  decsz Row 
    jmp :SetupMask 
 
  call SendKey  ; Send KeyId 
   
;** Wait for key release 
; 
:WaitRelease 
  TimerOn   ; Turn timer on 
:WaitForTick 
  SkipIfTimeout  ; Wait for 20 ms tick 
    jmp :WaitForTick   
     
  mov w, /rc   ; Read inverted port bits, and 
  and w, RowMask  ;  mask the bit where the current 
    ;  key was detected 
  sz    ; If this key is still down,  
    jmp :WaitRelease   ;  continue waiting for release 
      jmp Loop  ; Wait for next key press, or 
      ;  decode the second key that is 
      ;  still down. 

 

Here, the ISR usually does not perform any actions until the mainline program has not turned on 
the timer, or the Quick Scan mode. 

When one of the two modes is active, they are automatically turned off again, when the timer is 
done, or a key down has been detected. The mainline program can test the “On” flags to find out 
when the ISR has turned the assigned mode off again. 

In the main loop, the Quick Scan mode is turned on, and no other actions are taken, until the ISR 
“reports” a key down. 

Then the key matrix is scanned as fast as possible after an initial delay for each column which is 
necessary to allow the signals on the matrix lines to become stable. If a pressed key has been de-
tected, the program enables the timer, and waits until 20 ms have elapsed in order to de-bounce 
the key. If the key is still down after the de-bounce delay, it will be decoded, and SendKey is 
called to “send” the key ID. 

To de-bounce the key release, the timer is enabled again for a 20 ms delay. This is repeated until 
the key that was detected last is no longer down. 

For debugging and testing purposes, the SendKey subroutine in this program version now saves 
up to 16 Key IDs in the Buffer registers. To make a difference between an empty buffer register 
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containing $00, and the lowest KeyId that would be $00 as well, the key IDs are incremented once 
before they are stored in the buffer. 

While waiting for a button release, we now do not wait until all row lines are on high level. In-
stead, we only test the row line that was low before due to the pressed key that was most recently 
detected. The RowMask variable contains the necessary information. If another key is down in the 
same column, it will be detected as soon as the first key is released. This is how a 2-key rollover is 
achieved here even if both keys are located in the same column. 

In case you also want to send the button up information to the “rest of the world”, you can do 
this by adding two more instructions at the end of the main program loop: 
  jmp :WaitRelease   ;  continue waiting for release 
  setb KeyId.7 
  call SendKey     
  jmp Loop ; Wait for next key press, or 
   ;  decode the second key that is 
   ;  still down. 

Here, we set bit 7 in KeyId, and call SendKey again. SendKey must check this bit to determine 
what message it must send in a real application. 

You can follow up the results with the debugger by clicking the “Poll” button after hitting some 
keys in the matrix. Note how the contents of bank $70 changes in that case. 

 

Because the key matrix is scanned at a very high speed when the system clock frequency is 
50 MHz or above, it is necessary to add a time delay between activating a new column and 
reading the row lines. This allows the signals on the lines to become stable when using the 
internal weak pull-up resistors of about 40 kΩ. 

You may use external pull-up resistors (2.2 kΩ or less) to decrease the settling time, but even 
then it is a good idea to insert a short delay between the mov !rc, w and mov w, /rc 
instructions, e.g. some nop instructions. 

While testing the first version of this program, we did not insert that delay, and it took a while to 
find out why sometimes no key or the wrong key was detected in “Run” mode while in “Single 
Step” mode keys were never lost.
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4.10.3 Need more Port Pins for the Keyboard Matrix? 

If you intend to scan a relatively large key matrix, like one that is required for an alphanumeric 
keyboard, you will most likely run out of available port pins when using an SX 28 device. Before 
ordering an SX48 or SX52 controller (sorry, Ubicom), you should consider to use a multiplexer 
like the 75ACT138 chip in order to extend the available matrix column lines, as shown in the next 
schematic. 

The SX program requires just a few modifications to drive the 75ACT138 instead of the column 
lines directly. Here, three or more SX port lines need to output the column address, and not a low 
for the active column. The multiplexer will take care of decoding the address, and pulling down 
the associated column line. 

When the multiplexer does not allow to set non-active column lines to Hi-Z (i.e. if these outputs 
are not three-state) you will have to add one diode for each push button to avoid short circuits 
when the user (according to the first extend of Murphy’s Law) holds down more than one key at 
the same time. 

You can cascade two or more 75ACT138 multiplexers when you drive the enable inputs /E1, /E2, 
and E3 accordingly to scan 128 or even more keys. 

Because multiplexers usually don’t allow setting all output lines to low, you cannot use the 
Quick-Scan mode here. 
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The schematic below shows how to connect an 74ACT138 multiplexer to an SX 28, to scan 64 
keys. 

When you use just one 74ACT138, you may connect its /E2 input to VSS, and use the SX port bit 3 
for some other purpose, but if you want to cascade another 74ACT138 multiplexer, connect the 
/E2 input of the first 74ACT138 to the SX port bit 3. The second 74ACT138’s input E3 should be 
connected to the SX port bit 3, and the /E2 input to VSS. 
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4.11 An “Artificial” Schmitt Trigger Input 
With the exception of Port A, all SX inputs can be configured to Schmitt Trigger, having the fol-
lowing characteristics: 

When the input voltage increases, starting at 0 Volts, at a level of 85% VDD, the port bit’s logical 
level “jumps” from 0 to 1. When the input voltage decreases starting at above 85% VDD, the port 
bit’s logical level “jumps” from 1 to 0 when the input voltage goes below 15% VDD. The difference 
between the two voltage levels that cause a change of the logical level is called  “Hysteresis”. 

When you need all pins at Port B and Port C for other purposes, but still need another Schmitt 
Trigger input, or if you need a Schmitt Trigger input with a different hysteresis, use the following 
setup: 

 

Here, RA0 is a CMOS input, and RA1 is configured as an output. The software sets RA1’s output 
level to follow the logical level the SX “sees” at RA0. 

When RA0 reads 0, RA1 outputs low level, and pulls RA0 to low across R2. 

When the input voltage increases, the voltage at RA0 also increases, but due to the voltage di-
vider R1/R2, the input voltage must increase to a value greater than 50% VDD before the voltage 
at RA0 reaches the CMOS level of 50% VDD. 

Vice versa, when RA0 reads logical 1, it is additionally pulled up to VDD through R2 by RA1 that 
outputs high level now. This means that the input voltage must drop to a value that is a certain 
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amount below 50% VDD before the voltage at RA0 reaches 50% VDD which makes RA0 read 0 
again. 

This is the typical Schmitt Trigger behavior, and the hysteresis can be adjusted to a certain extend 
by changing the ratio R1/R2. 

Please note that here the input impedance is not Hi-Z, but equal to R1. 
; ================================================================= 
; Programming the SX Microcontroller 
; APP022.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
TRIS    = $0f 
LVL     = $0d 
 
org     $100 
 
Main 
  mode LVL 
  mov  !ra, #%11111110 ; Set CMOS for ra.0 
  mode TRIS 
  mov  !ra, #%11111101 ; ra.1 is output for "Mr. Schmitt" 
  mov  !rc, #%11111110 ; rc.0 is output for LED 
Loop 
  movb ra.1, ra.0  ; Copy input to output 
  movb rc.0, /ra.0  ; Copy the inverted input level 
    ;  to the LED output 
  jmp Loop   ; Do it again as long as VDD is 
      ;  there... 

 

This simple program allows you to test the “artificial” Schmitt Trigger input. Try 22 kΩ for R1, 
and 39 kΩ for R2. When you connect an LED between RC.0 and VDD (don’t forget the current 
limiter resistor), the LED will give you an optical feedback.. 

Now connect a variable voltage (0…5 V) to the Schmitt Trigger input. As you change the voltage, 
you can tell from the LED going on or off, how far the two levels are apart. When you use a po-
tentiometer to obtain the variable voltage, make sure that the potentiometer value is relatively 
small compared to R1 otherwise, the input current would add an error when you are going to 
measure the hysteresis. 
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4.12 A Software FIFO 
 “FIFO“ means “First In, First Out“, i.e. other than with a stack memory where the value saved 
last is read first (LIFO – Last In, First Out), a FIFO buffer always returns the value that was stored 
first when read (provided that at least one value was stored before). 

A FIFO is useful to temporarily buffer some data that “pile up” faster as a system can process 
them. For example, for a while, “Mr. Fastfinger” might hit a keyboard faster than the send rou-
tine is able to transfer the key data to another device. Here, a FIFO helps to buffer the data 
“peaks” until the transfer routine can follow up. Of course, this only works fine if the FIFO is 
large enough to buffer all the excessive data that might occur in worst case. 

A PC, for example, can buffer up to 16 keystrokes until they are read by the running application. 
If you try to type in more characters, the PC will generate a warning beep, and excessive key-
strokes are lost. 

It is quite easy to “build” a software FIFO for the SX controller. A FIFO is like a number of regis-
ters linked together in a ring, or circle: 

 

This figure shows a “circular buffer” made up of 16 registers. The two pointers “Head” and 
“Tail” each address one register. 
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Head points to an empty register. When a new value is stored in the FIFO, this value goes into 
the register addressed by the “Head” pointer which is incremented after the new value has been 
stored in order to address the next empty register. 

“Tail” points to the register that was read last. In order to retrieve a value from the FIFO, “Tail” 
first is incremented to address the next register containing valid data, and then this register is 
read. 

When an increment of one of the pointers sets them to a value that is greater than 15 (in our ex-
ample), the pointers are reset to 0 to make them “turn around in a circle”.  

When “Tail” has reached “Head” while reading the FIFO, i.e. both pointers address the same 
register, the FIFO is “empty”, and all buffered data has been read. On the other hand, if “Head” 
reaches “Tail” while saving data, the FIFO is “full”, and no more values can be stored. 

The figure above shows three registers that contain valid data (a, b, and c in registers 0…2). 
“Head” points to the next free register, and “Tail” points to the register that has been read last, 
i.e. registers 1 and 2 contain buffered data that has not been read yet. 

When implementing a FIFO in software, it is important to test if the FIFO is “full”, or “empty”, 
and the condition Head = Tail is not enough to tell which of the two conditions is true. 

The easiest method to keep track of the FIFO status is to maintain an additional variable that 
contains the number of current items in the FIFO. If this variable contains 0, this indicates that the 
FIFO is “empty”, and if it contains 16 (in our example), this indicates that the FIFO is “full”. 

The program below contains two subroutines that write and read values to/from a FIFO buffer, 
and the main program contains some instructions to test the FIFO with a debugger: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP023.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
Head    ds 1   ; FIFO head pointer 
Tail    ds 1   ; FIFO tail pointer 
FIFOCnt ds 1   ; Current number of items the FIFO 
Temp    ds 2   ; Temporary storage 
FsrSave ds 1   ; Temporary storage for FSR 
TestVal ds 1   ; Utility variables for testing 
 
org     $30 
FIFO    = $   ; 16 bytes for FIFO memory 
        ds 16 
  
org     $000 
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;** Subroutine writes the contents of w into the FIFO 
; 
; Input:   w = value 
;   
; Changes: Temp, FSRSave, Head, and FIFOCnt 
; 
WriteFIFO 
  snb  FIFOCnt.4  ; If FIFO is "full", no action 
    ret 
  mov  Temp, w  ; Save the value for later 
  mov  FsrSave, fsr  ; Save the FSR 
  mov  w, #FIFO  ; Indirectly address the FIFO-Puffer 
  add  w, Head  ;   using the Head pointer 
  mov  fsr, w 
  mov  ind, Temp  ; Save the value to the FIFO 
  inc  Head   ; Point Head to next free storage 
  clrb Head.4   ; If Head = 16, "circle" around to 0 
  inc  FIFOCnt  ; Increment the item count 
  mov  fsr, FsrSave  ; Restore the FSR 
  ret 
 
;** Subroutine reads the FIFO and returns the value in w 
; 
; Returns:  Value in w 
;   
; Changes:  Temp+1, FSRSave, Tail, FIFOCnt 
; 
; NOTE:     Temp+1 is used for temporary storage of the retrieved 
;           value here to avoid conflicts when ReadFIFO is called 
;           from the mainline program and gets interrupted by the ISR, 
;           calling WriteFIFO to store a new value. 
; 
ReadFIFO 
  test FIFOCnt  ; If FIFOCnt = 0, the 
  snz    ;  FIFO is "empty", 
    ret   ;  no action 
  mov  FsrSave, fsr  ; Save the FSR 
  mov  w, #FIFO  ; Indirectly address the FIFO-Puffer 
  add  w, Tail  ;  using the Head pointer  
  mov  fsr, w   ;  
  mov  Temp+1, ind  ; Read the value from the FIFO 
  inc  Tail   ; Set Tail to next location 
  clrb Tail.4   ; If Tail = 16, "circle" around to 0 
  dec  FIFOCnt  ; Decrement the item count 
  mov  fsr, FsrSave  ; Restore the FSR 
  mov  w, Temp+1  ; Copy the value to w 
  ret 
 
  
org     $100 
 
;** Mainline program to test the FIFO ************************** 
; 
Main 
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include "Clr2x.inc" 
 
Loop 
  inc  TestVal  ; Generate test data 
  mov w, TestVal 
  call WriteFIFO  ; Write to FIFO  
  inc  TestVal  ; Generate more test data  
  mov w, TestVal 
  call WriteFIFO  ; Write to FIFO again 
 
  clr w 
  call ReadFIFO  ; Read from FIFO 
  jmp Loop   ; Repeat forever... 

 

When you execute the program in single steps, you will see how the FIFO buffer is filled. As the 
main program calls WriteFifo twice, but ReadFifo only once, the FIFO will become “full” after 
some program loops. You will then notice that the second WriteFifo call does not perform an 
action. 

A “real“ application should check if the content of FIFOCnt is greater than zero (e.g. in the ISR) 
and then read and process a value from the FIFO (e.g. transmit it to a peripheral using a UART 
VP). 

It also makes sense to test it the contents of FIFOCnt is less than 16 before trying to store a new 
value into the FIFO to see if there is still “room” for more data in the FIFO buffer. 

You can easily increase the size of the FIFO buffer if necessary, and it is possible to store larger 
units of data in a FIFO too. For example, if you want to save 16-bit values, you can reserve two 
buffers with 16 bytes each, and use them in “parallel”. In this case, you can no longer pass the 
value to be stored or to be retrieved through the W register. The next program is an example how 
to handle 16-bit FIFO data: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP024.SRC 
; ================================================================= 
include "Setup28.inc" 
RESET   Main 
 
org     $08 
FIFOCnt ds 1   ; Number of items in the FIFO 
FsrSave ds 1   ; Temporary storage for FSR 
FIFODat ds 2   ; FIFO parameter buffer 
Value    ds 2   ; Test variable for the main program 
 
org     $30 
FIFO    = $ 
Head    ds 1   ; FIFO head pointer 
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Tail    ds 1   ; FIFO tail pointer 
 
; NOTE: Use two subsequent banks for FIFOl and FIFOh ! 
; 
org     $50 
FIFOl   = $   ; 16 bytes for FIFO data (low byte) 
        ds 16 
 
org     $50 
FIFOh   = $   ; 16 Bytes for FIFO data (high byte) 
        ds 16 
 
WATCH   FIFOCnt, 8, UDEC 
WATCH   Head,    8, UDEC 
WATCH   Tail,    8, UDEC 
 
org     $000 
 
;** Subroutine saves the contents of FIFODat in the FIFO 
; 
; Entry:   FIFODat   = Value (low byte) 
;          FIFODat+1 = Value (high byte) 
;   
; Changes: FSRSave, Head, FIFOCnt 
; 
WriteFIFO 
  snb  FIFOCnt.4  ; If FIFO is "full", no action 
    ret 
  mov  FsrSave, fsr  ; save FSR 
  bank FIFO   ; Switch bank for Head 
  mov  w, #FIFOl  ; Indirectly address the FIFO 
  add  w, Head  ;  using the Head 
  mov  fsr, w   ;  pointer 
  mov  ind, FIFODat  ; Save the value (low byte) 
  add  fsr, #32  ; Switch to FIFOh bank 
  mov  ind, FIFODat+1 ; Save the value (high byte) 
  bank FIFO   ; Switch bank for Head 
  inc  Head   ; Point Head to next empty storage 
  clrb Head.4   ; If Head = 16, reset it to 0 
  inc  FIFOCnt  ; Increment the item count 
  mov  fsr, FsrSave  ; Restore the FSR 
  ret  
 
;** Subroutine reads the FIFO and returns the value in FIFODat 
; 
; Returns:  Value in FIFODat   (low byte) and 
;                    FIFODat+1 (high byte) 
;   
; Changes:  Temp, FSRSave, Tail, and FIFOCnt 
; 
ReadFIFO 
  test FIFOCnt  ; If FIFOCnt = 0, the 
  snz    ;  FIFO is "empty", i.e. 
    ret   ;  no action 
  mov  FsrSave, fsr  ; Save FSR 
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  bank FIFO   ; Switch bank for Tail 
  mov  w, #FIFOl  ; Indirectly address the FIFO 
  add  w, Tail   ;  using the Tail 
  mov  fsr, w   ;  pointer 
  mov  FIFODat, ind  ; Read the value (low byte) 
  add  fsr, #32   ; Switch the FIFOh bank 
  mov  FIFODat+1, ind  ; Read the value (high byte) 
  bank FIFO   ; Switch bank for Tail 
  inc  Tail   ; Point Tail to next storage 
  clrb Tail.4   ; If Tail = 16, reset it to 0 
  dec  FIFOCnt   ; Decrement the item count 
  mov  fsr, FsrSave  ; Restore the FSR 
  ret 
 
  
org     $100 
 
;** Main program to test the FIFO ****************************** 
; 
Main 
 
include "Clr2x.inc" 
 
Loop 
  inc  Value   ; Generate test data  
  inc  Value+1  ; 
  mov  FIFODat, Value ; Set the FIFO "input value" 
  mov  FIFODat+1, Value+1 ;  
  call WriteFIFO  ; Save the value 
  inc  Value   ; Generate test data 
  inc  Value+1  ; 
  mov  FIFODat, Value ; Set the FIFO "input value" 
  mov  FIFODat+1, Value +1 ;  
  call WriteFIFO  ; Save the value 
  clr FIFODat 
  clr FIFODat+1 
  call ReadFIFO  ; Read one FIFO value 
  jmp Loop   ; Do it again... 

 

As you can see, the “FIFO-internal” variables have been moved into another memory bank in 
order to leave more free space in the global bank for other variables, but FIFOCnt, and FIFODat 
are located in the global bank to allow access to these variables without the need to switch the 
bank. 

The FIFO buffer now occupies 16 bytes in two banks, and it is important that two subsequent 
banks are used because the FIFO routines simply add 32 to the FSR register to indirectly address 
the upper part of the FIFO buffer. 
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4.13 I2C Routines  
The I2C Bus (Inter Integrated circuits Communications) was developed by Philips, and it offers an 
interesting method to exchange bi-directional data between two or more components across two 
signal lines.  

Ubicom, Parallax, and other companies have published various I2C routines for the SX that are 
useful to communicate with I2C components, like EEPROMS, A/D converters, etc. Besides ex-
plaining some I2C-basics, this chapter presents a concept how a modified I2C bus protocol, or 2-
wire serial protocol can be used to exchange data between various function groups of a larger 
system.  The following information is presented for educational purposes. I2C is a patented 
technology of Philips; it is the responsibility of the user to to determine whether his or her 
application requires licensing from Philips. 

Let’s briefly address the I2C-basics first: 

4.13.1 The I2C Bus 

All components that “talk to each other“ via the I2C bus are connected by two lines, as shown in 
the figure below: 

The two lines are named SDA (Serial DAta), and SCL (Serial CLock). Each device can either read 
the two lines, or drive the lines. When a device drives the lines, it may only pull down a line to 
low level, but it never may impose high level to any of the two lines. In other words, this means 
that all device outputs connected to the I2C bus must be (or behave like) open collector outputs. 
The two pull-up resistors connected between SDA, SCL, and VDD provide high level on the two 
bus lines in case none of the connected devices pulls these lines down to low level. 
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4.13.2 The Basic I2C Protocol 

Generally, you should keep in mind that the SDA line may only change its current level while the 
SCL line is at low level; in other words, data on SDA is valid only while SCL is high. 

However, there are two exceptions from that rule: the Start and the Stop condition. The diagram 
below shows the general I2C communication: 

 

4.13.2.1 “Master“ and “Slave“ 

When a communication takes place across the bus, one device takes over the role as a “Master”, 
i.e. this device controls the bus, while one or more other devices act as  “Slaves”, i.e. they react on 
the “Master”, and usually one (the addressed) device will finally answer to the “Master’s voice”. 

There may be devices on the bus that can only act as slave, others that can only act as master, and 
other devices may be able to act as master or slave as well. 

4.13.2.2 The Start Condition 

To start a communication, the master pulls down SDA to low while SCL is high. This is the first 
exception to the rule mentioned above, and this special state indicates that a master wants to start 
communications. 

4.13.2.3 Data Transfer, and Clock Stretching 

Next, the master pulls SCL low, and releases SDA, or pulls SDA low, depending on what data bit 
shall be sent. When the master releases SCL again, this indicates that SDA is now stable, and the 
slave(s) read(s) SDA now. 

This process is repeated for all the data bits, the master wants to send to the slave(s). Again, note 
that the state of SDA only changes while SCL is low. 

Common transfer rates via the I2C bus are 100 kBit/s or 400 kBit/s. 

Start Stop AckClock 
Stretching

SCL 

SDA 
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A special case is the enlarged low phase of SCL, that is called “Clock Stretching“, and this is con-
trolled by a slave, and not by the master. The master releases SCL when the default clock-low 
time has elapsed, but the receiving slave is free to hold low the SCL line as long as required in 
order to signal the master that it requires more time to process the data received so far. The mas-
ter will continue data transmission only after the slave has released the SCL line. 

Clock Stretching may occur after each bit sent, after each byte sent, or at arbitrary times, when-
ever the slave desires to “slow-down” the communications. This makes it possible that a master, 
designed for 400 kBit/s can communicate with a slave that is designed to handle 100 kBit/s only 
(provided that the slave “knows about its right” to stretch SCL. 

4.13.2.4 Acknowledge Message from the Slave 

When the master has transferred all data bits, it releases the SDA line, and then expects that the 
slave pulls down SDA while SCL is low, and that is keeps SDA low until SCL has made the next 
high-low transition. 

If this is the case, the master interprets it as acknowledge from the slave. In case SDA is not 
pulled low in this state, the master must interpret this as transmission failure, or that the ad-
dressed slave does not exist on the bus because it did not acknowledge. 

4.13.2.5 The Stop Condition 

Finally, the master releases SCL first and then SDA. This is the second exception to the rule that 
SDA may only change its state while SCL is low, and this indicates the “Stop Condition”, i.e. the 
master “tells” the slaves that no more communication will follow at this time. 

4.13.2.6 The Idle State 

The state when SDA, and SCL both are high, and no more data bits are sent via the I2C bus is 
called the “Idle state”. A device that wants to become active as a master should monitor the I2C 
bus for the idle state before putting a start condition on the bus. 

4.13.2.7 Bus Arbitration   

As soon as more than one device is connected to the I2C bus that can take over a master function, 
it might happen that two or more masters want to start communications at the same time. This 
means, all masters find the bus in idle state, and “think” that it’s a good time for a new message 
to a slave. Don’t worry – the inventors of the I2C bus were clever enough to handle that special 
case as well. 

Let’s assume that two masters begin communications at exactly the same time. Both masters 
would set up the start condition on the bus (set SDA low while SCL is high, and then set SCL 
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low). As long as both masters want to send the same sequence of data bits, they would continue 
to pull down or release the SDA/SCL lines in “complete harmony”. 

In the very rare case that both masters really want to send the same bit sequence to a slave, this is 
fine, and both masters will see the slave’s acknowledge at the end of the transmission. Usually 
during that process, the time will come that one master wants to release the SDA line in order to 
send a 1-bit while the other master will pull down SDA because it wants to send a 0-bit. 

When each master checks the SDA line for high level in case it has released it for sending a 1-bit, 
the masters are able to recognize that another master on the bus has set SDA to the offending 
level (i.e. to low). The master that has pulled SDA to low has “won” in this case, and the master 
that “wanted” SDA to be high, has “lost”, i.e. this master should immediately release both bus 
lines, and possibly try another communication when the bus is idle later. 

When a master “gives” up the bus control, we can also say that this master has lost arbitration, 
and that the master who continues communications has “won” the bus arbitration. 

In case a device can act as both, master or slave, it should continue reading the I2C bus when it 
has lost arbitration because there is a chance that the current bus message is addressed to the 
device’s slave. 

4.13.2.8 Repeated Transmissions  

In case a master looses arbitration, or does not receive an acknowledge from the slave, it makes 
sense to allow the master to repeat the current message several times until it has successfully sent 
the data. The send retries should be limited to a maximum number to avoid that a master keeps 
the bus busy when, for example, the addressed slave is not available at all. 

How often a master should try a repeat, and in what time intervals depends on the needs of the 
specific system environment, so a general rule of thumb cannot be given here, but in most cases, 
it is a good idea to let the master start a retry after a random time period instead of fixed time 
periods. 

4.13.3 The I2C Data Format 

The document “The I2C-Bus and how to use it (including specifications)“ published by Philips 
Semiconductors defines in detail the format of the I2C data packets, and you will have to respect 
that format when an application shall communicate with components that expect this format, like 
integrated circuits. 

For your own systems, on the other hand, you are free to respect these specifications, or not. Pos-
sibly a different data format might be more suitable or faster for your special needs. 
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In general, if more than two devices are connected via the I2C bus, it is important that each device 
that can act as a slave has its own unique address. If two or more devices exist in a system that 
can act as masters, it is also necessary in most cases that these send a unique device Id, so that the 
receiving slaves can determine the origin of a message. 

Usually, the slave devices monitor the bus, waiting for a start condition. After detecting the start 
condition, the slaves enter the receive mode, and read the data packets sent from the master. If 
the first bits of a data packet contain the address of the destination, the receiving slaves can com-
pare this address against their own Id. Slaves with a non-matching Ids can immediately stop 
processing the received data, waiting for the next stop condition, or a bus idle. 

Lets have a look at an example what devices might be linked together via the I2C bus: 

 

This fictive system is equipped with one device called the “RS-232 Adapter and System Control”. 
This unit receives messages from the other devices on the bus, and sends them via an RS-232 
interface to another system (a computer, for example). On the other hand, this device also re-
ceives messages from another system via RS-232, interprets the messages, and sends them to one 
of the other devices on the bus. Therefore, this unit can act as master and slave. 

The Keyboard device (1) is used for data entry, and it sends a message to the System Control unit 
in case a key is pressed. This device only needs to have master functionality, as it does not make 
sense to send output data to an input device. 

On the other hand, the Display Device (2) needs to have slave functionality only in order to re-
ceive the information from the control unit, what LED should be turned on or off, or what char-
acter should be displayed on an LCD screen, etc. 
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The Potentiometer Device (3) might have master and slave functionality. It would automatically 
send an information to the control unit in case one of the potentiometer settings has changed, on 
the other hand is it necessary that the control unit can request the current potentiometer settings, 
e.g. at system start to find out the initial settings. 

The same is true for the Sensors device – it should notify the Control unit about sensor value 
changes, but the Control unit might request certain sensor values from time to time. 

Important to note is the fact that devices 1 to 4 (let’s call them peripherals) send messages to the 
control unit only, but not to other peripherals. Vice versa, the control unit sends messages to one 
specific peripheral per transmission only. Nevertheless, systems are possible where the control 
unit sends some kind of a broadcast message to all peripherals (a master reset, for example). 

We can further assume that messages originated from the peripherals shall have a higher priority 
than the messages from the control unit, in order to notify the Control unit about events, like key 
presses as fast as possible. 

When the data packets originated from peripherals always begin with a zero bit, and the data 
packets from the Control unit always have a leading one bit, the peripherals already win bus 
arbitration “against” the control unit when sending the first byte. As mentioned before, the Con-
trol unit should continue acting as a slave in that case because in this system, the message is defi-
nitely dedicated to the Control Unit. 

In addition, other peripheral units can stop reception immediately, when they notice that the 
leading bit of a data packet is 0 because then the message is originated from another peripheral 
that can only be directed to the Control unit. 

The next bits in each message should contain the address information. Messages sent from the 
Control unit will have the address of the peripheral in this section that shall receive the message, 
and messages originated from one peripheral have the peripheral’s Id in that section to allow the 
Control unit to figure out which peripheral device is sending the message. 

In our example, together with the leading one or zero bit, two address bits are sufficient to 
uniquely identify all devices on the bus.  

The data bits that follow the address section in each message depend on the type of device that 
has originated a message. In case of the keyboard device, this might be the number of a key, 
eventually together with an additional bit that indicates if the key was currently pressed or re-
leased. 

Although a the number of data bits might be varying, depending on the device, in most cases, it 
makes sense to use the same number of data bits in all messages, filling sections that are not 
needed with zero bits. 
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As mentioned before, the Control unit may send a request to the potentiometers peripheral for 
the setting of a specific potentiometer. The I2C protocol provides the possibility, that during one 
communication the master sends a command to the slave first, that is answered by the slave be-
fore a stop condition is set up on the bus, i.e. the direction of data flow is reversed during com-
munication. 

In a proprietary system, like in our example, it is often easier to split the request and the answer 
into separate messages, i.e. first the Control unit acts as master, sending the request to the po-
tentiometers peripheral which acts as slave then. Next, the potentiometer peripheral acts as mas-
ter, sending the answer as a new message to the control unit, which then acts as slave. 

Of course, it might happen, that another peripheral device initiates a message to the control unit 
before the potentiometer device could send the requested answer, possibly leading to a bus arbi-
tration. This can be easily handled by the Control unit as each message contains a unique device 
address information. In case a device has lost arbitration it should re-send the message at a later 
time. 

4.13.4 Bus Lines and Pull-up Resistors 

When you use the I2C bus for intra-device communications, as shown in the example before, the 
physical lengths of the bus lines is much grater than usual, when components on one PCB com-
municate via the I2C bus. 

The example system is a bit similar to the ACCESS.bus System that was presented by Philips 
together with Digital Equipment Corporation. However, today, this bus system has lost impor-
tance compared to the USB system.  

To connect the components of a system, you should use shielded cables with low capacity for the 
two bus lines SDA and SCL, and the pull-up resistors should be as low as the device outputs can 
drive. It also is a good idea to have a set of pull-up resistors on each device in order to reduce 
reflections. In this case, you must take care that the paralleled pull-up resistors do not put a load 
on the bus the device outputs cannot drive. 

These provisions help to increase the noise immunity, make sure that the signals have a short rise 
time, and therefore allow for a high transmission speed, and to reduce EMI and RFI. 

In practical I2C applications, the USB full speed cables have been used with success. These cables 
are shielded twice, have low capacity, are cost-effective, and come with two additional leads that 
can be used to power the devices. It is a good idea to attach an A- and B-type USB plug to each 
device. This allows “daisy-chaining” the devices through standard full speed detachable USB 
cables. 
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With such cables, SCL rates of up to 400 kHz have been successfully tested. When high transfer 
rates are not needed, it may be a good idea to reduce the rate to obtain a better noise immunity, 
and to reduce EMI and RFI. 

4.13.5 I2C Routines for the SX Controller 

As mentioned in the beginning of this chapter, there are various VPs available for the SX that 
offer I2C master and slave functionality, but these VPs have been mainly designed for communi-
cations between SXes, or the SX and other I2C components like EEPROMS. 

The routines shown here have been designed for a system of peripheral units, similar to the one 
described above: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP025.SRC 
; ================================================================= 
include "Setup28.inc" 
 
;-- Modify these definitions as needed ----------------------------- 
; 
;SELF_TEST   equ 1   ; Activate this line for self-test! 
;SCOPE       equ 1   ; Activate this line for a scope 
     ;  trigger pulse at rc.0! 
DEV_TYPE     equ 1   ; Device type  
DEV_ID       equ 3   ; Device address 
BIT_COUNT    equ 16   ; Number of bits/I2C packet 
WAIT_IDLE    equ 4   ; Number of I2C clock periods that    
     ;  must elapse while SCL/SDA are 
     ;  both high until an idle state is 
     ;  assumed 
REPEAT_SEND  equ 5   ; Number of re-tries in case of a 
     ;  missing acknowledge 
I2C_PORT     equ ra   ; Port that controls SDA and SCL 
SCL_BIT      equ 0   ; Port bit for SCL 
SDA_BIT      equ 1   ; Port bit for SDA 
I2C_BIT_MASK equ %11111100 ; In this mask, the bits must be 
     ;  clear that correspond to the 
     ;  port's SDA and SCL bits.  
INT_PERIOD   equ 125  ; At 50 MHz system clock, the ISR 
     ;  is called every 2,5 µs. Per I2C 
     ;  clock, four ISR calls are 
     ;  required, resulting in an SCL 
     ;  period of 10 µs, or a SCL 
     ;  frequency of 100 kHz 
;--------------------------------------------------------------------- 
 
 
  
;-- Internal definitions --------------------------------------------- 
; 
ifdef SELF_TEST   ; Internal device address 
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  DEV_ADDR   equ ((DEV_TYPE * 8) + DEV_ID) * 16 
else 
  DEV_ADDR   equ (((1-DEV_TYPE) * 8) + DEV_ID) * 16 
endif 
 
TRIS         equ 00fh 
LVL          equ 00dh 
INT_ON       equ %10011110 ; Enable RTCC  interrupt 
SCL          equ I2C_PORT.SCL_BIT ; Definition for SCL port bit 
SDA          equ I2C_PORT.SDA_BIT ; Definition for SDA port bit 
 
;-- Macro definitions ------------------------------------------------ 
 
SDA_LOW macro ; Pull SDA low 
  clrb TrisMask.SDA_BIT 
endm 
 
SDA_HIGH macro   ; Release SDA to high 
  setb TrisMask.SDA_BIT 
endm 
SCL_LOW macro ; Pull SCL low 
  clrb TrisMask.SCL_BIT 
endm 
 
SCL_HIGH macro   ; Release SCL to high 
  setb TrisMask.SCL_BIT 
endm 
 
SkipIfNotSda macro   ; Skip if SDA is low 
  snb SDA 
endm 
 
SkipIfScl macro   ; Skip if SCL is high 
  sb SCL 
endm 
 
SkipIfNotScl macro   ; Skip if SCL is low 
  snb SCL 
endm 
 
StartTx macro    ; Start the I2C master 
  setb Flags.0 
endm 
 
StopTx macro    ; Stop the I2C master 
  clrb Flags.0 
endm 
 
SkipIfTxNotBusy macro  ; Skip if I2C master is not active 
  snb Flags.0 
endm 
 
SetTxError macro   ; Set the I2C master error flag 
  setb Flags.1 
endm 
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ClrTxError macro  ; Clear the I2C master error flag 
  clrb Flags.1 
endm 
 
SkipIfNoTxError macro ; Skip if no I2C master error 
  snb Flags.1 
endm 
 
SetRxData macro  ; Set "received data" flag 
  setb Flags.2 
endm 
 
ClrRxData macro  ; Clear "received data" flag 
  clrb Flags.2 
endm 
 
SkipIfNoRxData macro ; Skip if no new data have been 
 ;  received 
  snb Flags.2 
endm 
 
;-- Global variables -------------------------------------------------  
; 
org        $08 
;---------------------------------------------------------------------       
Flags      ds 1 ; Various flags (see the macros) 
DevAddr    ds 1 ; Internal device address 
Timer      ds 3 ; For testing purposes only 
 
;-- Variables for the I2C master ------------------------------------- 
org        $50 
I2C_Tx     equ $ 
;--------------------------------------------------------------------- 
TxData     ds 2 ; Transmit data 
TxBuffer   ds 2 ; Transmit buffer 
TxState    ds 1 ; Main state   
TxSubState ds 1 ; Sub-state    
TxRepeat   ds 1 ; Repeat counter 
TxBitCount ds 1 ; Bit counter 
TxTimer    ds 1 ; Time counter 
TrisMask   ds 1 ; Port mask 
TxTimeout  ds 1 ;  
 
;-- Variables for the I2C slave ------------------------------------- 
; 
org        $70 
I2C_Rx     equ $ 
;-------------------------------------------------------------------- 
RxData     ds 2 ; Receive data 
RxBitCount ds 1 ; Bit counter 
RxState    ds 1 ; Main state 
RxSubState ds 1 ; Sub-state 
RxTimeout  ds 1 ; Counter for timeout 
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;-------------------------------------------------------------------- 
; ISR 
;-------------------------------------------------------------------- 
     org   $00 
     call  @I2CTX    ; Call the I2C master 
     call  @I2CRX    ; Call the I2C slave 
  
     bank  I2C_Tx 
     and   I2C_PORT, #I2C_BIT_MASK ; Clear bits in r? 
     mov   !I2C_PORT, TrisMask  ; Output bit mask for !r? 
  
     mov   w, #-INT_PERIOD 
     retiw 
 
;--------------------------------------------------------------------- 
InitPorts   ; Initialize the ports 
;--------------------------------------------------------------------- 
     mode  LVL 
     mov   w, #%11111100 
     mov   !I2C_PORT, w   ; Set I2C lines to CMOS 
     mode  TRIS 
  
     ifdef SCOPE    ; Configure trigger output for 
       mov !rc, #%11111110   ;  an oscilloscope 
     endif   
     ret 
 
     org   $100 
 
;--------------------------------------------------------------------- 
Start ; Mainline program 
;---------------------------------------------------------------------       
 
include "Clr2x.inc" 
 
     call   InitPorts   ; Configure the ports 
     mov    DevAddr, #DEV_ADDR 
     bank   I2C_Tx 
     mov    TxData, DevAddr  ; The upper four bits of the trans- 
      ;  mit data contain the device ID 
     mov    TrisMask, #I2C_BIT_MASK  ; Initialize the port mask 
     setb   TrisMask.SCL_BIT 
     setb   TrisMask.SDA_BIT 
     mov    !I2C_PORT, TrisMask  ; Set SDA and SCL high 
     mov    !option, #INT_ON  ; Enable the RTCC interrupt 
     mov    Timer+1, #5   ; For testing purposes only 
 
  
;--------------------------------------------------------------------- 
Main ; Main program loop 
;--------------------------------------------------------------------- 
     SkipIfNoRxData    ; If received data, re-start the 
       ClrRxData    ;  slave 
     SkipIfTxNotBusy   ; Wait when Master is busy 
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       jmp  Main 
:Delay    
     decsz  Timer    ; Generate a delay 
       jmp  :Delay 
     StartTx     ; Start the master 
     decsz  Timer+1    ; Generate a delay 
       jmp  Main 
     add    TxData+1, #1   ; Increment send data 
     addb   TxData, c 
     and    TxData, #$0f   ; Set the upper 4 bits to the  
     or     TxData, DevAddr  ;  device ID 
     jmp    Main    ; Repeat sending data 
      
org  $200 
 
;-- I2C master ------------------------------------------------------- 
     bank   I2C_Tx 
 
;--------------------------------------------------------------------- 
; Routines called from various sub-states  
;--------------------------------------------------------------------- 
 
ClockHigh     ; Set SCL high and select next 
      ;  sub-state 
     SCL_HIGH 
     inc    TxSubState 
     retp 
   
ClockLow     ; SCL low 
     ifdef  SCOPE 
       clrb rc.0    ; Trigger pulse for oscilloscope 
     endif 
     SCL_LOW 
     inc    TxSubState 
     retp 
 
DataHigh     ; SDA high and next sub-state 
     SDA_HIGH 
     inc    TxSubState 
     retp 
 
WaitClockHigh ; Wait until SCL is high 
  SkipIfNotScl 
    inc     RxSubState   ;  and next sub-state 
  retp 
    
  
;--------------------------------------------------------------------- 
I2CTX      ; I2C-Master 
; 
; Data to be sent must be stored in TxData (HOB) und TxData+1 (LOB) 
; before starting the master. 
; 
; The StartTx macro starts the master 
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; The SkipIfTxNotBusy macro tests if the master is busy 
; The SkipIfNoTxError macro tests if there was an error during the  
;  last send (no acknowledge from slave or timeout). 
;--------------------------------------------------------------------- 
     mov    w, TxState   ; Jump table for main states 
     jmp    pc+w 
:TxIdle  
     jmp    :Idle    ; Nothing to send 
:TxInit  
     jmp    :InitSend   ; Initialize the master 
     jmp    :SetStart   ; Set the start condition 
     jmp    :SendData   ; Send data 
     jmp    :GetAck    ; Read the acknowledge 
     jmp    :SetStop   ; Set stop condition 
:TxError  
     jmp    :HandleError   ; Handle errors 
 
;-- Nothing to send --------------- 
;  
:Idle 
     mov    TxRepeat, #REPEAT_SEND+1  ; Initialize the repeat counter  
     SDA_HIGH     ; Release SDA and SCL for safety 
     SCL_HIGH     ;  reasons 
     SkipIfTxNotBusy   ; If the mainline has turned on the 
       inc  TxState    ;  master, next state is InitSend 
     retp  
   
;-- Initialize the master --------   
; 
:InitSend 
     mov    TxBuffer, TxData      ; Copy send data to the send 
     mov    TxBuffer+1, TxData+1  ;  buffer 
     ifdef  SCOPE    ; Generate trigger pulse for an 
       setb rc.0    ;  oscilloscope 
     endif 
     mov    TxBitCount, #BIT_COUNT ; Initialize the bit counter 
     ClrTxError    ; Clear the error flag 
     clr    TxTimeout   ; Clear the timeout counter 
     clr    TxSubState   ; Clear the sub-state 
     inc    TxState    ; Next state is SetStart 
     retp 
 
;-- Set the start condition -----  
; 
:SetStart 
     mov    w, TxSubState   ; Jump table for sub-states 
     jmp    pc+w 
     jmp    :StartInit   ; Initialization 
     jmp    :WaitIdle   ; Wait for the stop condition 
   
:StartInit 
     SCL_HIGH ; Release SCL and 
     SDA_HIGH ;   SDA to high 
     mov    TxTimer, #WAIT_IDLE  ; Initialize the time counter 
     inc    TxSubState   ; Next sub-state is WaitIdle 
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     retp 
  
:WaitIdle 
     dec    TxTimeout 
     snz 
       jmp  :HandleError 
     sb     SCL  
       jmp  :NotIdle   ; If SCL is low, no stop state 
     sb     SDA 
       jmp  :NotIdle   ; If SDA is low, no stop either 
     dec    TxTimer    ; Maybe, we have a stop now:   
      ;  decrement the counter, and stay 
     sz     ;  in this sub-state if TxTimer 
       retp     ;  > 0 
     clr    TxTimeout   ; We have a stop, clear timeout 
     SDA_LOW     ; Set the start condition 
     clr    TxSubState   ; Clear the sub-state 
     inc    TxState    ; Next state is SendData 
     retp 
:NotIdle 
     mov    TxTimer, #4   ; If no stop state, re-init the     
     retp     ;  timer, and stay in this sub-  
      ;  state 
;-- Send data ------------------- 
; 
:SendData 
     mov    w, TxSubState   ; Jump table for sub-states 
     jmp    pc+w 
     jmp    ClockLow 
     jmp    :SetDataBit 
     jmp    ClockHigh 
     jmp    :CheckClockHigh 
 
:SetDataBit 
     SDA_HIGH ; Prepare SDA mask to be high 
     sb     TxBuffer.7   ; If transmit bit is low, 
       SDA_LOW    ;   clear the SDA mask 
 
     inc    TxSubState   ; Next sub-state is ClockHigh 
     retp 
  
:CheckClockHigh    ; Check if SCL is high in order 
      ;  to allow for clock-stretching 
     dec    TxTimeout 
     snz 
       jmp  :HandleError 
     sb     SCL  
       retp     ; If SCL is low, stay in this 
      ;  sub-state 
     sb     TxBuffer.7   ; If the send bit is high, we need 
      ;  to test for arbitration, else 
     jmp    :PrepareNext   ;  prepare next bit 
     SkipIfNotSda    ; If SDA is low we have lost  
      ;  arbitration, else 
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       jmp  :PrepareNext   ;  prepare next bit 
     mov    TxState, #(:TxError-:TxIdle) ; State is HandleError 
     retp 
 
:PrepareNext 
     clr    TxTimeout   ; Reset timeout 
     rl     TxBuffer+1   ; Next bit to TxBuffer.7 
     rl     TxBuffer   ;  
     clr    TxSubState   ; Clear the sub-state 
     dec    TxBitCount   ; Decrement the bit counter, if 
     sz ;  0, we're all done 
       retp  
     inc    TxState ; Next state is GetAck   
     retp 
 
;-- Read acknowledge ------------ 
; 
:GetAck 
     mov    w, TxSubState   ; Jump table for sub-states 
     jmp    pc+w 
     jmp    ClockLow 
     jmp    DataHigh 
     jmp    ClockHigh 
     jmp    :CheckClockHighAck 
 
:CheckClockHighAck 
     dec    TxTimeout 
     snz 
       jmp  :HandleError 
     sb     SCL  
       retp     ; If SCL is low, stay in that state 
     inc    TxState    ; Next state is SetStop 
     clr    TxSubState 
     SkipIfNotSda    ; If SDA is low, we have an Ack, 
       SetTxError    ;  else set the error flag 
     retp 
 
;-- Set stop condition ---------- 
; 
:SetStop 
     mov    w, TxSubState   ; Jump table for sub-states 
     jmp    pc+w 
     jmp    ClockLow 
     jmp    :DataLow 
     jmp    ClockHigh 
     jmp    DataHigh 
     jmp    DataHigh 
     jmp    :TxFinish 
   
:DataLow 
     SDA_LOW 
     inc    TxSubState  
     retp 
  
:TxFinish   
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     inc    TxState    ; Prepare state for HandleError 
     SkipIfNoTxError   ; If there is an error, keep that  
       retp     ;  state, else clear the state 
     clr    TxState    ;  next state is Idle 
     StopTx     ; Clear the "Master Busy" flag 
     retp 
 
;-- Error handling -------------- 
; 
:HandleError 
     SCL_HIGH     ; Release the bus 
     SDA_HIGH 
     clr    TxSubState   ; Clear the states 
     clr    TxState 
     dec    TxRepeat   ; If a repeats are allowed, set 
     mov    w, #(:TxInit - :TxIdle) ;  state to TxInit, else 
     sz 
     mov    TxState, w 
     StopTx     ;  clear the "Master Busy" flag, 
     SetTxError    ;  and set the error flag 
     retp 
  
     org    $400 
;--------------------------------------------------------------------- 
I2CRX ; I2C-Slave 
; 
; Received data is stored in RxData (HOB) and RxData+1 (LOB) 
; 
; The SkipIfNoRxData macro tests if new data is available 
; The ClrRxData macro enables the slave to receive more data. Call 
;  this macro after processing the recently received data. 
;--------------------------------------------------------------------- 
     bank   I2C_Rx 
 
     SkipIfNoRxData    ; No action if the mainline pro- 
       retp     ;  gram has not enabled the slave 
 
     dec    RxTimeout   ; If timeout,  
     snz 
       jmp  :RxError   ;  try to receive again 
 
     mov    w, RxState   ; Jump table for mains states 
     jmp    pc+w 
     jmp    :RxDetectStart 
     jmp    :RxGetBits 
     jmp    :RxSendAck 
   
;-- Wait for start condition 
; 
:RxDetectStart 
     mov    w, RxSubState   ; Jump table for sub-states 
     jmp    pc+w 
     jmp    :WaitSdaHigh 
     jmp    :WaitSdaLow 
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:WaitSdaHigh  
     SkipIfNotSda    ; If SDA is high, next sub-state 
       inc  RxSubState   ;  is WaitSdaLow 
     retp     
   
:WaitSdaLow 
     SkipIfNotSda    ; Wait until SDA is low  
       retp     ;  (possibly a start condition) 
     SkipIfScl    ; If SCL is not low, this is not 
       jmp  :RxError   ;  a start condition 
     mov    RxBitCount, #BIT_COUNT ; Init the bit counter 
     clr    RxSubState   ; Clear the sub-state 
     inc    RxState    ; Next state is RxGetBits 
     retp   
;-- Receive data ---------------- 
; 
:RxGetBits 
     mov    w, RxSubState   ; Jump table for sub-states 
     jmp    pc+w 
     jmp    :WaitClockHigh 
     jmp    :GetDataBit 
  
:GetDataBit     ; Receive a bit 
     clc     ; Clear C, and if 
     SkipIfNotSda    ;  SDA is high, 
       stc ;  set C 
     rl     RxData+1   ; Shift C into the received data 
     rl     RxData ;  
     decsz  RxBitCount   ; If there are more bit to receive, 
       jmp  :SetupNext   ;  prepare next bit, else 
     clr    RxSubState   ;  clear the sub-state, and  
     inc    RxState    ;  next state is SendAck 
     retp 
 
:SetupNext 
     dec    RxSubState   ; Set sub-state to WaitClockHigh 
     retp 
 
;-- Send an acknowledge --------- 
; 
:RxSendAck 
     mov    w, RxSubState 
     jmp    pc+w 
     jmp    :WaitClockLowAck 
     jmp    :WaitClockHigh 
     jmp    :WaitClockLow 
  
:WaitClockLowAck    ; Wait for SCL low before sending 
     SkipIfNotScl    ;  the acknowledge 
       retp 
     mov    w, RxData   ; Test the received device ID and 
     ifndef SELF_TEST 
       xor  w, #%10000000   ; invert the device type bit 
     endif 
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     bank I2C_Tx   
     and    w, #$f0    ; Mask Id bits, and compare against 
     mov    w, DevAddr-w   ;   DevAddr 
     snz     ; If equal, pull 
       SDA_LOW    ;   SDA to low for acknowledge 
     bank   I2C_Rx 
     inc    RxSubState   ; Next sub-state is WaitClockHigh 
     retp 
  
:WaitClockHigh    ; Wait until SCL is high 
     SkipIfNotScl 
     inc     RxSubState   ; Next sub-state is WaitClockLow 
     retp 
 
:WaitClockLow 
     SkipIfNotScl    ; Wait until SCL is low 
       retp 
    ifndef SELF_TEST 
      bank I2C_Tx   
      SDA_HIGH    ; Release SDA to high 
      bank I2C_Rx   
    endif 
    SetRxData ; Set the "Data received" flag 
 
:RxError 
    clr RxState    ; Clear the states, and 
    clr RxSubState 
    clr RxTimeout    ; The timeout counter 
 
    retp 

 

This relatively large program contains an I2C Master VP (I2CTx), a Slave VP (I2CRx), and a small 
mainline program used to test the routines. 

Some definitions are located at the beginning of the program code, which help to configure the 
program to your own needs: 

If SELF_TEST is defined, the Slave VP does not invert the device type bit, i.e. it accepts the data 
received from its “in-program” master as valid (we’ll discuss this in more detail later). 

If SCOPE is defined, a trigger pulse for an oscilloscope is generated at rc.0 in order to get a stable 
display of the SDA and SCL signals. 

DEV_TYPE defines the device type. As we already mentioned before, if two devices start a trans-
mission at the same time, the device that pulls SDA low wins bus arbitration, and the device that 
wants SDA to be high looses bus arbitration. DEV_TYPE defines the first bit that is sent, therefore 
devices with DEV_TYPE = 0 have a higher priority (because they win arbitration) than those with 
DEV_TYPE = 1. 
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As both, the Master and the Slave VP are executed “simultaneously”, the Slave VP also receives 
what the Master VP sends. Under normal conditions, the Slave VP only accepts data packets that 
begin with a device type bit that is not equal to its own device type, and therefore the Slave VP 
ignores the messages, its “companion” master sends. For testing purposes, you may define 
SELF_TEST. In this case, the slave ignores the device type bit, and receives the “companion” mas-
ter’s messages. 

DEV_ID defines the unique address of a specific device in the system. This program allows for Ids 
from 0 through 7. Together with the definition of DEV_TYPE, the program builds an address that 
is stored in the upper nibble of the DevAddr variable. The mainline program should copy these 
upper four bits into the upper nibble of the high order byte to be transmitted. 

The Slave VP only accepts messages that have the same address stored in bits 14, 13, and 12 of a 
received 16-bit word. 

BIT_COUNT defines the number of bits to be sent or received in a message. The maximum value is 
16, and it may be smaller. If you need more than 16 bits per message, the program must be en-
hanced to use more than two bytes for the send and receive data buffers. 

WAIT_IDLE defines the time (in numbers of I2C clock cycles) the Master shall monitor the bus for 
an idle state before setting the start condition. 

REPEAT_SEND defines how often the Master shall try to re-send a data packet in case of an error 
(no acknowledge from the receiver, or timeout). 

I2C_PORT defines the SX port where SDA and SCL are connected, and the definitions SCL_BIT 
and SDA_BIT define the pins of this port that drive SCL and SDA. Together with the 
I2C_BIT_MASK definition, you can make the entire configuration here, and there is no need to 
change any statement somewhere else in the code. In I2C_BIT_MASK, the bits that correspond to 
the SDA and SCL port bits must be reset, and all other bits should be set. 

INT_PERIOD defines the number of system clock cycles that shall elapse before the ISR is invoked 
again. If you use the specified value 125, the SCL frequency will be 100 kHz. Note that changing 
this value might influence other VPs in the program. 

4.13.5.1 Common Program Modules 

The definitions above are followed by some macro definitions that make the program more read-
able, and then the variable definitions follow. 

The global registers hold the Flags variable. Some of its bits are used to store the flags in this 
program (see the macro definitions). Timer is used by the mainline program for demonstration 
purposes, and DevAddr contains the combined address information in its upper nibble that the 
mainline program should copy into bits 15, 14, 13, and 12 of the 16-bit send data word. 
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Two banks are used for the I2C VPs, one for the master, and one for the slave. The comments in 
the source code explain the meaning of these variables. 

Please note the special meaning of the TrisMask variable in the I2C_TX bank. Because the SDA 
and SCL lines must be turned into Hi-Z inputs when the bus lines shall be released to high, it is 
necessary to set or reset the bits in the TRIS configuration register of the I2C port. Because the 
setb instruction cannot be used for an !r? configuration register, the I2C VPs set and clear the 
corresponding bits in TrisMask instead, and the ISR copies the contents of this variable into the 
TRIS port configuration register each time it is called. 

If you want to make use of the free I2C port pins, you must set or clear the corresponding bits in 
TrisMask in the mainline program, when the variables are initialized instead of using a mov 
!r?, w instruction because the ISR would override this setting at the next invocation. Should it 
be necessary to change the direction of any of these port pins at run-time, you can do this by 
changing the bits in TrisMask but you should be aware that the change will not take place before 
the next ISR call. 

The ISR calls the two I2C VPs each time it is invoked. These I2C VPs are located in two separate 
program pages at $200 and $400. Because both VPs are subroutines, they must begin in the first 
half of a page. In addition, both VPs contain various jump tables using the jmp pc+w instruction 
whose targets must also be located in the first half of a page. The total size of both VPs is 214 
words, i.e. both would “fit” together within one first half of a page, but a few enhancements can 
easily break the “magic” barrier of 256 words, and – as you know – jmp pc+w instructions can 
take you to “Nirvana” if the targets are not located in the first half of the page! 

In addition, the ISR takes over the task to update the TRIS register of the I2C port regularly. To 
make sure that the SDA or SCL are pulled low, when the bits in TrisMask are clear, it clears the 
bits in the associated port register as well. 

4.13.5.2 The Mainline program 

In this example, the mainline program is used to test the I2C VPs. After clearing the data memory, 
initializing the ports and variables, the program enters into a loop. 

In this loop, it checks whether the Slave has received data. If this is the case, the data words are 
ignored in this sample program, and the Slave is enabled anew. 

When the Master is not busy, it gets started after a short delay. 

After another delay, the contents of TxData and TxData+1 are incremented, and the higher nibble 
of TxData is set to the high nibble in DevAddr. 

Thus, the Master keeps sending the contents of TxData and TxData+1 as it increments at a slower 
rate via the I2C bus. 
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When you activate the SELF_TEST mode, and SCOPE, you can display the signals on SDA and SCL 
on an oscilloscope (don’t forget to connect the “External Trigger” input with RC.0 for stable dis-
plays. You can also monitor how the transmitted data byte is incremented. 

4.13.5.3 The I2C Master VP 

I2CTx is periodically called from the ISR, four times per I2C clock cycle, i.e. when sending a data 
bit, SCL has performed the sequence high-high-low-low after four calls, and the SDA line has 
eventually changed its level in the middle of the two SDA low steps. 

Before initiating a transmission, the Master first must check if the bus is available. Therefore, it 
checks if for a certain time both, SDA and SCL are high (WAIT_IDLE defines the number of ISR 
calls it should wait). If this is the case, i.e. when the bus is idle, the master puts the start condition 
on the bus, i.e. it pulls SDA low while SCL is high, and then continues sending the data bits. 

Finally, the master must check if the receiving slave sends an acknowledge, i.e. if it pulls SDA 
low. To complete the transmission, the master releases SDA while SCL is low to establish the stop 
condition. 

Again, implementing a state engine is a good method to handle the various steps the master must 
perform. This means that the master code for the master VP has just one entry point, and from 
there, branches to different sections of the code are performed, according to the contents of the 
TxState variable. The various sections of the code change the contents of TxState if necessary in 
order to select another state (usually the next one). 

In case of the Master VP, the states are further divided into sub-states, controlled by the 
TxSubState variable. 

You can follow the program flow in the source code listing quite easily by keeping track of the 
TxState and TxSubState variables. 

State engines can cause a problem when a specific external status is expected that – by some rea-
son – might not occur. In this case, the engine’s state does not change, and it “hangs around” in 
one state forever. 

For example, the Master VP might remain “stuck” in the CheckClockHigh sub-state where it 
waits for SCL returning to high level while other devices hold SCL low for clock-stretching. If a 
faulty external device holds that line low forever, the master can’t continue either. 

To avoid such situations, the I2C VPs presented here, have an additional timeout feature. In the 
Master VP, routines that are “candidates” for such problems, the variable TxTimeout is decre-
mented each time the routines are executed, and when TxTimeout underflows, the engine’s state 
is forced to the error state. 
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The jump tables that select the states and sub-states have been sorted in “logical” order, i.e. usu-
ally, a routine simply needs to increment the state variable to activate the state that logically fol-
lows next, or to decrement the state variable to select the previous state. 

However, there are some necessary exceptions to that rule, for example, in case of an error situa-
tion, where TxState must be set to a fixed value. You could achieve this by adding a mov 
TxState, #??? instruction. But the drawback of this method is that you will have to change the 
“hard coded” constant part of such instructions later, should there be a need to add one or more 
states to the routine. You can be sure, big surprises will come up in case you forget to make the 
necessary corrections. 

Therefore, it is a better idea to let the assembler calculate such values automatically. Therefore, 
some jump tables have some additional labels, like in 
     mov    w, TxState ; Jump table for main states 
     jmp    pc+w 
:TxIdle  
     jmp    :Idle ; Nothing to send 
:TxInit  
     jmp    :InitSend ; Initialize the master 
     jmp    :SetStart ; Set the start condition 
     jmp    :SendData ; Send data 
     jmp    :GetAck ; Read the acknowledge 
     jmp    :SetStop ; Set stop condition 
:TxError  
     jmp    :HandleError ; Handle errors 

For example, you could reach the HandleError state by “hard-coding” a mov TxState, #6 in-
struction. Because both, the first jmp :Idle instruction, and the jmp :HandleError instruction 
are marked with the additional labels :TxIdle, and :TxError, you can write mov TxState, 
#(:HandleError - :TxIdle) instead, to let the assembler make the necessary calculation, giv-
ing 6 in this case. If you would later insert another jmp :???? instruction in between the two 
labels, the assembler would automatically calculate the new value of 7 that is now the correct 
value for TxState to reach the error handler. 

In case of an error (timeout, or no acknowledge from the slave), the :HandleError routine is 
executed. If REPEAT_SEND has been defined with a value greater 0, the VP tries to resend the data 
packet, as often as has been defined. In this sample program, retries will be immediately follow-
ing an error situation. When the overall busload is relatively high, it might be better to insert a 
random delay time before the master performs the next retry. 

4.13.5.4 The I2C Slave VP 

Again, this slave has been designed as a state engine, and some states are divided into sub-states 
similar to the master. The slave also has a timeout feature. Here, the timeout counter is decre-
mented, each time the slave is called in case it is enabled to receive data. 
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This means that a timeout error will also occur when the slave has been called 256 times while the 
bus stays idle. As this situation does not set the “Data Received” flag, this means that the slave 
simply re-starts, monitoring the bus. Only if a timeout situation occurs while the slave is waiting 
for a SCL high during reception of data, the error handler discards whatever has been received so 
far, not notifying the mainline program. 

Other than the Master VP, that sends the data “unchecked”, i.e. the mainline program must take 
care of setting up the device type bit and the device address, the Slave VP checks both values. 
The “Data received” flag will only be set, and an acknowledge only be sent if the information in 
the first four received bits matches the configured values. 

When you want to test just one device without connecting it to other devices, you can activate the 
SELF_TEST definition. In this case, the device type bit is not inverted, and the slave receives and 
acknowledges the data sent from its “companion” master. 
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4.14 A “Hardware Timer“ 
When an application requires the SX registers for other purposes than for counting long time 
periods, or if the ISR is more than busy with other tasks, you can generate a relatively long time 
delay with just a couple of external components, and two port pins. The schematic below shows 
the details (where the LED and the 470 Ω resistor are for demonstration purposes only. 

 

The LED connected to RB0 is used to display the status in our demonstration program. An RC 
network (1 MΩ/0,22 µF) is connected between VDD and VSS, and port pin RC0 is connected to the 
capacitor across a 220 Ω resistor that is used to limit the port output current. 

This is the demonstration program: 

; ================================================================= 
; Programming the SX Microcontroller 
; APP026.SRC 
; ================================================================= 
TRIS    = $0f 
ST      = $0c 
 
DEVICE  SX28L 
DEVICE  TURBO, STACKX, OPTIONX 
FREQ    50_000_000 
RESET   Main 
 
org     $100 
 
;** Main program *********************************************** 
; 
Main 

VDD

470 Ω 

RB0

LED

1 MΩ 

220 Ω

RC 0 1 

0.22 µF 
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   mode ST   ; Configure RC1 as 
   mov  !rc, #%11111101 ;  Schmitt Trigger input  
   mode TRIS   ; RB0 is the LED 
   mov  !rb, #%11111110 ;  output  
        
Loop 
  clrb  rc.0   ; Configure RC0 as an output 
  mov   !rc, #%11111110 ;  with low level 
WaitLow 
  snb   rc.1   ; Wait until the capacitor 
    jmp WaitLow  ;  is discharged  
  mov   !rc, #%11111111 ; Set RC0 to Hi-Z 
WaitHigh 
  sb    rc.1   ; Wait until the capacitor 
    jmp WaitHigh  ;  is charged 
  xor   rb, #%00000001 ; Toggle the LED 
  jmp   Loop   ; Do it again... 

 

The main program loop instructions first discharge the capacitor by pulling its upper plate across 
the current-limiting resistor to low level, and then waits until the voltage across the capacitor has 
dropped below the lower level of the Schmitt Trigger input at rc.1. 

Then rc.0 is switched to Hi-Z, i.e. the capacitor is now charged across the 1 MΩ resistor. The 
program loop WaitHigh is executed until the voltage across the capacitor, has reached the upper 
level of the Schmitt Trigger input at rc.1. 

Then, the LED port bit is toggled, and the main loop is repeated again. 

By varying the time constant RC, you can achieve all kinds of delay times. Although the delay 
time precision cannot be compared to a system-clock-derived time, it may be sufficient for many 
purposes. 



Section IV - Applications 

413 

4.15 A Morse Code Keyer 
This application makes use of an SX Controller to build a Morse Code Keyer with the following 
features: 

• Accepts “Paddle-Type” or “Squeeze-Type” input devices 

• Automatically sends two pre-defined messages, a repeating message like “cq cq cq de 
<callsign> <callsign> <callsign>”, and a terminating message, like “ar pse k”. 

• The tempo can be adjusted via a potentiometer. 

The schematic below shows the required external components: 

 

If you are using a SX-Key Demo Board from Parallax, most of the required components are al-
ready in place. 

To read the speed potentiometer, this application makes use of the Bitstream ADC VP that was 
already described in this book before. The LED at RB6 is optional; it gives optical feedback as it is 
toggled according to the generated Morse code. RB6 is also used to drive an external circuit that 
keys the transmitter. 

If connected to RB7, the piezo speaker provides an acoustic feedback. As most transmitters gen-
erate their own monitor tones, you might consider to not install the speaker. You may also add a 
switch to turn the speaker on or off. 

VDD

2 x 10 kΩ

 470
0.1 µF

RB7 
 
 

RB3 
 

RB2 
 

RB1 
 

 
RB0 

 

 
RC1 

 
RC0 

 
 
 

 
RB6 

2.2 kΩ

Dot

Dash

CQ Msg.

AR Msg.

Output

10 µF

+

Piezo Speaker
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RB0 is the “Dot” input, i.e. when this pin is pulled low, a short “Dot” signal will be generated, 
followed by a pause of the same length. As long as the line is held low, “Dots” and pauses will be 
repeated. 

When RB1, the “Dash” input is pulled low, a “Dash” signal will be generated, that is three times 
longer than a “Dot”. Again, a pause of one dot-length follows each “Dash”. As long as the line is 
held low, “Dashes” and pauses will be repeated. 

When you use a “Paddle-Type” input device, either the “Dot” or the “Dash” input can be low. If 
you use a “Squeeze-Type” device instead, either the “Dot”, the “Dash”, or both inputs can be low 
at a time. When both inputs are low, the “Dot” input has higher priority, i.e. “Dots” will be 
generated as long as it is low. When the line is released while the “Dash” line is still low, the sys-
tem will continue sending “Dashes”. If you pull the “Dot” line low, while the “Dash” line is low, 
“Dots” will be generated again. 

If you press the “CQ” button, the CQ message, e.g. “cq cq cq de dk4tt dk4tt dk4tt” will be 
continuously sent and repeated. 

When you press the “AR” button while the CQ message is being sent, this message will be com-
pleted, and then the AR message, e.g. “ar pse k” will be sent once, before the system enters into 
idle mode. 

Pressing the “AR” button when the CQ message is not currently being sent, starts the transmis-
sion of one AR message before the system goes back to idle. 

You can stop any automated message by pulling low the “Dot” or “Dash” lines. In this case, the 
message is interrupted after having completed the current character, the system sends a “Dot” or 
“Dash” (depending on what line went low), and returns to idle mode, i.e. it continues monitoring 
the RB3…0 input lines. 

This is the program: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP027.SRC 
; ================================================================= 
include "Setup28.inc" 
reset   Main 
 
TRIS  equ $0f 
LVL   equ $0d 
PLP   equ $0e 
 
Frequ equ 125    ; Beep frequency 
 
org      $08    ; Global registers 
FsrSave  ds 1    ; Storage for FSR  
Speed    ds 1    ; Morse code speed 
State    ds 1    ; ISR Morse handler state 
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Flags    ds 1    ; Flags to control the mainline 
     ;  program 
Ix       ds 1    ; Message table index 
Count    ds 1    ; Storage for "Morse Bitcount" 
Char     ds 1    ; Storage for Morse character 
 
SendCq   =  Flags.0   ; State flags for mainline program 
SendAr   =  Flags.1 
SendDot  =  Flags.2 
SendDash =  Flags.3 
Tone     =  State.7   ; When this flag is set, a Dot or Dash 
     ;  is generated instead of a pause, 
     ;  and the speaker pin RB7 is toggled 
     ;  so generate a tone (Frequ deter- 
     ;  mines the tone frequency) 
 
org        $10   ; Registers used by the ISR 
IsrVars    =  $ 
PortBBuff  ds 1   ; Buffer for Port B data 
Beep       ds 1   ; Beep timer for speaker output 
Length     ds 1   ; Determines the length of the 
     ;  current signal or pause in 
     ;  multiples of a dot length 
SpeedTimer ds 1   ; This timer controls the length 
     ;  of a dot, i.e. the CPS of the 
     ;  Morse code 
BaseTimer  ds 1   ; This is the basic timer used to 
     ;  divide down the ISR call frequency 
 
org        $30   ; ADC registers 
ADC        =  $ 
AdcCount   ds 1   ; Overflow counter 
AdcAcc     ds 1   ; Accumulator 
PortCBuff  ds 1   ; Buffer for Port C data 
 
org    $000 
 
;-------------------------------------------------------------- 
ISR ; The Interrupt Service Routine 
;-------------------------------------------------------------- 
  mov     FsrSave, FSR  ; Save the original FSR for later 
     ;  restore 
        
  ;------------------------------------------------------- 
  ; ADC VP    rc.1 = ADC in, rc.0 = charge/discharge 
  ;------------------------------------------------------- 
         
  bank    ADC 
  mov     PortCBuff, rc 
  and     PortCBuff, #%11111100 ; Mask ADC pins 
  mov     w, >>rc 
  not     w 
  and     w, #%00000011 
  or      PortCBuff, w 
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  sb      PortCBuff.0 
    incsz AdcAcc 
  inc     AdcAcc 
  dec     AdcAcc 
  mov     w, AdcAcc 
  inc     AdcCount 
  snz 
    call  PotAdjust   ; Transform ADC value (0...255) 
     ;  into 32...160 
  snz 
    mov   Speed, w   ; Save the transformed value 
  snz 
    clr   AdcAcc 
  mov     rc, PortCBuff  ; Set the ADC pins 
  page    ISR    ; Reset the page (changed 
     ;  by PotAdjust) 
  ;------------------------------------------------------- 
  ; Morse code handler 
  ;------------------------------------------------------- 
        
  bank    IsrVars 
 
  ; If a button is down, set the associated flag for the 
  ; mainline program. 
  ; 
  sb      rb.0   ; Dot line 
    setb  SendDot 
  sb      rb.1   ; Dash line 
    setb  SendDash 
  sb      rb.2   ; CQ button 
    setb  SendCq 
  sb      rb.3   ; AR button 
    setb  SendAr 
 
; Morse timer states 
; 
Idle      = 0 
Pause1    = 1 
Pause3    = 2 
Pause5    = 3 
Dot       = 4 
Dash      = 5 
Delay     = 6 
DelayS    = Delay | $80 
 
  mov     w, State   ; Get the current state 
  and     w, #%01111111  ;  and ignore bit 7 
  jmp     pc+w 
  jmp     :ExitIsr 
  jmp     :InitPause1 
  jmp     :InitPause3 
  jmp     :InitPause5 
  jmp     :InitDot 
  jmp     :InitDash 
  jmp     :Delay 
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:InitPause1    ; Init for 1 dot-length pause 
  mov     Length, #1 
  jmp     :EndInitP 
        
:InitPause3 
  mov     Length, #2  ; Init for 3 dots-lengths pause. 
     ;  As a one dot-length pause is 
     ;  automatically appended  to each 
     ;  dot and dash, the actual pause 
     ;  length is 2 dots here. 
  jmp     :EndInitP 
 
:InitPause5 
  mov     Length, #4  ; Init for a 5 dots-lengths pause, 
     ;  (see above). 
:EndInitP 
  mov     SpeedTimer, Speed ; Initialize the speed timer 
  mov     State, #Delay  ; Set next state 
  jmp     :ExitIsr 
        
:InitDot 
  mov     Length, #1  ; Setup for a dot 
  jmp     :EndInitD 
        
:InitDash 
  mov     Length, #3  ; Setup for a dash (3 dots-lengths) 
        
:EndInitD 
  mov     SpeedTimer, Speed ; Initialize the speed timer 
  mov     State, #DelayS  ; Set next state 
  jmp     :ExitIsr 
        
:Delay ; Cause a delay 
  decsz   BaseTimer   ; Decrement the base timer 
    jmp   :EndDelay 
  decsz   SpeedTimer  ; Decrement the speed timer 
    jmp   :EndDelay 
  mov     SpeedTimer, Speed ; Re-initialize the speed timer 
  decsz   Length   ; Decrement the length counter 
    jmp   :EndDelay 
  sb      Tone   ; If a dot or dash is finished, 
    jmp   :EndPause 
  mov     State, #Pause1   ;  automatically add a 1 dot-length 
  jmp     :EndDelay   ;  pause 
 
:EndPause 
  mov     State, #Idle  ; When a pause has been finished, idle 
 
:EndDelay 
  clrb    PortBBuff.6  ; Prepare the LED bit 
  sb      Tone   ; When the Tone flag is clear, 
    jmp   :ExitIsr   ;  no LED and no sound, else 
  setb    PortBBuff.6  ;  turn LED on and 
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  decsz   Beep   ;  decrement the Beep timer 
    jmp   :ExitIsr   ;  
  xor     PortBBuff, #$80   ; Toggle the beeper pin 
  mov     Beep, #Frequ  ; Re-initialize the Beep timer 
 
:ExitIsr 
  mov     rb, PortBBuff  ; Set the port pins 
  mov     FSR, FsrSave  ; Restore the FSR 
  mov     w, #-200   ; Call the ISR every 4 us 
  retiw 
 
;-------------------------------------------------------------- 
; This routine reads the value indexed by w from Table. 
; The table is used to transform the ADC values from 0 to 255  
; into a range from 32 to 160, and to provide a better pot 
; resolution for higher speed values. 
;-------------------------------------------------------------- 
PotAdjust 
  page    Table 
  jmp     w 
 
org       $100 
 
;-------------------------------------------------------------- 
; The mainline program 
;-------------------------------------------------------------- 
 
Main 
  ; Initialize the ports 
  ; 
  mode PLP 
  mov  !rb, #%11110000  ; Enable pull-ups on port B inputs 
  mode    LVL    ; Set cmos input levels 
  mov     !rc,#0   ;  on port C inputs 
  mode    TRIS   ; Setup inputs/outputs 
  clr     rc 
  mov     !rc,#%11111110  ; rc.1 = ADC in 
     ; rc.0 = charge/discharge 
  clr     rb 
  mov     !rb, #%00111111        ; rb.7: beeper output, 
     ; rb.6: LED output 
   
  clr     PortBBuff   ; Clear some registers 
  clr     Flags 
  clr     State 
 
  mov     !option, #%10011111 ; Enable RTCC interrupt 
 
; The bits in Flags are used to control the states of the main 
; loop. 
 
:MainLoop 
  snb     SendDot   ; When the dot contact is closed, go 
    jmp   :SendDot   ;  and send a dot (highest priority) 
  snb     SendDash   ; When the dash contact is closed, 
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    jmp   :SendDash   ;  go and send a dash 
     
  test    Flags   ; If no flags are set at all, we are 
  snz     ;  idle 
    jmp   :MainLoop 
     
  mov     w, #ArTab   ; Prepare the address to send the 
     ;  "+ pse k" message 
  sb      SendAr   ; If not SendAr, prepare the address 
  mov     w, #CqTab   ;  to send the "cq cq cq de..." 
     ;  message 
  mov     Ix, w   ; Setup the message pointer 
  snb     SendAR   ; If the user has pushed the AR  
     ; button, while sending the "cq cq..." 
     ;  message, stop the CQ message after 
    clrb  SendCQ   ;  it is completed. 
 
:Loop 
  mov     w, Flags   ; Get the flags 
  and     w, #%00001100  ; Mask the SendAr and SendCq flags 
  sz     ; If no flags are set, 
    jmp   :MainLoop   ;  don't send a message 
  snb     SendCQ   ; While sending the "cq..." message, 
    jmp   :NoDebounce  ;  AR button pushes are accepted. 
  snb     SendAr   ; While sending the "+ pse k" message, 
    clr   Flags   ;  no more AR button pushes are 
     ;  accepted. 
:NoDebounce 
  mov     m, #CqTab >> 8  ; Setup m:w for iread 
  mov     w, Ix 
  iread    ; Read the table item indexed by Ix 
  mov     Char, w   ; Save the dash/dot pattern 
  mov     Count, m   ; Save the dash/dot count 
  test    Count   ; When Count = 0, we have either a 
  snz     ;  pause, or an end of table. We  
    jmp   :TestEnd   ;  go to :TestEnd to find out. 
 
:Next     ; Output a Morse character 
  rl      Char   ; Next bit -> c 
  mov     w, #Dash   ; Prepare for a dash 
  sc     ; If c is set, it is a dash, 
    mov   w, #Dot   ;  else a dot 
  mov     State, w   ; Setup the state 
 
:Send 
  test    State   ; Wait until the ISR has sent the 
  sz     ;  dash or dot 
    jmp   :Send 
  dec     Count   ; Decrement the dash/dot count 
  sz     ; If there are more dashes/dots to be 
    jmp   :Next   ;  sent, loop back 
  mov     State, #Pause3  ; Generate a 3 dots-length pause 
 
:Pause 
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  test    State   ; Wait until the ISR has generated 
  sz     ;  the pause 
    jmp   :Pause 
 
  inc     Ix    ; Next character in the message table 
  jmp     :Loop 
 
:TestEnd    ; When a table item has a Count of 0, 
  test    Char   ;  it is either a Pause5 (Char != 0), 
  snz     ;  or the end of the table (Char == 0) 
    jmp   :MainLoop 
  mov     State, #Pause5  ; Setup state for Pause5 
  jmp     :Pause   ; Go and wait until the pause is done 
 
:SendDot 
  mov     State, #Dot  ; Send a dot when the user has pressed 
  jmp     :WaitSend   ;  the dot button 
 
:SendDash 
  mov     State, #Dash  ; Send a dash when the use has pressed 
       ;  the dash button 
:WaitSend    ; Wait until the ISR has sent the 
  test State    ;  dash or the dot 
  sz 
    jmp   :WaitSend 
  clr     Flags   ; Clear the flags in order to stop 
  jmp     :MainLoop   ;  any message being currently sent. 
 
org       $200 
        
; The message tables 
; 
; The first four bits in each item specify the number of 
; dashes and dots. The next eight bits specify from "left 
; to right" the dashes (1) and dots (0). 
; 
; A value of $001 specifies a 5 dot-lengths pause, and  
; a value of $000 specifies the end of a message. 
; 
CqTab 
  dw      $001   ; Pause 5 
  dw      $400 + %10100000  ; C 
  dw      $400 + %11010000  ; Q 
  dw      $001   ; Pause 5 
  dw      $400 + %10100000  ; C 
  dw      $400 + %11010000  ; Q 
  dw      $001   ; Pause 5 
  dw      $400 + %10100000  ; C 
  dw      $400 + %11010000  ; Q 
  dw      $001   ; Pause 5 
  dw      $300 + %10000000  ; D 
  dw      $100 + %00000000  ; E 
  dw      $001   ; Pause 5 
  dw      $300 + %10000000  ; D 
  dw      $300 + %10100000  ; K 
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  dw      $500 + %00001000  ; 4 
  dw      $100 + %10000000  ; T 
  dw      $100 + %10000000  ; T 
  dw      $001   ; Pause 5 
  dw      $300 + %10000000  ; D 
  dw      $300 + %10100000  ; K 
  dw      $500 + %00001000  ; 4 
  dw      $100 + %10000000  ; T 
  dw      $100 + %10000000  ; T 
  dw      $001   ; Pause 5 
  dw      $300 + %10000000  ; D 
  dw      $300 + %10100000  ; K 
  dw      $500 + %00001000  ; 4 
  dw      $100 + %10000000  ; T 
  dw      $100 + %10000000  ; T 
  dw      $001   ; Pause 5 
  dw      $000   ; End 
ArTab 
  dw      $001   ; Pause 5 
  dw      $500 + %01010000  ; AR 
  dw      $001   ; Pause 5 
  dw      $400 + %01100000  ; P 
  dw      $300 + %00000000  ; S 
  dw      $100 + %00000000  ; E 
  dw      $001   ; Pause 5 
  dw      $300 + %10100000  ; K 
  dw      $000   ; End 
 
org       $400 
Table 
          retw  32, 32, 32, 32 
          retw  33, 33, 33, 33 
          retw  34, 34, 34, 34 
          retw  35, 35, 35, 35 
          retw  36, 36, 36, 36 
          retw  37, 37, 37, 37 
          retw  38, 38, 38 
          retw  39, 39, 39 
          retw  40, 40, 40 
          retw  41, 41, 41 
          retw  42, 42, 42 
          retw  43, 43, 43 
          retw  44, 44, 44 
          retw  45, 45, 45 
          retw  46, 46, 46 
          retw  47, 47, 47 
          retw  48, 48, 48 
          retw  49, 49, 49 
          retw  50, 50 
          retw  51, 51 
          retw  52, 52 
          retw  53, 53 
          retw  54, 54 
          retw  55, 55 
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          retw  56, 56 
          retw  57, 57 
          retw  58, 58 
          retw  59, 59 
          retw  60, 60 
          retw  61, 61 
          retw  62, 62 
          retw  63, 63 
          retw  64, 64 
          retw  65, 65 
          retw  66, 66 
          retw  67, 67 
          retw  68, 68 
          retw  69, 69 
          retw  70, 70 
          retw  71, 71 
          retw  72, 72 
          retw  73, 73 
          retw  74, 74 
          retw  75, 75 
          retw  76, 76 
          retw  77, 77 
          retw  78, 78 
          retw  79, 79 
          retw  80, 80 
          retw  81, 81 
          retw  82, 82 
          retw  83, 83 
          retw  84, 84 
          retw  85, 85 
          retw  86, 86 
          retw  87, 87 
          retw  88, 88 
          retw  89, 89 
          retw  90, 90 
          retw  91, 91 
          retw  92, 92 
          retw  93, 93 
          retw  94, 94 
          retw  95, 95 
          retw  96 
          retw  97, 97 
          retw  98, 98 
          retw  99, 99 
          retw 100, 100 
          retw 101, 101 
          retw 102, 102 
          retw 103, 103 
          retw 104, 104 
          retw 105, 105 
          retw 106, 106 
          retw 107, 107 
          retw 108, 108 
          retw 109, 109 
          retw 110, 110 
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          retw 111, 111 
          retw 112, 112 
          retw 113, 113 
          retw 114, 114 
          retw 115, 115 
          retw 116, 116 
          retw 117, 117 
          retw 118, 118 
          retw 119, 119 
          retw 120, 120 
          retw 121, 121 
          retw 122, 122 
          retw 123, 123 
          retw 124, 124 
          retw 125, 125 
          retw 126, 126 
          retw 127, 127 
          retw 128, 128 
          retw 129, 129 
          retw 130, 130 
          retw 131, 131 
          retw 132, 132 
          retw 133, 133 
          retw 134, 134 
          retw 135, 135 
          retw 136 
          retw 137 
          retw 138 
          retw 139 
          retw 140 
          retw 141 
          retw 142 
          retw 143 
          retw 144 
          retw 145 
          retw 146 
          retw 147 
          retw 148 
          retw 149 
          retw 150 
          retw 151 
          retw 152 
          retw 153 
          retw 154 
          retw 155 
          retw 156 
          retw 157 
          retw 158 
          retw 159 
          retw 160 

 

In this application, the mainline program initializes the ports and some registers, and then enters 
into a loop that handles sending pre-defined messages. It also handles the button-down and 
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Morse-key device events but it does not read the associated input lines. Instead, it evaluates the 
states of the flags eventually set by the ISR which actually reads the input lines. 

The ISR runs the ADC VP that is used to read the current setting of the speed potentiometer. The 
ISR also polls the input lines at Port B, and takes care of the necessary timing to generate “Dots”, 
“Dashes”, pauses, and the audio signal for the piezo speaker. 

The timer part of the ISR is designed as a state engine. Depending on the value of the State vari-
able, different parts of the ISR code are executed. 

As pauses, “Dots”, and “Dashes” all require a time delay with the only difference that “Dots” and 
“Dashes” must control the output signal, and also must generate the audio signal for the speaker, 
bit Status.7 has a special meaning. If this bit is set, “Dots” or “Dashes” are sent, i.e. the speaker 
and the output lines will be activated in this case. 

The two pre-defined messages (the CQ and the AR message) are stored in program memory. The 
program uses the iread instruction to read items from those tables. 

As Morse code characters have variable lengths, the first four bits of a table entry are used to 
specify the total number of “Dots” and “Dashes” for each character. The remaining eight bits 
contain the Morse code pattern. Each “Dot” is represented by a 0-bit, and each “Dash” is repre-
sented by a 1-bit. The “Dash” and “Dot” codes are arranged from “left” to “right”, i.e. the first 
code element is located at bit 7, the second one at bit 6, etc. When a Morse character has less than 
eight “Dashes” and “Dots”, the remaining lower bits are cleared. 

To either indicate a pause of five dot-lengths or the end of a message, the upper four bits of a 
table entry are cleared. When the lower eight bits are also cleared, this means that the end of the 
table has been reached. If the lower eight bits contain %00000001, a pause of five dot-lengths will 
be generated instead. 

The ADC VP used here returns a result from 0 through 255 for an input voltage between 0 and 5 
V. Using this full range to setup the Speed timer would result in extremely high and low Morse 
speeds when the potentiometer is turned to its two end-positions. In addition, when you use a 
linear potentiometer, the speed variation is very sensitive at higher speeds. Therefore, we use a 
table in order to convert the ADC values (0…255) into a range from 32 through 160 and to “flat-
ten” the potentiometer curve at higher speed values. 
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4.16 Robotics - Controlling the Parallax SX Tech Bot 

4.16.1 Introduction 

The Parallax SX Tech Bot shown below is a small battery-powered autonomous robot with two 
drive wheels in front and a 1” polyethylene ball at its tail. This design is based on the popular 
Parallax Boe-Bot™ robot, which uses the BASIC Stamp® 2 module for its programmable 
controller on the Board of Education® prototyping platform.  The SX Tech Bot uses the SX 
microcontroller for its programmable brain, and the SX Tech board  for its prototyping platform.  
If you are interested in experimenting with this robot, it consists of two parts kits, the SX Tech 
Tool Kit (Part #45180) and the Boe-Bot Parts Kit (Part #28124).   

 
The SX Tech board comes with all the components to run an SX-28 controller, which is inserted 
into the board’s LIF (low insertion force) socket.  The board has a 5V voltage regulator, header 
sockets for all SX I/O pins plus some other signals, and a small breadboard prototyping area.  We 
will use this prototyping area to build and test sensors and indicators for the SX Tech Bot. 

The chassis also has a battery holder installed for four 1.5 V AA batteries, so you can run the 
robot without an external power source. Simply plug the power connector leading from the 
battery pack into the SX-Tech Board's 6-9 VDC power jack. Nevertheless, while doing the first 
tests, it might be a good idea to use an external power supply.  A DC supply rated for an output 
of 7.5 V, 1000 mA with a center-positive, 2.1 mm plug is recommended.  NOTE: The supply's 
output rating can be from 6 to 9 VDC with a capacity of 600 mA or more.   

The SX Tech Bot's two front wheels are driven by two premodified modified RC hobby servos, 
called Parallax Continuous Rotation servos.  Both Standard and Continuous Rotation servos have 
an output shaft which is controlled by the circuitry inside the servo.  A Standard servo is 
designed to rotate its output shaft to particular position and hold that position.  The position is 
dictated by the control signal it receives.  In contrast, a Parallax Continuous Rotation servo makes 



Programming the SX Microcontroller 

426 

its output shaft rotate at a particular speed in a particular direction.  The speed and direction is 
dictated by the same type of signal that is used to control the standard servo's position.   

All previous code examples in this book were designed for SX controllers clocked at 50 MHz. The 
sample code in this chapter assumes an SX clocked at 4 MHz using an external, 4 MHz resonator.  
Since the SX Tech Bot relies on AA batteries for its power, the 4 MHz clock rate is a better choice 
since the SX draws significantly less current at lower clock rates.  The drawback of lower clock 
rates, of course, is that the resolution of the incremental timing changes that can be made to 
output signals and sampling rates is much lower.   

 

A precise external clock, such as the 4 MHz (accurate to +/- 0.3 %) ceramic resonator included 
in the SX-Tech Toolkit, is recommended for autonomous SX Tech Bot applications. In contrast, 
the SX microcontroller's internal oscillator is not recommended for these applications.  
Although it can supply a clock rate of 4 MHz, the IRC calibration can only guaranty an error 
within +/- 8 % at a given temperature.  Additional programming techniques can be used to 
reduce this variation to around 1 %.  Even so, this variation will still be noticeable if you are 
attempting to recalibrate the servos without the aid of the SX-Key, and the differences will be 
accentuated by changes in temperature. 

 

Before assembling your SX Tech Bot, you will probably need to perform some tests and 
mechanical adjustments on the servos.  The servos are connected to the SX Tech Board and a test 
and adjustment program is run.  After the mechanical adjustments and potentially some software 
adjustments are made, you can then assemble your SX Tech Bot without having to worry about 
having to disassemble it again.  Follow the instructions through Section 4.16.3.1 first.  After that, 
you can then move on to the mechanical assembly instructions available from the 
www.parallax.com web site. 

The drawing, below, shows how the two servos can be connected to power, ground, and SX I/O 
pins for control signals. Place two three-pin headers into the second row of the breadboarding 
area as shown, and also place the jumper wires as shown, to connect the servo inputs to the SX 
port pins RB3, and RC7, and to the power supply lines Vdd (+5V) and Vss (Ground).  Use only 
insulated jumper wires, and as always, only make changes to circuits when power is 
disconnected.  Also, make sure to correctly follow the color coding indications in the figure when 
connecting your servos to the three-pin headers. 



Section IV - Applications 

427 

 
As the servos consume quite an amount of starting current, it is important to connect an electro-
lytic capacitor (3300 µF, 6 V or higher) across Vdd and Vss, to avoid that the SX resets due to 
supply-voltage drops.   

 

WARNING: When connected properly, these capacitors store the additional charge required by 
the servo motors during starts and sudden direction chances.  However, when connected 
incorrectly, in reverse polarity, these capacitors can rupture or even explode.  So, follow these 
connection instructions carefully. The capacitor's positive lead is denoted by a longer lead, and 
the negative lead is denoted by a stripe on the metal canister with negative signs.  Make sure 
to verify that capacitor’s positive lead is connected to Vdd, and that the negative lead is 
connected to Vss before connecting power to the system. 

 

Finally, plug the servo connectors on to the two three-pin headers, and make sure that the orien-
tation of the connectors is correct, i.e. that the color order of the wires follows the one shown in 
the drawing. The white wire (input) from the left servo should be connected to RC7, and the one 
from the right servo should go to RB3. 

In the next section, we will address how the servos are controlled and discuss some general 
concepts for a basic SX Tech Bot application. We will then discuss an introductory SX program 

3300 µF
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that takes care of the functions, necessary to control the SX Tech Bot, and we’ll use this code as a 
“skeleton” for more examples in following sections. 

4.16.2 Controlling the SX Tech Bot Servos 

The servos that are used as the SX Tech Bot’s “motors” are quite similar to the servos commonly 
used for RC models. In an RC model, such servos – for example – are used to move a rudder to 
any position between two left and right end positions. The servos have an input where they 
expect a PWM signal with a certain high time to control the servo position. Here is the typical 
timing diagram for a servo signal that instructs the servo to hold it's "center" position: 

 

 

 

 

 

As you can see, the time between two pulses is 20 ms.  This duration is not critical for servo 
control, and any time between 5 and 45 ms will suffice.  The pulse width is the signal that must 
be precise for accurate servo control.  

A pulse width of 1.5 ms means that a Standard servo moves to, and holds at its center (or zero) 
position. This is the mid-point position in a servo's range of motion. When the pulse width 
becomes larger than 1.5 ms, the servo's output shaft rotates to a position counterclockwise of 
center, and vice versa, when the pulse width is less than 1.5 ms, the servo's output shaft rotates to 
a position clockwise of the center. 

Instead of holding a particular position, a Parallax Continuous Rotation servo responds by 
rotating its output shaft counterclockwise when it receives pulses that last longer than 1.5 ms.  
Likewise, its output shaft rotates clockwise when it receives pulses less than 1.5 ms.  The speed of 
rotation depends on the difference between the current pulse-width, and the 1.5 ms “stop value”. 
The greater the difference, the faster the rotation speed will be.  At pulse-widths of 1.7 ms, or 1.3 
ms, the Parallax Continuous Rotation servos rotate at their maximum counterclockwise or 
clockwise speeds. So, it does not make sense to send PWM signals to the servo inputs with pulse 
widths above, or below these values. 

20 ms
1.5 ms
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Parallax Continuous Rotation servos are actually Standard servos that have been modified.  
The reason a continuous rotation servo's output shaft turns instead of holding a particular 
position is because the link between the its output shaft and the feedback potentiometer its 
circuitry uses to determine the output shaft's position has been severed.  When a continuous 
rotation servo receives a signal that would tell a standard servo to rotate to and hold a 
particular position, the missing link between the continuous rotation servo's output shaft and 
feedback potentiometer fools its circuitry into thinking that it never arrives at the proper 
position.  Thus, the servo's circuitry continues to drive its built-in DC motor in an attempt to 
reach a position it never gets to.  The end result is "continuous rotation". 

 

4.16.3 The Basic Control Program 

The program listing, below, shows the basic servo control program: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP028.SRC 
; ================================================================= 
device  SX28L, oscxt2, turbo, stackx 
freq    4_000_000 
IRC_CAL IRC_FAST 
 
 
reset   Main 
 
LServo       = RC.7            ; Output to servo  - Left. 
RServo       = RB.3            ; Output to servo  - Right. 
 
LStop        = 115             ; Adjust values so that the servos don't move 
RStop        = 115             ;  when Speed = 0 and Turn = 0 
            
             org 8 
Timer20L     ds 1              ; Counters for 
Timer20H     ds 1              ;  20 ms timer 
Ltimer       ds 1              ; Counter for left servo timer 
Rtimer       ds 1              ; Counter for right servo timer 
LSpeed       ds 1              ; Left servo speed 
RSpeed       ds 1              ; Right servo speed 
Speed        ds 1              ; The "Bot's" speed 
Turn         ds 1              ; The "Bot's" turn factor 
 
        org    0 
ISR           
        sb     LServo          ; Is left servo still on? 
         jmp   :Right          ;  no - handle right servo 
        dec    LTimer          ;  yes - count down 
        sz                     ; Left timeout? 
         jmp   :Right          ;  no - handle right servo 
        clrb   LServo          ;  yes - left servo off 
        mov    LTimer, LSpeed  ; Init left timer for next pulse 
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:Right 
        sb     RServo          ; Is right servo still on? 
        jmp    :Timer20        ;  no - handle 20 ms timer 
        dec    Rtimer          ;  yes - count down 
        sz                     ; Right timeout? 
         jmp   :Timer20        ;  no - handle 20 ms timer 
        clrb   RServo          ;  yes - right servo off 
        mov    RTimer, Rspeed  ; Init right timer for next pulse 
:Timer20                       ; Handle the 20 ms timer 
        dec    Timer20L        ; Count down low order byte 
        sz                     ; Is it zero? 
         jmp   :ExitISR        ;  no - exit 
        mov    Timer20L, #171  ;  yes, initialize and 
        dec    Timer20H        ;  count down high order byte 
        sz                     ; Is it zero? 
         jmp   :ExitISR        ;  no - exit 
        mov    Timer20H, #9    ;  yes, initialize and 
        setb   LServo          ;  turn the servos 
        setb   RServo          ;  on again 
:ExitISR 
        mov    w, #-52         ; ISR is invoked every 13 µs at 
        retiw                  ;  4 MHz system clock 
 
; Subroutine calculates the required values for LSpeed and RSpeed based upon 
; the calibration factors, and the Speed and Turn parameters. 
; 
; Note: The routine does not check if the resulting values for LSpeed and 
;       RSpeed are out of limits (100...130). 
; 
CalcValues 
        mov    LSpeed, #LStop  ; Initialize left speed to stop 
        mov    RSpeed, #RStop  ; Initialize right speed to stop 
 
        add    LSpeed, Speed   ; Add the Speed value 
        sub    RSpeed, Speed   ; Subtract the Speed value 
 
        add    LSpeed, Turn    ; Add the turn value 
        add    RSpeed, Turn    ;  to both speeds 
        ret 
 
Main 
        clrb   LServo          ; Clear servo outputs 
        clrb   RServo          ; 
        mov    !rb, #%11110111 ; RB.3 is output for left servo 
        mov    !rc, #%01111111 ; RC.7 is output for right servo 
 
        mov    !option, #%00001000 ; Enable interrupts 
 
        mov    Speed, #0 
        mov    Turn, #0 
        call   CalcValues 
 
        jmp    $               ; Main program loops forever 
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As we will have to generate precisely timed PWM signals, it is obvious that we make use of an 
ISR that is periodically invoked on RTCC overflows. Therefore, some calculations are in order 
first: 

The SX is clocked with 4 MHz here, and so the clock period is 250 ns. When we return from the 
ISR with the RETIW instruction, we have loaded –52 into w before, i.e. the ISR will be called 
every 13 µs. You may wonder why we use such an “odd” timing here. This will become obvious 
later, when we discuss a SX Tech Bot with infrared obstacle detection, for now, just accept this 
value. 

As you know, the PWM signal for each servo should have a positive edge every 20 ms, and a 
negative edge 1.3 to 1.7 ms later, depending on the desired servo speeds and directions. 

For a delay of 20 ms, approximately 1,539 ISR calls (20 ms/13 µs) are required. A division factor 
of 1,539 can be achieved by two nested decrementing counters, where one is initialized to 9, and 
the other to 171 (171 * 9 = 1,539). 

A delay of 1.5 ms (this is the pulse width for a centered servo) requires approximately 115 ISR 
calls (1.5 ms/13µs = 115.38). 

At the beginning of the program, we have defined some variables: 
Timer20L     ds 1              ; Counters for 
Timer20H     ds 1              ;  20 ms timer 
Ltimer       ds 1              ; Counter for left servo timer 
Rtimer       ds 1              ; Counter for right servo timer 
LSpeed       ds 1              ; Left servo speed 
RSpeed       ds 1              ; Right servo speed 

Two variables, Timer20L, and Timer20H are the low and high counters for the 20 ms timing, 
Ltimer, and Rtimer are the counters for the pulse widths for the left and right servos. Lspeed 
and Rspeed contain the current speed values for the two servos. Let’s assume for now, that they 
are both are initialized to 115. LServo and RServo are symbolic names for RB.3 and RC.7, the SX 
output pins, where the two servo inputs are connected. 

The first instructions in the ISR code 
ISR           
        sb     LServo          ; Is left servo still on? 
         jmp   :Right          ;  no - handle right servo 
        dec    LTimer          ;  yes - count down 
        sz                     ; Left timeout? 
         jmp   :Right          ;  no - handle right servo 
        clrb   LServo          ;  yes - left servo off 
        mov    LTimer, LSpeed  ; Init left timer for next pulse 

handles the pulse for the left servo. If the servo output is still high, LTimer is decremented each 
time the ISR is invoked until LTimer becomes zero. In this case (after 1.5 ms when LTimer was 
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initialized to 115 before), the servo output is set to low, and LTimer is re-initialized with the con-
tents of LSpeed (115 for now). In case the servo output is already low, execution continues at: 
:Right 
        sb     RServo          ; Is right servo still on? 
        jmp    :Timer20        ;  no - handle 20 ms timer 
        dec    Rtimer          ;  yes - count down 
        sz                     ; Right timeout? 
         jmp   :Timer20        ;  no - handle 20 ms timer 
        clrb   RServo          ;  yes - right servo off 
        mov    RTimer, Rspeed  ; Init right timer for next pulse 

This code performs the similar actions for the right servo, as described for the left servo, before. 
When this code is done, or when the right servo output is already low, execution continues with: 
:Timer20                       ; Handle the 20 ms timer 
        dec    Timer20L        ; Count down low order byte 
        sz                     ; Is it zero? 
         jmp   :ExitISR        ;  no - exit 
        mov    Timer20L, #171  ;  yes, initialize and 
        dec    Timer20H        ;  count down high order byte 
        sz                     ; Is it zero? 
         jmp   :ExitISR        ;  no - exit 
        mov    Timer20H, #9    ;  yes, initialize and 
        setb   LServo          ;  turn the servos 
        setb   RServo          ;  on again 
:ExitISR 
        mov    w, #-52         ; ISR is invoked every 13 µs at 
        retiw                  ;  4 MHz system clock 

Here, the low-order counter of the 20 ms timer is decremented first. When it is not yet zero, the 
ISR is terminated. In case it is zero, it is re-initialized to 171, and the high-order counter is decre-
mented. When this one becomes zero, it will be re-initialized to 9, and both servo inputs are set to 
high level then. This happens every 20 ms. 

We will discuss the remaining parts of this program later. Let’s first use the program ”as is” to 
calibrate the servos. 

Enter the program code using the SX-Key Editor, or open a copy from the Parallax CD, and as-
semble it. For now, you should use the SX-Key debugger to load and run the code on the SX.  
Calibration is easier when there is only one servo connected, so leave the connected to RC7, but 
disconnect the other servo from RB3. 

4.16.3.1 Calibrating the Servos 

If no errors are reported by the assembler, start the debugger, and run the program at full speed. 
The servo is likely to respond one way if it is labeled Parallax Continuous Rotation and another 
way if it is labeled Parallax PM (pre-modified).   
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If the servo is labeled Parallax Continuous Rotation, it will most likely rotate in an arbitrary 
direction because it is not yet been manually calibrated.  With this newer type of Parallax servo, 
calibration is quite easy: Locate the small hole at the side of the servo housing near where the 
cable comes out. Behind this hole is a trim potentiometer. Insert a small Philips screwdriver, and 
slowly turn the potentiometer in one direction. If the servo rotates faster, turn the potentiometer 
in the other direction until you find the setting where the servo completely stops, and no longer 
produces a humming sound. This setting is quite critical, so turn the potentiometer very slowly 
and in small increments. 

If the servo is labeled Parallax, and the letters PM are highlighted, the internal potentiometer is 
pre calibrated.  The servo should either stay still, or rotate very slowly.  If it rotates slowly, it's 
usually easier to make a small adjustment to the program to make the servo stay still.  This is a 
more attractive option than disassembling the servo to correct the small adjustment error in its 
potentiometer.  

Let’s assume that the PM servo rotates slowly clockwise.  The program can compensate for the 
small potentiometer offset by sending slightly wider pulses. Therefore, stop the debugger, and 
increase the initial value for RStop from 115 to 116. Re-assemble the program, and run it again. 
Should the servo still turn right, but at a slower speed, you need to further increase the initial 
value of RStop. If the servo starts turning in the opposite direction, the offset is too large, so 
decrease the value. If you are lucky, you will find the correct initial value for a complete stop 
after a while. Depending on the tolerances of the servo, and the relatively coarse timing of our 
program (we will discuss this later), you might not be able to exactly match that value, so at least 
find a value that slows down the servo as much as possible. 

Next, disconnect the servo from RC7, and connect the other servo to RB3.  Repeat the same 
calibration procedure just discussed for the second servo.  

After you have calibrated your servos, you can construct your SX Tech Bot by following the 
instructions in Robotics with the Boe-Bot, available as a free download from www.parallax.com.  
While assembling your SX Tech Bot, there are two differences to keep in mind.  First, when 
attaching the standoffs to the chassis, use the four holes that have the same pattern and 
dimensions as the hole pattern on the SX-Tech Board.  Second, the SX Tech Bot's left servo should 
be connected to RC7, and its right servo should be connected to RB3. 

4.16.3.2 More Parts of the Control Program 

For the SX Tech Bot to operate autonomously, the 4 MHz ceramic resonator supplied with the SX 
Tech Toolkit should be inserted into the 3-socket header on the SX-Tech Board.  The SX should 
then be programmed (CTRL-P), and finally, the SX-Key should be disconnected from the SX-Tech 
board.  Since the resonator is supplying the clock signal, the FREQ 4_000_000 for the SX-Key is no 
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longer in effect.  Instead, the OSCXT2 directive sets the appropriate feedback and drive settings for 
the SX Tech Toolkit's ceramic resonator.   

 

IMPORTANT:  A common mistake is to unplug the SX-Key and wonder why the SX Tech Bot 
is not functioning.  The SX Tech Bot will not function until the resonator is plugged-in.  Also, 
when you are using the external resonator, always remember to remove before using the SX-
Key for debugging.  You can program the SX chip while the resonator is plugged in, but the 
Debugging tools will not work until the resonator is unplugged.  

 

The main program code looks like this: 
Main 
        clrb   LServo          ; Clear servo outputs 
        clrb   RServo          ; 
        mov    !rb, #%11110111 ; RB.3 is output for left servo 
        mov    !rc, #%01111111 ; RC.7 is output for right servo 
 
        mov    !option, #%00001000 ; Enable interrupts 
 
        mov    Speed, #0 
        mov    Turn, #0 
        call   CalcValues 
 
        jmp    $               ; Main program loops forever 

At the very beginning, the servo output bits are cleared to avoid any “glitches” at startup, and 
then, the two port pins RB.3 and RC.7 are configured as outputs to control the two servo inputs. 

Next, RTCC interrupts are enabled, and the two variables, Speed and Turn are both initialized to 
zero. The idea here is, to make the interface to the servo control code in the ISR as simple as pos-
sible. Instead of defining the initial values for the two variables LSpeed and RSpeed to control the 
pulse widths of the PWM signals for various SX Tech Bot moves and turns, we use Speed to 
control the forward/backward speed, and Turn to control the left/right turn rate. 

When Speed is 0, the SX Tech Bot shall stop. For Speed > 0, the SX Tech Bot should move 
forward, and for Speed < 0, the SX Tech Bot should move backwards. When Turn is 0, the SX 
Tech Bot shall not turn at all; it will either go straight forward or straight backward, or stop, 
depending on the value of speed.  When is Turn > 0, it should turn right, and when Turn is < 0, it 
should turn left. The greater the absolute values of Speed and Turn are, the faster the SX Tech Bot 
moves or turns in the specified directions. For now, the Main routine initializes both, Speed and 
Turn to 0, i.e. the SX Tech Bot should not move or turn at all. So in this mode, we can calibrate the 
servos. 

Following the initialization of Speed and Turn,  CalcValues is called. This subroutine performs 
the necessary calculations to convert Speed and Turn into the initialization values that are stored 
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in LSpeed and RSpeed. We’ll discuss this subroutine in a moment.  Finally, the program enters 
into an endless look because the remaining tasks are handled by the ISR for now. 

Before discussing the CalcValues routine, let’s discuss some general considerations on the val-
ues for Speed and Turn, and the resulting settings of LSpeed and RSpeed. As mentioned before, 
both servos stop when LSpeed and RSpeed both contain 115 (or the values you have determined 
during “software servo calibration”). When the values are below 115, the servos turn clockwise, 
and on values above 115, they turn counterclockwise. 

In order to have the SX Tech Bot move straight forward, the left servo must turn right at a certain 
counterclockwise speed, and the right servo must turn clockwise at the same speed. This means 
that LSpeed must be 115+v, and RSpeed must be 115-v. For a straight backward direction, the left 
servo must turn clockwise, and the right servo must turn counterclockwise.  Therefore, LSpeed 
must be 115-v, and for RSpeed it is 115+v. 

The SX-Tech Bot can also rotate in place to perform turns.  When viewed from above, the SX-Tech 
Bot must rotate counterclockwise to perform a left turn, and clockwise to perform a right turn. 
For the SX-Tech Bot to perform a left turn, both its left and right wheels must rotate clockwise.  
Thus, RSpeed and LSpeed both are 115-t . For the SX-Tech bot to turn right, both its wheels must 
turn counterclockwise, so RSpeed and LSpeed should both be 115+t. The table, below, 
summarizes the various combinations, where v and t are now replaced by Speed and Turn, 
where both can be positive or negative: 

Movement Speed Turn Lspeed RSpeed 

Stop 0 0 115 + Speed + Turn 115 - Speed + Turn 

Straight forward > 0 0 115 + Speed + Turn 115 - Speed + Turn 

Straight backward < 0 0 115 + Speed + Turn 115 - Speed + Turn 

Turn right 0 > 0 115 + Speed + Turn 115 - Speed + Turn 

Turn left 0 < 0 115 + Speed + Turn 115 - Speed + Turn 

Right and curve fwd > 0 > 0 115 + Speed + Turn 115 - Speed + Turn 

Left and curve fwd > 0 < 0 115 + Speed + Turn 115 - Speed + Turn 

Curve backward and right < 0 < 0 115 + Speed + Turn 115 - Speed + Turn 

Curve backward and left < 0 > 0 115 + Speed + Turn 115 - Speed + Turn 

 

The code for the CalcValues subroutine converts these terms (115, Speed and Turn) into the 
equivalent SX instructions: 
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CalcValues 
        mov    LSpeed, #LStop  ; Initialize left speed to stop 
        mov    RSpeed, #RStop  ; Initialize right speed to stop 
 
        add    LSpeed, Speed   ; Add the Speed value 
        sub    RSpeed, Speed   ; Subtract the Speed value 
 
        add    LSpeed, Turn    ; Add the turn value 
        add    RSpeed, Turn    ;  to both speeds 
        ret 

LSpeed and RSpeed first are initialized with the two stop constants (usually, 115), then Speed is 
added to LSpeed, and subtracted from RSpeed, and finally Turn is added to both, LSpeed, and 
RSpeed. 

4.16.4 Some Timing Considerations 

As already mentioned, the Parallax servos make maximum speeds at pulse widths of 1.3 ms 
(clockwise), and 1.7 ms (counterclockwise). This means that the values of LSpeed and RSpeed 
should not go above 130 (for 1.7 ms) or below 100 (for 1.3 ms). As CalcValues does not check if 
the resulting values are out of limits you will need to take care of that when assigning values to 
Speed and Turn. 

With the timing provided by the ISR, there are only 15 increments for LSpeed and RSpeed to 
control the servo speed into each direction from 0% to 100%. In other words, each increment cor-
responds to about 6.7%. This is a relatively coarse resolution, but for the next experiments, this is 
fine enough. 

If you are using the older Parallax PM servos together with the “software calibration” you should 
now understand why you possibly could not find a value for LStop or RStop to completely stop 
the servos. 

In order to increase the resolution, you might consider invoking the ISR more often, e.g. every 
7.5µs by replacing the line 
        mov    w, #-52         ; ISR is invoked every 13 µs 

with 
        mov    w, #-26         ; ISR is invoked every 7.5 µs 

Besides adjusting the 20 ms timer (which is quite easy – simply initialize Timer20H with 18), this 
also means that the possible values for LSpeed, and RSpeed would range from 200 to 260 then. As 
an 8-bit counter can only handle a maximum divide-by 256 factor, this means that you would 
have to use two-byte counters for LTimer and RTimer, so more code in the ISR would be required 
to handle them. On the other hand, invoking the ISR every 26th clock cycle does not allow for 
total ISR execution times above 26 clock cycles. We are already close to that value, so no more 
code in the ISR would be possible (which we plan to add later). Besides this, the Main code would 
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not have much time to execute its own instructions because most of the time, it would be 
interrupted to service the ISR. For now, this is not a problem because Main just performs an 
endless loop, but we plan to add more instructions there later. 

While increasing the SX clock frequency, say to 10 MHz, or even more, would allow for finer 
timing resolution, it would also cause the SX to consume more power.  If you are interested in 
experimenting with higher clock rates, consider also replacing the four 1.5 V AA batteries with 
five or six 1.2 V AA rechargeable batteries, or a 7.5 V rechargeable battery pack.  For now, 
however, let’s be happy with the 4 MHz clock, and keep in mind that precision is not a major fea-
ture here. 

4.16.5 The SX Tech Bot’s First Walk (in the Park) 

At this point, you should have completed the necessary servo calibrations and mechanical 
assembly of the SX Tech Bot, so now the time has come to send out the SX Tech Bot to make its 
first steps. 

In the Main section of our program, simply assign values other than 0 to Speed to make the SX 
Tech Bot walk. Remember that positive values result in a forward movement, where negative 
values make it back up. You may also assign values other than 0 to Turn in order to let the SX 
Tech Bot turn around, or perform curves when both, Speed and Turn are other than 0. Feel free to 
experiment with various combinations of values for Speed and Turn (positive, or negative), but 
keep an eye on the resulting values for LSpeed and RSpeed – they should not exceed the limit 
from 100 to 130. 

Keep in mind, after each modification to Speed  or Turn , it will be necessary to re-load the 
program into the SX. This will not be necessary when the SX is making decisions based on sensor 
inputs. 

4.16.6 Adding a “Joystick” to the  SX Tech Bot 

You may find it annoying to re-program the SX each time you want to make changes to the Speed 
and Turn assignments in the Main program, so here comes an improvement: 

If you have one of the “antiquarian” joysticks on hand that came with four micro switches for 
“forward”, “backward”, “left”, and “right”, grab it from your junk box, and connect it to the SX 
Tech Bot. As an alternative, you could install four pushbuttons on a breadboard, according to the 
schematic, below: 
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Connect the “Joystick Assembly” via a cable (the length depends on how much “freedom” you 
want to allow for the SX Tech Bot) to the four header sockets on the SX Tech board marked RA0 
through RA3, and to one of the free Vss header sockets. Maybe, it is a good idea to solder the four 
leads going to RA.0 through RA.4 to a four-pin header, and the fifth lead going to Vss to a single 
header pin before plugging them in. 

Change the Main section in our basic program to look like this: 
Main 
        mode   $0e              ; Select PLP 
        mov    !ra, #%11110000   ; Activate pull-ups on port A 
        clrb   LServo 
        clrb   RServo 
        mode   $0f               ; Select TRIS 
        mov    !rb, #%11110111   ; RB.3 is output for left servo 
        mov    !rc, #%01111111   ; RC.7 is output for right servo 
        mov    !option, #%00001000  ; Enable interrupts 
CheckSwitches 
        cjne   Timer20H, #9, $      ; Wait until after servo pulses have 
        cjne   Timer20L, #9, $     ; been delivered to check buttons. 
        mov    Speed, #0 
        mov    Turn, #0 
        snb    ra.0                ; Forward button pressed? 
          jmp  :TestBack 
        mov    Speed, #7           ; Positive speed = forward 
        jmp    :TestLeft 
:TestBack 
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        snb    ra.2                ; Backward button pressed? 
         jmp   :TestLeft 
        mov    Speed, #-7          ; Negative speed = backward 
:TestLeft 
        snb    ra.1                ; Left button pressed?                 
         jmp   :TestRight 
        mov    Turn, #-7          ; Negative turn = left 
        jmp    :TestEnd 
:TestRight         
        snb    ra.3                ; Right button pressed? 
         jmp    :TestEnd 
        mov    Turn, #7            ; Positive turn = right 
:TestEnd 
        call   CalcValues 
        jmp    CheckSwitches 

         

In the beginning of this program version, we activate the internal pull-up resistors for all port A 
pins, so that we don’t need to connect external pull-up resistors to the pushbuttons. Instead of an 
endless “do-nothing” loop, the main program executes code that checks to find out which 
pushbutton or pair of pushbuttons are pressed, and sets the values for Speed and Turn 
accordingly.  You can press single buttons, such as forward, backward, left or right.  You can also 
press and hold combinations of buttons such as forward and right, backward and left, etc. 

Please note the order of how the buttons are checked. This makes it impossible to let the SX Tech 
Bot go “crazy” in case you push two opposite buttons, like Forward and Backward at the same 
time. When the Forward button is pressed, no check for the Backward button will be performed, 
and so it does not matter if you have pressed it, or not. The same is true for the Left and Right 
buttons. 

For Speed, we use a value of 7 here, and 7 for Turn as well. In the event that one speed and one 
turn button are pressed at the same time, it causes the SX-Tech Bot to perform a pivot-turn, 
where one wheel stays still while the other turns the bot.  This is different from a rotating turn, 
where both wheels turn in the same directions at the same speeds.  This gives you eight possible 
maneuvers with four buttons. 

4.16.7 The  SX Tech Bot “Learns” to Detect Obstacles 

So far, we did not really build a robot, but just a very simple “toy”. Usually, robots are supposed 
to have some kind of “brainpower”, and this is what we are going to add now. 

The SX Tech Bot Kit comes with two infrared (IR) LEDs, and two infrared sensors. In this 
experiment, we will attach these components plus two resistors to the breadboarding area on the 
SX Tech board. The two IR LEDs are used like headlights of a car to illuminate any obstacles that 
might occur along the SX Tech Bot’s path. The two sensors are used to detect the infrared light 
that will be reflected from such obstacles, and cause a change in the SX Tech Bot’s maneuver. 
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The infrared sensors used here, have a built-in filter that makes them only sensitive for infrared 
light that is pulsed with a frequency of approximately 38.5 kHz. That is, the sensors will only 
react on infrared light that is turned on and off 38.500 times per second. This prevents interfer-
ence with other infrared sources, like the sunlight (which is turned on and off only once per day), 
and other light sources powered by mains power. Such lights usually flash at 100 or 120 Hz, de-
pending on the country where you live (with 50 or 60 Hz mains frequency). 

The schematic, below, shows the necessary wiring of the two infrared sensors, the  infrared LEDs, 
and the two resistors that are necessary to limit the LEDs current.  The photograph, further 
below, gives you an idea where, and how to position the IR sensors and LEDs on the breadboard. 
Adjust the left LED and sensor, to that thy are “looking” about 30° to the left, and let the right 
LED and sensor “look” about 30° to the right. 

Be careful to correctly connect both, the LEDs and the sensors. The longer LED pins go to the SX 
ports, and the shorter pins to the resistors. Please refer to the front view drawing of the sensor to 
correctly identify the three pins. Make sure that the SX Tech Bot's left sensor output (shown at the 
right side of the picture) is connected to RC.5, and the right sensor output (shown on the left side 
of the picture) is connected to RB.0. The same applies to the IR LEDs. The one on the SX Tech 
Bot's left side should be connected to RC.3, and the one on its right side should be connected to 
RB.4. 

Also be careful that there are no short circuits between the leads as the breadboarding area is 
much more “crowded” now. If necessary, cover the leads with insulating tube, or use isolated 
wires. 
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Wiring the IR Sensors and LEDs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aligning the IR Sensors and LEDs 
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4.16.7.1 The Control Program for the Obstacle-Detecting  SX Tech Bot 

The program is an enhanced version of the basic version we have used to calibrate the servos. 
Here comes the program listing: 
; ================================================================= 
; Programming the SX Microcontroller 
; APP029.SRC 
; ================================================================= 
device  SX28L, oscxt2, turbo, stackx 
freq    4_000_000 
IRC_CAL IRC_FAST 
 
reset   Main 
 
LServo       = RC.7            ; Output to servo  - left 
RServo       = RB.3            ; Output to servo  - right 
LSensor      = RC.5            ; Input for left IR sensor 
RSensor      = RB.0            ; Input for right IR sensor 
LLED         = RC.3            ; Output for left IR LED 
RLED         = RB.4            ; Output for right IR LED 
Calibrate    = RA.0            ; Input for calibrate jumper 
 
LStop        = 115             ; Adjust values so that the servos don't move 
RStop        = 115             ;  when Speed = 0 and Turn = 0 
            
             org 8 
Timer20L     ds 1              ; Counters for 
Timer20H     ds 1              ;  20 ms timer 
Ltimer       ds 1              ; Counter for left servo timer 
Rtimer       ds 1              ; Counter for right servo timer 
LSpeed       ds 1              ; Left servo speed 
RSpeed       ds 1              ; Right servo speed 
Speed        ds 1              ; The "Bot's" speed 
Turn         ds 1              ; The "Bot's" turn factor 
 
             org $30 
Sensors      ds 1            
              
        org    0 
ISR           
        sb     LServo          ; Is left servo still on? 
         jmp   :Right          ;  no - handle right servo 
        dec    LTimer          ;  yes - count down 
        sz                     ; Left timeout? 
         jmp   :Right          ;  no - handle right servo 
        clrb   LServo          ;  yes - left servo off 
        mov    LTimer, LSpeed  ; Init left timer for next pulse 
:Right 
        sb     RServo          ; Is right servo still on? 
        jmp    :Timer20        ;  no - handle 20 ms timer 
        dec    Rtimer          ;  yes - count down 
        sz                     ; Right timeout? 
         jmp   :Timer20        ;  no - handle 20 ms timer 
        clrb   RServo          ;  yes - right servo off 
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        mov    RTimer, Rspeed  ; Init right timer for next pulse 
:Timer20                       ; Handle the 20 ms timer 
        dec    Timer20L        ; Count down low order byte 
        sz                     ; Is it zero? 
         jmp   :ExitISR        ;  no - exit 
        mov    Timer20L, #171  ;  yes, initialize and 
        dec    Timer20H        ;  count down high order byte 
        sz                     ; Is it zero? 
         jmp   :ExitISR        ;  no - exit 
        mov    Timer20H, #9    ;  yes, initialize and 
        setb   LServo          ;  turn the servos 
        setb   RServo          ;  on again 
:ExitISR 
        movb   LLED, Timer20L.0   ; Toggle both 
        movb   RLED, Timer20L.0   ;  IR LEDs 
        mov    w, #-52           ; ISR is invoked every 13 µs at 
        retiw                    ;  4 MHz system clock 
 
; Subroutine calculates the required values for LSpeed and RSpeed based upon 
; the calibration factors, and the Speed and Turn parameters. 
; 
; Note: The routine does not check if the resulting values for LSpeed and 
;       RSpeed are out of limits (100...130). 
; 
CalcValues 
        mov    LSpeed, #LStop    ; Initialize left speed to stop 
        mov    RSpeed, #RStop    ; Initialize right speed to stop 
 
        add    LSpeed, Speed     ; Add the Speed value 
        sub    RSpeed, Speed    ; Subtract the Speed value 
 
        add    LSpeed, Turn      ;  no, add the turn value 
        add    RSpeed, Turn      ;  to both speeds 
        ret 
 
Main 
        mode   $0e               ; Select PLP 
        mov    !ra, #%11111110   ; Activate pull-up on pin 0 
        clrb   LServo 
        clrb   RServo 
        mode   $0f               ; Select TRIS 
        mov    !rb, #%11110111   ; RB.3 is output for left servo, 
        mov    !rc, #%01111111   ; RC.7 is output for right servo, 
        mov    !option, #%00001000  ; Enable interrupts 
        mov    Speed, #0 
        mov    Turn, #0 
        bank   Sensors 
:Loop 
        clr    Speed 
        clr    Turn 
        clr    Sensors 
        sb     Calibrate          ; Do nothing when the Calibrate 
          jmp  :Loop                ;  jumper is in position 
        cjne   Timer20H, #3, $  ; Wait for Timer20H = 3 
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        mov    !rb, #%11100111      ; Right IRLED to output 
        cjne   Timer20H, #2, $      ; Wait for Timer20H = 2      
        mov    !rb, #%11110111      ; Right IRLED to input 
        movb   Sensors.0, RSensor   ; Copy right IR detect bit 
        mov    !rc, #%01110111      ; Left IRLED to output 
        cjne   Timer20H, #1, $      ; Wait for Timer20H = 1      
        movb   Sensors.1, LSensor   ; Copy left IR detect bit 
        mov    !rc, #%01111111      ; Left IRLED to input 
        mov    w, Sensors           ; Depending on the sensor states, 
        jmp    pc+w                 ;  jump to the state handler 
        jmp    :Both 
        jmp    :Right 
        jmp    :Left 
        jmp    :None 
:Both                        ; Both sensors detect, so 
        mov    Speed, #-10    ;  back up 
        jmp    :Done 
:Right                       ; Right sensor detects, so 
        mov    Turn, #10     ;  turn left 
        jmp    :Done 
:Left                        ; Left sensor detects, so 
        mov    Turn, #-10     ;  turn right 
        jmp    :Done 
:None                        ; No obstacles at all, so 
        mov    Speed, #10     ;  go forward 
:Done         
        call   CalcValues    ; Calculate LSpeed and RSpeed 
        jmp    :Loop         ; Repeat it forever 

 

Compared to the servo calibration program, we have added some more definitions for the port 
I/O pins that are connected to the IR sensors and LEDs now, and for a “Calibrate” input. We also 
have introduced a new variable, Sensors in bank $30, two additional instructions in the ISR fol-
lowing the :ExitISR label, and added some code to the Main program. 

As mentioned before, the IR sensors have built-in filters that let pass infrared light only that is 
pulsed at a frequency of approximately 38.5 kHz. This means that we need to turn the two IR 
LEDs on and off at that rate.  This happens in the ISR due to the two new instructions: 
:ExitISR 
        movb   LLED, Timer20L.0  ; Toggle both 
        movb   RLED, Timer20L.0  ;  IR LEDs 

Timer20L is decremented on each ISR call, i.e. every 13 µs,  so the LEDs are repeatedly turned on 
for 13 µs, and turned off for another 13 µs, or the on-off period is 26µs which is equivalent to a 
frequency of 38.46 kHz. This is close enough to 38.5 kHz. Now it becomes clear why we are using 
such an “odd” interrupt period of 13 µs; it makes it really easy to “flash” the LEDs. 

At the beginning of the Main section, we configure a pull-up resistor on pin 0 of port A, two ad-
ditional port pins as outputs for the LEDs (RB.4 and RC.3), and select the bank for the Sensors 
variable.  
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The SX Tech Bot’s “brainpower” lies in the new :Loop code with the Main section: 
:Loop 
        clr    Speed 
        clr    Turn 
        clr    Sensors 
        sb     Calibrate            ; Do nothing when the Calibrate 
          jmp  :Loop                ;  jumper is in position 
        cjne   Timer20H, #3, $      ; Wait for Timer20H = 3 
        mov    !rb, #%11100111      ; Right IRLED to output 
        cjne   Timer20H, #2, $      ; Wiat for Timer20H = 2      
        mov    !rb, #%11110111      ; Right IRLED to input 
        movb   Sensors.0, RSensor   ; Copy right IR detect bit 
        mov    !rc, #%01110111      ; Left IRLED to output 
        cjne   Timer20H, #1, $      ; Wait for Timer20H = 1      
        movb   Sensors.1, LSensor   ; Copy left IR detect bit 
        mov    !rc, #%01111111      ; Left IRLED to input 
        mov    w, Sensors           ; Depending on the sensor states, 
        jmp    pc+w                 ;  jump to the state handler 
        jmp    :Both 
        jmp    :Right 
        jmp    :Left 
        jmp    :None 
:Both                        ; Both sensors detect, so 
        mov    Speed, #-10    ;  back up 
        jmp    :Done 
:Right                       ; Right sensor detects, so 
        mov    Turn, #10     ;  turn left 
        jmp    :Done 
:Left                        ; Left sensor detects, so 
        mov    Turn, #-10     ;  turn right 
        jmp    :Done 
:None                        ; No obstacles at all, so 
        mov    Speed, #10     ;  go forward 
:Done         
        call   CalcValues    ; Calculate LSpeed and RSpeed 
        jmp    :Loop         ; Repeat it forever 

 

At each entry into :Loop, we clear Speed, Turn, and Sensors for a clean start.  We then test the 
port bit (RA.0) that is assigned to Calibrate. When this bit is clear, RA.0 has been connected to 
Vss in order to activate the calibration mode. In this case, we do nothing else. It is a good idea to 
make this mode available because normally, the SX Tech Bot would always be in motion. It may,  
from time to time, be necessary to stop the servos in order to re-calibrate them, especially in 
situations where the vibration from prolonged operation causes the manually adjusted 
potentiometer calibration setting to drift.   

When calibrate mode is inactive, the first step is to wait for a full cycle of servo pulses to 
complete.  For the sake of navigation, the effective sampling rate of checking the detectors 40 to 
50 times per second is ample.  This also prevents sampling and adjustment while the actual pulse 
is delivered, which could cause instability in a given pulse width.   
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Although the IR LED I/O ports (RB4 and RC3) are toggled each time through the ISR, the IR 
LEDs do not flash on/off because the output bits for these ports are disabled since !RB.4 and 
!RC.3 are set to 1 (input). The program waits until the value of Timer20H has counted down to 3. 
At this point, the next step is to broadcast infrared to SX Tech Bot's right IR LED.  This is 
accomplished by clearing !RB.4 (setting it to output).  The signal is allowed until the ISR 
decrements the Timer20H variable, at which point the right IR detector's output is tested and 
stored in bit-0 of the Sensors variable.  Then, !RB.4 is set, restoring RB4 to input and in turn 
stopping the right IR LED from broadcasting IR.  This process is repeated for the SX Tech Bot's 
left IR LED and detector, and the result is stored in bit-1 of the sensors variable.   

A key feature of this IR detection algorithm is that the detections are mutually exclusive.  If both 
IR LEDs were to broadcast at the same time, both detectors might "see" an object that is really 
only on one side of the SX Tech Bot.  So broadcasting and sampling on one side, then moving on 
to the other side ensures accurate detection of an object's position relative to the SX Tech Bot. Bit-
1 of Sensors is 1 if an object on the SX Tech Bot's left is not detected, or 0 if an object is detected. 
Likewise, bit-0 of Sensors is 1 if an object on the right is not detected, or 1 if it is.  As a result, the 
Sensors variable can only contain the values shown in the table, below: 

 

Sensors Obstacle to the… 

0 left and right 

1 right 

2 left 

3 no obstacles 

 

After bits for both detectors are stored in the Sensors variable, navigation decisions can be made. 
We take this value as offset for a jump table that directs the program-flow to the right state han-
dler. Depending on the current Sensors state, we set the according values for Speed and Turn, so 
that the SX Tech Bot changes its direction of movement, in order not to bump into the obstacle. 

Please enter the program code into the SX-Key IDE, assemble, and transfer it into the SX Tech 
Bot’s SX for “stand-alone” execution, because this type of SX Tech Bot would not be too agile 
with the SX-Key “umbilical cord” still connected. Note that the sample code contains the device 
configuration OSCXT2, i.e. the external ceramic resonator must be used. Remember to insert the 
resonator into the SX Tech Board's 3-socket header so that the program executes after the SX-Key 
is unplugged from the SX Tech Board. 
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Should you prefer to use the Debugging environment, make sure to set the SX Tech Bot on 
something that will prevent its wheels from touching the ground. You can then run the program, 
place obstacles at various positions in front of the SX Tech Bot, and verify that the wheel rotations 
indicate it is performing the correct maneuver.   

 

IMPORTANT: This SX Tech Bot detection system performs well with reflective obstacles. For 
best results, use white cardboard boxes.  Most colors of cardboard or paper boxes will work, as 
will your hand or foot so long as you are not wearing black shoes.  Many black surfaces absorb 
infrared light so well that the SX Tech Bot will be blind to them. You can increase the SX Tech 
Bot's sensitivity to IR absorbing objects by reducing the value of the resistors in series with the 
IR LEDs.  This also makes the SX Tech Bot more farsighted with reflective objects. 

 

Keep in mind that you can test and recalibrate your SX Tech Bot's servos by connecting a jumper 
across the Vss and RA0 header sockets on the SX Tech board.  When this connection is made, the 
servos should stay still.  If they do rotate, or produce humming sounds, it is time for re-
calibration. When you are done with it, remove the jumper, and off you go…the SX Tech Bot will 
autonomously roam and avoid obstacles it detects. 

In the sample code, we have used a relatively high speed setting for the continuous rotation 
servos, with Speed and Turn ranging from -10 to 10 depending on each maneuver.  Feel free to 
experiment with other values, and combination of values.  You may find that slower settings 
perform better in crowded areas.  This in combination with adjustments to the IR LED series 
resistors can prepare your SX Tech Bot for a variety of obstacle courses. 

4.16.7.2 Some More Thoughts About the Obstacle-Detecting SX Tech Bot 

Let’s think about what should happen (at least in theory) when the SX Tech Bot performs a 
forward move, perpendicular to a flat obstacle, like a wall: 

When the wall comes into “sight” of the sensors, both will report an obstacle, and according to 
the program logic, the SX Tech Bot would back up, until the sensors no longer report this 
obstacle. Then, it will again move forward closer to the wall until the sensors “see” the wall 
again, which will be the case after a short while. This means that the SX Tech Bot would move 
back and forth forever, until its batteries are dead. 

But this is only theory. Due to the coarse resolution of the PWM signals, the servos will never run 
completely synchronized. This means that the SX Tech Bot will soon leave the straight 
perpendicular line to the wall, and one sensor will detect the wall earlier than the other, making 
the SX Tech Bot turn. In other words, the lack of precision is an advantage here, adding some 
“fuzziness” to our system. 
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Equipped with two infrared “headlights”, and “eyes”, the SX Tech Bot can easily be configured to 
react on “non-existing” obstacles. What does that mean at all? 

You could align the IR LEDs and sensors to “look” at points on the surface, the SX Tech Bot is 
moving on. The Main code must be modified in a way that the SX Tech Bot moves straight 
forward as long as it “sees” an obstacle, that is the surface on which it is moving. In this case, it 
must react accordingly, when it detects an “abysm”, like the corner of the table it is moving on. 

We leave it up to you, modifying the SX Tech Bot software to fulfill that task. When you try this, 
it is a good idea to first put a larger square of white cardboard, covered with black tape, some 
inches wide, on the floor, like this: 

                                            

 

 
 

Here, the black tape acts as “abysm”, or “restricted area” without the danger that the SX Tech Bot 
drops down, in case it would ignore it. When you are sure that the program works as expected, 
and have verified that the SX Tech Bot does not “overshoot” the “restricted area”, you may 
actually try this experiment on a table. For safety reasons, it may be a good idea to run the SX 
Tech Bot at reduced speeds this time. 

4.17 More Ideas for  SX Tech Bot Applications 
The examples shown here, are intended to give you a basic idea on how to control the SX Tech 
Bot servos using an SX controller, and how to “automate” the SX Tech Bot’s behavior. 

You will certainly have other ideas in mind that could be realized, so the only limits are your 
imagination, and the precision of the SX Tech Bot. 

Here are some tips for more experiments: 
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 Replace the IR components by two photo resistors (LDRs) that are “looking” at the floor, 
some inches in front of the SX Tech Bot at angles of about 30° to the right and to the left. 
You can then modify the SX Tech Bot program in a way that it follows a flashlight beam 
that you direct to the floor in front of the SX Tech Bot. 

 Instead of optical devices, you could also attach some mechanical “whiskers” to the SX 
Tech Bot that pull two port pins low, when the right or left “whisker” touches an 
obstacle. 

 Think of an SX Tech Bot with two sensors (IR sensors/LEDs, or mechanical “whiskers”), 
one “looking” to the right, and one “looking” forward. This could be used to help the SX 
Tech Bot find its way through a maze. Unfortunately, the SX does not have enough 
memory to store the shortest trace, but what about adding a serial EEPROM for 
additional storage capacity? 

 As mentioned several times before, the resolution of the PWMs controlling the servos at 4 
MHz system clock is quite coarse. Therefore, you may consider increasing the system 
clock, and modify the ISR code to handle shorter clock cycles. When designing a new 
timing concept, you should keep in mind to provide a “source” for the 38.5 kHz signal 
which is required to drive the LEDs for an infrared-based sensor system. 

For more ideas on robotics, please visit the Parallax site at www.parallax.com, where you can 
find a lot of robotics-related material, including the text “Robotics With the Boe-Bot, Student Guide”.  
Although this text is intended to be used with the BASIC Stamp-controlled version of the SX Tech 
Bot, it contains many hints, concepts and ideas that you may port to the “World of SX Robotics”. 
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