

Beginning Assembly Language
for the SX Microcontroller

Version 2.0

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2003-2004 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, SumoBot, and SX-Key are registered trademarks of Parallax,
Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must
state that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the
trademark name in each printed document or web page. Boe-Bot, HomeWork Board, Parallax, the Parallax logo, and
Toddler are trademarks of Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the
trademark name in each printed document or web page. Other brand and product names are trademarks or registered
trademarks of their respective holders.

ISBN 1-928982-29-8

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

WEB SITE AND DISCUSSION LISTS
The Parallax Inc. web site (www.parallax.com) has many downloads, products, customer applications and on-line
ordering for the components used in this text. We also maintain several e-mail discussion lists for people interested in
using Parallax products. These lists are accessible from www.parallax.com via the Support → Discussion Groups
menu. These are the lists that we operate:

 BASIC Stamps – This list is widely utilized by engineers, hobbyists and students who share their BASIC
Stamp projects and ask questions.

 Stamps in Class – Created for educators and students, subscribers discuss the use of the Stamps in Class
curriculum in their courses. The list provides an opportunity for both students and educators to ask
questions and get answers.

 Parallax Educators –Exclusively for educators and those who contribute to the development of Stamps in
Class. Parallax created this group to obtain feedback on our curricula and to provide a forum for educators
to develop and obtain Teacher’s Guides.

 Parallax Translators – The purpose of this list is to provide a conduit between Parallax and those who
translate our documentation to languages other than English. Parallax provides editable Word documents
to our translating partners and attempts to time the translations to coordinate with our publications.

 Toddler Robot – A customer created this discussion list to discuss applications and programming of the
Parallax Toddler robot.

 SX Tech – Discussion of programming the SX microcontroller with Parallax assembly language tools and
3rd party BASIC and C compilers.

 Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents

Beginning Assembly Language for the SX Microcontroller • Page i

Table of Contents
Preface... v

Introduction.. v
Unit 1: Getting Started .. 1

About This Course ...1
Start at the Beginning..2
Problem #1...3
Problem #2...4
Watch Your Language ...4
The Working Environment..5
Is That It? ..6
The Development Cycle ...6
Number Systems ...8
Other Places, Other Bases..9
Say What You Mean .. 10
Size Matters .. 10
The Hardware Connection.. 11
Summary.. 11
Exercises ..12
Answers..13

Unit 2: Your First Program .. 15
First Step .. 15
Lock and Load... 17
So What?.. 18
Inside the Program.. 19
Registers ..20
Elementary Debugging .. 21
Stopping the Debugger.. 24
Summary.. 26
Exercises ..26
Answers..27

Unit 3: Simple Flow Control... 29
Running? .. 29
More Interesting?.. 30
What's Wrong?.. 31
Other Forms of JMP... 33
Local Labels .. 34
Another Way to INC .. 35
Stopping the Processor .. 35
About the Watchdog.. 36
Summary.. 39
Exercises ..39

Table of Contents

Page ii • Beginning Assembly Language for the SX Microcontroller

Answers ... 40
Unit 4: Variables and Math ..41

An Example .. 42
Assignment... 45
Performing Math ... 46
Two's Compliment Numbers .. 47
More Carry Tricks.. 48
Try It! .. 49
A Few More Functions ... 49
Programmed Delays .. 52
Logical Functions .. 53
Summary.. 57
Exercises .. 57
Answers ... 58

Unit 5: Advanced Flow Control ..59
Comparing.. 61
Using Call and Return.. 61
Tables .. 65
Math Functions ... 67
Division .. 68
Summary.. 71
Exercises .. 71
Answers ... 73

Unit 6: Low-Level Programming ..77
Port Control .. 77
Analog Capabilities.. 79
Register Banking... 80
Program Pages ... 82
Reading Program Storage.. 83
Summary.. 85
Exercises .. 85
Answers ... 86

Unit 7: Interrupts...89
The Real-Time Clock Counter... 89
RTCC Delays... 91
RTCC Interrupts.. 91
Periodic Interrupts .. 93
A Clock Example ... 94
External Interrupts via RTCC.. 96
Port B Multi-Input Wakeup .. 96
Port B Interrupts... 99
Summary...101
Exercises ...101

Table of Contents

Beginning Assembly Language for the SX Microcontroller • Page iii

Answers.. 102
Unit 8: Virtual Peripherals ... 107

Using a Virtual Peripheral... 107
Mixing Virtual Peripherals... 109
Summary.. 111
Exercises .. 111
Answers.. 112

Unit 9: Simple Hardware I/O Enhancements .. 121
Introduction.. 121
Driving Loads.. 121
Analog I/O.. 124
Analog Level Conversion .. 124
Grouping Digital I/O – LCD Example ... 125
Program Listing – LCD Interface... 127
About Serial Data .. 131
Synchronous Serial Data .. 131
Asynchronous Serial Data .. 132
RS-232 Practical Considerations ... 132
Summary.. 133
Exercises .. 134
Answers.. 135

Unit 10: A Software UART – The Transmitter.. 137
UART Transmission Logic... 137
Creating the Code ... 138
Calculating Baud Rates .. 140
Configuration .. 141
Testing the Transmitter ... 143
Debugging ISRs .. 145
Summary.. 146
The Transmitter Code.. 146
Exercises .. 148
Answers.. 149

Unit 11: Analog Input.. 151
The Simple ADC .. 151
Writing the Code ... 152
Mixing Interrupt Routines .. 154
Hex Conversion ... 157
Table Lookup .. 158
A Word about Input Impedance ... 158
The Complete A/D Converter Code ... 159
Summary.. 163
Exercises .. 163
Answers.. 164

Table of Contents

Page iv • Beginning Assembly Language for the SX Microcontroller

Unit 12: A Software UART – The Receiver ...167
Fast Enough?...167
Basic Logic ..167
Selecting the Baud Rate ...169
Buffering ...170
A Simple Macro..171
Connections...172
Summary...173
Exercises ...173
Answers ..174

Unit 13: Pulse I/O..181
Capacitor Fundamentals ...181
Thresholds...183
Measuring Time ...184
Program Details ...185
Pulse Output..187
Summary...188
Exercises ...188
Answers ..189

Unit 14: Pulse Width Modulation ...195
PWM Theory..195
Practical Pulses ..196
Limitations and Enhancements..197
Summary...198
Exercises ...198
Answers ..201

Unit 15: A Practical Design - The SSIB ..205
Inside the SSIB..206
Using the SSIB...208
About Inverted Mode ...210
Customizing the Period...210
Further Experiments...211
Summary...212
The SSIB Code...212
The SSIB Test Program ..220
Simulated Serial Devices for the SSIB..221
Exercises ...221
Answers ..222

Appendix A: Instruction Summary...225
Appendix B: Hardware ...229

Preface

Beginning Assembly Language for the SX Microcontroller • Page v

Preface
Introduction
Very few people are interested in microprocessors (or even computers) per se. Instead, they
are interested in specific tasks that the microprocessor can perform. You don’t really want a
microprocessor. You want a robot, or a data collection system, or an alarm system. However,
building these exciting applications requires knowledge of hardware, software, and the
microprocessor’s capabilities.

The SX chip’s Flash memory can be erased and reprogrammed more than 10,000 times. This
allows users the luxury of trial and error with their assembly language programs. Coupled
with the powerful and inexpensive SX-Key debugging tools, the SX Tech Tool Kit provides an
ideal environment for learning and experimentation. The experiments in this course are best
performed with the SX-Tech Tool Kit, available for on-line purchase at www.parallax.com.

This book is a compilation of two earlier books: Introduction to Assembly Language
Programming with the SX Microcontroller and Introduction to I/O Control with the SX
Microcontroller both by Al Williams. This new edition has been updated to use with the SX 28,
and features improved formatting and graphics.

The first portion of this course will introduce you to the SX microcontroller's internal
architecture as well as show some basic hardware and software concepts. Topics include:
number systems, programming and debugging, flow control, math, basic I/O, interrupts, and
virtual peripherals.

The second half of the book will cover more advanced I/O programming and expand on
several advanced topics. Activities include RS-232 communication, pulse width modulation, an
A/D converter, and a serial input buffer.

One of the things that makes the Ubicom SX microcontroller so powerful is its versatile I/O.
Traditionally, microcontrollers have incorporated internal or external hardware for handling
various I/O requirements. Particularly with internal hardware solutions, a different
microcontroller must be selected to match each new design. Manufacturers have, in turn,
come up with an increasingly large number of microcontroller packages. They do so in an
attempt to fit their products into as many different designs as possible. The circuit designer
ends up losing a degree of freedom when attempting to use these products. For example,
when one chooses a package with one asynchronous I/O port and one A/D port, adding one
more A/D line can be costly in terms of redesign time and hardware.

Preface

Page vi • Beginning Assembly Language for the SX Microcontroller

One thing that sets the SX apart from most microcontrollers is that it is fast enough to handle
many forms of I/O in software instead of requiring special hardware. This allows the designer
to simply change the SX program to meet the new design requirements. This is possible
because of the SX chip’s comparatively high processing speed. In future units, you’ll see how
to use this processing speed to create asynchronous serial ports, A/D ports, and more.

Unit 1: Getting Started

 Beginning Assembly Language for the SX Microcontroller • Page 1

Unit 1: Getting Started

Back in 1943, the chairman of IBM predicted that one day there would be a world-wide market
for five computers. Today, computers are everywhere. Sure, there are PCs in many homes,
but the real computer invasion isn't in the home PC. Instead, people buy computers in just
about every electronic device they own. Today your television, your phone, your microwave
oven, and your car all have computers (some have several computers).

These computers may not be as obviously powerful as your desktop PC, but they are designed
to control the real-world. An integral part to designing electronic equipment today (for fun or
for profit) is understanding how these devices work and how you can use them in your own
creations.

Why use these microcontrollers? Often a microcontroller can replace a large number of other
components. For example, consider a phone answering machine. Do you really need a
microcontroller to do the job? No. If fact, many old fashioned answering machines did not use
microcontrollers. Instead they had a circuit to detect a ringing phone. The ringing would
activate a timer chip (or in a really old machine a timing cam on a motor). This timer would
trip a relay that would take the phone off the hook. Then another timer would start the tape
player that played the outgoing message. When the outgoing message finished (based on
time, or sensing foil at the end of the tape), another timer would start a regular tape recorder
for a preset time to record the call.

Instead of three timers, today's answering machine uses a microcontroller. With just a few
external parts, the microcontroller can operate the entire system with ease. But there is much
more. A microcontroller can also sense if someone is really talking on the other end of the line.
It can accept Touch-Tone commands to allow remote control. It can even store and playback
voice digitally instead of using tapes. Try making a sophisticated remote control without a
microcontroller.

So our microcontroller phone machine is much more powerful than its ancestors. It also costs
less. Microcontrollers are now quite inexpensive - even if you don't account for the number of
parts it can replace. Fewer parts also make devices smaller, cheaper, and less prone to failure.

About This Course
This course is all about incorporating these powerful little computers - microcontrollers - into
your own designs. Particularly, we will use the Ubicom SX microcontroller along with the SX-
Key development system from Parallax. The SX is an inexpensive yet very powerful
microcontroller. The SX-Key allows you to program the SX and also debug your programs in
real-time. In the past, hardware like the SX-Key that allowed you to debug your program while
the processor was in a real circuit was very expensive (thousands of dollars) and was only

Unit 1: Getting Started

Page 2 • Beginning Assembly Language for the SX Microcontroller

available to well-stocked labs. However, the SX-Key is quite affordable (only a few hundred
dollars, depending on options).

To get the most out of this course, you should already be familiar with elementary hardware
design. You should understand how LEDs work, for example, and understand basic electronic
laws (like Ohm's law). This course will focus on designing programs to run the microcontroller
and thereby control electronic circuits. Although you usually think of programs as software,
when a program is inside a microcontroller it is often known as firmware - a cross between
hardware and software.

The labs in this course are best performed with the SX-Tech Board available from Parallax.
However, you can also wire up your own version of these circuits on any solderless
breadboard (See Appendix B).

The SX chip is a very powerful chip, but is also useful as a learning tool. Unlike some
microcontrollers, the SX uses electrically erasable memory to store programs. That means that
you can write a program, try it, and then reprogram the chip immediately to run a different
program (or a corrected version of the same program). This coupled with the powerful SX-Key
tools provides an ideal environment for learning and experimentation.

Start at the Beginning
If you are not familiar with the way a computer operates internally, it can seem like black
magic. It seems as though the little chips can do practically anything, no matter how complex.
However, beneath this complexity is a surprise. The microcontroller operates very simply. This
simplicity means that you - the programmer - have to take great pains to create these
complex behaviors. Programming requires logical thought and attention to detail.

All programs operate by using a program, or a stored sequence of instructions. These
instructions tell the computer what to do. When the computer first starts, it looks at these
instructions in sequence. Some instructions read inputs. Others control outputs. Still other
instructions do some sort of processing.

The Ubicom SX uses a Harvard-style architecture. This means that it has one area where it
remembers instructions and another area where it remembers data (including inputs and
outputs). This is a common architecture for microcontrollers (although some computers utilize
a Von Neumann architecture where data and instructions mix together).

Suppose you started a new job at a factory that makes radios. The plant manager gave you
the following instructions:

1. Put an empty crate at the base of the conveyor belt.
2. Flip the big red switch on to start the conveyor belt.

Unit 1: Getting Started

 Beginning Assembly Language for the SX Microcontroller • Page 3

3. Watch for completed radios to come off the conveyor belt and into the crate. For
each radio, click your handheld counter.

4. When the counter reaches 10, flip the switch again to stop the conveyor belt.
5. Move the crate and replace it with a new empty crate.
6. Reset the counter in your hand.
7. Go back to step 2.

This is exactly like a computer program. It is a sequence of steps. It has inputs (you deciding
that a radio came off the conveyor belt). It has outputs (you flip the big red switch, for
example). It also has processing in the form of counting and making decisions. In fact, this is
just the kind of job a computer excels at.

Problem #1
There is a slight problem. Outside of Star Trek computers don't understand ordinary
instructions like this. How do you instruct the computer to perform these steps? Every
computer, from the smallest microcontroller to the largest supercomputer, stores its
instructions in the form of numbers. Even worse, computers store these numbers using base 2
arithmetic (binary, a subject covered later in this unit). That means that a computer program
looks like a series of 1's and 0's. This is called machine language, and is the basis of every
computer program.

Of course, base 2 numbers are not easy for humans to understand, so people usually write the
numbers in a more manageable system. However, even then it is hard to comprehend a
program written only in numbers. For this reason, engineers typically use some more
convenient method of expressing programs.

The most common way to program microcontrollers is using assembly language. This is a
short hand method that allows abbreviations to stand in for the 1's and the 0's. You might use
instructions like ADD or JMP (jump). In the old days you'd manually convert this shorthand
into 1's and 0's, but today a special program known as an assembler does it for you. Of
course, the microcontroller can't run this program, but your PC can. This is often called cross
assembling - using one computer to assemble (convert from shorthand instructions to 1's and
0's) code for another computer. The short hand abbreviations, by the way, are known as
mnemonics.

Many people find it daunting to program using these low-level instructions. Even though
mnemonics are easy to read, they still represent the machine language, which is very simple.
For example, the typical microcontroller can't directly multiply and divide numbers. Instead
they calculate these operations using addition and subtraction. For this reason, some
programmers turn to high level languages like BASIC or C - languages you might be familiar
with from other computer systems.

Unit 1: Getting Started

Page 4 • Beginning Assembly Language for the SX Microcontroller

If BASIC and C are available for microcontrollers, why use assembly language or machine
code? The answer is efficiency. Microcontrollers generally have limited amounts of memory.
Also, you often need them to perform as fast as possible. A program that uses a high level
language will often consume more memory than a well-written assembly program. It may also
run more slowly.

If you do use BASIC or C, you can count on the major portion of the language to run on your
PC. This is similar to cross compiling. You write you C program on the PC and the PC converts
your program into machine language. Parallax makes a successful line of products known as
BASIC Stamp® microcontroller modules that use the PC to convert code into a quasi-machine
language. The BASIC Stamp module then executes a program that interprets this quasi-
machine language to perform the programming steps.

Different types of microcontrollers have different machine languages. However,
most people find that if they learn one microcontroller’s language, others are
relatively easy to learn.

Problem #2
The next problem is what to do with the 1's and 0's once you have them. Somehow, you have
to move these 1's and 0's into the computer. Older microprocessors used an external memory
chip but modern processors have memory on board that you program with a special device
known as a programmer. Some microcontrollers require ultraviolet light to erase the memory
but the SX is instantly reprogrammable so you don't need to wait for a special light to erase
the part.

In a Harvard architecture microcontroller, you can’t change the program code while the
microcontroller is running. Many microcontrollers can’t even read data from their program
storage while executing a program. However, the SX has a special feature that allows you to
read data from the program’s memory while running. This can be useful for storing constants,
for example.

Watch Your Language
In this course, you'll use assembly language to program the SX. However, if you are familiar
with BASIC or C you'll find parallel code examples to help you visualize the assembly code.

The Parallax BASIC Stamp module uses a particular variant of BASIC known as PBASIC. The
BASIC code will mimic the BASIC Stamp module’s language so you can apply the same
concepts with the BASIC Stamp. There are several models of BASIC Stamp modules, and one
of them, the BS2sx, has a SX microcontroller in it. However, you must program BASIC Stamp
modules using PBASIC -- you can't use machine language. On the other hand, you might

Unit 1: Getting Started

 Beginning Assembly Language for the SX Microcontroller • Page 5

wonder why you'd want to use machine language if you could use BASIC. The truth is, BASIC
is great, but some jobs require the speed and capabilities you can only get with machine code.

Figure 1-1: The SX-Key Editor

The Working Environment
Figure 1-1 shows the main screen of the SX-Key software. Looks like a common text editor,
and at this point it is. You can enter assembly language code in the window. When you want
to test or run your program you can use the Run menu to check your syntax or program the
SX chip. To just check your code for simple errors, use the Run|Assemble menu. You can also
use Run|Run to execute the code (assuming you have the chip connected to the SX-Key
hardware).

The assemble command only checks for simple syntax errors. Logic errors are up
to you to find (with help from the debugger).

Unit 1: Getting Started

Page 6 • Beginning Assembly Language for the SX Microcontroller

Is That It?
The real power of the SX-Key is not entering code. The impressive part is when your code
doesn't work. Then you can use the Run|Debug command.

The debugger (see Figure 1-2) allows you to watch the SX execute your program one step at a
time and examine its internal workings.

The Development Cycle
As you might imagine, such powerful tools greatly simplify programming. However you still
need a plan. There is an old saying: “People don't plan to fail, they fail to plan.” This is
especially true when programming.

Earlier you read that programs read input, process it, and produce output. This is not a bad
place to start when designing your software. Complex projects may require more rigorous
design techniques, but many times this simple approach is enough. However, nearly every
program (especially those for microcontrollers) will follow this model. Identifying your inputs,
outputs, and processing is a solid first step towards realizing your design.

The next step depends on your background, experience, and personal preferences. You might
start by making a list of instructions similar to the assembly line steps mentioned earlier. Some
people prefer to draw the steps of their programs using boxes like a flowchart.

Unit 1: Getting Started

 Beginning Assembly Language for the SX Microcontroller • Page 7

Figure 1-2: The SX-Key Debugger in Action

Once you have an idea of what your program will look like you can make your first pass at
entering the program into the SX-Key editor using the assembly language instructions you’ll
learn in the following units. Your first attempt at running the program might work, but it isn't
very likely. When things don't go as planned you'll turn to the debugger for a better
understanding of your program's operating.

Unit 1: Getting Started

Page 8 • Beginning Assembly Language for the SX Microcontroller

Even if your program works you may still want to use the debugger to study its operation.
Sometimes you will see improvements you missed when thinking about the program in the
abstract.

Number Systems
When normal people count they use base 10 or decimal. However, computers like to use
binary or base 2. Programmers have to switch between the two and often use other systems
as well.

When you say 138 (in decimal) you really mean:

1×100+3×10+8×1

Decimal digits range from 0 to 9.

Binary numbers are similar, but they use only two digits: 0 and 1. The binary number 1001 is
really:

 1×8+0×4+0×2 +1×1 = 9.

You can see how easy it is easy to convert from binary to decimal. Just remember that each
digit is worth double what the digit to the right of it is worth.

Example:

10011110 = 2+4+8+16+128 = 158

Going the other way is a little more difficult. The trick is to determine which binary digit
(known as a bit) is the largest necessary to represent the number. Consider the decimal
number 122. The right-most bit in any binary number is always worth 1. The next bit is worth
2 then 4, 8, 16, 32, 64, 128, and so on.

Since 128 is bigger than 122, that bit can't be in the equivalent binary number. By convention,
the right-most bit is considered bit 0 and the other bits are numbered sequentially from right
to left. So the bit with the value of 128 is bit 7.

However, bit 6, with a value of 64, will have a 1 in the answer since 64 is less than 122. Since
122-64=58 you'll still have to account for this amount. The next bit's value is 32 and 32 is less
than 58, bit 5 will also have a 1. The remainder is 58-32=26.

Bit 4 is worth 16 and so it will also be a 1 leaving 10. Bit 3 (8) will also contain a 1 leaving 2.
Now consider bit 2. It has a value of 4 but this is greater than the remaining value and so it

Unit 1: Getting Started

 Beginning Assembly Language for the SX Microcontroller • Page 9

will contain a 0. The next bit is worth 2 so it will be a 1 and it leaves a remainder of 0.
Therefore, all the bits to the left (in this case, only bit 0) will have a zero value.

So the answer is that 122 = 1111010. You can check your work by reversing the conversion.
In other words:

 1×64+1×32+1×16+1×8+0×4+1×2+0×1 = 122.

It should be obvious, but you can add as many zeros as you like to the left of a binary number
(or any number for that matter). So 1111010 and 01111010 and 0000000001111010 are all
the same number.

Other Places, Other Bases
Since most people use decimal you have to use it sometimes. But many times it is easier to
use other notations that are easier to convert to binary. The most common alternate base is
hexadecimal or base 16.

Hexadecimal (commonly known as hex) uses 16 digits -- 0 to 9 and A-F. You can find the
values in Table 1-1. Notice that to convert between binary and hex you can simply use the
table. So F3 hex is 11110011 binary.

In hexadecimal each digit is worth 16 times more than the one before. So F3 hex is:

 15×16+3×1=243

And 64 hex is:

 6×16+4×1=100.

Unit 1: Getting Started

Page 10 • Beginning Assembly Language for the SX Microcontroller

Table 1-1: Hexadecimal Digits
Hex Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Many calculators, including the CALC program in Windows, can convert between
bases automatically.

Say What You Mean
With these different ways of writing numbers, it is easy to get confused. Even the SX-Key
assembler can't magically guess which number system you are using. That’s why it is
important to specify exactly what kind of number you are writing.

To specify the number system in use, you write numbers with special prefixes. A number that
begins with a $, for instance, is a hex number. Binary numbers begin with a % character.
Since decimal numbers are the most common numbers, they don't have a prefix.

Not all assemblers use this naming convention. For example, some assemblers
use suffixes to indicate the number type. Others use different prefixes. However,
the SX-Key assembler you will use in this course will use the prefixes as indicated.

Size Matters
Another concern with numbers is how many bits they occupy. The SX uses an 8-bit word size
for data. This is often called a byte. The problem with bytes is that they can only hold

Unit 1: Getting Started

 Beginning Assembly Language for the SX Microcontroller • Page 11

numbers from 0-255. What if you need bigger numbers? Or negative numbers? Then you'll
need to resort to special techniques found in Unit 6.

Remember, by convention, you number bits starting at the right-most bit. So the right-most bit
is always bit 0. The left-most bit in a byte is bit 7. This is somewhat confusing because bit 7 is
actually the eighth bit (because you started counting at 0 instead of 1).

Incidentally, although the SX uses an 8-bit word for data, its instructions are 12 bits wide.
Since the Harvard architecture separates code and data, this isn’t a problem, as it would
appear to be.

The Hardware Connection
Of course, as nice as the SX-Key is, it is only a means to an end -- programming the actual SX
chip!

The SX is an especially speedy processor. It can run at speeds up to 100 MHz and can execute
most instructions in a single cycle (10 ns per instruction). In a real project, you must supply a
crystal or a ceramic resonator for speeds greater than 4 MHz. However, when working with
the SX-Key it provides the clock (you can change the clock speed using the Run|Clock menu).

The SX comes in an 18-pin package and a 28-pin variant. The 18-pin device has 12 I/O pins
and the 28 pin device sports 20 I/O pins. Both devices have 2 K of program storage and about
136 bytes of data storage (although future devices may have different amounts of memory).
There is also a surface mount-only, 20-pin device that is about the same as the 18-pin SX.
When you write a 1 to an output pin, it generates (roughly) 5 V. If you write a 0 to the pin, it
outputs 0 V. On input, the pins recognize voltages above a threshold (typically 1.4 V) as a 1
and below the threshold as a 0. You can make any pin an input or an output and you can even
switch them during program execution.

Obviously, your choice of parts will often hinge on how many I/O pins you need. If you want
to use, for example, 4 pins to drive an LCD display, and 8 pins to connect to a keypad, you
won’t have anything left over for other work if you use the 18-pin SX. However, for this course
you may also be constrained by the experiment board you are using since it may only have a
socket for one device or another.

You can find the hardware details of the SX in the official data sheet. However, you'll also read
more about the SX hardware in the remaining units of this course.

Summary
The old saying goes: ”The mightiest oak begins as a tiny acorn.” In a similar vein, the simple
functions of a microcontroller can build complex systems if you know how to use them.

Unit 1: Getting Started

Page 12 • Beginning Assembly Language for the SX Microcontroller

To understand low-level computers like microcontrollers you have to speak their language -- or
at least the shorthand assembly language and hex codes that most people use to represent
the arcane machine language.

This unit -- by necessity -- covers these fundamentals. By now you should be itching to really
use some hardware. You'll get your chance in the next unit.

Exercises

1. Convert the following numbers to decimal:

(a) $27
(b) %101110
(c) $F1
(d) $AA

2. Convert the following numbers to hexadecimal:

(a) 100
(b) 200
(c) 17
(d) %10110110
(e) %1000001

3. Answer True or False to the following statements:

(a) Programs consist of a series of steps.
(b) All computers us a Harvard architecture.
(c) A Harvard architecture computer uses separate memory for programs and data.

Unit 1: Getting Started

 Beginning Assembly Language for the SX Microcontroller • Page 13

Answers
1. (a) 39 (b) 46; (c) 241; (d) 170

2. (a) $64; (b) $C8; (c) $11; (d) $B6; (e) $41

3. (a) True; (b) False; (c) True

Unit 2: Your First Program

 Beginning Assembly Language for the SX Microcontroller • Page 15

Unit 2: Your First Program

By now, you are probably ready to jump in and start a project. Good, because that's exactly
what you will do in this unit. You should have a PC running the SX-Key software connected to
an SX-Tech board. If you don’t have an SX-Tech board you can use any other similar
development board with some LEDs connected to port B so that they turn on when you output
a 0 from the SX (see Figure 2-1). Connect an LED at least to two adjacent pins on the SX’s B
port. If you are industrious, wire 8 LEDs, one to each pin on the B port.

Figure 2-1: LED Circuit

To start with, you'll enter a program into the SX-Key editor, download it to an SX processor,
and execute it. You'll see exactly what each part of the program means later in this unit. For
now, just concentrate on getting familiar with the steps involved and your hardware setup.

First Step
If you haven't already, install the SX-Key software as instructed in the manual. The manual will
also tell you how to start the program, and you should do so now. The first time you start the
software it will show you a configuration screen Figure 2-2.

From this screen you must select the correct COM port that your computer is using for the SX-
Key hardware. In addition, be sure to check Use SASM so that the SX-Key will use the newer
SASM assembler. If you have already run the SX-Key software, you can check these options
from the Run | Configure menu.

Unit 2: Your First Program

Page 16 • Beginning Assembly Language for the SX Microcontroller

Figure 2-2: SX-Key Editor Configuration Screen

Once you dismiss the configure dialog (or you run the SX-Key software again), the initial
screen is blank and you can enter your program (you can also, of course, load an existing
program from disk).

What to enter? That's the problem! For now, enter the following simple program exactly as
shown. Note that each line except the ones containing start_point is indented with a tab.
This is a common practice in assembly language – placing labels (like start_point) in the first
column, and placing commands to the right at least one tab.

Unit 2: Your First Program

 Beginning Assembly Language for the SX Microcontroller • Page 17

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 2.1
;===

 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz

 org 0

start_point mov !rb,#0 ; make all of port b outputs
 mov rb,#0 ; make all port b outputs = 0
 sleep ; go to sleep

The SX-Key software is not case sensitive, so it doesn’t matter if you use upper case or lower
case letter (you can change this behavior with the CASE directive, however). It is a good idea
to save your program from time to time. If Windows freezes or crashes for some reason, you’ll
be glad you saved. Certainly you should save your work before you try to run the code on the
SX.

When you finish entering the program, select Run|Assemble from the SX-Key menu. If you
entered everything with out any mistakes, you'll see “Assembly Successful” In the status bar.
Otherwise, you'll see a list of error messages (below the text window) and the cursor will jump
to the first line containing an error. You can click on the error messages to show the
corresponding source line. Fix the errors and try again. Keep in mind that sometimes one
mistake will cause several errors. After you fix any obvious mistakes, you can always try to
assemble your code again to see which errors you’ve actually fixed (and, in some cases, what
new errors you’ve found or created).

At this point, the only thing the SX-Key software is doing is checking your program for syntax
errors. It is still possible (and even likely) to make logical errors that the assembler can't catch.
Think about a word processing program's spell checker. It can tell you if you spell 2 as “tew”,
but it can't warn you if you spelled it as “too” or ”to”. The assembler has the same problem. It
can tell if you've made an obvious mistake, but it can't decide if you're program works as you
expect it to operate.

Lock and Load
Once your program assembles correctly, you can download it to the SX chip. The most obvious
way to do this is to use Run|Program. This assembles the program again and, if the assembly
has no errors, loads the machine code to the SX chip. You can find more about the hardware

Unit 2: Your First Program

Page 18 • Beginning Assembly Language for the SX Microcontroller

setup in Appendix B. Of course, if you are using the SX-Tech board, you can also refer to its
instructions for the hardware and software setup instructions

However, you may find it better to use the Run|Run menu item. This works just like the
Program command, but it also starts the program running. If you've already used the Program
command, you can just use the Run command again, or select Run|Clock to start running.

Either way you start running you should see the LEDs connected to port B light up. Not very
exciting, but it is a start. At this point you know your hardware is working and your software is
configured correctly. If things don’t work right, here are a few things to consider:

Be sure the SX-Key is installed in the correct orientation. The markings on the SX-Tech board
should match the legends on the SX-Key.
Be careful that the SX chip is installed correctly. On the SX-Tech board, pin 1 of the chip
(designated by the dot on the IC package) is closest to the edge of the board.
If the LED on the SX-Tech board is not lit, or appears dim you may have a power supply
problem.

Once you program the SX the chip retains the program until you reprogram it.

If you are guessing what the program is doing, you might wonder why the LEDs light up when
the pins outputs a zero. This may seem counterintuitive, but it is a common practice. Although
the SX can sink and source a considerable amount of current, many chips can sink more than
they can source. Because of this, designers often wire LEDs and other loads so that they turn
on with a 0 logic level.

So What?
On the face of it, this seems unimpressive. You can make LEDs light up with no
microprocessor at all, right? So add the following line of code right before the line that has
sleep in it:

mov rb,#$AA ; make every other port b output = 1

Now when you run the program, you’ll see some lights on and some lights off. Is that correct
behavior? After all, the program first turned all the lights on. Then it turned some of them off.
Why can’t you see all the lights turn on before some of them turn back off? The answer is that
the SX chip is running each instruction in 20 ns! You’d have to have some pretty good eyes to
see those LEDs light up for 20 ns.

Unit 2: Your First Program

 Beginning Assembly Language for the SX Microcontroller • Page 19

However, if you could make the SX run instructions one at a time, you could see it. In fact,
that is something the debugger can do. Before you dive into the debugger, however, let’s take
a look at what is happening inside this simple program.

Inside the Program
The easiest way to figure out what this simple program is doing is to examine it line by line.
Along the way, you’ll see some key concepts that you’ll deal with in every program you write.
The first two lines begin with the device keyword. This is not really an SX command. Instead,
it is a directive to the assembler. Most keywords have some equivalent machine language
value. However, directives don’t generate machine code; they simply give the assembler
instructions. In this case we want the assembler to know that we are writing a program where
the target SX will be a SX28L and it will use the high-speed oscillator option (oschs2). The
second line informs the assembler that we want to use several special modes that the SX
supports. The assembler will use this information to burn the SX configuration fuses. These
fuses control the chip’s hardware settings and are not part of the actual program. The line that
begins with IRC_CAL tells the SX-Key software to calibrate the SX’s internal oscillator.
However, we aren’t using the oscillator, so this line tells the software to just set the oscillator
to its slowest value.

The next line contains a reset directive. This informs the assembler where the program is to
start executing. You might think that it would be logical for the program to start at the
beginning, but you’ll see later that this is not always the case. The name after the directive,
start_point, is a user-defined label. This label can be any identifier you want and locates a
spot in the program.

Labels and other identifiers can contain up to 32 characters. The first character
must be a letter or an underscore. The other characters can be letters,
underscores, or digits. You can’t use reserved words (like sleep and reset) as an
identifier.

The next line specifies the clock frequency in hertz. This doesn’t really do anything for the SX
chip, but it helps the debugger determine what clock frequency you want to use. If you don’t
specify a freq directive, the default is 50 MHz. You can also change the clock frequency for
running programs using the Run|Clock menu. The assembler allows you to add underscores in
any number like this to make it more readable. So you may see a similar line written like this:

freq 50_000_000

The next line contains the final directive, org (which stands for origin). This directive instructs
the assembler to begin generating code at a particular address. In this case, you want to start
at the beginning so the org is 0.

Unit 2: Your First Program

Page 20 • Beginning Assembly Language for the SX Microcontroller

The next 3 lines (or 4 if you’ve added the line of code that turns off some LEDs) are the actual
program. The lines up to this point were simply directives to the assembler. The first program
line starts with the start_point label. This is so the reset directive can refer to it. Notice that
the label appears first on the line. The remainder of the line is the actual instructions for the
microcontroller.

Registers
The data memory of the SX consists of a small number of byte-sized registers. Although there
are well over 100 registers in the SX, your program can only work with 32 of them at a time.
In a later unit, you’ll learn about banking which allows you to get to all the registers, but for
now, suffice it to say that there are 32 registers. Register $08 to $1F are available for you to
store data. However, registers $00 to $07 are special because they control the SX chip as your
program executes.

For example, register $05 corresponds to the SX’s port A. When you read a value from register
$05 (known to the assembler as the ra register), you are actually reading the digital signals
present on port A’s input pins. If you write to the ra register, you will alter the digital signals
that appear on port A’s output pins. You can also use $06 (rb) or $07 (rc).

This leads to another problem: How do you know which pins are inputs and which are
outputs? Initially, all pins are set as inputs. However, your program can change this at any
time by storing a special value into the port’s direction register. To access the port’s direction
register you put an exclamation point in front of the register name. Writing a 0 to the direction
register makes the corresponding bit an output. A 1 makes it an input.

Now the three lines of the program make more sense. The first line uses the mov (move)
instruction. This instruction moves a zero into the port B direction register (!rb). Notice that
the 0 has a # character in front of it. This marks it as a constant. Without this #, the
instruction would move the contents of register 0 into !rb. You can add a base (or radix)
specifier after the #, so #$FF is a hex constant and #%1011 is a binary constant.

The second line uses the same instruction, but now the destination register is rb instead of
!rb. This writes the data out to the port. Since all the pins are outputs, each pin will now have
a 0 V level. This causes the LED to light.

If you added the extra line of code, it writes $AA to the ports. This is the same as %10101010
so it alternates the LEDs. The final line, sleep, shuts the processor down in low power mode.
You will rarely use this in a real program – at least, not in this way – most microcontrollers
never just stop. Later, you’ll see that you might want to sleep until some external event or
time period wakes you up, but in this case the processor just sleeps forever – something
almost unheard of for a microcontroller.

Unit 2: Your First Program

 Beginning Assembly Language for the SX Microcontroller • Page 21

One other item you might notice in the program is the comments. These start with a
semicolon and continue to the end of the line. You can use comments anywhere you want to
make notes about the program’s operation. This is a good idea in case anyone else has to read
your work. It might even help you when you need to review your code 6 months down the
road and you can’t remember how things worked.

Another use for comments is to temporarily remove a line from your program.
Just put a semicolon in front of the line you want to “delete” and later you can
restore it by simply removing the semicolon.

If you were a PBASIC programmer, you might like to think of this program as similar to this:

DIRL = $FF
OUTL = $00
END

Notice that PBASIC uses a direction register just like the SX. However, the bit meaning is the
opposite. In a BASIC Stamp program, direction bits of 0 set input pins, and a 1 sets the output
pins. The SX is just the opposite.

Taken one piece at a time, this program isn’t very complicated at all. However, there is an
even better way to understand what it is doing: use the debugger.

Elementary Debugging
Once your program is running, you might like to try executing it with the debugger to see how
it works. This will also give you practice using the debugger, something you are sure to need
before long. To start, use the Run|Debug command. This is similar to the Run|Run command
but it also loads a special debugging program into the SX chip. Normally, you don’t know this
program is present. However, you do have to have some free memory for the debugger or it
won’t work. In fact, the following requirements are necessary for debugging to work:

• No external clock (the SX-Key supplies the clock)
• Use the RESET directive
• No watchdog timer (covered later)
• 2 free instructions in the first bank of program memory
• 136 free instructions in the last bank of memory
• A FREQ directive, unless you want to run at 50 MHz, in which case FREQ is optional

After you press Run|Debug you’ll see the usual programming windows. Then you’ll see three
windows open up. The Registers window contains the contents of the SX registers and a dump
of the machine code you are executing. The Code window shows your source code (and the

Unit 2: Your First Program

Page 22 • Beginning Assembly Language for the SX Microcontroller

machine code to the left of that). Finally, the Debug window gives you a remote control to
start and stop your program in a variety of ways.

In Figure 2-3 you’ll notice that the Register window has the first 16 SX registers on the left-
hand side of the screen. You’ll notice the RA, RB, and RC registers, as well as the user
registers $08 to $0F. The display is in hex, but directly to the right of each value is the same
value in binary. The other registers (in hex only) are on the right-hand side of the Register
window.

The center of the screen shows the machine language dump of your program. Notice that
some instructions you write in your program actually generate more than one machine
language instruction. For example, the line that reads:

mov !rb,#0

Really generates:

mov w,#0
mov !rb,w

The debugger hides this from you in the code window, but you will notice that each line takes
up more than one instruction. That’s why in this program, the first line of code is at address 0,
but the next line is at address 2. The multi-part instruction is consuming two words instead of
the usual one. You can also see the instructions in the center portion of the Registers window.

Another peculiarity that appears in the Registers window is the first instruction of your
program. You’ll notice that although you instructed the assembler to start your program at
address 0, the actual program starts at location $7FF (the top of memory). There is a single
instruction at this address:

jmp 000

The program doesn’t contain this instruction directly, but it is a result of using the RESET
directive. The SX always starts execution at the highest program address, and this instruction
(a jump) causes the processor to start executing the code at address 0. Notice that this
instruction doesn’t appear in the code window – that window simply shows the program as
you entered it. The instructions in the Registers window shows the actual code that is inside
the SX chip.

The W register (which appears near the top of the register window) is a special register often
known as the accumulator. Practically all math operations occur in the W register.

Unit 2: Your First Program

 Beginning Assembly Language for the SX Microcontroller • Page 23

There is no instruction to move a constant into the !rb register, so the assembler
automatically used the W register. This can lead to program bugs if you don’t keep it in mind.
For example, consider this:

mov w,#$AA
mov !rb,#0

 ; Now w has 0 in it even though
; you think it has $AA in it!

Figure 2-3: The Debugger Registers and Code Windows

Unit 2: Your First Program

Page 24 • Beginning Assembly Language for the SX Microcontroller

The remote control has buttons that you can use to study your program:

• Hop – Executes one assembly language instruction (remember, this might be more
than one machine instruction)

• Jog – Executes assembly instructions in slow motion letting you see the results as
your program run slowly – press Stop to end Jog mode

• Step – Executes one machine language instruction
• Walk – Similar to Jog mode, but steps machine language instructions instead of

assembly language instructions
• Run – Runs your program at full speed. The debugger can’t examine registers until

you press Poll or Stop
• Poll – This button only becomes active while running. It causes the debugger to

freeze the processor momentarily, read the registers so you can view them, and
resume program execution

• Stop – End a Jog, Walk, or Run command (only active when these commands are
running)

• Reset – Starts the program over

As you step through your program, you’ll see a highlight to indicate what instruction your
program is executing. Also, registers that change value will appear in red. Other controls in the
remote control include buttons to bring the other windows into view and a button to restore
the other windows to their default positions. You can select from several update speeds (for
the Walk and Jog commands). Of course, the Quit button exits the debugger.

Stopping the Debugger
This is a short program, so it is easy to step through it. However, this is not always the case.
Many times, the area of your program you want to examine will be buried in the middle of a
long program. Perhaps that piece of code only runs when an external event triggers it, or after
a time delay. In this case, you’ll want to set a breakpoint.

Simply put, a breakpoint is a stop sign in your program. When the SX tries to execute the line
of code the breakpoint is on, the debugger takes control and the programs pauses execution.
You can resume execution using the Debug remote control, either running the program or
stepping through it.

The debugger supports one breakpoint at a time. To set a breakpoint, just click on the line you
want to stop at (either in the Register or Code windows). The line will turn red. Now if you
press Run (be sure to press Reset first if you’ve already run the program) the program
execution will halt at the breakpoint. Setting a new break point clears any existing ones. If you
want to clear all breakpoints, just click on the red line that already has a breakpoint.

Unit 2: Your First Program

 Beginning Assembly Language for the SX Microcontroller • Page 25

You can also add a breakpoint in your assembly language program so that you’ll always have a
breakpoint set when you start debugging. You do this by adding a BREAK directive in your
program like this:

mov !rb,#0
 break
 mov rb,#$FF

By the way, if you try to set a BREAK before a sleep instruction it won’t work. If you have to
do this, just use a NOP instruction after the break. NOP stands for no operation and the
instruction does absolutely nothing but waste time. You may have to use this same trick when
debugging code that loops to the same address using jmp.

Unit 2: Your First Program

Page 26 • Beginning Assembly Language for the SX Microcontroller

Summary
So far you’ve read about four instructions, mov, sleep, nop, and jmp. There is more to learn
about the mov instruction, but even then it is obvious you need more instructions to write any
sort of useful programs. Still, even this small set of instructions allows us to control the output
bits of the SX. In the next unit, you’ll learn more about jumps and labels and build more
functions into this simple program.

Exercises
1. Since each bit in the direction register stands for a different pin, it makes sense to specify
the value for the direction register (and often for the port register itself) in binary. Rewrite the
first example program in this unit to use binary numbers instead of hexadecimal numbers.

2. The JMP instruction transfers control to a different address. Can you replace the SLEEP
instruction with a JMP back to the top of the program? Predict how this will affect the LEDs.

3. The problem with the program in this unit is that the LEDs change so fast, you can’t see
them without the debugger. Can you reduce the speed of the SX so you can visualize the LEDs
when running without the debugger?

Unit 2: Your First Program

 Beginning Assembly Language for the SX Microcontroller • Page 27

Answers
1. Change #0 to #%00000000 and #$AA to #%10101010

2. Change the sleep command to this:

 jmp start_point

The LEDs now change rapidly over and over. You can’t really see the lights change, but you’ll
notice that the lights that turn off appear somewhat dimmer than the ones that are on at all
times.

3. Using Run|Clock, you can reduce the clock speed to 400 kHz. However, this is still not slow
enough to see the LEDs change. Probably the best way to see what the program is doing is to
use the Jog or Walk commands in the debugger.

 Unit 3: Simple Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 29

Unit 3: Simple Flow Control

In the previous unit, you wrote and debugged a simple program. This program started at
address 0, executed a simple set of instructions, and then went to sleep. While this was good
to start with, it is clear that most microcontrollers don’t execute a few commands and then
stop – they run all the time, monitoring inputs and manipulating outputs.

In this unit, you’ll extend the simple program from last time so that it does more interesting
things. Along the way, you’ll read about a few more simple SX instructions.

Running?
As you ran the last unit’s program in the debugger, you may have notice that the PC register
changed every time you executed a step. If you noticed a little more, you might have realized
that the number in PC matched the address of the current machine language instruction.
That’s because PC is the program counter. This is a special register that tells the SX which
instruction it will execute next.

Do you remember the first instruction you saw in the debugger? It was a JMP that the
assembler automatically put in at the default reset address so that our program could start
where we wanted it to. Of course, you can also write your own JMP instructions to control the
flow of execution in your own program. This is like using a goto statement in BASIC or C.

In the last unit’s exercises, you changed the sleep instruction to a JMP to cause the program
to restart at the beginning instead of stopping. However, the obvious solution isn’t as efficient
as it could be. Here’s the entire solution:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 3.1
;===

 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz

 org 0

start_point mov !rb,#0 ; make all of port b outputs
 mov rb,#0 ; make all port b outputs = 0
 mov rb,#$AA ; change port b outputs
 jmp start_point

Unit 3: Simple Flow Control

Page 30 • Beginning Assembly Language for the SX Microcontroller

What’s wrong here? Nothing is actually wrong. However, the code as written keeps storing 0
in the direction register (!rb). There is no reason to do this. Once the direction register is set,
there is no reason to keep setting it again. It doesn’t hurt anything to reset it, but it wastes
time that you could use to do something else.

The solution is simple. Just add another label to the line following start_point. Call it again.
Then you can jump to again instead of start_point. So:

start_point mov !rb,#0 ; make all of port b outputs
again mov rb,#0 ; make all port b outputs = 0

mov rb,#$AA ; change port b outputs
jmp again

Another way to make the program a bit more readable is to use the CLR instruction. The CLR
instruction can set any normal register or the W register to 0. You can’t use it with the !rb
register though. This is also more efficient since using MOV to clear a normal register requires
two instructions as opposed to a single instruction for CLR (remember, the MOV instruction
may generate more than one instruction word, and in this case it generates two). Here is the
code:

start_point mov !rb,#0 ; make all of port b outputs
again clr rb ; make all port b outputs = 0

mov rb,#$AA ; change port b outputs
jmp again

More Interesting?
To make the program more interesting, you’ll need a few more instructions. Consider the INC
(increment) instruction. The INC instruction adds 1 to a register. Since the port B pins look
like a register (the rb register), you can increment it just like any other register.

Change your code to look like this:

start_point mov !rb,#0 ; make all of port b outputs
again clr rb

inc rb ; change port b outputs
jmp again

In addition, change the freq line to read:

freq 500000 ; 500 kHz

 Unit 3: Simple Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 31

Normally, changing the frequency would also require changing the oschs3 clause
in the DEVICE statement. However, in this case, the SX-Key provides the clock, so
it is not necessary to change oschs3 to oscxt1.

What should this do? You’d like the program to cycle the lights in a binary pattern. So first all
lights are on, then the LED on pin 0 turns off. Then it turns back on and the LED on pin 1
turns off. Just like counting in binary where on LEDs represent a 0.

That’s what you’d like the code to do, but it won’t work. Try it. When you run the code, the
LEDs seem to stay on all the time. If you single step through the code, you’ll see something a
bit different. Use the debugger to determine what’s wrong with the program (even if you’ve
already figured it out) and then read the next section.

What’s Wrong?
As you probably realized, the problem is that jumping to again makes the program reset the
rb register to 0. If you didn’t figure this out, go back and look at the program again. It is
sometimes helpful to pretend you are the SX chip and execute the instructions in the order the
processor does. In this case, you clear rb, increment it, and then immediately clear it again.
So the increment has virtually no effect.

To fix this problem, move the again label to the next line like this:

start_point mov !rb,#0 ; make all of port b outputs
again clr rb

inc rb ; change port b outputs
jmp again

Now the program works as you’d expect. If you have an oscilloscope, you might find it
interesting to watch the port B pins. Bit 0 of port B will generate pulses of a certain width
based on the system clock, as shown in Figure 3-1.

Unit 3: Simple Flow Control

Page 32 • Beginning Assembly Language for the SX Microcontroller

Figure 3-1: Output Pulses

Bit 1 will emit pulses twice as long. Bit 2 will create pulses 4 times as long, and so on. Using
the timings for each instruction provided in the SX data sheets, you can actually calculate
these times. The inc instruction requires 1 clock cycle (2 µs at 50 MHz) and the jmp requires
3 cycles (6 µs at 50 MHz). So the pin will change every 8 µs. The total period is 16 µs, and the
frequency should be 62.5 kHz. For practical purposes, you’ve created a square wave oscillator
and a divider – all in software.

It is worth noting that the SX has two ways it can execute instructions: compatibility mode,
and turbo mode. In compatibility mode, the SX requires more time to execute each instruction.
For example, in compatibility mode, an inc requires 4 clock cycles. This make the SX
compatible with programs written for other microcontrollers that may require a slower
execution rate. All the programs in this tutorial use the turbo clause in the device statement,
and therefore require about a quarter of the time to execute as they do in compatibility mode.
For new programs you’ll always want to enable turbo mode so you can get the best possible
performance.

 Unit 3: Simple Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 33

When programming microcontrollers, it is often necessary to compute the number of
instructions that will execute so you can precisely set times. Sometimes you want to do this to
set a time delay. Other times you’ll be setting a frequency, as in this case. When you are fine-
tuning your delays, you might find the nop instruction – an instruction that does nothing –
useful. This instruction (nop stands for no operation) simply wastes 1 clock cycle (in turbo
mode).

In PBASIC, by the way, you’d use a program similar to this:

DIRL=%11111111 'all outputs
OUTL=b1

DO
 b1 = b1+1
 OUTL = b1
LOOP

One thing to consider is what happens when some of the pins in port B are inputs (which they
are not in this case). That could pose a problem since the increment instruction reads the port,
increments the value it finds, and then writes the new value back to the port. When some pins
are inputs, the instruction will read the input pins correctly and they will reflect the external
stimulus placed on the SX chip. When you increment that, you may or may not get what you
expect.

As an example, suppose that bit 7 was an input. When you write 0 to the port, that has no
effect on bit 7. If port B’s pin 7 has a logic low applied to it, the first INC instruction will work
as you’d expect. It would read a 0 and write a 1 to the output. However, if the pin were high,
the INC instruction would read a %10000000 and write %10000001. This probably wouldn’t
hurt anything, but there are cases where this is a problem. Always be wary of using
instructions that read, modify, and write on I/O port registers.

Other Forms of JMP
The jmp instruction, by the way, has two other forms that you can use. First, you can use the
W register (the accumulator) as the destination address. Just write:

JMP W

This is useful when you want to use a calculation to determine where to jump. The other form
of JMP isn’t a JMP at all. The ADD instruction allows you to add the W register to the PC
register. This causes a jump over a certain number of instructions. Of course, the ADD
instruction really just adds the W register to any other register. It just so happens that
changing PC causes a jump. For example, consider this:

Unit 3: Simple Flow Control

Page 34 • Beginning Assembly Language for the SX Microcontroller

CLR 8 ; clear register 8
MOV W,#2
ADD PC,W
INC 8
INC 8
INC 8
BREAK ; what is in reg 8 now?
INC 8

When the debugger hits the breakpoint, register 8 contains 1 because changing PC causes the
first two INC instructions to not execute. The assembler allows you to write this instruction as
JMP PC+W to make your program easier to read.

Since the 2 in this example is a constant, you really could use a regular JMP
instruction to skip these two instructions. One way, of course, would be to label
the target of the JMP. However, you can also use the special label $ which means
the current address. So you could write jmp $+3 instead. Why +3 instead of +2?
Since $ refers to the current address, you have to add 1 just to get to the next
instruction. Adding 2 would only skip 1 instruction.

The real value to using ADD to perform a jump is when you compute the offset at
run time. This allows you to create data and jump tables as you’ll see later in this
tutorial.

In this example, using 8 as a register number is confusing. Remember, it isn’t a constant
because it didn’t start with a #. However, it is much nicer to name your variables in a
meaningful way. The assembler provides you a couple of ways to do this that you’ll read about
in the next unit.

Of course, sometimes you want to jump only if some condition is true of false. For example,
you might want to jump only when the user presses a button, or when a sensor reads a
certain value. You’ll find out how to do that in Unit 5.

Local Labels
One challenge when you are programming is coming up with new names for every label. The
SX-Key assembler lets you create local labels that begin with a colon. These labels are only
valid in between normal (or global) labels. Because the local labels are only valid within global
labels, you can define the same label more than once without confusion. Consider this:

top mov w,#0 ; top is a global label
:loop . ; the first loop
 .

 Unit 3: Simple Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 35

 .
 jmp :loop ; goes to first loop
ok mov w,#9 ; ok is a global label
:loop . ; the second loop
 .
 .
 jmp :loop ; jumps to second loop

You never have to use local labels. However, using them can make your life easier and your
code more readable. The alternative is to generate unique labels for every address of interest
in your program.

Another Way to INC
Sometimes you’d like to increment the value in a register, but you don’t want to return the
value to that register. In this case you can use a special form of the mov instruction:

 mov w,++8

This leaves the result in the W register and does not change register 8. This allows you to use
the register in other calculations without disturbing it.

In general, math operations always have these two forms. For example, the opposite of
incrementing is decrementing (dec). This instruction subtracts one from a register. You can
write it as:

 dec 8
or:
 mov w,--8

The first form subtracts one from register 8 updating the value. The second form does the
subtraction but leaves the result in W without changing the original value.

BASIC has no exact analog to inc and dec (other than x=x+1 or x=x-1). However,
if you are a C or Java programmer, you can think of inc and dec as the ++ and –
operators, respectively.

Stopping the Processor
In the early examples, the program used the sleep instruction to halt the processor. This
might not seem very practical, but there are a few places where it can come in handy. For
example, imagine a microcontroller that dials an emergency phone number. The signal to

Unit 3: Simple Flow Control

Page 36 • Beginning Assembly Language for the SX Microcontroller

begin could be applying power to the circuit. The program would dial the number and then go
to sleep, waiting for another power cycle to run again.

However, the main reason you’ll use the sleep instruction is to put the processor in low-power
mode until some external event occurs or some time period elapses. External events usually
take the form of interrupts, a topic that will wait until Unit 7. However, you can wake up at a
predetermined time by using the watchdog timer.
The main purpose of the watchdog timer is to reset the processor in the case of a malfunction.
However, you can also use it as a timer to set a wake up time.

About the Watchdog
To enable the watchdog, add the watchdog setting to the device statements near the
beginning of the program. Notice that turning on the watchdog will prevent the debugger from
operating correctly, however. The idea behind the watchdog is that your program should use
the clr instruction to zero the !WDT register periodically. This indicates that the program is
working. If you fail to clear this register after a certain period of time, the processor resets.

The usual purpose of the watchdog timer is to reset the processor in case of a
failure. It is usually best to have a single point in your program that clears the
watchdog timer (!WDT). That way the chances of your program crashing and still
clearing the timer are remote. If your program stops behaving correctly, the
watchdog timer will restart it.

How long is that period? The SX has an internal oscillator for the watchdog that nominally runs
at 14 kHz and the watchdog times out after 256 counts. So the timeout period is about 18 ms.
So if you issue a CLR !WDT instruction at least once every 18 ms, you won’t get a watchdog
reset.

For timing purposes, this might not be long enough, however. The SX allows you to further
scale the watchdog timer by setting bits in the !OPTION register. In particular, bit 3 of this
register is set to 1 if you want to use the prescaler with the watchdog timer. Bits 2, 1, and 0
set the divide rate (see Table 3-1). The highest divide rate is 1:128 so the maximum time out
is about 2.3 seconds.

 Unit 3: Simple Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 37

Table 3-1: Watchdog Timer Prescale Values
Bit 2 Bit 1 Bit 0 Divide Rate
0 0 0 1:1
0 0 1 1:2
0 1 0 1:4
0 1 1 1:8
1 0 0 1:16
1 0 1 1:32
1 1 0 1:64
1 1 1 1:128

How can you set a single bit in a register? You can use SETB to set a bit to 1 and CLRB to
clear a bit to 0. So to turn on the watchdog prescaler and set the divide rate to 1:32 you could
write:
 setb !option.3
 setb !option.2
 clrb !option.1
 setb !option.0

The advantage to doing this is that you don’t disturb the rest of the register. However, it is
also possible to observe that the defaults for the remaining bits of the !option register should
be 1’s. So if you knew you wanted 1’s in the other positions, you could write:

 mov !option,#$FD

The !option register defaults to all 1’s anyway, so if you want the maximum time out value,
you don’t need to do anything but enable the watchdog timer. Consider this program:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 3.2
;===
 device sx28l,oschs3
 device turbo,stackx,optionx, watchdog
 IRC_CAL IRC_SLOW
 reset start_point
 freq 500000 ; 500 kHz

 org 0
start_point mov !rb,#0 ; make all of port b outputs
again mov w,#$FF
 xor 8,w ; invert bits
 mov rb,8
 sleep

Unit 3: Simple Flow Control

Page 38 • Beginning Assembly Language for the SX Microcontroller

This program will cause the LEDs to flicker so that you can actually see them. The only
problem is that you don’t know which LEDs will be on and which will be off initially. The
program uses the xor instruction to exclusive-or the contents of register 8 with the constant
$FF. You’ll read more about xor in the next unit, but for now just realize that these two
instructions will flip all the bits in register 8. That is to say that all 0s in register 8 will become
1s and all 1s will become 0s. You can, by the way, replace the mov and xor instructions with
the not instruction which also flips the register bits and takes less time to execute. For now,
however, leave the code as it is because the next unit will use the $FF constant to
demonstrate some important ideas.

The last thing the program does is to store register 8’s contents into port B. Since the code
just flipped all the bits, all the LEDs that were on will turn off and all the ones that were off
will turn on. Then the SX goes to sleep. However, since the watchdog is on (notice the
watchdog clause in the second device line) the processor will reset in about 2.3 seconds.
This will then flip the bits in register 8 again, reversing the state of the LEDs. Don’t forget that
you can’t debug this program because it uses the watchdog. You’ll have to use the Run | Run
command to see the program work.

Earlier, you read that programs that use the watchdog must use clr !wdt to reset the timer.
This program, however, doesn’t clear the watchdog. Why? Because this program deliberately
wants the watchdog timer to reset – that is how the program delays long enough for the LEDs
to blink.

Of course, it would be nice to know that the reset was from the watchdog timer. You can do
this by examining the bits in the status register. In particular, bit 4 will be 0 if the watchdog
triggered a reset. If bit 3 is a 0, then a sleep instruction was active at the time. If you knew
how to test these bits (a topic coming up shortly) you could initialize register 8 to a known
value when a real reset occurred and not initialize it when a watchdog reset occurred.

Using the watchdog for timing is a bit unusual, but perfectly legitimate. In later units you’ll find
two other ways to make time delays: programmed loops and using the real time clock. These
will be easier, because you’ll be able to use the debugger when you employ these methods.
Another advantage: when the processor resets, there is a brief time that all pins return to the
input state until your program sets the direction register. The other methods for generating a
time delay allow your program to stay in control of the processor at all times.

 Unit 3: Simple Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 39

Summary
This unit covers a lot of instructions including:

• jmp – Jumps to a new program location
• sleep – Stops the processor
• inc – Adds 1 to a register (also use mov w, ++r to put result in w)
• dec – Subtracts 1 from a register (or use mov w, --r)
• nop – Does nothing for 1 clock cycle
• setb – Sets a bit in a register
• clrb – Clears a bit in a register
• clr – Sets a register, w, or the watchdog timer to zero
• not – Inverts bits in a register
• xor – Exclusive-ors the bits in a register (more in the next unit)
• add – Adds w to a register (more in the next unit)

You also read about the PC register, and parts of the !option and status register. In the next
unit, you’ll find out even more about arithmetic and variables, paving the way for more
powerful programs.

Exercises
1. If you have access to an oscilloscope, add some nop instructions to the programs that blink
the LEDs and examine the results.

2. Modify the watchdog program so that the LEDs blink at one half of the original rate (about
1.15 seconds).

3. What if you wanted to stop the watchdog LED program without using sleep and without
triggering a watchdog reset? Modify the code so that it halts and does not reset. This will
result in a steady pattern of LEDs lighting.

Unit 3: Simple Flow Control

Page 40 • Beginning Assembly Language for the SX Microcontroller

Answers
1. Here is a possible solution:

start_point mov !rb,#0 ; make all of port b outputs
again clr rb

inc rb ; change port b outputs
nop ; add more nops if you want
jmp again

2. To modify the rate of blinking, you’ll change the watchdog timer prescaler value. One way
to do this is to place mov !option, #$FC near the beginning of the program. You can also
use setb and clrb to set and clear the individual bits in the !option register.

3. Replace the sleep instruction with:

halting clr !wdt
 jmp halting

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 41

Unit 4: Variables and Math

The SX uses its registers as data storage. In the examples from previous units, we have simply
referred to registers by their numbers. Remember, the first seven or eight registers
(depending on the exact processor type) have special names (like rb, status, or !option) and
functions.

The special names of these registers help you remember what they do. How can you use
meaningful names for registers that your program uses for its own purposes?

Suppose you want to use register 8 as a variable in your program. There are several ways you
can do so. First, you can set up an equate in one of two ways. Near the top of the program
you could write:

Myvar EQU 8

Or:

Myvar = 8

Now you can replace all the occurrences of 8 with Myvar. You can use this method to define
any constant even if it is not a register number. The assembler simply replaces every
occurrence of Myvar with 8.

The other way to define a variable is by reserving space for it using the DS directive. The DS
directive usually has a label in front of it, and has the number of bytes to reserve following it.
So to replace the above equates with a DS directive you could write:

org 8
Myvar ds 1

The confusing part about this is that the org directive can refer to the data space or the
program space, depending on the context. In this case, the 8 refers to the data memory.
Before you start writing program steps, you'll want to write another org directive to set the
beginning of your program (often location 0).

It is perfectly normal to specify several variables one after another. For example, consider this
code that declares a byte variable named Abyte and two bytes named Tbytes:

 org 8
Abyte ds 1
Tbytes ds 2

Unit 4: Variables and Math

Page 42 • Beginning Assembly Language for the SX Microcontroller

When you use a variable name in your program, the name of a multi-byte variable refers to
the first byte of the variable. So consider this statement:

mov w, Tbytes

This loads the first byte of the variable into w. On the other hand, look at this line:

mov w, Tbytes+1

This line of code will access the second byte. Is this any different than the following program
snippet?

 org 8
Abyte ds 1
Tbytes ds 1
Tbyte1 ds 1

No. There is no difference except that using this form, you can use Tbyte1 instead of
Tbytes+1. Of course, you can still use Tbytes+1; the assembler does not care since either
expression will result in a final value of 10 (decimal).

An Example
Remember the blinker programs in the last unit? Here it is again:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 4.1
;===
 device sx28l,oschs3
 device turbo,stackx,optionx, watchdog
 IRC_CAL IRC_SLOW
 reset start_point
 freq 500000 ; 500 kHz

 org 0
start_point mov !rb,#0 ; make all of port b outputs
agn mov w,#$FF
 xor 8,w ; invert bits
 mov rb,8
 sleep

Here is the same program using symbolic variable names:

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 43

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 4.2
;===
 device sx28l,oschs3
 device turbo,stackx,optionx, watchdog
 IRC_CAL IRC_SLOW
 reset start_point
 freq 500000 ; 500 kHz

 org 8 ; data start
outval ds 1

ledport = rb
flipmask equ $FF

org 0 ; code start

start_point mov !ledport,#0 ; make all of port b outputs
 ; changed to use single
 ; instruction to xor with
 ; constant
agn xor outval,#flipmask
 mov ledport,outval
 sleep

This program uses both = and EQU. This is often a matter of personal choice. However, once
you define a symbol with EQU you can’t change it later during assembly. Defining a symbol
with = allows you to change it later. In this program, like most simple programs, the symbol
values don’t change at all, so you can use either method.

When you define a symbol for a constant (like flipmask) it still requires the #
character to precede it. Without it, the assembler will think you are defining a
register number.

Another way to use an equate is to define a name for a particular bit. You can specify bits in
SX assembly language using a period after the name of the register and then the bit position.
For example, the least-significant bit in register rb is rb.0. The most significant bit is rb.7.
Using an equate you can define a meaningful name to a bit:

LEDpin equ rb.0

Using names for the registers and constants make the program much more readable. It also
allows you to easily change things if you want. For example, it would be simple to change this

Unit 4: Variables and Math

Page 44 • Beginning Assembly Language for the SX Microcontroller

program to blink LEDs on port A instead of B. It would also be no trouble to change the
register from register 8 to another register, if you wanted to do so.

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 45

Assignment
In BASIC or C, you can assign one variable to another. The SX can do this too using the mov
instruction. For example:

 org 8
byte1 ds 1
byte2 ds 1

 org 0
 mov byte1,#$AA
 mov byte2,byte1

This piece of code will put $AA in byte1 and then put the contents of byte1 into byte2.

The SX machine language does not really have an instruction that moves one
register to another. That means the assembler generates a two-part instruction
for the second mov instruction in this program. The two instructions are actually:

 mov w,byte1
 mov byte2,w

So this one line of code does destroy the w register. This can also lead to
inefficiencies. For example, consider this:

 mov byte2, byte1
 mov byte3, byte1

This code unnecessarily loads the w register twice. A better way to do this would
be:

 mov byte2, byte1
 mov byte3, w

Or:
 mov w, byte1
 mov byte2, w
 mov byte3, w

Both of these take 3 instructions (instead of 4) and execute more quickly than the
first example.

Unit 4: Variables and Math

Page 46 • Beginning Assembly Language for the SX Microcontroller

The only problem is with multi-byte variables. The SX only deals with bytes. That means that if
you want to work with larger quantities, you’ll have to break up the operations byte by byte.
For example, you’d need two mov instructions to copy a two-byte variable to another two-
byte variable.

For now, stick to bytes. However, bytes can only store numbers ranging from 0 to 255 (or –
128 to 127). So if you need numbers larger than this, you’ll have no choice but to resort to
larger variables.

Performing Math
In the last unit, you saw that the add instruction can add the w register and another register.
You can leave the result in w or in any register you like. You can also add a literal to a
register, or add two registers together. However, these are two instruction sequences that
destroy the w register in the process. Here are some examples:

org 8
avar ds 1
bvar ds 1

 org 0
 .
 .
 .
 add w,avar ; w=w+avar
 add avar,w ; avar=w+avar
 add avar,#10 ; avar=avar+10 (w destroyed)
 add avar,bvar ; avar=avar+bvar (w destroyed)
 add bvar,avar ; bvar=avar+bvar (w destroyed)

The byte-size of these operations can lead to a problem. What happens if the answer is larger
than 8 bits? For example, if w contains $FF and you add w to a register that contains $10,
what happens? The answer is that the SX truncates the result. However, to let you know that
this has happened, it sets the carry flag (bit 0) in the status register. This is true regardless of
the destination of the answer. Another bit in the status register (bit 2) is set whenever the
answer is zero. You can use status.0 and status.2 to refer to the carry and zero flags, or to
make your programs more readable you can use the symbolic names, status.C and status.Z.

Later in this unit, you’ll learn how to examine these flag bits and use them to perform multi-
byte math. You should be aware that not all operations affect these flag bits in the same way.
For example, the inc and dec instructions (covered in the last unit) add or subtract 1 from a
register. However, they do not set the carry flag. They do set the zero flag. The SX data sheet
tells you which flags each instruction affects.

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 47

The opposite of adding, of course, is subtracting. The sub instruction can subtract w from any
register. The result remains in the register. If you want to put the result in w, you can use this
form of the mov instruction (where R is the register you want to use):

mov w,R-w ; w=R-w

You can also subtract two registers or a literal from a register. However, both of these are
really two machine language instructions and destroy W. So:

sub avar,W
sub avar,#100 ; avar=avar-100 (w destroyed)
sub avar,bvar ; avar=avar-bvar (w destroyed)

The carry flag (bit 0 of status) has reversed meaning for sub. Suppose you subtract 100 from
30. The carry flag will be clear to indicate that the subtraction underflowed. However, if you
subtract 30 from 100, carry will be set indicating that the subtraction yielded the correct
result. Subtracting also affects the zero flag.

If you can add and subtract, you might wonder about multiplying and dividing. Simple
microcontrollers like the SX can only add and subtract. However, using some techniques you’ll
see in the next unit, you can decompose multiplication and subtraction into multiple additions
and subtractions.

Two’s Compliment Numbers
If the carry flag is clear after subtraction, does that mean that the answer is incorrect? Not
necessarily. Any microcontroller, including the SX, can handle negative numbers by using two’s
compliment arithmetic. The idea is simple. Treat the topmost bit (bit 7, in this case) as a sign
bit. If the bit is 0, then the number is positive. If the bit is 1, then the number is negative. To
represent a negative number, invert the magnitude of the number and add 1. Obviously, to
find out the value of a negative number, you’d subtract 1, and invert it again.

Consider what happens if you subtract 60 from 40. The correct answer, of course, is negative
20. The SX, however, returns %11101100 ($EC). If you invert this number (%00010011) and
add 1 (%00010100) you’ll find the result is in fact 20. You can also make up new negative
numbers. Suppose you want to add –5 to 10. First, find the binary representation of 5
(%00000101) and invert it (%11111010). Next add 1 to get %11111011 ($FB or 251). If you
add 10 to 251, you get 261. But the SX does not get 261! It truncates the result to 5 (the
bottom 8 bits of $105). Of course, 10 + -5 is 5, so the answer is correct.

These operations, by the way, are easy to perform on the SX. The not instruction will invert
bits and inc or dec will add or subtract 1. So handling these negative numbers is not very
difficult, even at run time.

Unit 4: Variables and Math

Page 48 • Beginning Assembly Language for the SX Microcontroller

The downside to two’s compliment math? It limits the numbers you can represent. For a byte,
the numbers between 0 and $7F represent 0 to 127 and the numbers from $80 to $FF
represent –128 to –1. So although you usually think of a byte’s limit as 255, when using
signed math, the maximum number is really 127.

More Carry Tricks
Suppose you need larger numbers, say 0 to 999. You’ll need to use more than 1 byte. A two-
byte number can hold from 0 to 65535, plenty of room for this job. The problem is, how do
you do math with these larger numbers.

The addb and subb instructions will add or subtract a bit – which could be the carry bit –
from a register. Consider this simple program:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 4.3
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 500000 ; 500 kHz

 org 8 ; data start
counter ds 2

 org 0 ; code start

start_point clr counter
 clr counter+1 ; clear both bytes
again
 ; do a 16-bit add
 add counter,#1
 addb counter+1,status.0
 jmp again

Here, the code is adding 1 to the 16-bit variable counter. It also adds the carry bit to the top
8 bits of the counter. Since the carry bit will only be set when the counter overflows, the count
will be correct. You can do the same thing with subtraction by using subb instead of addb.

By using more registers and more addb or subb instructions, you can manipulate numbers of
arbitrary size. A 24-bit number (3 bytes) can hold up to around 16 million. A 32-bit number
(the same size the Pentium PC uses; 4 bytes) can hold numbers of around 4 billion in value.

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 49

Try It!
Enter the code above and step through it. You’ll quickly get tired of watching register 8 cycle
endlessly upwards. The Jog command helps, but it still takes a while to get to the interesting
part of the code. This is a good time to learn a few extra features of the debugger. First you
can click on the box for register 8 and change the value of the register. So if you plug in $FE
(or %11111110) in the register 8 box, you’ll be much closer to seeing the roll over! This works
for all of the registers visible in the debugger.

Another annoyance is that you have to know that the counter variable is actually in registers 8
and 9. An easier way to observe the contents of memory is to use a watch directive. This is a
statement in your program that tells the debugger to display a piece of memory with a name,
and to format it so that it is meaningful. You specify the memory location, the size of the
variable, and the format you want. For this program, try adding this line anywhere in your file:

watch counter,16,UDEC

This will show the 16-bit variable at location counter as an unsigned decimal number. You
can find a list of all the format codes in Table 4-1.

Table 4-1: Watch Format Codes
Format Code Appearance
UDEC Unsigned decimal
SDEC Signed decimal
UHEX Unsigned hex
SHEX Signed hex
UBIN Unsigned binary
SBIN Signed binary
PSTR Fixed-length string of ASCII characters
ZSTR String of ASCII characters terminated with a zero

ASCII (American Standard Code for Information Interchange) is a way to
represent text characters as a 7 or 8 bit number. For example, in ASCII, an A is
$41, a blank is $20, etc.).

A Few More Functions
You’ll often use the carry bit for a variety of functions. Earlier in this tutorial, you read that you
can use setb and clrb to set and reset a bit. Since the carry bit is just a bit in the status
register, you can use these instructions to affect the carry.

Unit 4: Variables and Math

Page 50 • Beginning Assembly Language for the SX Microcontroller

However, this is a frequently used function, so the assembler provides other instructions to do
it so you can type less. In particular, clc clears the carry (clz clears the zero flag) and stc sets
the carry (stz sets the zero flag).

The real trick is to control your program’s flow based on these flags. There are several ways to
do this. First of all, the generic jb (jump on bit) instruction will execute a jump if the specified
bit is set. So to jump to lbl1 if the carry flag is set, you could write:

jb status.0,lbl1 ; or jb status.C,lbl1

Of course, using jb you can specify any bit. However, the carry and zero bits are very common
bits to test, so the assembler also allows you to use the jc and jz instructions to test for the
carry or zero conditions. You can also use jnb (jump no bit) to jump when the bit is clear
instead of set. For zero and carry, you can use jnz and jnc, respectively.

By performing a subtraction and then testing the carry and zero flags, you can easily write
programs that can tell if one number is greater than, less than, or equal to another number.
For example, suppose you wanted to know if variable x was greater than variable y:

mov w,x
mov w,y-w
jnc x_greaterthan_y

This works because subtracting x from y will only be negative (that is, cause an underflow) if
x is greater than y. Remember that carry is clear on an underflow when subtracting.

You might consider computing x-y and changing the jnc to jc. That would also
work, but it would jump if x were greater than or equal to y. To see why, work
out the case where x is equal to y. Of course, you can use jz to test for equality
and jnz to test for inequalities. See Table 4-2 for a summary of possible results
when subtracting two numbers.

Table 4-2: Results When Computing a-b
Carry Zero Meaning
0 0 a<b
X (don’t care) 1 a=b
1 0 a>=b

Testing for equality with zero is a very common operation, so the assembler lets you write it in
a special way. You can use test. The test instruction sets the zero flag based on any register
(including the w register).

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 51

Another common function relating to zero testing is to increment or decrement a register and
jump if the result is zero. You can use djnz (to decrement) or ijnz (to increment) for this
purpose.

Here is another LED flasher that uses djnz to blink the LEDs a total of ten times:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 4.4
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 500000 ; 500 kHz

 org 8 ; data start
counter ds 1
pattern ds 1
 watch counter,8,udec
 watch pattern,8,ubin

 org 0 ; code start

start_point mov !rb,0 ; all outputs
 clr rb ; all low
 mov counter,#10 ; 10 times
again
 mov rb,pattern
 not pattern
 djnz counter,again
 sleep

Notice that the blinking code executes 10 times because the counter variable starts with 10,
and reduces by 1 until it reaches zero. This is a powerful idea and often used in computer
programs. Code like this is known as a loop because it executes in a loop as often as you
need.

In BASIC or C, you’d do something like this with a for statement. In BASIC, for example, I
might write a loop as:

FOR counter = 10 to 1 step –1
' Do the work

NEXT

Unit 4: Variables and Math

Page 52 • Beginning Assembly Language for the SX Microcontroller

Of course, you’d usually see this reversed, with counter ranging from 1 to 10. You could do
this too, but it takes a few more assembly language instructions:

inc counter ; assume counter was
; set to 0 at beginning

mov w,#10
sub w,counter-w
jnz again

In the next unit, you’ll see a series of compare instructions that can perform this type of logic
in one assembly language instruction (but they just write the same sort of code you see
above).

Programmed Delays
Another important use of loops is in developing programmed delays. In the previous unit, you
saw how to use the watchdog timer as a crude timing device. However, this is not the ideal
way to generate a time delay. The watchdog timer makes it hard to debug your program since
the SX-Key can’t debug your code with the watchdog set. Also, the watchdog can’t generate
arbitrary delays, and you lose control of the program while waiting for the delay.

However, if you know your clock speed, and the number of cycles each instruction takes, you
can compute loops that will cause the appropriate delay. For example, suppose you wanted to
generate a 1 kHz tone. A 1 kHz tone cycles every 1 ms (1/1000 = .001) so to make a 1 kHz
square wave, the SX needs to turn a pin on, wait for 500 µs (half of 1 ms), turn the pin off,
wait another 500 µs, and then start over.

Assume you have a piezoelectric speaker connected to pin 7 of port B (a piezo speaker has a
high-impedance and you can drive it directly from the SX’s output pins). If you could toggle
pin 7 at this rate, you’d hear a 1 kHz tone coming from the speaker.

The problem is that 500 µs is an eternity for the SX. At 50 MHz, each instruction cycle (in
turbo mode) takes 20 ns. So to pause 500 µs you’ll need 25000 instructions cycles! Consider
this simple loop:

clr delay
wloop djnz delay,wloop

Studying the SX data sheet, you can find that the djnz instruction takes 4 cycles every time it
has to jump, and 2 cycles if it doesn’t have to jump. The clr instruction takes 1 cycle. So the
total number of cycles in this loop is 256 * 4 + 3 or 1027, a far cry from the 25000 you need.
Of course, you could use a 16-bit delay, but this is hard to calculate since the total time
through the loop varies depending on the carry flag’s status. Instead, it is usually simpler to

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 53

place this loop inside another loop. Dividing 25000 by 1027 you’ll find you need about 24
repeats of this loop to get to 25000. So:

mov delay1,#24
oloop clr delay
wloop djnz delay,wloop

djnz delay1,oloop

Of course 24 * 1027 = 24648, not exactly the right answer. However, the outer loop adds 95
cycles to the total loop (see if you can calculate that number). That brings the total delay to
24743 (a 1.02% error). For many purposes, this is not a problem. If you needed a more exact
figure, you could reduce the number of cycles in the inner loop and increase the count in the
outer loop until you get as close as necessary. You can also adjust the timing of the loops by
adding nop instructions inside the loop to stretch it out.

Logical Functions
Since microcontrollers and other computers work with binary, it isn’t surprising that they
contain many operations designed to operate on the bits of word. Like other operations, these
work on the w register and an arbitrary register with the result going to the register of your
choice. You can also use a register and a constant, or two registers, but if you do, you will
generate more than one machine language instruction and destroy the w register in the
process. The main logical functions include and, or, and xor.

What do these functions do? They simply examine the two values you supply bit by bit and
generate an output bit base on the corresponding input bits. Take and, for example. If you
use and on %10101010 and %11110000, the result is %10100000. Why? Because and only
outputs a 1 if both input bits are 1. The or instruction outputs a 1 if either input bit is 1. The
xor instruction outputs a 1 if either input is a 1, but not if both inputs are a 1. You can find a
summary of these operations in Table 4-3.

Unit 4: Variables and Math

Page 54 • Beginning Assembly Language for the SX Microcontroller

Table 4-3: Logical Instructions
Truth Table Instruction
Input Input Output

Move to W Form

0 0 0
0 1 0
1 0 0

And

1 1 1

and w,R

0 0 0
0 1 1
1 0 1

Or

1 1 1

or w,R

0 0 0
0 1 1
1 0 1

Xor (exclusive or)

1 1 0

xor w,R

0 1 Not
1 0

mov w,/R

RL (rotate left) n/a mov w,<<R

You’ve already seen that you can use not to invert the bits in a register (including the w
register). You can also rotate or shift bits left or right by using rl (left) and rr (right). Unlike
the other logical instructions, these commands operate on a single register (or the w register
in the case of not). When you shift a register left, each bit is replaced by the bit prior to it. So
bit 7 gets the value of bit 6, bit 6 gets the value of bit 5, and so on. Bit 0 gets the value of the
carry flag and the carry flag’s value gets set to the original value of bit 7. Shifting right is the
reverse process, where bit 7 gets the carry flag value, and bit 0 shifts into the carry flag.

When you shift left, you multiply the number by 2. Shifting right is the same as
dividing by 2.

By combining shifts and addition you can perform many multiplications in an efficient way. For
example, suppose you want to multiply a number by 10 (not an uncommon thing to do). One
way would be to add the number to itself 10 times in a loop. While that would work, a more
efficient way would be to realize that multiplying by 10 is the same as multiplying by 8 and
then multiplying by 2. Since 8 and 2 are both powers of 2, you can do those multiplications
using shifts.

Here is an example of both styles of multiplication:

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 55

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 4.5
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz

 org 8 ; data start
value ds 1
result ds 1
result2 ds 1
counter ds 1
 watch value,8,udec
 watch result,8,udec
 watch result2,8,udec
val = 21

 org 0 ; code start
start_point ; multiply by 10 2 different ways
 mov value,#val
; first a loop
 mov counter,#10
 clr result
 mov w,value
mloop add result,w
 djnz counter,mloop
; ok answer is in result
 nop
 mov value,#val
; now do shift add
 clc
 rl value ; value = value *2
 mov result2,value
 clc
 rl value
 clc
 rl value ; value = value *8
 add result2,value
; same answer in result2

 sleep

Don’t forget to clear the carry before rotating if you are using rotation for a
multiply or divide. The carry bit shifts into the word which can throw off your
results if you don’t clear it first.

Unit 4: Variables and Math

Page 56 • Beginning Assembly Language for the SX Microcontroller

When debugging this program, don’t forget that you can’t directly set a
breakpoint on a sleep instruction.

Of course, if you can’t decompose your multiplication into something you can do with rotates,
you’ll have to look at the techniques covered in the next unit. Unfortunately, there is no easy
way to combine divisions. You can divide by 2, 4, 8, or any power of two (by shifting right
instead of left), but there isn’t an easy way to divide by 10 or other arbitrary numbers.

 Unit 4: Variables and Math

 Beginning Assembly Language for the SX Microcontroller • Page 57

Summary
Wow! This unit covers a lot of ground. You learned about ADD, SUB, ADDB, SUBB, lots of
bit operations, and even some conditional jumps. Using these instructions you can do lots of
different things including simple math, controlling the number of times a piece of code
executes, and comparing numbers. These are the building blocks that allow your
microcontroller to make decisions.

Remember in Unit 1 you read that a computer reads inputs, does processing, and generates
outputs. The instructions in this chapter are the core that you will use to do the processing
portions of your program.

Exercises
1. Change the counter program to use inc instead of add. Do you still need addb? If you do,
which bit should you add?

2. Change the counter to use a 32-bit count instead of two bytes. Test your changes using the
debugger.

3. Write the program that generates a 1 kHz tone on a speaker connected on pin 7 of port B.
Note: don’t hook a regular speaker directly to the SX output pins. Instead, use a piezoelectric
speaker designed for direct IC drive. If possible, measure the output with an oscilloscope or
frequency counter.

Unit 4: Variables and Math

Page 58 • Beginning Assembly Language for the SX Microcontroller

Answers
1. You can use inc, but remember that inc does not set the carry flag. However, it does set
the zero flag. If you increment a number and get a zero, then it stands to reason that an
overflow occurred. The correct code would look like this:

inc counter
addb counter+1,status.2 ; status.2 is zero flag

2. This is just a matter of changing the ds statement to reserve 4 bytes instead of 2 and
adding two more addb instructions immediately following the one that is there:

 add counter,#1
 addb counter+1,status.0
 addb counter+2,status.0
 addb counter+3,status.0

Here is one possible solution:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 4.6
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8 ; data start
delay ds 1
delay1 ds 1
 org 0 ; code start
start_point
 mov !rb,#$7F ; speaker output only
loop not rb ; toggle bits
 mov delay1,#24
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop
 jmp loop

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 59

Unit 5: Advanced Flow Control

In the last unit, you learned how to control the flow of execution based on conditions.
Instructions like jz, jc, and djnz allow you to jump when some condition is met. There are
other ways that you can control the flow of your program, however, and you’ll read about
these in this unit. In addition, you’ll read about ways to perform integer multiplication and
division using several techniques.

Skipping
All of the jump instructions you read about in the last unit are not really machine language
instructions. Instead, they are multi-instruction constructs that the assembler provides for your
convenience. The SX actually only performs conditional tests as skips. The idea is to execute
an instruction that, depending on the condition, will either execute the next instruction or skip
it. It the next instruction is a jmp then you have an equivalent of the jump instructions you
found in the last unit.

There are two things to consider here. First, the skipped instruction need not be a jmp. This
can lead to faster, more efficient code in some cases. The second issue, however, is that skips
only skip one machine language instruction. Many of the instructions you use are really
composite instructions and they consist of more than one machine language instruction (see
Table 5-1).

For example, some mov instructions require two words. Consider this bit of code:

skip
mov 8,#100

The skip instruction is supposed to cause the SX to skip the next instruction no matter what.
However, it causes the program to skip the next machine language instruction. There is no
machine language instruction that corresponds to a mov of a constant (or literal) to a register
(other than w). So the assembler really generates:

skip
mov w,#100
mov 8,w

The net result is that the program moves w – whatever happens to be in it – to register 8
without loading 100 into it first. Not what you expected. For this reason, you must be very
careful when using skips.

Unit 5: Advanced Flow Control

Page 60 • Beginning Assembly Language for the SX Microcontroller

You won’t have much call to use the unconditional skip instruction. What you usually want is
an instruction that skips on some condition. There are six skip instructions of this sort. The sb
and snb instructions skip if a specified bit is set or clear. The assembler also provides special
shorthand instructions for testing the carry (sc and snc), and the zero flag (sz and snz).

Table 5-1: Multi-word Instructions
Instruction Words
ADD (without W) 2
ADDB 2
AND (without W) 2
CJA 4
CJAE 4
CJB 4
CJBE 4
CJE 4
CJNE 4
CSA 3
CSAE 3
CSB 3
CSBE 3
CSE 3
CSNE 3
DJNZ 2
IJNZ 2
JB 2
JC 2
JNB 2
JNC 2
JNZ 2
JZ 2
LCALL 1-4
LJMP 1-4
LSET 0-3
MOV (some forms) 2
MOVB 4
OR (without W) 2
RETW (with multiple values) varies
SUB (without W) 2
SUBB 2
XOR (without W) 2

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 61

Comparing
Of course, a very common thing to do is to test two values and based on the result jump to
some location. You saw this in the last unit done with a subtraction and a jump instruction.
The assembler allows you to use special multi-instruction compares as a shorthand notation
for doing this operation. You can find a list of these in Table 5-2. These instructions require
three pieces of information: a register, a register or a constant, and a jump address.

Table 5-2: Compare Instructions
Instruction Use BASIC Equivalent Skip Form
CJA A,B,LBL Jump if above if A>B then LBL CSA
CJAE A,B,LBL Jump if above or equal If A>=B then LBL CSAE
CJB A,B,LBL Jump if below If A<B then LBL CSB
CJBE A,B,LBL Jump if below or equal If A<=B then LBL CSBE
CJE A,B,LBL Jump if equal If A=B then LBL CSE
CJNE A,B,LBL Jump if not equal If A<>B then LBL CSNE

These compare instructions are very similar to a BASIC or C IF command. The only difference
is that the comparison can only be between two variables or a variable and a constant. You’ll
find the equivalent BASIC syntax in Table 5-2.

You can also do a compare and skip the next instruction if the comparison is true. Just like any
skip instruction, however, you have to be careful not to try to skip a multi-word instruction
(see Table 5-1). Table 5-2 shows the skip instructions that correspond to different conditional
jumps.

Using Call and Return
You’ll often find yourself doing the same things several times in one program. For example, if
you want to add two 16-bit numbers, it is a good bet that you need to do it in more than one
place.

The SX knows that you will want to write code that you can reuse and so it provides CALL and
RET instructions. These instructions implement the same sort of functions that GOSUB
provides in BASIC (or functions in C).

In the previous unit, there is a program that generates a 1 kHz tone from a speaker connected
to pin 7 of port B. But suppose you needed a program that did the following:
1. Make a 1 second beep on the speaker
2. Wait for you to push a button connected to port B, pin 0
3. Beep for 1 second again
4. Return to step #2

Unit 5: Advanced Flow Control

Page 62 • Beginning Assembly Language for the SX Microcontroller

You can find the circuit required for this example in Figure 5-1. The code in the last unit that
made the 1 kHz tone looks like this:

loop not rb ; toggle bits
 mov delay1,#24
oloop clr delay
wloop djnz delay,wloop

djnz delay1,oloop
jmp loop

Since each loop requires about 500 µs, you will need to execute the loop 2000 times to
generate a 1 second tone. That simply requires another loop. However, it seems a waste to
have to duplicate this code in two different parts of the program. That is where the call
instruction is useful. You can make a subroutine out of the beep code and then call it from
different parts of your program.

To create a subroutine, you simply assign the code a label. Other parts of your program will
use this label (along with call) to execute the subroutine. When the subroutine code executes
a ret (return) instruction, execution resumes with the instruction after the call. Consider the
tone code rewritten as a subroutine:

beep mov second,#$DO ; 2000 is $7D0

mov second+1,#$07

loop not rb ; toggle bits

mov delay1,#24
oloop clr delay
wloop djnz delay,wloop

djnz delay1,oloop
; repeat 2000 times

djnz second,loop
djnz second+1,loop
ret ; go back to wherever

Now the main part of the code can simply use call beep anywhere it wants a one second
beep to occur. It is perfectly acceptable to have more than one entry point into the
subroutine. For example, if you wanted to set the second variable in your main program, you
could call loop instead of beep (although you’d probably want to give it a better name). You
could also get a half beep like this:

 mov second,#$E8 ; 3E8

mov second+1,#$03
jmp loop

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 63

Subroutines can call other subroutines, but the SX can only handle 8 levels of nesting
subroutines. That is, if subroutine A calls subroutine B, and subroutine B calls subroutine C,
and so on, the SX will get confused when subroutine H calls subroutine I.

This in no way limits the number of subroutines you can have in a program. It
simply limits the number of subroutines you can have active at one time.

To help you understand the idea of nested subroutines and the limit on nesting, think about
an elevator that can hold 8 people. Each time you execute a call instruction, you are putting
someone else on the elevator. Each time a ret instruction (or a retw instruction; see below)
executes, someone gets off the elevator. If you execute 8 call instructions in a row without
returning, the elevator becomes full and you can’t add any more people until someone gets
out of the elevator. However, over the course of the day many people might ride the elevator
(some more than once, even). As long as no more than 8 at a time ride, everything works.

Figure 5-1: A Speaker and Switch Connected to the SX

Here is the tone program:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 5.1
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz

 org 8

Unit 5: Advanced Flow Control

Page 64 • Beginning Assembly Language for the SX Microcontroller

second ds 2 ; counter for 1 second tone
delay ds 1
delay1 ds 1

 org 0
start_point mov !rb,#$7F ; make speaker output
 call beep
; wait for input button
bwait jb rb.0,bwait
 call beep
 jmp bwait

; subroutine

beep mov second,#$d0 ; 2000 is $7D0
 mov second+1,#$07

loop not rb ; toggle bits
 mov delay1,#24
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop
; repeat 2000 times
 djnz second,loop
 djnz second+1,loop
 ret ; go back to wherever

What if you wanted to use this subroutine in a program that already used labels
like oloop, loop, and wloop? To prevent conflicts, try to use local labels (like
:oloop, :loop, and :wloop) in your subroutines.

A few notes about this program are in order. For one thing, this is the first program in this
tutorial that reads some input. The switch is connected in such a way that bit 0 of port B will
read a 0 when you push the switch. The jb instruction tests for this – if the bit is a 1, it just
loops to bwait.

Buttons are mechanical devices, and as such they exhibit bounce. That means that when you
press the switch, the SX may see the switch open and close many times for a few
microseconds until the switch firmly closes. The same thing happens when you release the
switch – the button seems to turn on and off rapidly until it finally settles in the off position. In
this program, this is no big deal because the tone forces a one second wait before the SX
reads the switch again. However, if you were rapidly reading the button, you’d need to take
this mechanical bounce into account.

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 65

If you run this program and hold the button down, the tone will continue until you release the
button. That’s because the program does not wait for you to release the button before
continuing.

Often subroutines want to return some data (perhaps a status code) in the w register. To
accommodate this common task, the SX provides the retw instruction. The retw instruction
returns a constant in the W register. So:

retw #$FF

is the same as:

mov w,#$FF
 ret

Of course, retw is only a single instruction so it executes faster and requires less space.

Tables
One important use of retw is to generate tables. Suppose you wanted to find the square of a
number between 0 and 10. You know that multiplication is difficult to do, so it makes sense to
simply store the values in a table and read them out instead of doing the actual calculations.
Here is a subroutine that does this:

; square a number from 0 to 10 in the W register
; return result in the W register
square jmp PC+W
 retw #0
 retw #1
 retw #4
 retw #9
 retw #16
 retw #25
 retw #36
 retw #49
 retw #64
 retw #81
 retw #100

When the main program calls the square routine, it jumps to a different return instruction
depending on the value in W. The retw instruction loads the correct value into W and returns
to the caller. This is simple, efficient, and very fast. It is also so common, that the assembler
lets you write multiple values on the same line. So you could replace the square routine with
two lines of assembly:

Unit 5: Advanced Flow Control

Page 66 • Beginning Assembly Language for the SX Microcontroller

square jmp PC+W
 retw 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

The generated machine language code is exactly the same in either case, so there is no
difference in using either method. It is a matter of personal preference.

Indirection
When you access the SX’s registers, you need to know the address you want to use. Early in
this tutorial, you used numeric addresses (like 8 or 9), but soon you saw the advantage to
using symbolic names (like status or counter). However, sometimes you don’t know the
exact address you want to access when you are writing your program. For example, suppose
you wanted to clear all the user memory in the SX. You could write:

clr 8
 clr 9
 clr 10
 clr 11
 .
 .
 .

However, that seems wasteful. It would be nice if you could use a loop to index through the
different registers. That is the purpose of the special FSR (File Select Register) and IND
(Indirect) registers. The IND register is not an ordinary register. Instead it is an alias for
another register somewhere in the SX. Where? Whichever register number is currently in FSR.

Here is a simple example:

R1 EQU 10 ; register 10 is R1
R2 EQU 11 ; register 11 is R2
 mov R1,#100
 mov R2,#200
 mov FSR,#10 ; store address 10 in FSR
 mov w,IND
; W now contains 100
 inc FSR ; go to next address
 mov w,IND
; W now contains 200
 mov FSR,#R1
 mov w,IND

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 67

; W contains 100 again
 clr IND ; R1 is now 0!

Notice that you can write to IND as well as read from it. IND is a complete alias for whatever
register number you store in FSR.

You’ll usually want to load a constant number into FSR. In the previous example,
for instance, if you used: mov FSR,R1 this would load the contents of R1 (100)
into FSR – probably not what you meant. However, you can use the syntax mov
FSR,#R1.

Here is a bit of code that will clear all the user registers (up to register $1F) in a loop:

mov FSR,#8
 :loop clr ind
 inc FSR
 jnb FSR.5,:loop

This takes advantage of the fact that when FSR reaches $20 (that is, bit 5 is set for the first
time) the looping is done. You could just as easily compare FSR with $20 or use some other
scheme to break out of the loop.

This technique is not just for clearing memory. When programming, you’ll often want an array
of data (for example, the last 4 samples from a sensor, or the last 8 bytes read from a serial
port). Using indirection is the way to efficiently code arrays, lists, and other data structures.

Math Functions
Armed with the ability to loop and test, you can tackle arbitrary multiplication and division
problems with ease. A simple-minded approach to multiply, for example, 9 by 7 is to add 9 to
itself 7 times. However, with a little knowledge of binary numbers, you can write a smarter
algorithm.

Remember how you learned to multiply in grade school? You’d write your problem out and
multiply the results digit by digit, moving to the left with each digit. Then you’d add all the
partial results up to find the correct answer. The computer can do this too. As a bonus, the SX
uses binary so each partial result can only be the original number shifted to the left some
number of places or 0. Think about multiplying %1001 by %101 (9 by 5).

Unit 5: Advanced Flow Control

Page 68 • Beginning Assembly Language for the SX Microcontroller

 1001
X 101

 001001
 000000
+ 100100

 101101 = 32 + 8 + 4 + 1 = 45

Performing multiplication in this fashion is known as Booth’s algorithm (an algorithm is just a
fancy name for a set of program steps). Here is a bit of SX code that will multiply the byte in
register V1 by the byte in register V2:

 clr V3 ; zero result
 mov ctr,#8 ; 8 bits
mloop rr V2 ; load bit 0 of V2 into carry bit
 jnc noadd ; skip on no carry
 add V3,V1 ; add to result
noadd rl V1 ; shift V1 over 1 place
 djnz ctr,mloop ; go 8 times

Of course, the result (V3) is a byte, so you can’t multiply numbers that will require an answer
larger than 255. You can easily extend this algorithm to handle more bits.

Division
You can use a similar algorithm to do division. If you remember your high-school math,
dividing requires a divisor, a dividend, and produces a quotient. So when computing 20 divided
by 5, 20 is the dividend and 5 is the divisor. The result, 4, is the quotient. Since 5 goes into 20
evenly, there is a remainder of 0.

When you perform division on paper, you reduce it to a series of subtractions. You also have
to shift your position to keep track of what digit you are examining. The SX can do the same
thing in binary. Since binary only has 1s and 0s, it is easy to tell if one number will “go into”
another; simply see if the first number is smaller or equal to the second number.

1. Consider these program steps (or algorithm, if you prefer):
2. Set the quotient to 0
3. Shift the divisor to the left until the topmost bit is a 1
4. Remember how many shifts you performed in step 2 and add 1 to this count
5. Shift the quotient to the left (multiply by 2)

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 69

6. Compare the dividend and the divisor; if the dividend is greater than or equal to the
divisor, subtract the divisor from the dividend and add 1 to the quotient

7. Shift the divisor to the right
8. Subtract 1 from the count and if not zero, return to step 4

Suppose you want to divide 20 by 5. After performing steps 1 to 3, you’ll have a divisor of 160
and a count of 6. Table 5-3 is the looping part of the algorithm right after performing step 6:

Table 5-3: Looping Portion of Division Algorithm
Dividend Divisor Quotient Counter Comments
20 160 0 6 Shifted out 5 zeros; no subtraction
20 80 0 5 No subtraction
20 40 0 4
0 20 1 3 Subtracted
0 10 2 2
0 5 4 1

What about a division with a remainder? If you replace 20 in Table 5-3 with, for example, 22
you’ll find that the dividend column has a 2 in it after the subtraction. Since the divisor never
goes below 2, the answer is the same. However, the dividend column winds up with the
remainder (2).

Here is a simple division program written for the SX:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 5.2
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz

 org 8
dividend ds 1
divisor ds 1
quotient ds 1
counter ds 1
 watch dividend,8,udec
 watch divisor,8,udec
 watch quotient,8,udec
 watch counter,8,udec

 org 0

Unit 5: Advanced Flow Control

Page 70 • Beginning Assembly Language for the SX Microcontroller

start_point
 mov dividend,#20
 mov divisor,#5
 call divide
 break
 nop
 sleep

; subroutine

divide clr counter ; assume not dividing by zero
 clc
:loop rl divisor
 inc counter
 jnc :loop
; restore divisor so top bit is 1
 rr divisor
; counter has number of bits in quotient
 clr quotient
:dloop
 test counter
 jz :done
 clc
 rl quotient
 cjb dividend,divisor,:dloop1
 sub dividend,divisor
 inc quotient
:dloop1
 dec counter
 clc
 rr divisor
 jmp :dloop
:done
 ret ; go back to wherever

One thing this program does not do is test for divide by zero, which is an error. It would be
simple to add a test instruction to set the zero flag if divisor was zero and jump to an error
routine.

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 71

Summary
In this unit you’ve read about instructions that compare two values and make a decision based
on the result. This type of flow control is crucial to implementing advanced multiplication and
division algorithms (as well as for many other programming tasks). This unit also brought up
subroutines (via the call and ret instructions) and ways to use subroutines to implement
tables of constants. You can also create tables using the indirection registers (fsr and ind)
that allow you to access registers without hard coding their addresses.

At this point in the tutorial, you have all the tools necessary to write some powerful programs.
In the next three units you’ll learn how to access all of the SX memory and how to further
control the hardware. In addition, you’ll work with interrupts and virtual peripherals.

Exercises
1. The example program in this unit beeps when the button is pressed for a short time.
However, if the button remains depressed, the tone continues. Alter the program so that after
the tone, the program waits until you release the button. Be sure to take steps to combat
bounce.

2. Count the number of times the button is pressed. After 10 times, put the processor to sleep.

3. In earlier units, there is a blinker program that uses sleep and the watchdog timer to pause
in between flashes. However, this precluded initializing the LEDs to a known state because the
program could not tell the difference between the first reset and a reset after the sleep
instruction timed out. Recall that the status register’s bit 4 is 0 when a watchdog timeout
occurs. Change the program to initialize port B to $AA in the event of a hard reset. The
original program is below for your reference.

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 5.3
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 500000 ; 500 kHz

 org 8
pattern ds 1

 org 0

Unit 5: Advanced Flow Control

Page 72 • Beginning Assembly Language for the SX Microcontroller

start_point mov !rb,#0 ; make all of port b outputs
 xor pattern,#$FF
 mov rb,pattern
 sleep

4. Connect buttons (as shown in Figure 5-1) to Port B pins 0, 1, 2, and 3. Connect a
piezoelectric speaker to port B pin 7. Construct a program that plays a different tone for 500
ms each time you press a button. With more buttons, this could be the basis for a child’s
organ or a musical annunciator.

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 73

Answers
1. Here is the main code:

start_point mov !rb,#$7F ; make speaker output
 call beep
 ; wait for input button
bwait jb rb.0,bwait
 call beep
bwait1 jnb rb.0,bwait1

; wait for bounce to complete
 clr delay
:dwait djnz delay,:dwait
 jmp bwait

The delay allows time for the button to quit bouncing – the time is arbitrary and might require
adjustment depending on the kind of switch you use.

2. Here is an excerpt from the solution:

org 8
second ds 2 ; counter for 1 second tone
delay ds 1
delay1 ds 1
presses ds 1

 org 0
start_point mov !rb,#$7F ; make speaker output
 call beep
 clr presses
 ; wait for input button
bwait jb rb.0,bwait
 call beep
 inc presses
 cje presses,#10,halt
bwait1 jnb rb.0,bwait1

; wait for bounce to complete
 clr delay
:dwait djnz delay,:dwait
 jmp bwait

halt sleep

Unit 5: Advanced Flow Control

Page 74 • Beginning Assembly Language for the SX Microcontroller

Of course, it would be just as legitimate to store 10 in the presses variable and decrement it.
This would be somewhat more efficient because you could test the zero flag after
decrementing the variable, thus saving a step.

3. The solution is to simply test for the bit 4 being clear:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 5.4
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 500000 ; 500 kHz

 org 8
pattern ds 1

 org 0

start_point mov !rb,#0 ; make all of port b outputs
 ; check for real reset
 jnb status.4,agn
 mov pattern,#$AA
agn xor pattern,#$FF
 mov rb,pattern
 sleep

You could make an argument for setting pattern to $55 instead of $AA since the very next
instruction will invert the bits, but either way the result is acceptable.

4. There are several ways you could complete this exercise, depending on your personal
preferences. The tricky part is realizing that since each tone takes a different amount of time,
you have to adjust the number of cycles to get 500 ms. For example, a 1 kHz tone has 500 µs
cycles, so you need 1000 cycles to get 500 ms. However, a 2 kHz tone has 250 µs cycles and
therefore requires 2000 cycles to maintain the same duration. Here is one solution:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 5.5
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8

 Unit 5: Advanced Flow Control

 Beginning Assembly Language for the SX Microcontroller • Page 75

second ds 2 ; counter for 1 second tone
delay ds 1
delay1 ds 1
tone ds 1 ; tone constant
 org 0
start_point mov !rb,#$7F ; make speaker output
; wait for input button
bwait jnb rb.0,bp0
 jnb rb.1,bp1
 jnb rb.2,bp2
 jb rb.3,bwait
; tone 3
 mov tone,#48
 mov second,#$01
 mov second+1,#$01

bp call beep
 jmp bwait

bp2 mov tone,#24
 mov second,#$FD
 mov second+1,#$01
 jmp bp

bp1 mov tone,#12
 mov second,#$FA
 mov second+1,#$03
 jmp bp

bp0 mov tone,#6
 mov second,#$F4
 mov second+1,#$07
 jmp bp

; subroutine
beep
loop not rb ; toggle bits
 mov delay1,tone
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop
 djnz second,loop
 djnz second+1,loop
 ret ; go back to wherever

 Unit 6: Low-Level Programming

 Beginning Assembly Language for the SX Microcontroller • Page 77

Unit 6: Low-Level Programming

In the previous units you’ve written programs that do simple input and output. However, the
SX has many powerful I/O features that you can use if you know how they work. Besides input
and output capabilities, the SX has more program and data storage than previous programs
have used. To access this extra memory, you’ll need to understand a special technique called
banking.

Port Control
The SX has three I/O ports: ports A, B, and C. Port A only has 4 pins. Ports B and C have 8
bits each. You can read and write the pins on a port by accessing the corresponding data
register (ra, rb, or rc). You’ve also seen that you can change the direction of each bit by
changing the control register for the port (!ra, !rb, or !rc).

However, the control register gives you many options in addition to the pin direction. Using
the control register you can set other options including the threshold voltage for each pin and
if the pin uses a Schmitt trigger input or a normal logic-level input. You can also elect to turn
on an optional pull up resistor on each pin.

How can a single control register have this much capability? It can’t. The trick is that the
control register has multiple personalities determined by the M or mode register. By default,
the M register (a 4-bit register) contains $F, which makes the control registers direction
registers. When you write a 0 to the control register, it makes the corresponding bit an output,
and a 1 makes the bit an input.

If you set the mode register to $E, for example, the control register selects which pins have
pull up resistors connected internally. Each bit that is a zero will set a pull up resistor on. Pull
up resistors prevent input pins from assuming random states if there is no external circuitry
driving the pin. You can set pull up resistors on any of the three ports, by setting M to $E and
then clearing the corresponding bit (or bits if you want to turn on more than one) in the !ra,
!rb, or !rc registers.

You can use the mov instruction to load the M register with the contents of another register
or a literal. You can also use the mode instruction to load a literal into M. Table 6-1 shows
the effects of the control registers for different values of M (note that this table does not show
settings that pertain to interrupts, a topic covered in the next unit).

Unit 6: Low-Level Programming

Page 78 • Beginning Assembly Language for the SX Microcontroller

Table 6-1: Mode Settings
Mode !ra !rb !rc SX Name
$F Direction Direction Direction TRIS_
$E Pull up Pull up Pull up PLP_
$D Threshold Threshold Threshold LVL_
$C N/A Schmitt Schmitt ST_

If you set a threshold bit to 0, the SX will read the input through a CMOS-compatible buffer.
This buffer will treat levels below 30% of the supply voltage (say 1.5 V if the supply is 5 V) as
a 0. Anything above 70% of the supply voltage (3.5 V) will be a 1. Voltages in between will
result in an unpredictable bit, although practical experience shows that the threshold is about
50% of the supply voltage (but Ubicom does not specify this).

When the threshold bit is 1, the input uses a TTL-compatible buffer. Using a TTL compatible
buffer treats a 0 as .8 V or less and a 1 as anything over 2 V. For most modern logic circuits,
this is acceptable, but interfacing with certain devices may require one setting or the other.
Also, when mixing analog circuitry with the processor, you might want to adjust the thresholds
to read a particular voltage level.

Ports B and C can use a Schmitt trigger input if you set a zero into the Schmitt register. A
Schmitt trigger uses different thresholds depending on the situation. Imagine you are trying to
set the temperature of your swimming pool to a particular temperature (say 25 degrees
Celsius). You turn on your water heater, and watch the thermometer. When the temperature
gets to 25, you turn the heater off. However, the pool loses heat quickly so almost
immediately, the temperature drops again and you turn on the heater again. Soon you are
turning the heater on and off every few seconds, never able to attain 25 degrees for more
than a split second.

A Schmitt trigger uses hysteresis to battle this sort of problem. The idea is that the Schmitt
trigger will use one threshold to recognize 0 to 1 transitions and another threshold to identify
1 to 0 transitions. A Schmitt trigger might see a voltage rising from .8 to .9 V and output a
logic 1 (5 V). However, it might require that the voltage drop below .5 V before returning to
the zero state. This prevents a noisy or slow rising signal from causing multiple changes on the
output. The SX’s Schmitt triggers use 15% and 85% of the supply voltage as trip points. Once
the signal rises above 85% of the supply voltage (4.25 V for a 5 V supply), the input reads a
1. It will continue to read a 1 until the input drops below 15% (.75 V).

This can be important when dealing with inputs from real-world sensors, or noisy inputs from
long lines. You can also use it to “square up” a signal – for example, reading a digital input
from a charging capacitor. Of course, using the Schmitt trigger option overrides the threshold
settings for the pin.

 Unit 6: Low-Level Programming

 Beginning Assembly Language for the SX Microcontroller • Page 79

Be sure you know the state of the M register before you use the control registers.
A common mistake is to set the M register to some value other than $F, use the
control register, and then later try to access the control register to set direction
bits. The M register stays at the last value you set until a reset occurs..

Analog Capabilities
The SX has one more special capability on port B. Pin 1 and 2 of port B can function as an
analog comparator. You can read the comparator’s output in software and you can cause pin
0 of port B to reflect the comparator’s output as well.

To enable the comparator, you simply set the M register to 8 and write a value to !rb. A value
of $C0 will turn the comparator function off. To turn it on, write either $40 or $00 to !rb. If
you use $00, the comparator will operate, and pin 0 will act as a comparator output. If you
use $40, pin 0 will be free for normal I/O, but the comparator will still function (you’ll have to
read the result in software).

To read the state of the comparator, make sure M contains 8 and write to the !rb register.
When you write to the comparator register (that is, M is equal to 8 and you perform a mov to
!rb) the SX does a little trick behind your back. Instead of simply moving the data to the
comparator register, it actually exchanges the W register with the comparator register. This is
true even if you write:

mov !rb,#0

Because this is really the same as writing:

 mov W,#0

mov !rb,W

So after writing to the comparator register, the W register contains the previous contents. You
should only examine bit 0, the comparator status bit, after you’ve already enabled the
comparator with another instruction. If bit 0 is high, then the voltage on B2 is higher than the
voltage on B1. If it is low, then the opposite condition is true.

Why would you want a comparator input? Maybe you want the SX to compare the voltage
from a potentiometer and a thermocouple. Perhaps you want to divide down your battery
voltage and compare it to a known reference so you can detect when your battery is low.

Unit 6: Low-Level Programming

Page 80 • Beginning Assembly Language for the SX Microcontroller

Register Banking
Earlier, you read that the SX has over 100 registers. That might seem odd, because the SX
instruction set only has room for 5 bits of data to specify a register. So how can 5 bits refer to
over 100 registers? The answer is banking.

Your program does have access to 136 memory locations (not including the special registers
like ind, fsr, ra, etc.). However, it can only work with 32 registers at one time. The first 8
registers (register 0 to 7) are the special registers and you can always access them. The
registers from 8 to 15 ($8 to $F) are also always accessible – the SX doesn’t use them for
anything, so you can do what you want with them. This accounts for 16 registers. The other
16 (registers $10-$1F) are available for you to use as you wish. However, there are really 8
sets of these registers. Which set of 16 you are using depends on the FSR register. So
referring to register $10 may access a different memory location depending on the contents of
FSR.

Conceptually, the SX memory map consists of 8 32-byte pages. That is, each page
has 32 registers in it. However, the first 16 are always the same. The last 16 vary
depending on the bank selected. Each register has its own address (although in the
case of the shared registers, the actual reference is always between $10 and $1F).
You can see this arrangement graphically in Table 6-2.

When you want to access a register, you have several choices. First, if you are using FSR
anyway, just put the proper address into FSR before using IND to access the data. So if you
want to access the last memory location, load FSR with $FF. Your other option is to set the
top 3 bits of FSR before you access memory. The values you want to use are in the column
headings of Table 6-2. You can store a value in FSR, of course, with a mov instruction.
However, this destroys the entire register and it also requires two machine language
instructions if you are using a literal value. Since most programs will want to load literals into
FSR, there is a bank instruction. This instruction loads the top 3 bits of a literal into the top 3
bits of FSR with a single instruction. This is useful because you can just name the variable you
want to access. For example:

org $FF
last ds 1

org 0
 bank last
 mov last,#0

Notice that although you specified $FF as the argument to bank, the actual instruction only
uses the topmost three bits ($E).

 Unit 6: Low-Level Programming

 Beginning Assembly Language for the SX Microcontroller • Page 81

Table 6-2: SX Memory Map
 FSR=$00 FSR=$20 FSR=$40 FSR=$60 FSR=$80 FSR=$A0 FSR=$C0 FSR=$E0
$00 IND IND IND IND IND IND IND IND
$01 RTCC RTCC RTCC RTCC RTCC RTCC RTCC RTCC
$02 PC PC PC PC PC PC PC PC
$03 STATUS STATUS STATUS STATUS STATUS STATUS STATUS STATUS
$04 FSR FSR FSR FSR FSR FSR FSR FSR
$05 PORTA PORTA PORTA PORTA PORTA PORTA PORTA PORTA
$06 PORTB PORTB PORTB PORTB PORTB PORTB PORTB PORTB
$07 PORTC PORTC PORTC PORTC PORTC PORTC PORTC PORTC
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F

8 registers addressable as $08-$0F, $38-$3F, $58-$5F, $78-$7F, $98-$9F, $B8-$BF, $D8-$DF, or $F8-$FF

$10 $10 $30 $50 $70 $90 $B0 $D0 $F0
$11 $11 $31 $51 $71 $91 $B1 $D1 $F1
$12 $12 $32 $52 $72 $92 $B2 $D2 $F2
$13 $13 $33 $53 $73 $93 $B3 $D3 $F3
$14 $14 $34 $54 $74 $94 $B4 $D4 $F4
$15 $15 $35 $55 $75 $95 $B5 $D5 $F5
$16 $16 $36 $56 $76 $96 $B6 $D6 $F6
$17 $17 $37 $57 $77 $97 $B7 $D7 $F7
$18 $18 $38 $58 $78 $98 $B8 $D8 $F8
$19 $19 $39 $59 $79 $99 $B9 $D9 $F9
$1A $1A $3A $5A $7A $9A $BA $DA $FA
$1B $1B $3B $5B $7B $9B $BB $DB $FB
$1C $1C $3C $5C $7C $9C $BC $DC $FC
$1D $1D $3D $5D $7D $9D $BD $DD $FD
$1E $1E $3E $5E $7E $9E $BE $DE $FE
$1F $1F $3F $5F $7F $9F $BF $DF $FF

Unit 6: Low-Level Programming

Page 82 • Beginning Assembly Language for the SX Microcontroller

When debugging, the current bank of registers shows up in a bright highlight compared to the
inaccessible banks in the debugging window.

If you organize your registers based on your usage of them, you can name your
banks meaningfully. Not only does this make your code more readable, but it will
often reduce the amount of switching necessary, as well. For example, suppose
you reserve one bank of variables (bank $20) for math calculations and another
for external communications (bank $40). You can define two symbols, math and
extcomm, so you can write:

 bank math ; switch to math bank

Program Pages
Another place where the SX hides extra memory is in the program space. Although none of
your programs have needed it so far, the SX has 4 pages of program memory, and each page
contains 512 instructions (remember, instructions on the SX are not bytes). So you can use up
to 2 K (2048) instructions.

However, using more than 512 instructions requires careful planning. Every jump instruction
(except jmp w, jmp pc+w, and ljmp) only take 9 bits for an address. The extra bits
required come from the top 3 bits of the status register. Instead of manually setting these
bits, however, you can force the assembler to do it for you. Just put an “@” character before
the address, like this:

JMP @FarAwayPlace

This actually produces the following instructions:

 PAGE FarAwayPlace
 JMP FarAwayPlace

The page instruction sets the status register bits to match the target address. Since using the
@ sign requires extra space, you should only use it in cases where the target address resides
in a different page.

To complicate things, calling a subroutine across page boundaries is even more difficult. The
call instruction only takes 8 bits of address. The ninth bit is set to 0, and the remaining bits
come from the status register just as with jmp. That means that a subroutine call can only
occur to the first 256 instructions of a page.

 Unit 6: Low-Level Programming

 Beginning Assembly Language for the SX Microcontroller • Page 83

This seems like a harsh restriction, but in reality, it is easy to overcome. If you can’t organize
your subroutines so that they are all in the first half of a page, just place a jmp to the
subroutine (a single instruction) in the bottom half of the page, and call that instead. Don’t
forget that data tables (like the ones in Unit 5) are really subroutines so they have the same
limitation – the jmp instruction that starts the table must be in the first half of the page so
that other parts of the program can call into the table.

It is worth noting that the program counter is 11 bits long, but the pc register contains only
the bottom 8 bits. There is no way to directly read the top 3 bits. The only access you have to
these bits is when they are loaded from the top 2 or 3 bits of the status register.

When you call a subroutine in a different page, you need the processor to restore the full 11-
bit address to the program counter. It is also handy to have it set the status register to the
caller’s page so that it can make more subroutine calls on its own page. That is the purpose of
the retp instruction. It not only restores the full address so that the caller can continue
executing, but it also sets the top 3 bits of the return address into the top 3 bits of the status
register.

The ret instruction and the retp instruction take the same amount of space and
execute at the same speed. If there is any chance you might call a subroutine
from across page boundaries, use retp. The only exception would be if you
wanted the subroutine to deliberately modify the top bits of status.

Reading Program Storage
In the previous unit you saw how to use retw to form tables in program memory. There is
another way you can access program memory – the iread instruction. This instruction takes 4
cycles (unusual for an instruction that doesn’t jump or skip). It takes the M register and the W
register as an 11-bit address, reads the 12-bit word at that address, and loads it into the M
and W registers.

How do you get arbitrary data into the program memory? Use DW as in:

org 0
start_point mov m,#SomeData>>8 ; top part of address
 mov w,#SomeData&$FF ; bottom part of address
 iread
 nop
 nop
 break
 nop
 sleep

SomeData dw $1A5

Unit 6: Low-Level Programming

Page 84 • Beginning Assembly Language for the SX Microcontroller

If you debug this program, the W register will contain $A5 and the M register will contain $1
at the breakpoint.

Be careful if you access the port control registers after executing iread since the
M register will not contain what you expect and that alters the control register’s
function.

 Unit 6: Low-Level Programming

 Beginning Assembly Language for the SX Microcontroller • Page 85

Summary
The techniques in this unit are not that useful for the simple programs you’ve written up to
this point. But in real life, 24 bytes of data storage and 512 instructions only go so far. The
key to success with large programs is to carefully plan and organize. If you can keep related
variables in the same bank, you’ll be much happier. Variables that you use in many parts of
your program should be below $10 (the shared area). Of course, with only 8 bytes shared
between banks, you have to be very frugal.

Organization for code is important too. Related routines on the same page do not need long
jumps. You also need to be mindful of placing subroutines in the second half of any bank,
since you won’t be able to call them there.

If it seems odd that the SX has all these odd ways to access memory, remember that it is all in
the name of compatibility. The SX is backward compatible with other processors that do not
have so much memory. The price of having extra resources is extra complexity.

Exercises

1. Write a program to clear all 8 register banks. Be careful not to clear the first 8 registers
(which are the special function registers like pc and ind). Also, don’t clear the shared bank
more than once. Can you make the clear loop a subroutine?

2. Use org $200 to place the clearing subroutine in the above program in the first program
bank. Single step through the execution.

3. Write a program to convert Celsius temperature to Fahrenheit, using a lookup table
accessed with iread. Assume the input ranges from 0 to 29 degrees. The formula for
conversion, by the way, is F=1.8C+32.

Unit 6: Low-Level Programming

Page 86 • Beginning Assembly Language for the SX Microcontroller

Answers
1. Here is one possible solution:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 6.1
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 Mhz

 org 0
start_point mov fsr,#8 ; shared bank
 call clear
 mov fsr,#$10
zloop call clear
 add fsr,#$11
 jnc zloop
 nop
 break
 nop
 sleep

; subroutine clears from FSR until FSR AND $F is 0

clear clr ind
 inc fsr
 mov w,#$F
 and w,fsr
 jnz clear
 dec fsr ; back up
 ret

2. Moving the subroutine requires you to: 1) place org $200 in front of the clear routine; 2)
change each call to clear with one to @clear; and 3) change the ret instruction to a retp.
Try performing each of these steps in sequence and debugging the code before making the
next change.

 Unit 6: Low-Level Programming

 Beginning Assembly Language for the SX Microcontroller • Page 87

3. Here is a simple implementation:

 org 8
tempm ds 1 ; place to hold M
value ds 1 ; value to convert

 org 0
start_point mov value,#11 ; 11 degrees C
 call @convert
 nop
 break
 nop
 sleep
convert mov tempm,m
 mov m,#table>>8
 mov w,#table & $FF
 add w,value
 iread
 ; don't need M
 mov value,w
 mov m,tempm ; restore M
 ret

table dw 32,34,36,37,39,41 ; 0-5
 dw 43,45,46,48,50 ; 6-10
 dw 52,54,55,57,59 ; 11-15
 dw 61,63,64,66,68 ; 16-20
 dw 70,72,73,75,77 ; 21-25
 dw 79,81,82,84 ; 26-29

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 89

Unit 7: Interrupts

One of the great strengths of modern computers is that they can do more than one thing at a
time, right? With a Windows PC, you can surf the Web, work on an e-mail, and touch up a
photo from your digital camera, all at the same time. This sounds great except for one thing:
most computers (including your Windows PC) only do one thing at a time.

How is this possible? While it is true that most computers can only do one thing at a time, they
can do one thing very rapidly. Modern operating systems allocate small chunks of time to each
active task. In this way, each task appears to run at the same time. Also, modern computers
can respond to external events – for example, a keystroke or a mouse movement. This also
helps with the illusion that the computer is performing many tasks since the computer can
handle events as they occur instead of waiting for them.

To get this sort of capability, a computer needs a way to track time and it also needs a way to
stop what it is doing in favor of another task. The SX has two features that work together in
this area: the real time clock counter (RTCC register) and interrupts. The RTCC register does
just what its name implies: it increments on a precise predetermined interval regardless of
what else the processor is doing. It can also increment in response to an external pulse input.
Interrupts allow an external event or a time period to trigger a piece of your program.
Whatever the SX was doing before the event is put on hold until the event code (an interrupt
service routine or isr) completes.

In assembly language programming, interrupts have a reputation as being difficult to use. It is
true that interrupts require careful planning. However, the SX has several features that make
dealing with interrupts less troublesome than with many other similar processors.

What constitutes an event? One common event is when the RTCC register rolls over (that is,
changes from $FF to $00). You can also configure interrupts to occur on rising or falling edges
on any (or all) port B pins. To use interrupts, you must configure them first – by default no
interrupts occur.

The Real Time Clock Counter
One of the most common sources of interrupts is when the RTCC register’s value changes
from $FF to $00. This indicates that 256 time periods have elapsed or 256 external events
occurred. Using this interrupt, you can receive interrupts at a regular time interval which is
useful for keeping time, measuring pulse widths, generating pulses, and other time-sensitive
operations.

What causes the RTCC register to increment depends on bit 5 of the !option register (RTS).
If this bit is 0, the counter increases with each instruction cycle. If the bit is 1, then RTCC

Unit 7: Interrupts

Page 90 • Beginning Assembly Language for the SX Microcontroller

increments each time it detects a pulse on the RTCC pin. By using the RTE bit (bit 4 of
!option) you can determine if the counter responds to rising edges (0) or falling edges (1).

By default, the RTCC register increments on each instruction cycle or external event. At 50
MHz, then, the RTCC requires 20 ns * 256 = 5.12 µs to roll over when counting instruction
cycles. This time is too short for most purposes (as you’ll see shortly), so you’ll often want to
divide the clock cycle by some factor. You can do this by assigning the prescaler to RTCC.
This is the same prescaler the watchdog timer uses, so you have to assign it to one use or the
other. You can’t scale the RTCC count and the watchdog timer at the same time.

To assign the prescaler to RTCC, clear bit 3 of the !option register (PSA). The last 3 bits in
the !option register determine the division rate (see Table 7-1). The maximum ratio is 1:256
which at 50 MHz works out to 1.3 ms (.0013 s). Of course, if you are using a different clock
frequency all of these times will be different as well. Obviously, if you are using an external
source to drive the RTCC pin, the time between rollovers depends on the external source.

Notice that Table 7-1 does not contain a 1:1 setting. That is because a 1:1 setting
is what you get when the prescaler is working for the watchdog timer.

Table 7-1: Prescaler Settings

PS2 PS1 PS0 Ratio Roll overTime at 50 MHz
0 0 0 1:2 10.24 µs
0 0 1 1:4 20.48 µs
0 1 0 1:8 40.96 µs
0 1 1 1:16 81.92 µs
1 0 0 1:32 163.84 µs
1 0 1 1:64 327.67 µs
1 1 0 1:128 655.35 µs
1 1 1 1:256 1310.72 µs (1.31 ms)

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 91

RTCC Delays
Even without interrupts, the RTCC register can be useful. In previous units, programs used a
programmed delay to pause for a particular interval. If the RTCC is incrementing with the
instruction clock, you can use it to time your delays easily. Take a look at this subroutine:

; assume prescaler is 1:256
delay1_3ms mov rtcc,#1

; testing for zero is ok because the 256 prescaler is on
:wait mov w,rtcc
 jnz :wait
 ret

The subroutine sets rtcc to 1 (which also, incidentally, clears the prescaler). It then waits for
rtcc to equal zero. This will require 255 counts and each count requires 256 instruction cycles.
Therefore, at 50 MHz, the total delay is 256*255*20 ns = 1.3 ms.

Don’t forget that writing to rtcc clears the prescaler. This can lead to subtle side effects. For
example, you might be tempted to use the test instruction to test the prescaler for a zero
value. This won’t work because using test is the same as moving a register into itself. While
this does test for zero, it also clears the prescaler so that the rtcc register never increments.

Another pitfall is testing for equality. If the prescaler is not set, rtcc increments on each
instruction cycle. Then it would be dangerous to test for a single value of the prescaler. Why?
Because rtcc might assume that value while you are executing another instruction. For
example, suppose the subroutine above loads w with $FF at the :wait label. With prescaling
off, the next time through the loop the counter will be 3 – it was zero during the jnz
instruction!

RTCC Interrupts
To enable RTCC rollover interrupts, clear the RTI bit (bit 6) in the !option register. Once this
bit is clear, the processor will stop whatever it is doing when RTCC rolls over and execute the
code starting at location 0. Of course, up until now, your program started at location 0, but
that is only because the reset directive pointed there. You can start your program further up
in memory to allow for interrupt processing.

When an interrupt occurs, the SX disables further interrupts. It also saves status, fsr, and w.
The SX then clears the top 3 bits of the status register (these bits form the top portion of
jump addresses) and jumps to address 0. All of this work is necessary so that the interrupt
service routine (ISR) does not interfere with the execution of the main program. Once the ISR

Unit 7: Interrupts

Page 92 • Beginning Assembly Language for the SX Microcontroller

is finished, it uses the reti instruction to restore control to the main program. This also
enables future interrupts.

Unlike many other processors, the SX automatically stores its context (the w, fsr,
and status registers) in special temporary areas, not the stack. However, the
chip does not service interrupts if they occur while still processing a previous
interrupt.

Perhaps the simplest way to use the rtcc interrupt is to simulate a wider real time clock.
Remember that even with the maximum prescaling in effect, rtcc rolls over every 1.3 ms or so
(at 50 MHz). What if you wanted to delay 100 ms? Sure you could call the 1.3 ms delay nearly
100 times. But if you had a 16-bit rtcc register you could simply wait for the count to exceed
19531 (each count is worth about 5 µs when the prescaler is at 1:256).

Here is a simple 100 ms LED flasher based on these ideas:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 7.1
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8
rtcc1 ds 1

 org 0
isr inc rtcc1 ; interrupt handler
 reti

start_point
 mov !rb,#$80 ; 7 outputs, 1 input

; set RTCC to internal clock 1:256 ratio
 mov !option,#$87
loop xor rb,#$FF
 call delay100ms
 jmp loop

delay100ms clr rtcc
 clr rtcc1
:wait mov w,#$4c ; $4c4b is 19531
 mov w,rtcc1-w
 jnz :wait
:wait0 mov w,#$4b

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 93

 mov w,rtcc-w
 jnz :wait0
 ret

Periodic Interrupts
In the previous examples, the main program blinks an LED and controls the delay between
flashes of the lamp. However, the real power to interrupts is allowing the ISR to perform a
task, seemingly while the main routine is executing. Look at this program:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 7.2
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8
rtcc1 ds 1

 org 0
isr inc rtcc1
 cjne rtcc1,#$4D,iout ; blink every $4D00 periods
 xor rb,#$FF
; reset time
 clr rtcc
 clr rtcc1
iout
 reti

start_point
 mov !rb,#$80 ; 7 outputs

; set RTCC to internal clock 1:256 ratio
 mov !option,#$87
loop
 jmp loop

The main program sets !rb, !option, and then does a simple jmp instruction to loop forever
doing nothing. All the work occurs in the ISR. It is interesting to note that the ISR resets the
rtcc register so that the interrupt will occur periodically. This isn’t unusual when you want the
interrupt to repeat at a regular interval.

There is one problem with this, however. A complex ISR may take a different amount of time
to execute depending on the current situation. This can lead to timing errors intolerable in

Unit 7: Interrupts

Page 94 • Beginning Assembly Language for the SX Microcontroller

precise applications. For example, in the above piece of code, the reti instruction adds a slight
delay to the total time although for this application it is negligible.

A better answer is to use the retiw instruction to end the ISR – especially if the prescaler is
off. This instruction adds the w register’s contents to rtcc. Say the processor is set so that
rtcc will cause an interrupt when it rolls over and that the prescaler is assigned to the
watchdog timer. Each count of the rtcc represents 20 ns (assuming, as always, a 50 MHz
clock). When the interrupt begins the rtcc has already counted to 3. As the ISR continues, the
rtcc continues to increase. To accurately set the time, you have to take into consideration
how much time has already elapsed. Luckily, there is a simple answer – the rtcc register
already has this information! If you subtract the number of cycles you want between each
interrupt from the number of cycles already elapsed, you are left with the exact number of
cycles required.

For example, say you want an interrupt to occur every 50 cycles (1 µs). You can simply use
the following two lines of code at the end of your ISR:

mov w,#-50
 retiw

The only catch is that your ISR, including the 3 cycle interrupt latency, must not exceed 46
cycles. If it does, you’ll either miss the next interrupt, or you will return to the main program
only to have an interrupt occur immediately. Because of the interrupt latency you must always
allow 3 cycles plus at least enough time for one instruction to execute in the main program –
figure a total of 6 cycles. However, even then your main program will not execute very often –
you should allow a more generous time slice between interrupts in most cases.

A Clock Example
A computer that knows what time it is can be very useful. You might want to count down a
model rocket launch, or time stamp readings from a sensor. With an accurate interrupt it is
easy to keep the time. The hard part is translating the rapid stream of interrupts into numbers
more meaningful to humans. Here is a simple program that uses a 50 MHz clock to the rtcc
register. The ISR adds –50 to rtcc so that it generates a periodic interrupt every 1µs. The ISR
maintains two 16-bit counters to count microseconds and milliseconds.

Of course, every 1000 milliseconds constitutes a second, every 60 seconds is a minute, and 60
minutes make an hour. You could easily extend this to track days if you wanted to do so. The
main program in this case doesn’t do anything, but you could easily add whatever code you
wanted.

This is a hard program to debug because single stepping it doesn’t show the correct time. You
can run the program at full speed in the debugger and press the Poll button to see the time

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 95

change. You’ll also see LEDs on port B blink and, if you connect a piezo speaker to one of the
port B pins, you’ll hear your SX clock ticking.

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 7.3
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
minutes ds 1
hours ds 1
 watch hours,8,udec
 watch minutes,8,udec
 watch seconds,8,udec

 org 0
isr inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi
 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 xor rb,#$FF ; toggle LEDs
 inc seconds
 cjne seconds,#60,iout
; seconds roll over
 clr seconds
 inc minutes
 cjne minutes,#60,iout
; minutes roll over
 clr minutes
 inc hours

Unit 7: Interrupts

Page 96 • Beginning Assembly Language for the SX Microcontroller

 cjne hours,#24,iout
; hour roll over
 clr hours
; could track days if we wanted to

; reset time
iout
 mov w,#-50 ; interrupt every 1uS
 retiw

start_point
 mov !rb,#$00 ; all outputs
 clr microhi
 clr microlow
 clr seconds
 clr hours
 clr minutes
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale
loop
 jmp loop

External Interrupts via RTCC
When you think of using the RTCC pin to monitor external events, you usually think of
counting pulses. You can certainly do this, of course. When you set bit 4 of !option (the RTS
bit), the pin monitors pulses and uses them to increment RTCC. If the RTE bit (bit 4 of
!option) is clear, the count occurs on rising edges, otherwise the SX detects falling edges.
The prescaler is still available, so you can divide the input down if you like.

However, what if you want a single external interrupt? At first glance, it would seem that you
can’t do this with RTCC. After all, even with the prescaler assigned to the watchdog timer, you
still need 256 pulses to get a single interrupt, right?

While that seems true, there is a trick you can use to make RTCC simulate an external
interrupt. Simply load the RTCC register with $FF. Assuming the prescaler is off and the RTS
bit is set, the next input pulse will cause an interrupt. A simple but effective technique. Of
course, the ISR will then need to reset RTCC to $FF before issuing a reti instruction so the
interrupt will be ”armed” for the next event.

Port B Multi Input Wakeup
In addition to the RTCC trick, you can configure any (or all) of port B’s pins as external
interrupts. Port B has two special registers that allow it to detect input edges. These register
work at all times, not just when interrupts are enabled. That means you can detect input
edges with or without using interrupts.

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 97

Like other special port registers, you access these by using !rb while the M register is set to a
special value. If M is $A, you can select which edge each pin monitors. A 1 bit in this register
makes the SX detect falling edges (that is, 1 to 0 transitions) on the corresponding pin. A 0 bit
detects 0 to 1 transitions or rising edges. When the selected edge appears on a pin, the SX
sets the corresponding bit in the multi-input wake up (MIWU) pending register (!rb with M =
$9). The SX never clears this register. When your program writes the W register into !rb and
M is $9, the SX actually swaps the two values. So you can read the pending bits and clear
them at the same time.

This processing occurs at all times. Most programs just ignore this feature. However, you can
use it to detect when an edge occurred even when you aren’t using the port B interrupts. If
you connect the circuit in Figure 7-1 to several port B pins, you can try this program:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 7.4
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
minutes ds 1
hours ds 1
edges ds 1

 watch hours,8,udec
 watch minutes,8,udec
 watch seconds,8,udec

 org 0
isr inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi
 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout

Unit 7: Interrupts

Page 98 • Beginning Assembly Language for the SX Microcontroller

 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 inc seconds
 cjne seconds,#60,iout
; seconds roll over
 clr seconds
 inc minutes
 cjne minutes,#60,iout
; minutes roll over
 clr minutes
 inc hours
 cjne hours,#24,iout
; hour roll over
 clr hours
; could track days if we wanted to

; reset time
iout
 mov w,#-50 ; interrupt every 1uS
 retiw

start_point
 mov !rb,#$FF
areset clr microhi
 clr microlow
 clr seconds
 clr hours
 clr minutes
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale

; Turn on port B pull up resistors
 mode $E
 mov !rb,#$00
; set port B pin 0 to interrupt on falling edge
 mode $A ; select edge
 mov !rb,#$FF
 mode $9 ; enable interrupts
 mov !rb,#%0 ; clear pending
; wait for 10 seconds
wait10 cjne seconds,#10,wait10
 mov !rb,#%0 ; read pending and clear
 mov edges,w
; important: reset mode register
 mode $F
 mov !rb,#0 ; set to outputs
; flip sense of edge bits
 not edges
 mov rb,edges

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 99

loop
; active wait so ticking will occur
 jmp loop

This is more or less the same program as before, but it doesn’t produce the blinking lights and
ticking effect. Instead, it waits 10 seconds (easy to do with the clock interrupt routine) and
then turns on lights that correspond to the buttons you pushed during that 10 seconds. This is
trivially easy using the MIWU feature. Since the LEDs turn on when the port outputs a 0, the
program uses the not instruction to invert the pending bits.

This program initially sets the direction register so that all port B pins are inputs.
Then, after the pause, it sets all pins to outputs. An easy mistake to make here is
to forget to set the M register back to $F before switching to outputs. The edge
detection code changes the M register, and you must change it back to $F before
accessing the direction register.

Figure 7-1: Switch/LED Circuit

Port B Interrupts
When the SX detects an edge, it can also generate an interrupt. You can select this behavior
by clearing bits in the !rb register while M is equal to $B. When the SX detects an edge on the
corresponding pin, it will generate an interrupt. It is up to the ISR to examine the pending
register and clear it for further interrupts. This interrupt is exactly like an rtcc interrupt – it
saves the SX context and starts at location 0.

Unit 7: Interrupts

Page 100 • Beginning Assembly Language for the SX Microcontroller

It is possible to use port B interrupts and rtcc interrupts at the same time, but it can be tricky.
For example, if a pulse occurs while the ISR executes, the SX will not generate interrupts after
the ISR returns until a new event occurs. By the same token, if rtcc rolls over while the SX is
processing a port B interrupt, you will miss the rtcc interrupt. In some cases, timing is not
that critical, so losing a microsecond or two isn’t that important. However, if you require solid
time accuracy you should consider only dealing with one interrupt source (port B or rtcc) in
one program.

If you need a real-time clock and edge detection, think about using the rtcc
interrupt at a fast rate and simply examine the pending bits on each timer tick
(this is often known as polling). For many applications, scanning the inputs
quickly is good enough and this does not interfere with accurate timing of the
rtcc interrupt.

It is also possible to use the port B interrupt to wake up after a sleep instruction. If a port B
interrupt occurs after a sleep instruction, an interrupt does not occur. Instead, the processor
resets with bit 3 of the status register clear and bit 4 set. Although port B interrupts will
interrupt the SX’s sleep, an rtcc interrupt will not. This is often used to put the processor to
sleep (which conserves power) until a key is pressed, for example.

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 101

Summary
Interrupts need not be difficult to use. This is especially true of the SX because the chip takes
care of many details for you. Interrupts are essential when you need to process inputs while
doing something else, keep track of time, or generate precise outputs while doing other tasks.

Interrupts, coupled with the SX’s high speed, form the basis for the virtual peripheral strategy
discussed in the next unit. Although interrupt handling requires a bit of careful design, and can
be difficult to debug, they are well worth the price.

Exercises
1. Write a program that uses a timer interrupt to track (at least) seconds. Normally, the
program does nothing. However, when you press a button connected to pin 0 of port B, the
program should flash an LED (or click a piezo speaker) every second until you push the button
again. Pushing the button a third time should resume LED flashing and so on. Use the rtcc
interrupt for timing and poll the switch in the main program.

2. Modify the above program so that the ISR samples the input switch using the MIWU
capability but do not use the port B interrupts.

3. Modify the program again so that you use both interrupts; the rtcc and the port B interrupt.
4. Which of the three programs do you think uses the best approach?

Unit 7: Interrupts

Page 102 • Beginning Assembly Language for the SX Microcontroller

Answers
1. The solution is straightforward. Notice you can’t use the sleep instruction or else the
program will just halt.

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 7.5
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
ticker ds 1
tmp ds 1

 org 0
isr inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi
 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 test ticker
 jz notick
 xor rb,#$FF ; toggle LEDs
notick inc seconds
iout
 mov w,#-50 ; interrupt every 1uS
 retiw

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 103

start_point
 mov !rb,#$01 ; 7 outputs, 1 in
areset clr microhi
 clr microlow
 clr seconds
 clr ticker
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale

loop
; active wait so ticking will occur
 jb rb.0,loop
; button pushed
 not ticker
; debounce delay (about 1 second)
milloop0 test millihi ; wait for millhi to go to 0
 jnz milloop0
milloop1 test millihi
 jz milloop1 ; wait for nonzero
milloop test millihi
 jz milloop ; wait for zero again
 jmp loop

2. Compared to the last program, this one has a similar ISR, but a very different main program
(all the work is in the ISR). Notice that the ISR changes the M register, so it has to save and
restore it to ensure the main program’s M register does not change (of course, in this case,
the main program doesn’t care, but that will not usually be the case). To protect against
bounce, the code examines the edge pending register every 1 ms.

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 7.6
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
ticker ds 1
tmp ds 1

 org 0
isr

Unit 7: Interrupts

Page 104 • Beginning Assembly Language for the SX Microcontroller

 inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi

; check for key every 1ms
 mov tmp,M ; save M register
 mode $9
 clr w
 mov !rb,w ; exchange w and pending
 and w,#1 ; test low bit
 sz
 not ticker ; invert ticker
 mov M,tmp ; restore M

; roll millisecond

 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 test ticker
 jz notick
 xor rb,#$FF ; toggle LEDs
notick inc seconds
iout
 mov w,#-50 ; interrupt every 1uS
 retiw

start_point
 mov !rb,#$01 ; 7 outputs
areset clr microhi
 clr microlow
 clr seconds
 clr ticker
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale
; set port B detect falling edge
 mode $A ; select edge
 mov !rb,#$FF

loop
 jmp loop

 Unit 7: Interrupts

 Beginning Assembly Language for the SX Microcontroller • Page 105

3. This version is perhaps the least satisfactory of the three. It requires switches that don’t
bounce much since it is difficult to filter multiple interrupts caused by bouncing. Also, if an
rtcc event occurs during processing for a switch closure, the time becomes inaccurate.

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 7.7
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 MHz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
ticker ds 1
tmp ds 1

 org 0
isr
; check for pending key
 mov tmp,M ; save M register
 mode $9
 clr w
 mov !rb,w ; exchange w and pending
 and w,#1 ; test low bit
 jz rtccisr
 not ticker ; invert ticker
 mov M,tmp ; restore M
iret

rtccisr
 mov M,tmp
 inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi

Unit 7: Interrupts

Page 106 • Beginning Assembly Language for the SX Microcontroller

; roll millisecond

 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 test ticker
 jz notick
 xor rb,#$FF ; toggle LEDs
notick inc seconds
iout
 mov w,#-50 ; interrupt every 1uS
 retiw
start_point
 mov !rb,#$01 ; 7 outputs
areset clr microhi
 clr microlow
 clr seconds
 clr ticker
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale
; set port B detect falling edge
 mode $A ; select edge
 mov !rb,#$FF
 mode $B ; enable interrupt on pin 0
 mov !rb,#$FE

loop
 jmp loop

4. It is fairly clear that program #3 would require a great deal of work to make it robust.
Mixing two interrupt sources is a risky business. Of the other two techniques, it boils down to
personal taste. The code in #1 has more portions of the program in the main loop where they
will be easier to debug. However, #2 is quite clean and keeps the processing out of the way of
the main program (presumably, you’d be doing something in the main program).

 Unit 8: Virtual Peripherals

 Beginning Assembly Language for the SX Microcontroller • Page 107

Unit 8: Virtual Peripherals

Most (if not all) microcontrollers are valuable because they communicate with the outside
world in some way. As a result, system designers spend a lot of time interfacing
microcontrollers to the outside world. With old-fashioned processors, everything required
additional electronic components. Want to read a voltage? Get an A/D (analog to digital) chip.
What to talk to a PC? Get a UART (Universal Asynchronous Receiver and Transmitter) chip.

In recent years, microcontroller manufacturers have been integrating common peripheral chips
directly into the microcontroller. This allows for simpler system design and conserves the
controller’s I/O capacity. The only problem is, no microcontroller can have every possible
peripheral. For one project you might need a UART. The next project might require two A/D
inputs. Still another project might require a single A/D but two UARTs. Obviously, no matter
how clever the microcontroller designers are, you will never be able to have all peripherals
built into the microcontroller.

Another problem with this approach is that you have to have different microcontrollers for
different tasks. You can’t take a microcontroller with a built-in A/D and use it in place of one
that has a UART. This makes it complicated to control your inventory of microcontrollers.
Ideally, you’d like to use the same part in all of your designs. At the least, you want the fewest
number of different parts possible.

The SX address this problem via Virtual Peripherals or VPs. VPs take advantage of the SX’s raw
speed and interrupt capability to simulate traditional peripheral devices in software instead of
hardware. This has many advantages:

• Use one part for all designs
• Add whatever devices you need for a particular project
• Modify devices to meet your needs – not usually possible in hardware

A VP is simply a code module (usually an interrupt service routine or ISR) that simulates an
I/O device. You can download many VPs from the Parallax Web site. Other VPs may be
available (for free or for a fee) from third parties. You can even write your own VPs for use in
later projects or to sell to other programmers. Some VPs do require a few external
components (usually a few resistors or capacitors). Others work completely in software.

Using a Virtual Peripheral
When you begin designing a project around the SX, you should first see if there are any
standard VPs that would be of use to you. Here are a few of the more useful VPs that exist:

• DTMF Generation – Generates TouchTones

Unit 8: Virtual Peripherals

Page 108 • Beginning Assembly Language for the SX Microcontroller

• FSK Detection – Receives frequency shift keying data
• FSK Generation – Generates frequency shift keying
• I2C – Interface with IIC-bus chips (one VP for slave, another for master)
• SPI – Interface with SPI-bus chips (one VP for slave, another for master)
• UART – Serial I/O (up to 230.4 Kbaud)
• Multi UART – 8 serial ports each running at 19.2 Kbaud
• LCD – Drives a standard Hitachi LCD module (one VP for 4 bit, another for 8 bit)
• LED – Drives seven segment LEDs
• PWM – A variety of VPs allow you to generate pulse width modulation, useful for

generating voltages, controlling motor speeds and similar tasks
• ADC – You can actually use a few common parts to make an ADC almost completely

in software
• Stepper Motor – Control stepper motors
• Timers – Common VPs can implement timers and real-time clocks
• Input – VPs exist that can debounce buttons and scan keypads

Be sure to check out the latest list on the Parallax Web site.

Once you select a VP, you need to integrate it into your program. You might be tempted to
use more than one VP. You can do this (see below), but for now just pick one. As an example,
suppose you wanted to build a circuit that would dial the Parallax telephone number using
TouchTones over a piezo speaker connected to Port C pin 6.

If you look on the Parallax Web site, you’ll see that there is a document file that describes the
DTMF generation VP and source code to an example program. One problem is that the
example program invariably does things you’d rather not do, so you have to cut and paste the
pieces you want into your program.

The example program reads data from an RS-232 port and dials the number as instructed. For
this example, you don’t need the serial I/O VP. However, a quick examination of the example’s
ISR shows that it also contains PWM and timer VPs. Detailed examination reveals that both are
necessary for the DTMF VP.

In addition to the ISR, you also have to get the variables that the routines use and several
subroutines that help you access the VP’s functions. The VP may also require specific
initialization of port control registers, the !option register, or internal variables. In the end
you may have to resort to a bit of trial and error unless you are prepared to fully comprehend
what the program is doing.

 Unit 8: Virtual Peripherals

 Beginning Assembly Language for the SX Microcontroller • Page 109

Once you think you have everything you need, you might want to use the Run | Assemble
command to see if you get any assembly errors. If you don’t, then you probably have
everything you need (although you may have extra things too if you are not careful).

Often, the VP does not use the same port assignments as you’d like to use. Usually you can
interchange the pin numbers with no ill effects. However, be careful. If the VP is using, for
example, port B’s interrupt capabilities, you won’t be able to move pins to port A or C which do
not have interrupts. Usually the VP will have an equate near the top that sets the I/O
definitions (PWM_pin, in this case). This is misleading, however. In addition to changing the
equate, you also have to find all the places where the VP references the ra, rb, rc, !ra, !rb, or
!rc registers and correct these lines as well.

With the VP in place, the main program is trivially simple:

; load digits
 clr i
digloop call getdigit
 mov byte,w
 cje byte,#$FF,done
 call @load_frequencies ; VP routine
 call @dial_it ; VP routine
inc i
 mov w,#20
 call @delay_10n_ms
 jmp digloop
done
 sleep

To dial again, reset the processor. The load_frequencies, dial_it, and delay_10n_ms
routines are all part of the VP (and they reside on different pages which explains the at sign
prefix). The getdigit routine is a simple lookup table that returns the phone number digits
(you’ll write this code in the exercises for this unit).

Mixing Virtual Peripherals
When you need to mix VPs, there are several areas you have to consider:

• At what frequency must the ISRs run?
• Port and variable conflicts
• Conflicting uses of the !option register
• Varying time paths through the ISR

Unit 8: Virtual Peripherals

Page 110 • Beginning Assembly Language for the SX Microcontroller

Most of these issues are straightforward. Sometimes you can adjust parameters to resolve
conflicts. For example, if you need a UART, you can adjust its timing so that it will work with
other VPs that don’t use the same frequency. Sometimes it is more difficult and requires
significant effort to rewrite the VPs code.

Another issue is varying time paths through the ISR. Some VPs depend on an exact amount of
time passing between interrupts. PWM generation, for instance, requires precise timing. If you
merge a VP that requires an exact amount of time between interrupts with another VP, you
should place the time-sensitive VP’s interrupt code before the other VP’s code. Reversing this
order will upset the sensitive VP if the other VP’s ISR does not always require the same time to
execute. A few VPs use special techniques to ensure that they always require the same
amount of time to execute, but most can take varying times depending on conditions.

 Unit 8: Virtual Peripherals

 Beginning Assembly Language for the SX Microcontroller • Page 111

Summary
Using VPs you can create powerful programs easily. However, it does take a bit of experience
and effort to peel away the interesting parts of the VP examples and apply them to your
program. The effort, however, is usually far less than it would take you to duplicate the VPs
features in either hardware or software.

You can mix VPs if you are careful. However, blending together VPs can often be taxing as you
try to make peace between conflicting requirements for each module.

Exercises
1. Download the DTMF generation VP and remove the portions that are unnecessary for
building an auto dial program that automatically dials a phone number when it starts.

2. Move the DTMF output to Port C pin 6.

3. Add your own code to dial a number of your choice each time the processor resets. Put the
processor to sleep after dialing. To hear the tones, you can connect a piezo speaker to the
port. However, this will probably be too rough and too weak to really dial a phone. If you want
to really dial the phone, add an RC filter (see the instructions in the VP documentation; you’ll
need a 600 Ω resistor and a capacitor around .2 µF). You can then use an amplified speaker or
signal tracer to increase the volume to where it can really dial the phone.

Unit 8: Virtual Peripherals

Page 112 • Beginning Assembly Language for the SX Microcontroller

Answers
(All). Here is the listing that satisfies the three problems in this unit (note some of the VP code
is in the second program bank – the main program is in the middle of the listing):

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 8.1
;===
 device sx28l,stackx,optionx
 device oschs3,turbo

 freq 50_000_000 ; default run speed = 50 MHz
 ID 'DIAL'

 reset start ; JUMP to start label on reset

;***
; Equates for common data comm frequencies
;***
f697_h equ $012 ; DTMF Frequency
f697_l equ $09d

f770_h equ $014 ; DTMF Frequency
f770_l equ $090

f852_h equ $016 ; DTMF Frequency
f852_l equ $0c0

f941_h equ $019 ; DTMF Frequency
f941_l equ $021

f1209_h equ $020 ; DTMF Frequency
f1209_l equ $049

f1336_h equ $023 ; DTMF Frequency
f1336_l equ $0ad

f1477_h equ $027 ; DTMF Frequency
f1477_l equ $071

f1633_h equ $02b ; DTMF Frequency
f1633_l equ $09c

;***
; Pin Definitions
;***

 Unit 8: Virtual Peripherals

 Beginning Assembly Language for the SX Microcontroller • Page 113

;PWM_pin equ rb.7 ; DTMF output
PWM_pin equ rc.6 ; DTMF output

;***
; Global Variables
;***
 org $8 ; Global registers

flags ds 1
dtmf_gen_en equ flags.1 ; Tells if DTMF output is enabled
timer_flag equ flags.2 ; Flags a rollover of the timers.
temp ds 1 ; Temporary storage register
byte ds 1 ; a byte
i ds 1 ; loop counter

;***
; Bank 0 Variables
;***
 org $10

sin_gen_bank = $

freq_acc_high ds 1 ;
; 16-bit accumulator which decides when to increment the sine wave
freq_acc_low ds 1
freq_acc_high2 ds 1 ;
; 16-bit accumulator which decides when to increment the sine wave
freq_acc_low2 ds 1
freq_count_high ds 1 ; freq_count = Frequency * 6.83671552
freq_count_low ds 1 ; 16-bit counter
;decides which frequency for the sine wave

freq_count_high2 ds 1 ; freq_count = Frequency * 6.83671552
freq_count_low2 ds 1 ; 16-bit counter which
 ; decides which frequency
 ; for the sine wave

curr_sin ds 1 ; The current value of the sin wave
sinvel ds 1 ; The velocity of the sin wave

curr_sin2 ds 1 ; The current value of the sin wave
sinvel2 ds 1 ; The velocity of the sin wave

sin2_temp ds 1 ; Used to do a temporary shift/add
register

PWM_bank = $

pwm0_acc ds 1 ; PWM accumulator
pwm0 ds 1 ; current PWM output

Unit 8: Virtual Peripherals

Page 114 • Beginning Assembly Language for the SX Microcontroller

;***
; Bank 1 Variables
;***
 org $30 ;bank3 variables
timers = $
timer_l ds 1
timer_h ds 1

;***
; Interrupt
;
; With a retiw value of -163 and an oscillator frequency of 50 MHz, this
; code runs every 3.26us.
;***
 org 0
;***
PWM_OUTPUT
; This outputs the current value of pwm0 to the PWM_pin. This generates
; an analog voltage at PWM_pin after filtering
;***
 bank PWM_bank
 add pwm0_acc,pwm0 ; add the PWM output to the acc
 snc
 jmp :carry ; if there was no carry, then clear
 ; the PWM_pin
 clrb PWM_pin
 jmp PWM_out
:carry
 setb PWM_pin ; otherwise set the PWM_pin
PWM_out
;***
 jnb dtmf_gen_en,sine_gen_out
 call @sine_generator1
sine_gen_out

;***
do_timers
; The timer will tick at the interrupt rate (3.26us for 50 MHz.) To set up
; the timers, move in FFFFh - (value that corresponds to the time.)
; Example:
; for 1ms = 1ms/3.26us = 306 dec = 132 hex so move in $FFFF - $0132 =
; $FECD
;***

 bank timers ; Switch to the timer bank
 mov w,#1
 add timer_l,w ; add 1 to timer_l
 jnc :timer_out ; if it's not zero, then
 add timer_h,w ; don't increment timer_h
 snc

 Unit 8: Virtual Peripherals

 Beginning Assembly Language for the SX Microcontroller • Page 115

 setb timer_flag
:timer_out
;***
:ISR_DONE
; This is the end of the interrupt service routine.
; Now load 163 into w and
; perform a retiw to interrupt 163 cycles from the start of this one.
; (3.26us@50 MHz)
;***
 break
; interrupt 163 cycles after this interrupt
 mov w,#-163
 retiw ; return from the interrupt
;***

start bank sin_gen_bank ; Program starts here on power up

;***
; Initialize ports and registers
;***
; use these values for a wave which is 90 degrees out of phase.
 mov curr_sin,#-4
 mov sinvel,#-8
; use these values for a wave which is 90 degrees out of phase.
 mov curr_sin2,#-4
 mov sinvel2,#-8
 call @disable_o

 mov !option,#%00011111 ; enable wreg and rtcc interrupt
 mov !rc,#%10111111

 mov m,#$D ; make cmos-level
 mov !rc,#%10111111
 mov m,#$F

; load digits
 clr i
digloop call getdigit
 mov byte,w
 cje byte,#$FF,done
 call @load_frequencies ; load the frequency registers
 call @dial_it ; dial the number for 60ms
; and return.
 inc i
 mov w,#20
 call @delay_10n_ms
 jmp digloop
done
 sleep

; get i'th digit to dial

Unit 8: Virtual Peripherals

Page 116 • Beginning Assembly Language for the SX Microcontroller

getdigit mov w,i
 jmp PC+W
 retw 1,8,8,8,5,1,2,1,0,2,4,$FF

org $200 ; Start this code on page 1
;***
; Miscellaneous subroutines
;***
delay_10n_ms
; This subroutine delays 'w'*10 milliseconds.
; This subroutine uses the TEMP register
; INPUT w - # of milliseconds to delay for.
; OUTPUT Returns after n milliseconds.
;***
 mov temp,w
 bank timers
:loop clrb timer_flag ; This loop delays for 10ms
 mov timer_h,#$0f4
 mov timer_l,#$004
 jnb timer_flag,$
 dec temp ; do it w-1 times.
 jnz :loop
 clrb timer_flag
 retp

;***
; Subroutine - Disable the outputs
; Load DC value into PWM and disable the output switch.
;***
disable_o
 bank PWM_bank ; input mode.
 mov pwm0,#128 ; put 2.5V DC on PWM output pin
 retp

 org $400 ; This table is on page 2.
; DTMF tone table
0 dw f941_h,f941_l,f1336_h,f1336_l
1 dw f697_h,f697_l,f1209_h,f1209_l
2 dw f697_h,f697_l,f1336_h,f1336_l
3 dw f697_h,f697_l,f1477_h,f1477_l
4 dw f770_h,f770_l,f1209_h,f1209_l
5 dw f770_h,f770_l,f1336_h,f1336_l
6 dw f770_h,f770_l,f1477_h,f1477_l
7 dw f852_h,f852_l,f1209_h,f1209_l
8 dw f852_h,f852_l,f1336_h,f1336_l
9 dw f852_h,f852_l,f1477_h,f1477_l
star dw f941_h,f941_l,f1209_h,f1209_l
pound dw f941_h,f941_l,f1477_h,f1477_l

 Unit 8: Virtual Peripherals

 Beginning Assembly Language for the SX Microcontroller • Page 117

 org $600 ; These subroutines are on page 3.
;***
; DTMF transmit functions/subroutines
;***
;***
load_frequencies
; This subroutine loads the frequencies using a table lookup approach.
; The index into the table is passed in the byte register. The DTMF table
; must be in the range of $400 to $500.
;***
 cje byte,#$0FF,:end_load_it
 clc
 rl byte
 rl byte ; multiply byte by 4 to get offset
 add byte,#_0_ ; add in the offset of the first digit
 mov temp,#4
 mov fsr,#freq_count_high

:dtmf_load_loop
 mov m,#4 ; mov 4 to m (table is in $400)
 mov w,byte
 IREAD ; get the value from the table
 bank sin_gen_bank ; and load it into the frequency
 mov indf,w ; register
 inc byte
 inc fsr
 decsz temp
 jmp :dtmf_load_loop ; when all 4 values have
 ; been loaded,
:end_load_it retp ; return
;***
dial_it ; This subroutine puts out whatever frequencies were loaded
 ; for 1000ms, and then stops outputting the frequencies.
;***
 cje byte,#$0FF,end_dial_it
 bank sin_gen_bank
; use these values to start the wave at close to zero crossing.
 mov curr_sin,#-4
 mov sinvel,#-8
; use these values to start the wave at close to zero crossing.
 mov curr_sin2,#-4
 mov sinvel2,#-8
enable_o ; enable the output
 mov w,#3
 call @delay_10n_ms ; delay 30ms
 setb dtmf_gen_en
 mov w,#10
 call @delay_10n_ms ; delay 100ms
 clrb dtmf_gen_en
 call @disable_o ; now disable the outputs

Unit 8: Virtual Peripherals

Page 118 • Beginning Assembly Language for the SX Microcontroller

end_dial_it retp
;***
sine_generator1 ;(Part of interrupt service routine)
; This routine generates a synthetic sine wave with values ranging
; from -32 to 32. Frequency is specified by the counter. To set the
; frequency, put this value into the 16-bit freq_count register:
; freq_count = FREQUENCY * 6.83671552 (@50 MHz)
;***
 bank sin_gen_bank
; advance sine at frequency
 add freq_acc_low,freq_count_low;2
 jnc :no_carry ;2,4 ; if lower byte rolls over
 inc freq_acc_high ; carry over to upper byte
 jnz :no_carry ; if carry causes roll-over
; then add freq counter to accumulator (which should be zero,
; so move will work)
 mov freq_acc_high,freq_count_high
 ; and update sine wave
 jmp :change_sin
:no_carry
; add the upper bytes of the accumulators
 add freq_acc_high,freq_count_high
 jnc :no_change
:change_sin

 mov w,++sinvel ;1 ; if the sine wave
 sb curr_sin.7 ;1 ; is positive, decelerate
 mov w,--sinvel ;1 ; it. otherwise,
 ; accelerate it.
 mov sinvel,w ;1
 add curr_sin,w ;1 ; add the velocity to sin

:no_change

;***
sine_generator2 ;(Part of interrupt service routine)
; This routine generates a synthetic sine wave with values ranging
; from -32 to 32. Frequency is specified by the counter. To set the
; frequency, put this value into the 16-bit freq_count register:
; freq_count = FREQUENCY * 6.83671552 (@50 MHz)
;***

;advance sine at frequency
 add freq_acc_low2,freq_count_low2 ;2
 jnc :no_carry ;2,4 ; if lower byte
 ; rolls over
 inc freq_acc_high2 ; carry over to upper byte
 jnz :no_carry ; if carry causes
 ; roll-over
; then add freq counter to accumulator (which should be zero,

 Unit 8: Virtual Peripherals

 Beginning Assembly Language for the SX Microcontroller • Page 119

 mov freq_acc_high2,freq_count_high2
 ; so move will work)
 ; and update sine wave
 jmp :change_sin
:no_carry
; add the upper bytes of the accumulators

 add freq_acc_high2,freq_count_high2
 jnc :no_change
:change_sin

 mov w,++sinvel2 ;1 ; if the sine wave
 sb curr_sin2.7 ;1 ; is positive,
 ; decelerate it
 mov w,--sinvel2 ;1 ; it. Otherwise,
 ; accelerate it.
 mov sinvel2,w ;1
 add curr_sin2,w ;1 ; add the velocity to sin

:no_change
 mov pwm0,curr_sin2 ; mov sin2 into pwm0
 mov sin2_temp,w
; mov the high_frequency sin wave's current value
 clc ; into a temporary
 ; register

; divide temporary register by four by shifting right
 snb sin2_temp.7
stc ; (for result = (0.25)(sin2))
 rr sin2_temp
 clc
 snb sin2_temp.7
 stc
 mov w,>>sin2_temp
; (1.25)(sin2) = sin2 + (0.25)(sin2)
 add pwm0,w
; add the value of SIN into the PWM output
 add pwm0,curr_sin
; for result = pwm0 = 1.25*sin2 + 1*sin
; put pwm0 in the middle of the output range (get rid of negative values)
 add pwm0,#128
 retp ; return with page bits intact

 Unit 9: Simple Hardware I/O Enhancements

 Beginning Assembly Language for the SX Microcontroller • Page 121

Unit 9: Simple Hardware I/O
Enhancements
 Introduction
The SX has a variety of built in, programmable I/O enhancements that can be used
in place of certain external circuits. Options can be set to enable internal pull up
resistors, configurable logic thresholds, and analog comparator functions. These
features were first discussed in chapter 6. Although these features can be used to
reduce the overall parts count in many designs, they are for use with specific
current and voltage limits. Three of the most common situations where the
demands of a peripheral device exceed these limits are when:

 The device requires more current the SX I/O pin can supply.
 The device requires more than 5 V at its input.
 The device outputs above 5 V or below 0 V.

This chapter introduces some simple hardware solutions for these situations. These solutions
can be used to make the SX light lamps, energize relays or coils, and control motors, or even
pumps. Hardware solutions for RS232 voltages are also discussed because many applications
make use of this standard, such as the serial port on a PC.

Specialized interfaces, such as liquid crystal display (LCD) drivers, or computer I/O ports, use a
variety of different hardware connection schemes. Most of these devices also use one of
several established communication protocols for exchanging data. These protocols are
discussed, and an example of a hardware/software interface with a common parallel LCD is
included. This will help introduce some basic I/O and register management techniques,
setting the groundwork for methods used in later chapters.

Driving Loads
Compared to many chips, an SX I/O pin set to output can sink or source significant amounts of
current (30 mA). This is plenty for driving an LED as well as most IC inputs. However, for
many relays, lamps, and other loads, 30 mA is not nearly enough. Attempting to use an SX I/O
pin to drive a high current load can damage the chip.

Fortunately, the SX chip’s output capacity can be extended using simple external parts. The
next few figures show three circuits that can be used to significantly boost the SX chip’s output
capacity. Figure 9-1 shows a circuit built around a common 2N2222 transistor. This circuit
draws minimal current from the SX, but can sink nearly a half of an ampere when heat sinking
is used on the transistor.

Unit 9: Simple Hardware I/O Enhancements

Page 122 • Beginning Assembly Language for the SX Microcontroller

Figure 9-1: Switching a High-Current Relay

This configuration is ideal for loads that require ground to be switched on and off. When the
SX switches its output high, the voltage at the transistor's base, VBE, rises to 0.7 V. The
current through the resistor connected to the transistor’s base is (5 – 0.7)/1000 = 4.3 mA.
This is ample current to force the transistor into saturation without demanding too much
current from the SX I/O pin.

Because the transistor is saturated, the collector will be in the neighborhood of 0.2 V above
the emitter. For practical purposes, this is as good as ground. When the SX outputs 0 volts, or
any voltage too low to bring VBE above 0.7 V, the transistor switches off. Although a very
small amount of current is still conducted, it is insignificant as far as the coil is concerned.

Notice the diode across the relay coil in Figure 9-1. This is useful when driving
inductive loads. When the current in any inductor changes, it can cause large
voltage spikes, which can destroy the transistor. The diode shorts out negative
voltage to prevent damage to the transistor. A relatively low inductance load,
such as a light bulb, does not require the diode.

Most of the time, switching the ground lead of a load on and off works fine. However, some
jobs require a positive voltage to be switched. For example, suppose an EPROM programmer
requires a 14 V supply to be switched on and off. The circuit in Figure 9-2 can be used for his
application.

 Unit 9: Simple Hardware I/O Enhancements

 Beginning Assembly Language for the SX Microcontroller • Page 123

Figure 9-2: Circuit for Switching a Positive Voltage.

The NPN transistor works as before, making a ground connection when the SX outputs a 1.
This causes the voltage across the base of the PNP transistor to turn it on because the
magnitude of VBE will be greater than 0.7 V. As with the previous circuit, the magnitude of VCE
can be neglected. When the NPN transistor does not conduct, minimal base current will flow in
the PNP transistor’s base circuit, and therefore, virtually no collector current will flow (that is,
the load will not receive current).

The circuit in Figure 9-3 uses a power MOSFET. A MOSFET offers almost complete isolation
between the processor and load. Modern MOSFETs can also handle relatively heavy current
loads, and the device shown here can conduct up to 4A. Another MOSFET advantage is that it
has a very low series resistance, in the neighborhood of 0.54 Ω, when switched on.

Unit 9: Simple Hardware I/O Enhancements

Page 124 • Beginning Assembly Language for the SX Microcontroller

Figure 9-3: Using a MOSFET

The circuits just introduced will serve in a variety of situations, all of which are aimed at
switching DC loads on and off. However, many designs call for something other than on/off
values.

Analog I/O
Many practical sensors generate analog signals, and there are several strategies for reading
analog values with a digital device like the SX. A common external hardware solution is to use
specialized ICs that can convert analog to digital and vice versa. A device that converts
numeric quantities to analog is called a Digital to Analog converter (DAC or D/A). The
opposite function is performed by an Analog to Digital converter (ADC or A/D). These are
available from many vendors with varying capabilities and price tags. SX software A/D and
D/A solutions also exist, and you’ll read more about them in Units 11, 13, and 14. In some
cases, A/D conversion is overkill, because the voltage can be “trimmed” to a more appropriate
level .

Analog Level Conversion
For an example of a trimming circuit, consider a battery monitor. Assume a battery's nominal
voltage is 9 V, and the circuit will operate at voltages as low as 7.2 V. Your design goal is to
detect when the voltage drops to 7.5 V, perhaps to light a low voltage indicator.

Using an A/D converter for this job would be a waste of money and resources. Taking
advantage of an SX I/O pin’s logic threshold is a much simpler, less expensive solution. When
an SX I/O pin is set to CMOS input mode, it reads signals above 2.5 V as 1 and below 2.5 V as
0. A voltage divider can convert the 7.5 V target voltage to 2.5 V. A voltage divider is shown
in Figure 9-4, and the voltage divider equation is given by:

 Unit 9: Simple Hardware I/O Enhancements

 Beginning Assembly Language for the SX Microcontroller • Page 125

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
21

2
io RR

RVV
 (1)

Resistor values should be selected to make Vo = 2.5 V when Vi = 7.5 V. A 10 kΩ and 20 kΩ
resistor would do the job. However, the total current consumed will be 9/30000 or 300 µA.
This is plenty of current to drive the SX inputs. The resistor values could also be increased to
100 kΩ and 200 kΩ to reduce current consumption to 30 µA.

Figure 9-4: Detecting a Low Battery

When the battery is at full charge, the input pin will be 3 V, which is enough voltage for the SX
to register a 1. At 7.5 V the pin drops to 2.5 V, which is right at the logic threshold. Any
further drop is read by the SX as a zero. Compared to either software or hardware A/D
conversion, this technique greatly simplifies both the programming and hardware used in the
design.

Grouping Digital I/O – LCD Example
When using an individual SX I/O pin for switching and sensing, a single bit in a given port
register is addressed. However, peripheral devices connected to microcontrollers have
traditionally used parallel interfaces. These devices can be accommodated using the SX, but
it’s not necessarily the best use of the SX chip’s limited number of I/O pins.

When reading and writing to parallel devices, each I/O port can be treated as a group of bits.
For example, instead of treating rb.1 through rb.7 as individual bits, the RB register can be
can be addressed as a group of 8-bits. In the SX28 chip, RA is a 4-bit wide register, and RB
and RC are each 8-bits wide. Keep in mind that if the data bus connected to the SX is not 4
or 8-bits, the program must be adapted to handle the data correctly.

Unit 9: Simple Hardware I/O Enhancements

Page 126 • Beginning Assembly Language for the SX Microcontroller

Consider a typical liquid crystal display (LCD). Common LCDs use an on-board LCD driver IC
such as the Hitachi (now Renesas) HD44780 or a compatible device. Larger LCDs use a 44780
plus some additional parts, but the programming turns out to be essentially the same.

LCD Hardware
The 14 pins on the LCD are likely arranged in the standard configuration given in Table 9-1.

Table 9-1: Pin Functions and Descriptions for Common LCDs
with Hitachi or Compatible Driver

Pin Function Description Pin Function Description
1 GND Ground 8 DB1 Data Bit 1
2 +5 + 5 V Power 9 DB2 Data Bit 2
3 C Contrast voltage 10 DB3 Data Bit 1
4 RS Reg. Select 11 DB4 Data Bit 4
5 R/W Read/Write 12 DB5 Data Bit 5
6 E Enable 13 DB6 Data Bit 6
7 DB0 Data Bit 0 14 DB7 Data Bit 7

Some LCDs have 14-pin male single inline package (SIP) headers, and they can be plugged
directly into a breadboard. Other LCDs have these pins arranged with a piece of ribbon cable
that ends in a dual-row header. This isn't very handy for breadboarding. In this case, jumper
wires can be used to connect the header pins/sockets to the breadboard. Figure 9-5 shows a
connection diagram for operating a 14 pin LCD in 4-bit mode.

 Unit 9: Simple Hardware I/O Enhancements

 Beginning Assembly Language for the SX Microcontroller • Page 127

Figure 9-5: LCD Connection Diagram

The LCD data sheet shows a signal sequence that can be sent to the LCD to reset it and force
it into 4-bit mode. Once in 4-bit mode, RS can be asserted, then ASCII characters can be sent.
In 4-bit mode, the four most significant bits are sent first, followed by the lower four bits. RS
is brought low when sending command codes. Each 4-bit transfer occurs when the program
pulses the E pin.

If the LCD doesn’t appear to work, try varying the contrast voltage on pin 3 of the LCD’s 14-
pin connector. Adjust the potentiometer connected to pin 3 until faint boxes or characters
become visible. Note: A very few LCDs require negative voltages to set the contrast. If you
encounter one of these displays, it may appear dead until you provide a negative contrast
voltage. Fortunately, these displays are not very common.

Program Listing – LCD Interface
The next program is for an LCD interface, using the techniques just discussed. The program
displays a message you can change by changing the text in single quotes in the msg routine.

Unit 9: Simple Hardware I/O Enhancements

Page 128 • Beginning Assembly Language for the SX Microcontroller

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 9.1
;4-bit LCD driver by Al Williams
;===

 device SX28L,turbo,stackx,optionx,oscxt1,bor42
 freq 4000000 ; Run at 4 MHz to simplify timing.
 reset start ; Go to 'start' on reset.

 org $0c
dlyctr ds 1 ; Main delay counter.
dlymult ds 1 ; Delay multiplier.
tmp ds 1 ; Temp storage.
work ds 1 ; More temp storage.
i ds 1 ; Loop counter.

ebit equ ra.1 ; I/O: Enable and Register Select.

rsbit equ ra.0 ; Assumes DB4 to DB7
 ; connect to RB.0-RB.3.

 org 0

ldelay mov dlymult,#5 ; Long delay (5x256).
 ; Enter here if you want
delaym clr dlyctr ; to set your own dlymult.

:delay nop
 djnz dlyctr,:delay
 djnz dlymult,delaym
 ret

init mov ra,#0 ; Call to init the LCD.
 mov rb,#0 ; Set all bits to zero.
 mov !rb,#%11110000 ; Set outputs.
 mov !ra,#%00
 call ldelay ; Give LCD some time to catch up.
 mov rb,#$3 ; Write a 3 out to the display 3 times.

 call pulsee
 call pulsee
 call pulsee

 mov rb,#$2 ; Now go to 4-bit mode (twice).
 call pulsee
 call pulsee
 mov rb,#$8 ; Set 2-line mode (remove next 2 lines if
 ; display has 1 line).
 call pulsee

 Unit 9: Simple Hardware I/O Enhancements

 Beginning Assembly Language for the SX Microcontroller • Page 129

 mov w,#14 ; Non blink cursor (use 15 for blinking).
 call lcdout
 mov w,#6 ; Activate the cursor.
 call lcdout
clear ; Clear the screen (init falls
 ; into this routine).
 mov w,#1 ; Send a command (clear falls
 ; into this routine).
cmd clrb rsbit
 call lcdout
 setb rsbit
 ret

lcdout mov tmp,w ; Write to the LCD (4 bits at a time).

 mov work,w
 rr work ; Get top 4 bits first.
 rr work
 rr work
 rr work
 and work,#$F
 mov rb,work
 call pulsee
 mov w,tmp ; Then bottom 4 bits.
 and w,#$F
 mov rb,w
pulsee setb ebit ; Pulse the E bit
 ;(lcdout falls into this).

 call ldelay
 clrb ebit
 ret

; Set the cursor to the specified pos note that all displays think that
; line 2 starts at pos 40 even if they don't have 40 characters.

setcursor mov work,w
 mov w,#$80
 add w,work
 jmp cmd

lookup mov w,i ; Get a byte from the string to display.
 jmp pc+w
msg retw 'Assembly Language I/O '
 retw 'with the SX-Key',13
 retw 'by Al Williams and Parallax',0

start call init ; Here is the main program.
 call ldelay
 clr i ; Loop for each character.

Unit 9: Simple Hardware I/O Enhancements

Page 130 • Beginning Assembly Language for the SX Microcontroller

ploop call lookup
; exit if 0
 test w
 jz :loop
 inc i

 mov work,w ; If 13 then go to line #2.
 cje work,#13,nl
 mov w,work

 call lcdout ; Not 0 or 13 so print it.

; this delay gives a "teletype" effectcomment the following 2 lines
; for full speed.

 clr dlymult
 call delaym

 jmp ploop ; Keep going.

; This look waits for about 5 seconds or so and then starts the whole
; thing over.

:loop mov tmp,#64
:loop1 clr dlymult
 call delaym
 djnz tmp,:loop1
 jmp start

nl mov w,#40 ; Move to line 2.
 call setcursor
 jmp ploop

This program listing assumes no other part of the program uses ports A and B. If the pins not
used by the LCD are set to input, the program can write to the port bits, but no output occurs.
On the other hand, if pins not used by the LCD are outputs, writing to the entire port will
arbitrarily wipe out any output bits used by the other part of the program. This would lead to
spurious outputs each time the program sends information to the LCD. One solution is to read
the output bits already in use before writing back to the port. In other words, instead of
writing directly to a port using the command:

 mov rb,bits

Substitute the code below:

 and bits,#$F
 mov w,rb

 Unit 9: Simple Hardware I/O Enhancements

 Beginning Assembly Language for the SX Microcontroller • Page 131

 and w,#$F0
 or w,bits
 mov rb,w

In this example, only the four least significant bits in RB change. The hexadecimal value #$F
is referred to as a mask. Masks are used with logic commands to force certain bits high or low
within registers. For example, the first command:

 and bits,#$F

forces the upper nibble (bits 4 through 7) in the bits register to zero while leaving the lower
four bits unaffected. RB is then copied to the w register, followed by applying a mask that
sets only the lower four bits in the w register to zero. The or command can then be used to
copy the lower four bits in the bits variable into the w register. The contents of w can then
be copied to RB. Although it seems like a roundabout way of doing things, it enables numeric
control of groups of bits within a given I/O port.

About Serial Data
The LCD controller is a good example of a parallel interface with a peripheral device. The
interface uses a total of six I/O pins, four for data and two for control. For a 28-pin SX this
monopolizes nearly a third of the available I/O lines. Parallel interfaces that use too many I/O
lines are a common problem among microcontrollers. Not surprisingly, a wide variety of
devices that use serial protocols to communicate have been developed.

Serial communication can be done over a single wire, although two, three, and four-wire
interfaces are also common. The protocols used can be broadly characterized as synchronous
and asynchronous. A synchronous protocol uses some type of clock to synchronize the
transmitter and receiver. Synchronous systems include Serial Peripheral Interface (SPI) and
Inter-Integrated Circuit (IIC). In contrast, asynchronous protocols synchronize on some
prearranged signal, typically a start bit. Common RS-232 ports, like those on the back of a PC,
use asynchronous data transmission.

Synchronous Serial Data
Typical synchronous protocols use at least two lines, one for data and one for the clock signal.
The receiver reads the data at the rising or falling edge of a clock pulses it sends to the
transmitter. Often, the transmitting device clocks data in one pin and out another pin allowing
an arbitrary number of devices to be daisy chained. Synchronous protocols allow high data
rates but require multiple wires to work. Still many devices like A/D converters, EEPROMs, and
other peripherals utilize this type of protocol.

Unit 9: Simple Hardware I/O Enhancements

Page 132 • Beginning Assembly Language for the SX Microcontroller

Asynchronous Serial Data
Asynchronous serial data is the more common of the two arrangements. The transmitter and
receiver are set for the same transmission speed. The receiver then watches for a “start bit”
and uses it to synchronize with the transmitter. As an example, suppose a serial data
transmission consists of a start bit, 8 data bits, and one stop bit at 9600 bits per second (bps).
To squeeze 9600 bits into a second, each bit can only be transmitted for:

µs104
bps9600

1Tbit ==
 (2)

The transmitter and receiver must also agree on the signal that gets transmitted between
bytes, the idle state. The start bit begins when the transmitter switches its signal out of the
idle state. For example, if 1 is the idle state, as soon as the transmitter switches to 0, the 104
µs start bit has begun. When the receiver senses the start bit, it knows that 104 µs later the
first bit of data will be transmitted. So, the receiver checks the state of the signal after 104 µs
and records the value of the first bit. It repeats this sampling process eight more times, once
for each of the eight data bits. (Real systems often sample several times during the interval to
improve noise rejection, but that’s not important to this discussion.) The stop bit is somewhat
of a misnomer since the state of the stop bit is the same as the line’s idle state. The stop bit
is actually the minimum idle time before the next byte can be transmitted. Modern systems
often use 1 stop bit, that is, 1 bit period between bytes. Some older systems required 1.5 or
even 2 stop bits.

RS-232C is by far the most common asynchronous serial protocol. Personal computer serial
ports use this scheme. In fact, connecting a microcontroller to a PC is a common use for RS-
232. Other devices, including specialized serial LCDs, PWM coprocessors, and PS/2 keyboard
interfaces also use RS-232.

A typical RS-232 setup requires one line for each transmitter and one for each receiver. Some
systems will share a single line for both transmitting and receiving. Additional lines used for
flow control are also common. Flow control lines allow the receiver to send a signal that
indicates when to send the next byte. Commonly referred to as handshaking, the receiver has
to signal its willingness to receive before the transmitter can send.

RS-232 Practical Considerations
RS-232 is more than just an arrangement of bits. The standard also calls for particular
connectors and voltage levels. This can be a problem for designs incorporating
microcontrollers because the RS-232 signal varies between –12 V to transmit a 1 and +12 V to
transmit a 0. Microcontrollers, of course, use the standard TTL/CMOS 0 and 5 V signals.

 Unit 9: Simple Hardware I/O Enhancements

 Beginning Assembly Language for the SX Microcontroller • Page 133

A variety of techniques can be used to convert from TTL to RS232 voltages and visa versa.
Peripheral integrated circuits that make these conversions are often added to the design. The
classic chips to do this are the 1488 and 1489 line drivers and receivers. However, these
require a +/- 12 V power supply, common in computers, but not so common is smaller
electronic designs.

In many cases, the only reason to have +/-12 V is for RS-232. If this is true, the need for +/-
12 V can be eliminated all together with a MAX232 or MAX233 IC from Maxim. These clever
chips convert TTL to RS232 using only a single 5 V supply. The MAX232 and 233 generate
their own 12 V supplies using internal “charge pumps”. The actual voltage won’t be exactly
+/- 12 V, but it will be well within the RS-232 specification. The MAX232 uses a few external
capacitors, but the MAX233 requires no external capacitors.

It is possible to connect a TTL output directly to an RS-232 input. It works most of the time,
but it’s only recommended for lab and prototyping situations, not for production designs. The
only thing to keep in mind is that 5 V is interpreted as a 0 while 0 V is interpreted as a 1. An
RS-232 output can also be connected to an SX input, so long as a current limiting resistor is
used. A 22 kΩ resistor, for example, can be placed in series between the RS-232 output and
the SX input. The SX has internal diode protection that clamps voltages above 5 V and below
0 V. The resistor prevents possible circuit damage that can occur when these diodes conduct
excessive current in an attempt to keep the voltage clamped. Keep in mind that the same
logic inversion that occurs when sending serial RS232 data without a line driver also occurs
when receiving without a line driver.

Summary
A variety of designs feature devices with voltage or current requirements that are higher than
the SX chip can supply. External transistors can be selected to drive these loads, and then the
SX can be used to switch the transistors on and off. Input voltages can also exceed the 0 to 5
V range. For the sake of sensing when a voltage passes a particular threshold, a voltage
divider can be used to trim the measured input so that it crosses an SX I/O pin’s logic
threshold.

When using the SX to communicate with a parallel device, such as the LCD with assembly
code example introduced in this unit, masking may be necessary to make sure that outputs
not used by the parallel device are unaffected. Serial devices are a common solution for
reducing the overall number of microcontroller I/O pins dedicated to each peripheral device.
Synchronous and asynchronous serial communications are the two most common timing
schemes used for serial communication.

RS232 is a common standard for asynchronous serial communication, and it uses +/- 12 V.
Although the SX can send TTL signals directly to an RS232 input and receive RS232 signals via
a series resistor, this connection scheme is only recommended for experimentation.

Unit 9: Simple Hardware I/O Enhancements

Page 134 • Beginning Assembly Language for the SX Microcontroller

Specialized RS232 line driver, receiver, and transceiver ICs can be used for much more
foolproof communication between the SX and RS232 I/O.

Exercises
1. Which of the following is a characteristic of asynchronous communications?

(a) An external clock signal
(b) Bits take a variable amount of time
(c) Each byte begins with a start bit
(d) The transmitter sends 1, 1.5, or 2 bits at once

2. A sensor emits 0 V when off and 3 V when on. What techniques could you use to read it
with an SX? (Select all that apply)
 (a) Read the value directly with CMOS input thresholds
 (b) Use a 2N2222 transistor to switch on when the signal is present
 (c) Use a voltage divider with two resistors
 (d) Use an external A/D converter

3. Which of the following is a characteristic of RS-232?

(a) RS-232 uses the same line for transmitting and receiving
(b) RS-232 does not require transmitter and receiver to agree on speed
(c) All bits in an RS-232 byte require the same amount of time to send
(d) Real-world RS-232 devices use positive and negative voltages to indicate 0s and
1s

 Unit 9: Simple Hardware I/O Enhancements

 Beginning Assembly Language for the SX Microcontroller • Page 135

Answers
1. (c) is the correct answer. Each byte begins with a start bit used to synchronize the receiver.

2. (a) and (b) are correct. Although you might argue that (d) would do the job, there is no
need to measure the precise voltage of the sensor; only two voltages are required. Directly
connecting the sensor to an SX pin would work, although the circuit will be more prone to
noise errors than if you use method (b).

3. (d) is the correct answer. Although most bits require the same time to send, stop bits may
be longer than 1 bit, so (c) is not correct.

 Unit 10: A Software UART – The Transmitter

 Beginning Assembly Language for the SX Microcontroller • Page 137

Unit 10: A Software UART – The
Transmitter

Asynchronous serial data is very popular in the real world. Modems, terminals, mice, and
printers can all use RS-232 ports to communicate with a variety of computers. Because of this
popularity, single ICs that can handle RS-232 communications arrived on the scene even
before microcontrollers became popular. These chips were called UARTs (for Universal
Asynchronous Receiver and Transmitter).

In this course, you’ll build a variety of software-only UARTs using the SX’s speed to simulate a
UART and still leave time for your actual program. In this unit, you’ll examine the transmitter
portion only. To avoid confusion, I’ll continue to refer to a UART, even though in this unit the
code only transmits.

Sometimes transmitting is all you need. For example, suppose you have a remote weather
station that should send the temperature, wind speed, and wind direction to a remote
receiver. This system may not require a receiver. It simply broadcasts its data to whoever is
listening on the other end.

UART Transmission Logic
There are a few things you need to think about when designing a serial transmitter:

• What state is the line in while idle?
• How long should each bit last?
• How many bits are transmitted?
• Does the least-significant bit appear first or last?
• How long is the minimum idle between characters (the stop bit)?

For RS-232 many of these things can’t change. For example, you send bits least-significant
first. The baud rate corresponds to the number of bits per second, and therefore, the length of
each bit is the reciprocal of the baud rate. So at 9600 baud, for example, each bit’s period is
1/9600 or about 104 microseconds. The receiver and the transmitter agree on the minimum
length of the stop bit and this is usually the same as the bit period.

The only remaining question then is what state is the line in while idle? This varies depending
on the hardware design. If you are connecting to the TTL side of an inverting line driver (like a
MAX232), the line should be high when idle. If you are connecting directly to an RS-232
receiver (which, as mentioned earlier, is not always going to work) the line should be low

Unit 10: A Software UART – The Transmitter

Page 138 • Beginning Assembly Language for the SX Microcontroller

when idle. Figure 10-1 is an RS-232 transmission of an ASCII “A” character (%01000001).
Notice the bits are inverted and the least-significant bit is first.

Figure 10-1: RS-232 Transmission

Creating the Code
The Parallax Web site contains several UART routines. Actually, one of these implements 8
19.2 K UARTs! Another example allows you to configure the UART to operate between 2400
and 230.4 K baud.
That's a bit of overkill for this application. However, there is no shortage of examples to study.

One approach would be to use part of your ordinary program to directly manipulate the output
port. This would work, but it would also tie up your program for the entire duration of the byte
you wanted to send. It would also prevent you from sending characters while anything else
was happening.

 Unit 10: A Software UART – The Transmitter

 Beginning Assembly Language for the SX Microcontroller • Page 139

A better idea is to send the bits from within an interrupt service routine (ISR). You can set up
a periodic interrupt that is faster than the bit rate and do all the work during the ISR. This
makes even more sense when you consider that to receive serial data (the next logical step)
you’ll almost have to use interrupts unless you plan to do nothing but wait for the input’s start
bit.

You can find a simple UART transmitter in the section at the end of this unit entitled The
Transmitter Code. This UART is fixed at a rate of 19.2Kbaud (19,200 baud) and directly drives
an RS-232 receiver with 8 bits and no stop bit.

When the main program wants to send a character, it calls send_byte with the character in
the w register. This routine loads the character into the top 8 bits of the 16-bit transmit
register (tx_high and tx_low). In reality, the code only uses 10 bits of the register since only
tx_low.7 and tx_low.6 make any difference. The send_byte routine clears the top bit (bit
7) of tx_low – this corresponds to the start bit. The ISR will invert the bits, so a 0 will
represent a high start bit.

Finally, send_byte sets the tx_count variable to 10. This is the bit count; 8 bits + 1 start bit
+ 1 stop bit. The routine, by the way, waits for tx_count to be zero to prevent overwriting an
output byte in progress.

All the real work occurs in the interrupt routine. The first section examines tx_count. If this
variable is zero, no transmission is pending, and there is no reason to do any further
processing.

The second section simply decrements a counter (tx_divide) by 1 and if the counter is not
zero, the ISR returns immediately. This has the effect of dividing the interrupt rate by 16. Of
course, you could program the interrupt to occur once per bit period, but this method allows
you to easily change the baud rate. For example, setting the division rate (txdivisor) to 32
will result in a 9600 baud speed. If you need 4800 baud you could set txdivisor to 64. You’ll
read more about baud rate calculations in the next section. Also, when receiving characters
you’ll need multiple interrupts per bit time anyway, as you’ll see in a later unit.

If it is time for a new bit, the ISR shifts the 16-bit transmit register to the right one place.
Before it does this, it sets the carry bit. This will ensure that the final bit (or bits) will be high –
just what you need for the stop bit (since the output is inverted). The output bit, represented
by tx_low.6, is written out (inverted) to the I/O port. The tx_count variable, of course, is
decremented. Shifting right means the least-significant bits go out first, as required by RS232.

Once the bit is written, the ISR is done, so it exits, scheduling itself to run again 163 clock
cycles after the last interrupt. The main code spends most of its time waiting for tx_count to

Unit 10: A Software UART – The Transmitter

Page 140 • Beginning Assembly Language for the SX Microcontroller

drop to zero (in the send_byte routine) so that it can send the next byte. Of course, a real
program would probably have much more work to do while the ISR is sending data.

Calculating Baud Rates
Calculating the baud rate can sometimes seem like a black art, but with a little thought, it isn’t
too difficult. The SX, in this case, is running at 50 Mhz, which corresponds to 1/50000000, or
20 ns per clock cycle. The ISR will execute every 163 clock cycles or 3.26 µs. Finally, the ISR
only executes every 16 interrupts, so the code runs every 52.16 µs. The desired baud rate is
19200 bits per second, which is 1/19200 or 52.08 µs. The 52.16 µs period is only off by 0.15%
-- close enough for practical purposes.

Obviously, you can alter this equation to suit your needs. Suppose you want to run the SX at
10 MHz instead of 50 MHz and work at 9600 baud? This lower clock frequency would reduce
power consumption, but it will also require you to recalculate the interrupt rates.

Each clock cycle in this case is 100 ns. The total bit time is about 104.2 µs. Dividing 104.2 µs
by 100 ns tells you that each bit will require 1042 clock cycles. Of course, you can only
program the timer with an 8 bit number, so you can’t program the timer to directly interrupt
every 1042 clock cycles.

If you select a timer rate of 50 cycles, the interrupt will occur every 5 µs (handy for later
generating a real-time clock). The interrupt divisor can then be 21. This, of course, is not
exactly correct (it should be 20.84). Is this too far off?

To determine this, reverse the calculations to find out the true bit time: 21 x 5 µs is 105 µs, an
error of only 0.77%. This is well within the tolerance of any real-world device.

When selecting these values, you need to consider how many clock cycles your ISR requires to
execute. In this example, the interrupt will occur every 50 clock cycles. If the ISR requires 50
clock cycles or more to execute, you’ll have a problem. Even if the ISR approaches 50 clock
cycles, you may not be able to use the numbers you calculate. Why? Suppose the ISR requires
40 cycles. This leaves only 10 cycles out of 50 to process your main program! So in 5 µs, the
ISR will use up 4 µs, and the main code can execute for 1 µs.

If you run into this problem, you can adjust the clock period up and the divisor value down.
For example, 75 cycles in the last example results in a 7.5 µs interrupt time. With a divisor
value of 14 this leads to a 105 µs bit period (off by less than 1%).

The simple transmitter code only requires 21 cycles (maximum) so in this case 50 cycles
between interrupts is plenty. Remember that 21 cycles is the worst case. Most of the time the
ISR only require 9 or 11 cycles so there is plenty of time left over for the main program.

 Unit 10: A Software UART – The Transmitter

 Beginning Assembly Language for the SX Microcontroller • Page 141

Configuration
The program at the end of this unit simply transmits “ABC” repeatedly as fast as possible. The
data bit is inverted so you can just directly connect the output pin (RA.3) to a PC’s serial
input. If you are using a DB9 connector, attach the DB9’s pin 2 to the SX’s RA.3 pin. You’ll
also need to connect the DB9’s pin 5 to a common ground (Vss) on your SX-Tech board.

What if you wanted to use a serial line driver (like a MAX232, for example)? You’d need to
stop inverting the data output. The actual output operation occurs in this line of code (found
just above the noisr label):

 movb tx_pin,/tx_low.6 ; output next bit

The slash character (/) indicates that the SX should invert the bit before writing it to tx_pin.
You’ll notice that near the top of the program, tx_pin is set to equal ra.3. This allows you to
easily configure the program to use a different pin. Of course, if you change the port
assignment, you’d need to change the initialization of the port registers too. For example, if
you wanted to use ra.0, you’d also need to change the initialization code from:

reset_entry mov ra,#%0000 ;init ra
 mov !ra,#%0111

to:
reset_entry mov ra,#%0000 ;init ra
 mov !ra,#%1110

Naturally if you wanted to use a pin on port B or C you’d have even more changes to make.

If you wanted to handle a line driver, you could remove the slash on the movb command so
that it read:
 movb tx_pin,tx_low.6 ; output next bit

You’d also want to change the initialization code to:

reset_entry mov ra,#%1000 ;init ra
 mov !ra,#%0111

Since the idle state of the line is high when using a driver.

Obviously, making changes involves a lot of trouble. This is where the SX-Key’s macro
capabilities can be very handy.

For example, consider the inverted bit change. You could define a single symbol near the top
of the program that controls the inversion:

Unit 10: A Software UART – The Transmitter

Page 142 • Beginning Assembly Language for the SX Microcontroller

linedriver equ 0 ;1 if using line driver

Then in the remainder of the code, you can use IF to selectively assemble different code. For
example:

IF linedriver=0
 movb tx_pin,/tx_low.6 ; output next bit
 ELSE
 movb tx_pin,tx_low.6 ; output next bit
ENDIF

Of course, you’d have to wrap each change with an IF statement. Keep in mind that this does
not perform the logic at run time. It makes the comparison during the assembly process. This
causes the assembler to only process one statement or the other. In this case, there is only
one statement, but you can place as many statements as you like between the IF and the
ELSE and the ELSE and the ENDIF. You don’t have to use the ELSE statement if you don’t
want an alternative block of code. You can even nest one IF inside another:

IF someoption = 1
 mov w,#100
 IF anotheroption = 1
 mov avar,w
 ELSE
 mov var,w
 ENDIF
ENDIF

Another way to use IF is to use IFDEF and IFNDEF. Using these instead of IF allow you to
test if a symbol is defined (or not defined in the case of IFNDEF).

 Unit 10: A Software UART – The Transmitter

 Beginning Assembly Language for the SX Microcontroller • Page 143

You may have noticed that when a program sets a symbol value, it might use the
equ directive, or it might use an equal sign (=). For example:

somevalue equ 100

or:

somevalue = 100

These statements do the same thing, with one important difference. Once you
use equ you can’t change the value of the symbol later. When you use the equal
sign, you can decide to change the value later. For the purpose of these
programs, equ is probably the best bet, but it doesn’t make much difference.
However, when you construct macros, you might want to change the value of the
symbol as part of macro processing. Then you’d avoid using equ.

Testing the Transmitter
If you enter the code listed under The Transmitter Code at the end of this unit, you should be
able to run it with the SX-Key’s Run command. Connect RA.3 to pin 2 of a DB9 connector and
Vss to pin 5 of the connector. Then use a normal 9-pin serial cable to connect the DB9
connector to a free serial port on your PC. You should use a serial port that is not otherwise in
use. Also, on many PCs, you can’t use COM1 and COM3 or COM2 and COM4 at the same time.

You can use any terminal program to see the results. If you are using Microsoft Windows, you
can use the Hyperterminal program. Simply create a new connection that uses the serial port
you’ve used to connect to the SX. Make sure to select 19200 baud, 8 bits, 1 stop bit, no parity,
and no handshaking, as in Figure 10-2.

Unit 10: A Software UART – The Transmitter

Page 144 • Beginning Assembly Language for the SX Microcontroller

Figure 10-2: HyperTerminal Setup

You should observe the characters on the terminal window’s screen. Troubleshooting serial
problems is always tricky, but here are a few things to look for:

• If the terminal program complains that there is an error, you have no hope of
anything working. You’ll first need to find a free port, or close software using the port
already.

• You should use a straight cable (or connect to DB9 pin 3 if the cable is crossed). You
can determine if the cable is straight by measuring the pins with an ohmmeter. A
straight cable connects pin 2 on one side to pin 2 on the other side (and the same for
pin 3). A crossed cable will connect pin 2 on one side with pin 3 on the other side
(and vice versa).

• As mentioned before, the baud rate and other parameters must match exactly.
• Make sure the DB9’s ground pin (pin 5) is connected to the same ground as the SX-

Tech board.

 Unit 10: A Software UART – The Transmitter

 Beginning Assembly Language for the SX Microcontroller • Page 145

• It is possible that the PC you are using will not accept RS-232 levels of 0 and 5 V. If
this is the case, try another PC if possible. You can also use a line driver like the
Maxim MAX232. Virtually all modern desktop computers will work without a line
driver. Laptops seem more questionable, but even then, many will work.

Debugging ISRs
Once you have the code running you might be tempted to use the SX’s debugging capability.
You can do this of course, but there are a few things you should know. First, the ISR will not
work properly while debugging. After all, the whole premise that the serial transmitter
operates on is that an interrupt will occur at a regular period. When you stop at a breakpoint,
this upsets that assumption.

If you let the SX run at full speed under the debugger, the transmitter will work. Then you
can’t really peek into its execution very well. If you are trying to see what happens inside the
ISR, the best idea is to place a breakpoint in the ISR code and let the processor run. Of
course, the ISR’s timing will be thrown off, but you can reliably see the flow of execution.

If you are stepping through non-interrupt code, don’t be surprised if you suddenly find
yourself inside the ISR (this happens when an interrupt occurs). If you don’t want to step
through each line of the ISR, simply place a breakpoint on the RETIW instruction and then
step from there. Either way, the timing of the interrupt routine will be affected.

Unit 10: A Software UART – The Transmitter

Page 146 • Beginning Assembly Language for the SX Microcontroller

Summary
A serial transmitter, while useful in its own right, is only half of the story. While some devices
only transmit, most will want to transmit and receive. In the next unit, you’ll examine a case
where transmitting data is sufficient. Later, you’ll see how to handle serial data reception and
then marry the two pieces to create a true software UART.

The Transmitter Code

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 10.1
;19.2K RS232 transmitter
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 freq 50000000
 reset reset_entry
;
;
; I/O definition
;
tx_pin = ra.3
;
;
; Variables
;
 org 8

temp ds 1

 org 10h
serial = $

tx_high ds 1
tx_low ds 1
tx_count ds 1
tx_divide ds 1
txdivisor equ 16 ; 16 periods per bit

 org 0
;
;
; Interrupt routine - UART
;

 Unit 10: A Software UART – The Transmitter

 Beginning Assembly Language for the SX Microcontroller • Page 147

interrupt
 bank serial
 test tx_count ; busy?
 jz noisr ; no byte being sent
 dec tx_divide
 jnz noisr
 mov tx_divide,#txdivisor ; ready for next

 stc ; ready stop bit
 rr tx_high ; go to next bit
 rr tx_low
 dec tx_count ; count-1
 movb tx_pin,/tx_low.6 ; output next bit
noisr
 mov w,#-163 ;interrupt every 163 clocks
 retiw
;

;***
;
;
; Send byte via serial port
;
send_byte bank serial

:wait test tx_count ;wait for not busy
 jnz :wait

 mov tx_high,w
 clrb tx_low.7 ; set start bit
 mov tx_count,#10 ;1 start + 8 data + 1 stop bit
 ret

reset_entry mov ra,#%0000 ;init ra
 mov !ra,#%0111

 clr fsr ;reset all ram banks
:loop setb fsr.4
 clr ind
 ijnz fsr,:loop
 mov tx_divide,txdivisor
 mov !option,#%10011111

; **** Your code goes here ****
xloop
 mov w,#'A'
 call send_byte
 mov w,#'B'
 call send_byte
 mov w,#'C'
 call send_byte

Unit 10: A Software UART – The Transmitter

Page 148 • Beginning Assembly Language for the SX Microcontroller

 mov w,#13
 call send_byte
 mov w,#10
 call send_byte
 jmp xloop

Exercises

1. After you have the transmitter code working, alter it so that it operates at 20 MHz and
works at 9600 baud. Calculate the error your code will have compared to the ideal as a
percentage.

2. Use equates to set the interrupt period so you can easily change it from its default value of
-163.

3. Use equates and the IF directive to allow you to select the baud rate using a line like this:

baudrate = 9600

 Unit 10: A Software UART – The Transmitter

 Beginning Assembly Language for the SX Microcontroller • Page 149

Answers
1. There are many possible answers to this question. Changing the interrupt divisor from 16 to
13 would work (without changing the –163 in the ISR). This results in a bit period of 105.95
µs, and error of about 1.4% -- a bit high but probably acceptable for most devices. Changing
the –163 to –80 and setting the interrupt divisor to 26 results in 104 µs, an error of less than
0.5%. Your answer should use an interrupt period high enough to allow processing and less
than 255.

2. Simply add this line near the top of the file (after the txdivisor value is set is a good spot):

isrperiod equ –163

Then you also have to modify the line before the iretw statement to read:

 mov w,#isrperiod

3. There are several ways you could do this. Here is one example (assuming a 50 MHz clock):

baudrate = 9600
 IF baudrate = 19200
isrperiod equ -163
txdivisor equ 16
 ENDIF

 IF baudrate = 9600
isrperiod equ -163
txdivisor equ 32
 ENDIF

 .
 .

 Unit 11: Analog Input

 Beginning Assembly Language for the SX Microcontroller • Page 151

Unit 11: Analog Input

The SX is, of course, a digital device. The classic way to interface an analog input to a digital
device is to use an Analog to Digital converter (ADC or A/D). This is certainly possible with the
SX. Many vendors make suitable ADCs that connect using some type of serial connection.
There are also many ADCs that use parallel connections, but these take many pins and are
usually less suitable for use with the SX.

However, because of the SX’s speed and special features, you can perform analog input using
just two resistors and a capacitor. Does that seem to good to be true? Well, there are some
limitations to this technique, but in general you can make the SX read an analog voltage in this
way.

The Simple ADC
Figure 11-1 is the circuitry required to form the simple ADC:

Figure 11-1: The Simple ADC Circuit

You can use a potentiometer to provide the analog input, or use a variable power supply. If
you use a potentiometer, simply wire it as a voltage divider – place +5 V at one end, ground
at the other end, and connect the center (the wiper) to the analog input pin. You could
consider this technique one way to measure the position of a potentiometer, although it is
really reading the voltage level developed at the junction of the resistors and the capacitor.

At first glance this doesn’t seem likely to make an ADC. How does it work? The answer lies in
two features of the SX. First, the SX can select a CMOS input threshold mode for input pins. In
this mode, the input sees 2.5 V as a 1 and anything below that to be a 0. The second feature
this scheme relies on is sheer speed. In the schematic, RB0 is an output and RB1 is an input.
The SX, via a periodic interrupt, modulates the output pin so that the input (RB1) hovers
around the 2.5 V threshold. Along the way the program counts how often the capacitor has
charged up past 2.5 V and required a discharge. After 255 cycles, this count will be

Unit 11: Analog Input

Page 152 • Beginning Assembly Language for the SX Microcontroller

proportional to the voltage (as a percentage of 5 V). So a 5 V input will read 255 counts. A 2.5
V input should read 128 counts.

Here is the basic logic written in pseudo code:

• Read the input bit
• Invert the input bit
• Write the inverted input to the output
• If the output was 0 (capacitor discharge), add 1 to the voltage count
• Add 1 to the cycle count
• If 256 cycles have elapsed (the cycle count is 0), copy the result, set a flag, and zero

the voltage count

The code does not explicitly repeat because it executes during a periodic interrupt (much as
the UART did in the last unit).

If you take a minute to study the code in this easy-to-understand form, you can discern its
operating principle. The processor tries to reverse the state of the input on each cycle. The
number of discharge reversals is proportional to the input voltage. Consider the two extreme
cases. If the input is stuck at 0 V, the SX will never charge the capacitor, and will never need
to discharge it. Therefore, the count should be 0. If the input is at 5 V, the SX will never
successfully discharge the capacitor and will try on each cycle leading to a count of 255. If the
input is 2.5 V, you’d expect it to alternate between charging and discharging leading to a
count of 128 since the code will only count up on alternate cycles.

In real life, the result will not be the same each time. The last bit or two will tend to shift back
and forth and small imprecisions in the circuit elements will create small variations in the
result. Still, for such a simple circuit the accuracy isn’t bad and the value is quite useful for
many applications.

Writing the Code
Implementing the A/D in software isn’t that hard once you have the idea. Of course, during
initialization you must set one pin to an input and the other to output. You also have to set the
input threshold to CMOS by manipulating the I/O port option register. Assuming you want to
use RB0 and RB1 for the A/D (and you don’t care about the rest of port B) you could use this
code:

 clr rb ;init rb
 mov !rb,#%00000010
 mov m,#$D ;set cmos input levels
 mov !rb,#0
 mov m,#$F

 Unit 11: Analog Input

 Beginning Assembly Language for the SX Microcontroller • Page 153

You can find the complete code at the end of this unit. Setting the m register to $D allows you
to set the threshold options (this is not the case on an SX48/52, which requires a $10 and $1F,
respectively). Clearing !rb sets the CMOS input level. Setting m back to $F is a good idea so
you don’t forget later in your program that the !rb register doesn’t have its usual properties.

The interrupt routine follows the outline of the pseudo code:

bank analog

; shifting moves the input bit to the output bit
 mov w,>>rb ; read capacitor level
 not w ; invert
 and w,#%00000001 ; write to output
 mov port_buff,w
 mov rb,w ; and update pins

 sb port_buff.0
 incsz adc0_acc ; if it was high, inc acc
 inc adc0_acc
 dec adc0_acc ;inc/inc/decprevents rollover
 inc adc_count ; done (8 bits)?
 jnz adc_out
; Done so store result
 mov adc0,adc0_acc
 setb complete.0 ; set complete flag
; clear for next pass
 clr adc0_acc
; standard UART transmit
 .
 .
 .

The interrupt routine continuously measures the input. When it completes 256 cycles
(indicated by the adc_count variable) it sets the complete flag and copies the result (in
adc0_acc) to adc0. This allows the interrupt routine to continue with the next calculation
while the main program reads the previous value. Here is an excerpt from the main program:

:wait jnb complete.0,:wait ; wait for data ready
 mov w,adc0
 clrb complete.0 ; set up to wait again

Unit 11: Analog Input

Page 154 • Beginning Assembly Language for the SX Microcontroller

Mixing Interrupt Routines
The example program reads the analog input value and converts the raw hexadecimal value to
2 ASCII characters. It then uses the UART transmitter from the last unit to send this value to a
PC. Each measurement ends with a carriage return. You can view the output with any terminal
program (for example, Hyperterminal as used in the last unit). Of course, if you can write PC
programs you could also write a custom program to post process and store the data.

This example uses the interrupt routine for analog conversion along with the UART transmitter
routine. When you mix routines you have to consider several important factors:

• Can the routines share an interrupt period?
• Does either of the routines take a constant time to execute?
• Does one or more routines need a precise period?
• What is the total execution time of the two routines?

If you can adjust the routines to use the same interrupt period, you’ll have less trouble.
However, this isn’t always possible. Sometimes you can set the interrupt period to a fast time
and use counters to divide the time for the routines that need it. For example, suppose one
interrupt routine needs to execute every 300 µs and the other needs to execute every 500 µs.
You might consider setting the interrupt period to 100 µs and use a counter to allow the first
routine to execute on every third interrupt and the second routine to execute on every fifth
interrupt.

The other concern is how precise do you need the timing for each routine? Suppose you set
the interrupt to occur every 200 µs. The first routine takes somewhere between 300 ns and
700 ns to execute. Then the second routine will not necessarily run every 200 µs.

As an example, try using some numbers that are easier to work with (although unrealistic).
Suppose your interrupt occurs every 10 seconds. Further suppose that routine A usually takes
1 second to execute. However, every third interrupt, routine A requires 3 seconds. Routine B
always takes 1 second to execute. Finally, imagine that the first interrupt occurs when your
mental stopwatch begins (T=0). Table 11-1 how your imaginary system would work:

 Unit 11: Analog Input

 Beginning Assembly Language for the SX Microcontroller • Page 155

Table 11-1: Interrupts
T Action Elapsed Time
0 Routine A N/A
1 Routine B N/A
10 Routine A 10
11 Routine B 10
20 Routine A 10
23 Routine B 12
30 Routine A 10
31 Routine B 8
40 Routine A 10
41 Routine B 10

You can see that routine B will not run every 10 seconds as you’d expect. Since your program
normally sees errors in the micro or nanosecond range (not in seconds), this may not be a
problem. The program for this unit, for example, can easily tolerate a small error in the RS-232
bit rate. However, the A/D code is less accurate if the time period is inexact. That’s why the
A/D code appears first in the interrupt handler.

Sometimes you can write your code so that it takes a constant amount of time to execute. For
example, consider this code:

 jz intb
 inc ctr1
intb

If the jump is not taken, this code requires 3 cycles to execute. If the jump is taken, it
requires 4. You could compensate for this by rewriting the code:

 jz intb
 inc ctr1
 nop
intb

Now the code requires the same amount of time to execute no matter what. The nop
instruction just wastes an instruction cycle. If you need to waste three cycles, you can save
some space by using jmp $+1. This instruction effectively does nothing but wastes three
cycles instead of just one.

If you need to write lots of nops you can use the REPT directive. This is an instruction to the
assembler that allows you to repeat a sequence of instructions. For example:

Unit 11: Analog Input

Page 156 • Beginning Assembly Language for the SX Microcontroller

 REPT 10
 NOP
 ENDR

This inserts 10 nop instructions into your code. You can use the per cent character (%) to
return the current repeat number (starting with 1). So to insert a table with the numbers 1
through 5 in it you could write:

table5
 dw 1
 dw 2
 dw 3
 dw 4
 dw 5

Or you could write:

table5 REPT 5
 dw %
 ENDR

If you wanted the numbers 0 to 4 instead, you’d use dw %-1 in the middle of the REPT
block.

The REPT block is one place where you have to be careful with labels. Suppose you wanted to
repeat a 3 cycle nop. You might write:

 REPT 10
 jmp here
here
 ENDR

This makes sense, but it fails because it defines the here label 10 times. Even local labels
won’t work. Instead, use $ to reference the current location:

 REPT 10
 jmp $+1
 ENDR

You could also use this form, but it isn’t as elegant:

here ; must be on a separate line
 REPT 10
 jmp here+%

 Unit 11: Analog Input

 Beginning Assembly Language for the SX Microcontroller • Page 157

 ENDR

Hex Conversion
The hex conversion routine might need a little study before it becomes clear. The send_hex
routine stores the number in number_low so it can retrieve the value later. Notice this
instruction:
 mov w,<>number_low ;send first digit

This swaps the two four-bit halves of number_low and stores the result in w. So if the
original number was $A1, w now contains $1A. The program then calls :digit which isolates
the bottom four bits and converts it to ASCII (more on that routine later).

Once :digit is complete, the program reloads w from number_low and then just drops into
the :digit routine. This is a special form of a technique known as the hidden return. It makes
your code somewhat harder to read, but it saves valuable program space.

In your program, you can use the hidden return by spotting places where you have code that
looks like this:

 call b
 ret

Since routine b must end in a ret instruction, you can replace these two lines with a single
jmp b instruction. The hex conversion routine takes this idea one step further. By positioning
the b routine at this spot in the program, you can eliminate both lines of code. Any other part
of the program that calls b doesn’t really care where it is located. Don’t forget that the SX call
instruction does require you to keep your subroutines in the first half of each page, however.

If you want to document this hidden return, you can put the missing instructions
in as a comment. For example, you might write:

 jmp b ; call b
 ;ret

Or, if you’ve deleted everything, you could write:

 ; call b
 ;ret
b mov x,100.

Unit 11: Analog Input

Page 158 • Beginning Assembly Language for the SX Microcontroller

Table Lookup
The :digit routine uses the iread instruction to lookup the correct ASCII character. The iread
instruction retrieves a value from the SX’s program memory. The SX has enough memory
space that a single byte can’t address it all, so the iread instruction forms an address using
the M register and the w register. So if you want to read location $200, you’d set M to 2 and
w to 0. Of course, it is a good idea to restore M to its default value when you are done.

The M register is 4 bits wide, so you can form a 12-bit address. The resulting word is also 12-
bits wide and iread returns the result in the M and w registers. In this case, the program is
only interested in the byte result, so it discards what is in M.

The iread instruction is somewhat expensive (4 cycles in turbo mode). There is another way
you can create a table – using the retw command. Suppose you want to construct a table
that has the square of a number between 0 and 3. You could write a subroutine like this:

lookup2 jmp PC+W
 retw 0
 retw 1
 retw 4
 retw 9

You could extend this to any number of entries less than 255. Now when you call lookup2,
the value in the w register causes a jump to the correct return statement. The assembler will
also let you put the values together as in:

 retw 0,1,4,9

A Word about Input Impedance
If you do some serious measurements with the A/D converter presented in this unit, you will
find that the results may not match what you expect. The problem is that the input resistors
set the circuit’s input impedance, which is relatively low (for practical purposes, 11 kΩ – the
value of both resistors in parallel). You can combat this somewhat with higher-value resistors,
but at some point, it becomes too difficult to charge and discharge the capacitor, so accuracy
suffers again.

If all you care about is measuring the position of a potentiometer or a relative voltage, you
probably don’t care. For serious work, however, you’d want to use an op-amp buffer. Any
general-purpose op-amp (for example, a 741 or a 324) could be connected as a non-inverting
amplifier and would present a very high input impedance to the circuit. This would improve
accuracy considerably. Just remember that many op-amp circuits require positive and negative
voltages higher than the voltages they have to handle (for example, + and – 12 V supplies are
common).

 Unit 11: Analog Input

 Beginning Assembly Language for the SX Microcontroller • Page 159

The Complete A/D

Converter Code
;===
;Beginning Assembly Language for the SX Microcontroller
;Program 11.1
;Simple A/D Converter
;===
; Device
;
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset reset_entry
;
;
; Equates
;
tx_pin = ra.3
adc0_out_pin = rb.0
adc0_in_pin = rb.1
;
;
; Variables
;
 org 8

temp ds 1
number_low ds 1
complete ds 1 ; bit 0 = 1 when complete
; holding for voltages
v0 ds 1

 org 10h
serial = $

tx_high ds 1 ;tx
tx_low ds 1
tx_count ds 1
tx_divide ds 1
txdivisor = 16 ; 16 periods per bit

 org 30h
analog = $

port_buff ds 1 ;buffer - used by all

adc0 ds 1 ;adc0

Unit 11: Analog Input

Page 160 • Beginning Assembly Language for the SX Microcontroller

adc0_acc ds 1

adc_count ds 1 ; count for both ADCs

 org 0
;
;
; Interrupt routine - ADC + UART
;
interrupt
 bank analog

; shifting moves the input bit to the output bit
 mov w,>>rb ; read capacitor level
 not w ; invert
 and w,#%00000001 ; write to output
 mov port_buff,w
 mov rb,w ; and update pins

 sb port_buff.0 ; adc0
 incsz adc0_acc ; if it was high, inc acc
 inc adc0_acc
 dec adc0_acc ; inc/inc/dec prevents rollover
 inc adc_count ; done (8 bits)?
 jnz adc_out
; Done so store result
 mov adc0,adc0_acc
 setb complete.0 ; set complete flag
; clear for next pass
 clr adc0_acc
; standard UART transmit
adc_out
 bank serial
 dec tx_divide
 jnz noisr
 mov tx_divide,#txdivisor ; ready for next

 test tx_count ; busy?
 jz noisr ; no byte being sent
 stc ; ready stop bit
 rr tx_high
 rr tx_low
 dec tx_count
 movb tx_pin,/tx_low.6 ;output next bit
noisr
 mov w,#-163 ;interrupt every 163 clocks
 retiw
;

; required to output HEX numbers

 Unit 11: Analog Input

 Beginning Assembly Language for the SX Microcontroller • Page 161

_hex dw '0123456789ABCDEF'
;
;
;***
;* Subroutines *

; Send hex byte (2 digits)
;
send_hex
 mov number_low,w ; save W
 mov w,<>number_low ; send first digit
 call :digit

 mov w,number_low ; send second digit

:digit and w,#$F ; read hex chr
 mov temp,w
 mov w,#_hex
 clc ; just in case +c is enabled
 add w,temp
 mov m,#0
 iread ; read from program mem!
 mov m,#$F

; fall into send byte

;***
;
;
; Send byte via serial port
;
send_byte bank serial

:wait test tx_count ;wait for not busy
 jnz :wait

 mov tx_high,w
 clrb tx_low.7 ; set start bit

 mov tx_count,#10 ;1 start + 8 data + 1 stop bit
 ret
reset_entry mov ra,#%1000 ;init ra
 mov !ra,#%0111
 clr rb ;init rb
 mov !rb,#%00000010
 mov m,#$D ;set cmos input levels
 mov !rb,#0
 mov m,#$F

 clr fsr ;reset all ram banks

Unit 11: Analog Input

Page 162 • Beginning Assembly Language for the SX Microcontroller

:loop setb fsr.4
 clr ind
 ijnz fsr,:loop
 mov tx_divide,txdivisor
 mov !option,#%10011111

; **** Your code goes here ****
top ; main loop
 bank analog
:wait jnb complete.0,:wait ; wait for data ready
 mov w,adc0
 clrb complete.0 ; get ready to wait again
 call send_hex ; write out
 mov w,#13 ; send cr
 call send_byte
 jmp top

 Unit 11: Analog Input

 Beginning Assembly Language for the SX Microcontroller • Page 163

Summary
Although the SX is primarily a digital device, its speed allows it to handle certain analog
quantities. Under the right circumstances, employing techniques like this can save money by
eliminating the need for an inventory of special processors or dedicated A/D chips.

Along with analog conversion, this unit explored the REPT directive and some interesting ways
to handle table lookups. The programs are getting more complicated and you’ll find directives
like REPT more useful as you build more sophisticated programs.

Exercises
1. Add a second A/D channel using port B2 and B3. Have the program send both values then a
carriage return.

2. Set the baudrate to 300 baud by changing its interrupt period to 10432 clocks, but keep the
A/D running at the same rate (163 clock cycles).

3. Optional: If you are familiar with a PC programming language, write a program that reads
the values from the program, calculates the voltage and displays it. The solution uses QBASIC
under MSDOS.

Unit 11: Analog Input

Page 164 • Beginning Assembly Language for the SX Microcontroller

Answers
(All). You must modify the code in several places to accomplish this task. First, you must set
the correct pattern of I/O pins during initialization:

 mov !rb,#%00001010

You’ll also have to add corresponding lines to the interrupt routine:

 mov w,>>rb ; read capacitor level
 not w ; invert
 and w,#%00000101 ; write to output
 mov port_buff,w
 mov rb,w ; and update pins

 sb port_buff.0 ; adc0
 incsz adc0_acc ; if it was high, inc acc
 inc adc0_acc
 dec adc0_acc ;inc/inc/dec prevents
 ; rollover
 sb port_buff.2 ; adc1
 incsz adc1_acc ; if it was high, inc acc
 inc adc1_acc
 dec adc1_acc ;inc/inc/dec prevents
 ; rollover
 inc adc_count ; done (8 bits)?
 jnz adc_out
; Done so store result
 mov adc0,adc0_acc
 mov adc1,adc1_acc
 setb complete.0 ; set complete flag
; clear for next pass
 clr adc0_acc
 clr adc1_acc

The lines with underlines beneath them are changes to the existing code. Of course, you also
have to define the adc1_acc, and adc1 variables. Finally, you can modify the main program:

top ; main loop
 bank analog
:wait jnb complete.0,:wait ; wait for data ready
 mov v1,adc1 ; hold temporary v1

 Unit 11: Analog Input

 Beginning Assembly Language for the SX Microcontroller • Page 165

 mov w,adc0
 clrb complete.0 ; get ready to wait again
 call send_hex ; write out
 mov w,v1
 call send_hex
 mov w,#13 ; send cr
 call send_byte
 jmp top

It is important to store the value in a temporary variable (the new v1 variable) so that the two
values are from the same measurement time. Without this new variable, it would be possible
for the channel 1 value to change while you were writing out the value for channel 0. In this
example, it doesn’t make much difference. In real life, you’d probably want the two values to
correspond to each other.

1. The easiest way to accomplish this is to put a 64x divider in front of the UART code using
a new variable:

adc_out
 inc x64
 jnb x64.6,noisr
 clr x64
 bank serial

This allows the A/D code to continue running at a 163 clock cycle period, but effectively only
runs the UART transmitter every 10432 clock cycles. Since 19200 baud is 64 times 300 baud,
the txdivisor value need not change. If the question had asked to move to, for example,
9600 baud, you could simply adjust the txdivisor value, but in this case the speed difference
was too great to be held in a single byte.

2. Your solution to this problem will vary depending on what languages you have at your
disposal. The following program uses QBASIC (this BASIC comes with many versions of
MSDOS and Windows – you can also find it in the Windows Resource Kit). It assumes the SX is
attached to COM1 and is operating at 300 baud.

' Simple program to read a voltage
DIM c AS STRING
DIM v AS STRING
DIM eu AS SINGLE
COM(1) ON
ON COM(1) GOSUB ComHandler ' go here when characters available
start:
' open com1 no handshaking, 32k buffer
OPEN "COM1:300,n,8,1,CD0,CS0,DS0,OP0,RS,RB32768" FOR INPUT AS #1

Unit 11: Analog Input

Page 166 • Beginning Assembly Language for the SX Microcontroller

top:
 WHILE INKEY$ = "": WEND
 END

ComHandler:
 c = INPUT$(1, 1) ' read character
 IF ASC(c) = 13 THEN ' end of packet?
 IF LEN(v) <> 2 THEN ' not a full packet?
 v = ""
 RETURN
 ELSE
' got a full packet so interpret it
 eu = VAL("&H" + v) * 5 / 256
 PRINT eu
 v = ""
 RETURN
 END IF
 END IF
 v = v + c ' build up packet
 RETURN

This program uses a special feature of QBASIC that allows the ComHandler routine to gain
control whenever serial data is available (similar to an interrupt). Note that QBASIC is not fast
enough to reliably handle high baud rates.

When a character arrives, the program assembles it into a packet (this program assumes 1
byte per packet). When a correctly formed packet arrives (2 characters followed by a carriage
return), the program performs this calculation:

eu = VAL("&H" + v) * 5 / 256

Here the eu variable (short for engineering units) receives a floating point value that
corresponds to the estimated input voltage. The VAL function converts a string to a number
(the &H prefix tells QBASIC this is a hexadecimal number). Each count from the SX is worth
5/256 V (roughly 19.5m V).

 Unit 12: A Software UART – The Receiver

 Beginning Assembly Language for the SX Microcontroller • Page 167

Unit 12: A Software UART – The
Receiver

In Units 10 and 11, you worked with a software serial transmitter. This is half of a UART
(Universal Asynchronous Receiver Transmitter). The next obvious step is to design and build a
receiver. The transmitter is somewhat simpler than a receiver. Why? Consider that when
transmitting you don’t have to synchronize with anyone else – it is the receiver’s job to
synchronize with you.

Receiving is a bit more difficult. Instead of generating pulses of a specific width, you have to
measure pulses. This wouldn’t be so hard, except you must synchronize with the transmitter’s
start bit. This leads to some special considerations that are not necessary for the transmitter.

Fast Enough?
Each bit in a 9600 baud data stream occupies 104 µs. So if you sample an input every 104 µs,
you can detect each bit, right? No! The problem is that timing on both sides of the system are
not precise. If you sample right at the leading or trailing edge of a start bit, you are in danger
of looking at the very edges of the bits and you might read one a shade too early or too late.

Ideally, you’d find the rising edge of the start bit and then delay 52 µs. This would be
approximately in the center of the start bit. Now the code can safely sample every 104 µs (a
total delay of 156 µs for the first bit) with reasonable certainly that each bit will be stable.
With interrupts you can wait for the start bit in this way, but the SX’s interrupt structure makes
it challenging to handle multiple interrupt sources. You’ll eventually want to integrate the
transmitter and the receiver (among other things) and it would be handy if you could use one
periodic interrupt as a basis for both.

When you sample at a regular interval, the Nyquist sampling theorem rears its head. This
staple of signal processing theory states (among other things) that you have to sample twice
as fast as the fastest signal you want to measure. So to find a 104 µs pulse, you’ll need to
measure the input at least every 52 µs. Even this isn’t enough if you are planning to delay 52
µs to center the timing. You might catch the center of the pulse and then skid past the end
after the delay. To be safe, you should sample much faster, say 26 µs or less.

Basic Logic
The receiver will use several variables. The rx_count byte tracks the number of bits to read
(including the stop bit). When the receiver is idle, this variable will be zero. Another byte,
rx_divide, counts the number of interrupt periods that correspond to a bit. The received byte

Unit 12: A Software UART – The Receiver

Page 168 • Beginning Assembly Language for the SX Microcontroller

is in rx_byte and a single bit, rx_bit, is set when the byte is ready. The receiver’s logic on
each interrupt is:

1. Read the input bit
2. If no byte is in progress, check for a start bit
3. If a start bit is present, load rx_count with 9 and rx_divide with 1.5 bit periods
4. If a byte is in progress, decrement rx_divide; if not zero, exit
5. Reset rx_divide to 1 bit period
6. Decrement rx_count; if zero (indicating a stop bit) set the rx_flag bit; if not zero, shift

rx_byte to the right and merge the sampled input bit from step 1 into the least-
significant bit

Here is the complete ISR:

 bank serial
 movb c,/rx_pin ;serial receive
 test rx_count
 jnz :rxbit ;if not, :bit
 mov w,#9 ;in case start, ready 9
 sc ;if start, set rx_count
 mov rx_count,w
 mov rx_divide,#baud15 ;ready 1.5 bit periods
:rxbit djnz rx_divide,rxdone ;8th time through?
 mov rx_divide,#baud
 dec rx_count ;last bit?
 sz ;if not, save bit
 rr rx_byte
 snz ;if so, set flag
 setb rx_flag
rxdone

This small bit of code performs the 6 steps (try and match each step with the corresponding
code). Since the rx_divide counter is only really used once the receiver is synchronized, the
code is searching for a start bit at the raw interrupt rate. If the ISR is using –163 as an
argument to iretw, then this code searches for a start bit every 3.26 µs. This is twice as fast
as a 150 KBaud input signal and four times as fast as a 75 K Baud input.

If your main program wants to read a byte, it first tests rx_flag. Then it can read the byte. Of
course, it must read characters fast enough to prevent character overruns. Here is a simple
subroutine that reads a single character:

get_byte
 bank serial
 jnb rx_flag,$;wait till byte is received

 Unit 12: A Software UART – The Receiver

 Beginning Assembly Language for the SX Microcontroller • Page 169

 mov byte,rx_byte ;store byte (copy using W)
 clrb rx_flag ;reset the receive flag
 ret

Selecting the Baud Rate
For the code above to work, you need definitions for baud and baud15. These represent the
number of interrupt cycles for a bit, and for 1.5 bits. If the interrupt period is 163 clock cycles
at 50 MHz, then each interrupt cycle is 3.26 µs. For 9600 baud the bit period is about 104.2
µs. Since 104.2/3.26 is 31.96 you could use a count of 32 and be close enough. The baud15
symbol, of course would be 48.

One way to get the receiver working at 9600 baud would be to use the following statements:

baud equ 32
baud15 equ 48

It would be clever to base baud15 on baud so that it would always be correct:

baud equ 32
baud15 equ 3*baud/2

You can do math like this as long as the computation uses all constants so the assembler can
compute the result. In this case 3, 2, and baud all have known values during assembly. You
have to be careful, because the assembler only deals with integer math. It also evaluates
expressions from left to right (not the usual order of operations). So writing 3*baud/2 works
but writing 3/2*baud will not work. That’s because the assembler computes 3/2 first and
finds the result is 1! You can use parenthesis if you like to make the order clear:

baud15 equ (3*baud)/2

It would be even better to select the baud rate in an intuitive way:

baudrate equ 9600

IF baudrate = 9600
baud equ 32
ENDIF

IF baudrate = 1 9200
baud equ 16
ENDIF

baud15 equ 3*baud/2

Unit 12: A Software UART – The Receiver

Page 170 • Beginning Assembly Language for the SX Microcontroller

Of course, you’d have to add IF cases for every baud rate you wanted to support. You might
be tempted to write the entire calculation in the assembler. For example:
osc = 50_000_000 ; the assembler allows _ to separate numbers
icycle = 163
baudrate = 9600

baud = osc/(icycle * baudrate)

This is technically acceptable, but because of the integer math, the answer is not precise. The
correct result for baud is 32 (because the real answer is 31.9). With integer math, the result
is simply 31. This error will result in a baud rate of 9895, an error of 3%. This might be
acceptable, but you can do better with 32 (about 0.15% error).

Buffering
Your program may have more to do than just process characters. It is often useful to store
characters away in a buffer for later use. Usually such a buffer is a circular buffer. A circular
buffer is constructed so you place characters in one end of the buffer and retrieve them from
the other end. As long as you read the characters before the other end of the buffer catches
up, the buffer can always accept more characters.

To implement a circular buffer, you’ll decide on the total number of characters you can hold at
once. You’ll usually pick a power of two (16 is a handy number for the SX since you have
access to 16 registers in each bank). You’ll then use one pointer to point to the head of the
buffer (where input characters go) and another to point to the tail of the buffer. Programs
read characters from the tail. When the tail and the head are equal, the buffer is empty.

Each time you increment one of the pointers, you limit its value by anding it with, in this case,
$F. This has the effect that the pointers wrap around. The head pointer moves in the
sequence: 0, 1, 2, . . ., 14, 15, 0, 1, 2…

The head pointer always points to the next empty slot. Unless the buffer is empty, the tail
points to the next character waiting to be read. If the head pointer is just behind the tail
pointer, the buffer is full. That means with 16 bytes, the total number of characters you can
store is really 15, since the full condition wastes one byte.

You could modify the ISR to store the character in such a circular buffer. Assume that
rx_byte is in bank 0 (remember, bank 0 is available no matter what other bank is active).
Also suppose that there is a head and tail variable in bank 0. An entire bank (any empty bank
will do) will server as the 16-byte buffer.

 Unit 12: A Software UART – The Receiver

 Beginning Assembly Language for the SX Microcontroller • Page 171

You could replace the setb rx_flag statement in the ISR with code to place characters in the
buffer. The changed program could look something like this:

 mov fsr,#buffer
 add fsr,head
 mov ind,rx_byte
 inc head
 and head,#$F
 ret

Don’t forget: the ind register really isn’t a register at all. It contains the value of the memory
location pointed to by fsr. This simple code doesn’t check for overflow – if you overflow the
buffer, you’ll just lose characters. Don’t forget that loading fsr changes the bank, so any
statements that depend on a special bank will need to reload fsr or issue a bank command.

Now the get_byte routine looks different:

get_byte

 mov w,head ;wait till byte is received
 mov w,tail-w
 jz get_byte
 mov fsr,#buffer
 add fsr,tail
 mov byte,ind
 inc tail
 and tail,#$F
 ret

This version of get_byte waits until the buffer contains at least one character and then loads
it into the byte variable. Notice again that changing fsr changes the bank, so this code
assumes byte is in bank 0.

A Simple Macro
In the ISR and in get_byte there is code that increments a pointer and masks it with $F (that
is, it applies the logical and function to the pointer and $F). This code is necessary to cause
the pointers to wrap around from the end of the buffer back to the beginning. However, it is
easy to forget to perform the and command every time you increment the pointer. This is a
good place to use a macro. A macro is like a user-defined instruction. Consider this macro:

Unit 12: A Software UART – The Receiver

Page 172 • Beginning Assembly Language for the SX Microcontroller

circinc macro 1
 inc \1
 and \1,#$F
 endm

The first line names the macro. You’ll use this name (circinc) to refer to the macro. The 1 at
the end of the line signifies that the macro takes 1 parameter (or argument, if you prefer).
The next two lines are straightforward assembly except for \1 which signifies the parameter.
The endm keyword ends the macro. So if you write:

circinc tail

The assembler generates:

 inc tail
 and tail,#$F

Of course, you can also write circinc head to do the same operation on the head variable.
This is a very simple macro. You’ll often see macros that are more complex. You can combine
macros with repeat blocks, conditional assembly, and local labels to make very complicated
pseudo instructions.

Connections
Good design practice dictates connecting the SX to an RS-232 transmitter via a buffer (for
example, a Maxim MAX232 IC). However, you can take advantage of the SX’s overvoltage
protection diodes to prevent the +/- 12 V signals from damaging the SX. However, the diodes
will short the transmitter to ground and could damage it, unless you use a series resistor. In
practice, a 22 kΩ resistor between the RS-232 transmitter (pin 3 on a DB9 connector) and the
SX pin will work fine.

If you elect to use a buffer IC, it will most likely invert the data. That means
you’d have to change the UART code to sense an incoming 1 as a 0 and vice
versa.

 Unit 12: A Software UART – The Receiver

 Beginning Assembly Language for the SX Microcontroller • Page 173

Summary
This unit shows the inner workings of a software UART receiver. In the exercises, you’ll have a
chance to implement this receiver and make it do something useful. Along the way you’ve
learned about assembler math expressions and about simple macros.

The receiver gives the SX the ability to listen to a PC or other serial device. Obviously, the
ultimate goal is to marry the receiver and the transmitter. For now, however, we’ll only use
one or the other.

Exercises
1. Consider these lines of code:

val = 33
junk = 1000/12*val

What is the value of junk?

a) 2.5
b) 2
c) 2739
d) 2750

2. In the last unit, you used a rept directive to generate a number of nop instructions.
Encapsulate the rept inside a macro named nop_n that takes a single argument to indicate
how many cycles to waste. Bonus: Can you make the macro use a combination of jmp and
nop instructions? (Hint: You need the remainder from division operator //).

3. Hook LEDs in the usual way (using a 470 Ω resistor) to ports RA0 and RA1. Use a 22 kΩ
resistor to connect pin 3 of a DB-9 connector to RB2. Be sure to ground pin 5 of the DB-9 to
the common Vss pin on the SX-Tech board. Write a program so that when a PC sends an
upper case “A” it lights the LED on RA0. Sending a lower case “a” turns the LED off. “B” and
“b” can operate the LED on RA1.

4. Write a program that joins the serial transmitter and serial receiver together. For a main
program, you can read characters from a PC, convert them to upper case, and echo them back
to the PC all at 9600 baud. Hint: To shift a lower case “a” to an upper case “A”, clear bit 5. Be
sure to test that the letter is really a lower case letter before making the change.

Unit 12: A Software UART – The Receiver

Page 174 • Beginning Assembly Language for the SX Microcontroller

Answers
1. C is the correct answer.

2. The simple solution is:

nop_n macro 1
 rept \1
 nop
 endr
 endm

To do the bonus part of this question, you had to perform a little math. The idea is to use
\1/3 to determine how many jmp $+1 instructions are required and \1//3 to determine
how many nop instructions are necessary. However, it is possible that either of these numbers
could be zero. Therefore each rept block is protected with an IF statement since rept does
not accept zero as an argument.

nop_n macro 1
 IF \1/3<>0
 rept \1/3
 jmp $+1
 endr
 ENDIF
 IF \1//3<>0
 rept \1//3
 nop
 endr
 ENDIF
 endm

Try using these macros and press Control+L in the SX-Key environment to see how the code
expands for different cases.

3. There are several ways you could write this program. Here is one possible solution
(assuming that a low on the output pin turns the LED on):

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 12.1
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW

 Unit 12: A Software UART – The Receiver

 Beginning Assembly Language for the SX Microcontroller • Page 175

 reset start_point
 freq 50000000 ; 50 Mhz

BAUDRATE EQU 9600 ; baud rate to stamp
; Port Assignment: Bit variables
;
rx_pin EQU rb.2 ; PC input
 org 8
; Head/tail pointer
head ds 1
tail ds 1
byte ds 1 ;temporary UART byte
rx_byte ds 1 ;buffer for incoming byte

 org 10h
serial = $;UART bank

rx_count ds 1 ;number of bits remaining
rx_divide ds 1 ;receive timing counter

IF BAUDRATE=9600
baud = 32
baud15 = 48
ENDIF

int_period = 163
bufmod equ $F

; circular buffer is at $50
 org $50
scan ds 1 ; buffer

 org 0
; Interrupt service routine
isr bank serial ;switch to serial register bank

:receive
 movb c,/rx_pin
 test rx_count ;waiting?
 jnz :rxbit ;if not,
 mov w,#9 ;in case start, ready 9
 sc ;if start, set rx_count
 mov rx_count,w
 mov rx_divide,#baud15 ;ready 1.5 bit periods
:rxbit djnz rx_divide,rxdone ;8th time through?
 mov rx_divide,#baud
 dec rx_count ;last bit?
 sz ;if not, save bit
 rr rx_byte

Unit 12: A Software UART – The Receiver

Page 176 • Beginning Assembly Language for the SX Microcontroller

 snz ;if so, put in circbuff
 call bufferin
rxdone

;interrupt every 'int_period' clocks
end_int mov w,#-int_period
 retiw ;exit interrupt

; put character in circular buffer
bufferin
 mov fsr,#scan
 add fsr,head
 mov ind,rx_byte
 inc head
 and head,#bufmod
 ret

start_point
 mov ra,#%0011 ;initialize port RA
 mov !ra,#%0000 ;Set RA in/out directions
 mov rb,#%00001010
 mov !rb,#%11110101

 CLR FSR ;reset all ram starting at 08h
:zero_ram SB FSR.4 ;are we on low half of bank?
 SETB FSR.3 ;If so, don't touch regs 0-7
 CLR IND ;clear using indirect addressing
 IJNZ FSR,:zero_ram ;repeat until done

 mov !option,#%10011111 ;enable rtcc interrupt
 clr rb

; Here is where the action is!
mainloop
 call get_byte
 cje byte,#'A',Aon
 cje byte,#'a',Aoff
 cje byte,#'B',Bon
 cje byte,#'b',Boff
 jmp mainloop

Aon
 clrb ra.0
 jmp mainloop
Aoff
 setb ra.0
 jmp mainloop
Bon
 clrb ra.1

 Unit 12: A Software UART – The Receiver

 Beginning Assembly Language for the SX Microcontroller • Page 177

 jmp mainloop
Boff
 setb ra.1
 jmp mainloop

; Subroutine - Get byte via serial port
;
get_byte
 mov w,head ;wait till byte is received
 mov w,tail-w
 jz get_byte
 mov fsr,#scan
 add fsr,tail
 mov byte,ind
 inc tail
 and tail,#$F
 ret

4. Again, there are many possible answers to this question. Here is one solution:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 12.2
;===
 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 Mhz

BAUDRATE EQU 9600 ; baud rate to stamp
; Port Assignment: Bit variables
;
rx_pin EQU rb.2
tx_pin EQU rb.3

 org 8
; Head/tail pointer
head ds 1
tail ds 1
byte ds 1 ;temporary UART byte
rx_byte ds 1 ;buffer for incoming byte

 org 10h
serial = $;UART bank
;

Unit 12: A Software UART – The Receiver

Page 178 • Beginning Assembly Language for the SX Microcontroller

rx_count ds 1 ;number of bits left
rx_divide ds 1 ;receive timing counter
tx_high ds 1 ;tx
tx_low ds 1
tx_count ds 1
tx_divide ds 1

IF BAUDRATE = 9600
txdivisor = 32
baud = 32
baud15 = 48
ENDIF

int_period = 163
bufmod equ $F

; circular buffer is at $50
 org $50
scan ds 1 ; buffer

 org 0

; Interrupt service routine
isr bank serial ;switch to serial register bank

:receive
 movb c,/rx_pin ;serial receive
 test rx_count ;waiting
 jnz :rxbit ; no?
 mov w,#9 ;in case start, ready 9
 sc ;if start, set rx_count
 mov rx_count,w
 mov rx_divide,#baud15 ;ready 1.5 bit periods
:rxbit djnz rx_divide,rxdone ;8th time through?
 mov rx_divide,#baud
 dec rx_count ;last bit?
 sz ;if not, save bit
 rr rx_byte
 snz ;if so, set flag
 call bufferin
rxdone
; transmitter
 bank serial
 dec tx_divide
 jnz end_int
 mov tx_divide,#txdivisor ; ready for next

 test tx_count ; busy?
 jz end_int ; no byte being sent

 Unit 12: A Software UART – The Receiver

 Beginning Assembly Language for the SX Microcontroller • Page 179

 stc ; ready stop bit
 rr tx_high
 rr tx_low
 dec tx_count
 movb tx_pin,/tx_low.6 ;output next bit

end_int mov w,#-int_period
 retiw ;exit interrupt

; add to circular buffer
bufferin
 mov fsr,#scan
 add fsr,head
 mov ind,rx_byte
 inc head
 and head,#bufmod
 ret

start_point
 mov ra,#%0011 ;initialize port RA
 mov !ra,#%0000 ;Set RA in/out directions
 mov rb,#%11110111
 mov !rb,#%11110111

 CLR FSR ;reset all ram starting at 08h
:zero_ram SB FSR.4 ;are we on low half of bank?
 SETB FSR.3 ;If so, don't touch regs 0-7
 CLR IND ;clear using indirect addressing
 IJNZ FSR,:zero_ram ;repeat until done

 mov !option,#%10011111 ;enable rtcc interrupt
 clr rb

; Here is where the action is!
mainloop
 call get_byte
 cjb byte,#'a',noshift
 cja byte,#'z',noshift
 clrb byte.5
noshift
 mov w,byte
 call send_byte
 jmp mainloop

; Subroutine - Get byte via serial port

Unit 12: A Software UART – The Receiver

Page 180 • Beginning Assembly Language for the SX Microcontroller

;
get_byte
 mov w,head ;wait till byte is received
 mov w,tail-w
 jz get_byte
 mov fsr,#scan
 add fsr,tail
 mov byte,ind
 inc tail
 and tail,#$F
 ret

send_byte bank serial

:wait test tx_count ;wait for not busy
 jnz :wait

 mov tx_high,w
 clrb tx_low.7 ; set start bit

 mov tx_count,#10 ;1 start + 8 data + 1 stop bit

 ret

 Unit 13: Pulse I/O

 Beginning Assembly Language for the SX Microcontroller • Page 181

Unit 13: Pulse I/O

When I was in high school I had a math teacher who used to say, “You have to use what you
know to find out what you don’t know.” This is often the case with microcontrollers.
Computers are very good at measuring certain things (like digital levels). Computers are not
very good at measuring other things like analog quantities (at least without additional
hardware).

So to paraphrase my math teacher, if you could convert something that is hard to measure
into something that is easy to measure, you could more easily read it. Consider a
potentiometer. Sure, you can read it using an A/D converter (see Unit 11). However, what if
you could connect the potentiometer so that the SX could measure time and determine the
position? The SX is excellent at measuring time. All that you need is a circuit that will allow the
potentiometer to control the width of a pulse. The SX can measure the pulse width and
deduce the potentiometer’s position.

What about other types of input? Many real-world sensors look like variable resistors. Ideally,
you could treat them just like potentiometers and use the SX to read temperature, humidity,
light intensity or any of the other things you can measure with a resistive sensor.

The same idea holds true for analog output. If you could convert time into voltage, you’d have
a D/A (digital to analog) conversion scheme that the SX could handle. Converting back and
forth between analog values and times requires a capacitor and the ability for the SX to create
and measure pulses.

Capacitor Fundamentals
Capacitors have many uses in electronic circuits. For the purposes of this unit, we will use
them as energy storage devices. Suppose you have a capacitor with one lead grounded.
Initially, the capacitor has 0 V across it. Then you apply 5 V to the other lead of the capacitor
via a resistor. At first, the capacitor looks like a dead short and the voltage across it remains 0
V. But the capacitor charges so the voltage increases until the final voltage is practically 5 V.

Of course, the capacitor doesn’t charge instantaneously. It takes a finite amount of time for
the capacitor’s voltage to change from one value to another. The speed that the capacitor’s
voltage ramps up depends on the value of the resistor (R) and the value of the capacitor (C).
The voltage V at time t with a 5 V supply will be:

 V = 5(1-e -t/RC)

Unit 13: Pulse I/O

Page 182 • Beginning Assembly Language for the SX Microcontroller

So if R=100000 (100 kΩ) and C = .00001 Farads (10 µF), you’d find the voltage on the
capacitor would look like Figure 13-1.

R=100K C=10uF

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

Time (Seconds)

Vo
lta

ge

Figure 13-1: Capacitor Charging Curve

A good rule of thumb is that after RC seconds, the voltage will be 63% of the charging
voltage. You can verify this on the above chart. The charging voltage is 5 V so 63% is 3.15 V.
The curve is just above 3 V at 1 second (100000 times .00001 is equal to 1).

Notice that changing the resistance value or the capacitor’s value will change the amount of
time it takes the curve to get to any particular voltage. Using the 63% rule, how long would it
take to reach 3.15 V if you doubled the resistance? The answer is 2 seconds. So by charging a
capacitor you can convert a resistance to a time – just what the SX needs. Of course, you
could use a fixed-value resistor and vary the capacitance, too. It works just as well either way.

The same thing happens if you charge the capacitor up and then discharge it through a
resistor. It will take RC seconds to reach 37% of the initial voltage.

What can you do with this idea? Obviously you could read a potentiometer. Perhaps you want
the SX to dim a light or control a motor speed as the user moves a knob. However, many
sensors provide a resistive or capacitive reading. For example, a thermistor changes resistance
in response to temperature. A strain gauge varies its resistance with weight. A cadmium
sulfide cell changes resistance in response to light. You could read any of these sensors using
this technique.

 Unit 13: Pulse I/O

 Beginning Assembly Language for the SX Microcontroller • Page 183

Of course, theory and practice are often two different things. Real capacitors don’t store
energy perfectly. There is leakage resistance and other factors that can throw things off
slightly. Most capacitors are temperature sensitive themselves. However, in practice these
issues are not problems in most cases. Still, be aware that real-world capacitors are notorious
for not matching their ideal characteristics.

Thresholds
To measure an unknown resistance, you can discharge the constant-value capacitor and
compute how much time it takes to charge back to a logic 1 level. Alternately, you could
charge the capacitor to 5 V and compute how much time it takes to fall to a logic 0. This is an
excellent place to use the SX’s special I/O functions.

Each input pin on the SX has several control registers. You can use these control registers to
set different options. One of these options is to use a CMOS input threshold. When this mode
is active, any input over 0.5 Vdd (nominally 2.5 V) is considered a logic 1. If the CMOS mode is
not set, the threshold voltage is about 1.4 to 1.5 V. You can set each pin individually.

To set the threshold voltage for a port, you first set the M (mode) register to $D ($10 on the
SX48/52). Then you can store configuration bits in the !ra, !rb, and !rc registers. A zero in
these registers makes the corresponding bit use the CMOS threshold. A one sets the pin for
1.4 V (TTL) threshold. It is a good idea to set the M register back to the default value ($F, or
$1F on the SX48/52) when you are finished. You could, in theory, use this feature to
determine what part of the capacitor voltage curve you will detect.

In real life, however, neither choice is the best one. To see why, think about the types of
signals an input pin normally sees. A typical logic signal moves from 0 to 5 V very quickly
(ideally, instantaneously although that isn’t really possible). You think of these signals as
“square” – the transitions are very steep. If you look at the above chart, you’ll see that the
capacitor’s voltage is not steep at all. That means the circuit will slowly pass through the SX’s
threshold voltage. Right at the threshold, the SX may detect more than one change in the
input’s state. Power supply fluctuations and circuit noise can make a signal right at the
threshold appear to be a 1 on one reading, a 0 on the next, and then later read to be a 1
again.

To combat this, it is common to use a special gate called a Schmitt trigger. This is simply a
logic gate that reads a logic 1 when the input voltage rises above (approximately) 62% of Vdd
(3.1 V with a 5 V supply). However, it will not read the pin as a logic 0, until the voltage falls
below about 28% of Vdd (1.4 V). This electronic inertia is known as hysteresis. Consider Table
13-1:

Unit 13: Pulse I/O

Page 184 • Beginning Assembly Language for the SX Microcontroller

Table 13-1: Hysteresis Example
Time Input voltage Input state
0 0.0 V 0
1 3.0 V 0
2 3.5 V 1
3 3.0 V 1
4 2.0 V 1
5 0.5 V 0
6 2.0 V 0
7 3.0 V 0
8 3.5 V 1

You can buy ICs that perform the Schmitt trigger function, but luckily, the SX already has
these triggers built in if you want them. To set Schmitt trigger mode, you set the M register to
$C ($1C on the SX48/52) and then set the !ra, !rb, or !rc registers. Placing a zero in a bit
makes the corresponding input a Schmitt trigger.

Measuring Time
The SX, of course, can keep time in a variety of ways. The trick is to select a method that
provides adequate resolution for the task at hand without using such a high resolution that
you’ll need large counters to handle the time periods of interest. For example, suppose you
have a 10 kΩ potentiometer and a .1 µF capacitor wired as shown in Figure 13-2.

Figure 13-2: Reading a Potentiometer

The RC constant for this circuit is .001. That means that in 1 ms, the capacitor will charge to
about 3.15 V. This is right around the threshold for a Schmitt trigger (3.1 V). This sets an
upper bound on the time you need to measure. Of course, the Schmitt level is not precise, and
the components involved are not precise either. To be safe, you’d like to be able to measure at
least 2 ms.

 Unit 13: Pulse I/O

 Beginning Assembly Language for the SX Microcontroller • Page 185

There are many ways you could perform these measurements. A simple counter would work.
However, if you write the following code:

loop inc counter
 jnb oop

You’ll find that the total execution time per loop is 5 clock cycles. At 50 MHz that is only 100
ns per count. You have to count to 20,000 to measure 2 ms. That means you can’t use a
single byte counter. Two bytes can contain up to 65535 so you could write:

loop jb done
 inc count0
 snz
 inc count1
 jmp loop

This takes 8 cycles per loop (ignoring the final loop) so each count represents 160 ns. When
count0 overflows, the code increments count1. This forms a 16-bit counter.

Be sure to use snz and not snc. Using inc does not affect the carry flag. It does
affect the zero flag..

This method leaves a little to be desired. The count will vary a bit because interrupts occur
and steal cycles from the loop counter. You could disable interrupts, but that would affect the
serial I/O code or any other ISRs that might be running.

A better way is to use the ISR to perform the timing for you. Suppose you made the ISR
increment a 16-bit counter on each pass. You could use this counter to measure the number
of interrupt periods that elapsed between two events. If you use the same ISR we’ve used
throughout this course, you’d get a count every 3.26 µs. A 2 ms count would be around 613 or
614 – you’d still need two bytes for the counter.

This method is also somewhat inaccurate in practice. The serial transmitter and receiver code
take a varying amount of time to execute. This can lead to small inaccuracies in the timing.
However, for this purpose the timing is more than adequate.

Another idea would be to use the ISR to perform all the timing. Then the main program can
simply read the count that the ISR generates. For the purposes of timing an RC network, any
of these methods will work.

Program Details
Here is the basic way that the program will work:

Unit 13: Pulse I/O

Page 186 • Beginning Assembly Language for the SX Microcontroller

Change RB.0 to an output and pull it low
Pause a few ms to allow the capacitor to fully discharge
Restore RB.0 to an input
Time how long it takes for RB.0 to rise to a logic 1

The difference, of course, is how you measure the time. Here is a simple version:

read_rc
 clrb rb.0
 mov !rb,#%11110110 ; bit 0 to input
 call pause ; discharge time
 mov dly,#$FF ; reset timer
 mov dly1,#$FF
:zwait
 test dly ; sync with ISR
 jnz :dwait
 mov !rb,#%11110111 ; back to input
captest
 jnb rb.0,captest
 mov vallow,dly
 mov valhigh,dly1
 ret

This requires a bit of support. Obviously, you need a pause routine. The exact time is not
important, but it does need to be a long enough delay to allow the capacitor to fully discharge.
The other part of the code that isn’t clear here is how dly (and dly1) change. This, of course,
is part of the ISR. The very first lines of the ISR are now:

 bank delaybank
 inc dly
 snz
 inc dly1

The read_rc code doesn’t change banks, because the pause routine also uses dly and it sets
the bank. The pause routine is just five calls to pausems. The pausems routine delays
about 1 ms. Here is the code:

pausems
 bank delaybank
 mov dly1,#$FE
 mov dly,#$CD
:p1 mov w,dly1
 or w,dly
 jnz :p1

 Unit 13: Pulse I/O

 Beginning Assembly Language for the SX Microcontroller • Page 187

 ret

This bears some explanation. The routine takes advantage of the fact that the ISR will
increment the 16-bit dly variable every 3.26 µs. To pause 1 ms (1000 µs), the code needs to
wait for 307 counts. Expressed in hex, 307 is $133. Rather than clear the dly variable and wait
for $133, the code instead loads negative $133 and waits for the variable to reach 0 (a cleaner
test). To negate $133 write it as binary, invert the bits and add 1. So:

%0000 0001 0011 0011 -> %1111 1110 1100 1100+1 = %1111 1110 1100 1101 = $FECD

Of course, other factors contribute, so the delay is not precise, but it doesn’t need to be.
Anything close to 1 ms will be good enough in this case.

Pulse Output
It should be obvious that if you can measure precise times, you can also create pulses. You
simply set an output bit’s state, wait for a particular interval, and then reset the bit’s state. In
the next unit you’ll see how a train of pulses combined with a capacitor can generate an
analog output using a method known as pulse width modulation (PWM).

PWM is useful for other reasons as well. For example, you can control an LED or lamp’s
brightness. You can also use PWM to control the speed of a motor. Some external systems
require pulses to operate. For example, servo motors (common in radio control hobbies) use a
pulse to determine the shaft’s position. These motors typically don’t rotate 360 degrees.
Instead they will move over a certain arc. With a narrow pulse, the motor will position the
shaft to one extreme of the travel range. The wider the pulse, the further away the shaft
moves (until it reaches the other extreme).

Unit 13: Pulse I/O

Page 188 • Beginning Assembly Language for the SX Microcontroller

Summary
Converting an analog value like a resistance or capacitance into a measurable time is a
powerful idea. With some additional circuitry you could even do the same thing with a voltage.
For example, a 555 IC can generate pulses that vary in width depending on an applied
voltage. There are also specific ICs that convert voltage to frequency. An oscillator with a
varactor in its resonator can also change frequency (and hence, pulse width) with an applied
voltage.

Using sensors like thermistors or light-dependent resistors allows you to adapt this technique
to make the SX read a variety of real-world parameters. Accepting this type of input is an
essential component to creating control or data acquisition systems.

Exercises
1. Connect a 10 kΩ potentiometer and LED as in Figure 13-3. Write a program that allows you
to test the threshold voltages for TTL, CMOS, and Schmitt trigger inputs by transferring the
state of the input pin to the output LED. You can measure the input pin’s voltage with a
common voltmeter.

Figure 13-3: Threshold Test Circuit

2. Build the circuit shown in Figure 13-2. Create a program that reads the 16-bit count that
shows the potentiometer’s position and verify your code’s operation using the SX-Key
debugger.

3. Modify the above program to display the result on an RS-232 terminal. Hint: Write a
carriage return (13) and disable the terminal’s auto linefeed mode (if any) to see a pleasing
display.

 Unit 13: Pulse I/O

 Beginning Assembly Language for the SX Microcontroller • Page 189

Answers

1. Here is a possible solution:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 13.1
;===

 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 Mhz

 org 0
start_point
 mov ra,#%1111
 mov !ra,#%1110

; set threshold here $C = Schmitt $D = CMOS
 mov m,#$C
 mov !rb,#%11111110
 mov m,#$F

; Here is where the action is!
mainloop
 movb ra.0,/rb.0
 jmp mainloop

Notice that in TTL or CMOS mode, the LED may light dimly. This is because without Schmitt
trigger hysteresis, the SX is reading the pin as a 1 sometimes and a 0 at other times right at
the threshold voltage.

2. See the answer for exercise 3. This is the same code but without the serial transmitter
code.

3. There is no need for the serial receiver in this code although if you included it, there is no
harm in it:

Unit 13: Pulse I/O

Page 190 • Beginning Assembly Language for the SX Microcontroller

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 13.2
;===

 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 50000000 ; 50 Mhz

BAUDRATE EQU 9600 ; baud rate to stamp
; Port Assignment: Bit variables
;
tx_pin EQU rb.3

 org 8
; Head/tail pointer
byte ds 1 ;temporary UART byte
vallow ds 1
valhigh ds 1
number_low ds 1
temp ds 1

 org 10h
serial = $;UART bank
;
tx_high ds 1 ;tx
tx_low ds 1
tx_count ds 1
tx_divide ds 1

IF BAUDRATE=9600
txdivisor = 32
ENDIF

int_period = 163

 org $30
delaybank equ $
dly ds 1
dly1 ds 1

 watch dly,16,uhex

 org 0

 Unit 13: Pulse I/O

 Beginning Assembly Language for the SX Microcontroller • Page 191

; Interrupt service routine
isr
 bank delaybank
 inc dly
 snz
 inc dly1

 bank serial

; transmitter
 bank serial
 dec tx_divide
 jnz end_int
 mov tx_divide,#txdivisor ; ready for next
 test tx_count ; busy?
 jz end_int ; no byte being sent
 stc ; ready stop bit
 rr tx_high
 rr tx_low
 dec tx_count
 movb tx_pin,/tx_low.6 ; output next bit

end_int
 mov w,#-int_period
 retiw ; exit interrupt

start_point
 mov ra,#%0011 ; initialize port RA
 mov !ra,#%0000 ; Set RA in/out directions
 mov rb,#%11110111
 mov !rb,#%11110111

 CLR FSR ; reset all ram starting at 08h
:zero_ram SB FSR.4 ; are we on low half of bank?
 SETB FSR.3 ; If so, don't touch regs 0-7
 CLR IND ; clear using indirect addressing
 IJNZ FSR,:zero_ram ; repeat until done

 mov !option,#%10011111 ; enable rtcc interrupt
 clr rb

; Set Schmitt trigger input
 mov m,#$C
 mov !rb,#%11111110
 mov m,#$F

Unit 13: Pulse I/O

Page 192 • Beginning Assembly Language for the SX Microcontroller

; Here is where the action is!
mainloop
 call read_rc
 mov w,valhigh
 call send_hex
 mov w,vallow
 call send_hex
 mov w,#$D
 call send_byte
 jmp mainloop

read_rc
 clrb rb.0
 mov !rb,#%11110110 ; bit 0 to output
; pause a bit to let capacitor discharge
 call pause
 mov dly,#$FF
 mov dly1,#$FF
:zwait
 test dly ; synchronize with ISR
 jnz :zwait
 mov !rb,#%11110111 ; back to input
captest
 jnb rb.0,captest
 break
 mov vallow,dly
 mov valhigh,dly1
 ret

pause
:p1
 rept 5
 call pausems
 endr

 ret

; pause about 1mS
; (each int tick is 3.26uS
; 1000uS/3.26=307
; 307=$133 and -$133 = $FECD
pausems
 bank delaybank
 mov dly1,#$FE
 mov dly,#$CD
:p1 mov w,dly1
 or w,dly
 jnz :p1

 Unit 13: Pulse I/O

 Beginning Assembly Language for the SX Microcontroller • Page 193

 ret

; required to output HEX numbers
_hex dw '0123456789ABCDEF'
;
;

;* Subroutines *

; Send hex byte (2 digits)
;
send_hex
 mov number_low,w ; save W
 mov w,<>number_low ;send first digit
 call :digit

 mov w,number_low ; send second digit

:digit and w,#$F ; read hex chr
 mov temp,w
 mov w,#_hex
 clc
 add w,temp
 mov m,#0
 iread ; read from program mem!
 mov m,#$F

; fall into send byte

send_byte bank serial

:wait test tx_count ; wait for not busy
 jnz :wait

 mov tx_high,w
 clrb tx_low.7 ; set start bit

 mov tx_count,#10 ; 1 start + 8 data + 1 stop bit

 ret

 Unit 14: PWM

 Beginning Assembly Language for the SX Microcontroller • Page 195

Unit 14: Pusle Width Modulation

In the last unit you looked at measuring pulse widths. Of course, if you can measure an
interval, you can also create pulses. However, using pulses can have a few nuances that you
should understand. In particular, you can use pulses, in combination with a handy capacitor,
to generate a voltage from 0 to 5 V – if you know all the right tricks.

PWM Theory
The most interesting use of pulses with a microcontroller is to use a string of pulses to
generate an arbitrary analog voltage. These analog signals might be useful as control voltages
or even audio outputs. Using pulses this way is known as Pulse Width Modulation (PWM).

To generate a voltage with PWM, you’ll use our favorite energy storage device: the capacitor.
The best way to understand the process is to look at the two extreme cases first. Suppose you
have an SX output pin connected to a capacitor. If you bring the output pin low, the capacitor
will discharge and it is easy to see that the capacitor’s voltage will be 0 V. Similarly, if you
bring the output high, the voltage will charge the capacitor and you will soon have 5 V across
the capacitor.

What happens, however, if you bring the output pin high for 1 ms and then low for 1 ms and
keep repeating this sequence? When the pin is high, the capacitor will charge up. When the
pin is low, the capacitor will discharge. Since the 1 ms time is the same for both conditions,
the average voltage across the capacitor will be 2.5 V (one half of the 5 V output). If you keep
the pin high for 1 ms and then low for 4mS, the output will be 1 V.

In general, the output voltage will be 5 V times the percentage of time the pulse is high. In
theory, it doesn’t matter how long the pulses are, as long as the percentage is correct. If the
high and low periods were 100 µs and 400 µs, the output would still be 1 V. The percentage of
time the signal is high is known as its duty cycle. In this example, the duty cycle is 20%.

Figure 14-1 shows a practical circuit. The resistor prevents excessive current draw from the
SX.

Figure 14-1: PWM Output Circuit

Unit 14: PWM

Page 196 • Beginning Assembly Language for the SX Microcontroller

Selecting a resistor and capacitor value can make a big difference in a PWM
circuit. The smaller the capacitor, the quicker it will charge to the final desired
value. On the other hand, smaller capacitors discharge quicker as well. The
resistor, of course, also affects the timing. Lower values will reduce the amount
of time required to charge the capacitor to its final value.

Practical Pulses
If you wanted to write a PWM output routine, you might be tempted to select a time period
and divide it into, say, 100 slots. Then you could turn the output on, for the number of slots
you wanted. For example, if each slot was 2 µs and you wanted a 50% duty cycle, you’d turn
the output high for 50 time periods (100 µs) and then off for the next 50.

This would work, but it is less than optimal. Why? This scheme increases the amount of time it
takes for the capacitor to charge and discharge. Ideally, the pulses should be as short as
practical. One way to do this is to make the pulses proportional. For example, a 50% duty
cycle with a 2 µs timebase would have one 2 µs high followed by a 2 µs low. A 33% duty cycle
would be 2 µs on and 4 µs off.

At first glance this would seem to be difficult to compute. However, a clever trick makes it
quite simple. Suppose you use a byte to define 256 duty cycles. With this scheme, $FF is
nearly 100%, $80 is 50% and, of course, 0 is 0%. Each unit is then roughly 0.4%.

Suppose you have an interrupt service routine that runs every 2 µs and a duty cycle stored in
the pwm variable. You can use an accumulator (pwm_acc) to easily handle the PWM
algorithm. Here are the steps:

• Set pwm_acc equal to pwm_acc plus pwm
• If a carry results from the addition, set the output bit
• If a carry did not result, clear the output bit.

The ISR is probably the simplest ISR you can imagine:

 add pwm_acc,pwm
 movb rb.0,c
 mov w,#-100 ; every 2uS
 retiw

Why does this work? Look at the values in Table 14-1:

 Unit 14: PWM

 Beginning Assembly Language for the SX Microcontroller • Page 197

Table 14-1: PWM Accumulator
pwm(duty)=$FF pwm(duty)=$80 Time

µS pwm_acc output pwm_acc output
0 0 0 0 0
2 $FF 0 $80 0
4 $FE 1 $00 1
6 $FD 1 $80 0
8 $FC 1 $00 1

If you follow this sequence you’ll see that this in fact works as promised. Of course, at a duty
cycle of 1 (0.4%) you still have 2 µs on and 511 µs off, but this is the extreme case. Using a
more straightforward algorithm results in this being the case for all values.

Limitations and Enhancements
There are several practical issues to consider with this type of circuit. First, the capacitor
charges through a resistor. The larger the capacitor, the more time it takes to charge and
discharge. On the other hand, holds it charge poorly as the PWM rate slows down.

If you really expect to draw any significant current from the PWM pin, you should consider
using some sort of buffer amplifier (like an op-amp or an emitter follower amplifier). However,
if you are drawing modest amounts of current (for example, a comparator or op-amp input)
you can just use the PWM output directly.

You can also drive an LED using this type of PWM. You don’t need a capacitor because your
eye will integrate the flashes from the rapidly blinking LED. PWM (properly buffered) can also
vary motor speeds.

In general, the faster the PWM rate, the smoother the PWM appears. With such a short ISR,
you can easily reduce the rate by adjusting the ISR’s period. For example, changing the ISR so
that it loads w with 50 instead of 100 would drop the rate to 1 µs. The entire ISR only
requires 10 clock cycles, so you could reduce the number even further (as long as you don’t
add code to the ISR). Setting the ISR rate to 20, for example, drops the period to 400 ns!

If you want finer-grain control, you could use larger PWM accumulators (and duty cycles). For
example, a 10-bit set up would allow you to step the voltage about 0.1% per step (about 5
mV). In this case you wouldn’t use the carry bit to control the PWM, you’d use bit 9 of a 16-bit
variable. Of course, at some point your step size will be smaller than the accuracy possible
because of the component tolerances.

Unit 14: PWM

Page 198 • Beginning Assembly Language for the SX Microcontroller

Summary
Generating pulses is both easy and extremely useful. Pulse trains can control motors, dim
lights, and generate voltages with a minimum of external components.

PWM is not your only choice when it comes to analog output. There are readily available chips
that will produce analog outputs. These D/A or DAC (Digital to Analog Converters) come in a
bewildering array of styles and features. If you want to use a chip-level DAC, be sure to find
one that accepts serial data so you conserve the SX’s pins.

Exercises
1. Figure 14-2 is a view of two PWM outputs. What is the duty cycle of each expressed as a
percentage? If the PWM generator uses 8 bits to express the duty cycle, what number is used
to create each output?

Figure 14-2: Two PWM Output Signals

 Unit 14: PWM

 Beginning Assembly Language for the SX Microcontroller • Page 199

2. Set up a PWM circuit as shown and create code that varies the pwm duty cycle by 1 bit
about every 250 ms (or more). Using a voltmeter (or even better, an oscilloscope) verify that
the change in voltage is near the expected 19.5 mV. What would happen if you changed the
pwm counter to use 9 bits instead of 8? Verify your answer.

3. Using your PWM circuit, devise a program that will find the input threshold voltage of
another I/O pin automatically. You can do this by connecting the PWM output to another input
and slowly ramping the output voltage until you find a 1 input. You can either verify your
results with the debugger or with a voltmeter.

4. Look at the triangle waveform in Figure 14-3. Can you simulate this with PWM? Write a
program to generate this waveform. You can observe your results with an LED, or even better
an oscilloscope, if available. Hint: The exact timing or voltage levels are not important.

Figure 14-3: Triangle Wave

 Unit 14: PWM

 Beginning Assembly Language for the SX Microcontroller • Page 201

Answers

1. The upper trace is high for 2 µs of every 4 µs and is therefore at 50% or duty cycle 128.
The lower trace is high for 2 µs of every 10 µs – a 20% or 51 duty cycle.

2. Here is a possible 8 bit solution:

;===
;Beginning Assembly Language for the SX Microcontroller
;Program 14.1
;===

 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset reset_entry
 freq 50_000_000

pwm_pin = rb.0

 org 8

temp ds 1
pwm ds 1 ;pwm0
pwm_acc ds 1
dly ds 1
dly1 ds 1

 org 0
;
;

;
interrupt
 inc dly
 snz
 inc dly1

 add pwm_acc,pwm
 movb pwm_pin,c

 mov w,#-100
 retiw
;***
;* Main *

Unit 14: PWM

Page 202 • Beginning Assembly Language for the SX Microcontroller

;***
;
;
; Reset entry
;
reset_entry

 mov rb,#%00000000 ;init rb
 mov !rb,#%11111110
 clr fsr ;reset all ram banks
:loop setb fsr.4
 clr ind
 ijnz fsr,:loop

 mov !option,#%10011111 ;enable rtcc interrupt
;
;
; - main loop
;

mainloop

 inc pwm
 call pause
 jmp mainloop

pause
:p0 mov temp,#250
:p1 call pausems
 djnz temp,:p1
 ret

; pause about 1ms
pausems
 mov dly1,#$FE
 mov dly,#$0C ; FE0C = -500
:p1 mov w,dly1
 or w,dly
 jnz :p1
 ret

To change the code to 9 bits, you’d change the ISR to look like this:

interrupt
 inc dly
 snz
 inc dly1

 Unit 14: PWM

 Beginning Assembly Language for the SX Microcontroller • Page 203

 add pwm_acc,pwm
 addb pwm_acc1,c
 add pwm_acc1,pwm1
 movb pwm_pin,pwm_acc1.1
 clrb pwm_acc1.1

 mov w,#-100
 retiw

Of course, you’ll have to add the pwm_acc1 and pwm1 variables. Your main loop might look
something like this:

 inc pwm
 snz
 inc pwm1

 call pause
 jmp ainloop

The expected voltage shift per step for 9 bits is 1/512 V or about 2 mV.

3. Here is a possible solution’s main loop (this assumes an 8 bit PWM ISR):

mainloop
 call pause
 jb rb.1,found
 inc pwm
 jnz mainloop
; hmmm... didn't find it
 jmp mainloop

found break
 mov w,pwm
 jmp $; stop but let PWM continue

4. The length of the pause will determine the period of the triangle wave. Here is one possible
way to generate the wave:
mainloop
 inc pwm
 jz reverse
 call pause
 jmp mainloop

Unit 14: PWM

Page 204 • Beginning Assembly Language for the SX Microcontroller

reverse dec pwm
 jz mainloop
 call pause
 jmp reverse

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 205

Unit 15: A Practical Design - The
SSIB

One of the things the SX excels at is producing custom I/O devices for other microcontrollers.
The SX is fast and inexpensive – it is well suited to the task of making dedicated peripheral
devices. In this unit, you’ll examine a serial communications buffer that uses an SX. This
peripheral device can help other microcontrollers (like BASIC Stamp modules, for example)
receive serial data from a PC or other device.

Parallax’s BASIC Stamp modules have a microcontroller that you program using BASIC. These
BASIC Stamp modules are perfect for quick and simple projects. Although BASIC Stamp
modules excel at many jobs, they are inherently single-tasking. This single-tasking philosophy
makes programming simpler, but it makes serial input tricky.

The BASIC Stamp has a perfectly capable command for reading serial data (the SERIN
command). The problem is that the BASIC Stamp can't issue a SERIN command and do
something else at the same time. If a BASIC Stamp module performing a task when serial data
arrives, the data is lost.

To ameliorate this limitation, BASIC Stamp modules can employ a handshaking signal. This
output line signals the transmitting device when the BASIC Stamp is ready to accept serial
data. This works well if the sending device can stop transmission. Unfortunately, this isn't
always possible or desirable.

The best answer would be to insert a buffer between the sending device and the BASIC Stamp
module. The buffer would hold any incoming data until the BASIC Stamp program reads it.
This is a perfect application for an SX. The high speed of the SX allows you to service many
serial channels simultaneously with no chance of data loss. This particular design uses an SX28
– the project doesn’t even use all the pins available, and just ignore the extra pins.

With any project, you should start with a design. Figure 15-1 shows the pin out for the buffer
device (the BASIC Stamp Serial Input Buffer or SSIB). Notice that there are two input
channels. The SSIB reads from these two channels and stores characters in a 16-byte buffer
(each channel has its own buffer).

Each channel has an associated handshaking line. If the buffer for a channel fills up the SSIB
deasserts the handshaking line and reasserts it when the buffer has more room. Of course, if

Unit 15: A Practical Design

Page 206 • Beginning Assembly Language for the SX Microcontroller

you are sure the BASIC Stamp will empty the buffer faster than the device will fill it, you can
ignore these handshaking lines.

On the BASIC Stamp side the SSIB uses 3 pins. One pin receives data from the SSIB. The
other two pins act as handshake lines. If the BASIC Stamp asserts CHANA, the SSIB sends
data from channel A to the BASIC Stamp. CHANB selects data from the B channel. If neither
line is active the SSIB sends no data to the BASIC Stamp. Of course, if you are only using one
channel you can connect 2 pins to the SSIB instead of 3.
In its default configuration, the SSIB uses 9600 baud communications on each channel.
However, you can change a few configuration parameters to alter this for each port
individually. See Table 15-1 for the available configuration options - you can change several
parameters here including the polarity of each port.

SSIB

19

20

28

24

23

22

27

26

25

21

10

1

5

6

7

2

3

4

8

9

N/C

READ_B

READ_A

N/C

N/C

N/C

N/C

RESET

Vss

N/C

Vdd

N/C

OSC1

OSC2

N/C N/C

TX N/C

N/C

1811 N/C

1712 N/C

1613 N/C

1514 N/C

CHANNEL_B

HANDSHAKE_A

CHANNEL_A

HANDSHAKE_B

N/C

Figure 15-1: The SSIB Pin-Out

Inside the SSIB
The SSIB code (see the Listings at the end of this unit) takes advantage of the SX's high clock
speed. Although the SX in use can clock up to 50 MHz, this is overkill for this application. Even
at 10 MHz, there is plenty of time to do all the tasks required. Running more slowly allows the

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 207

SX to draw less power. Remember, many processors divide their external clock, but the SX
does not when in turbo mode. So an SX running at 10 MHz is comparable to some other
processors running at 40 MHz! A processor that divides by 4 would have to run at 200 MHz to
match a 50 MHz SX. Almost all of the code executes in response to a high-speed periodic
interrupt that occurs every 13 µs.

The first thing the interrupt service routine (ISR) does is transmits any pending serial bits.
Next, the serial receivers execute (first channel A, then channel B). Notice that the receivers
are essentially copies of each other, but each receiver has private variables.

After servicing all 3 serial channels, the ISR turns its attention to managing the circular buffers
for each channel. If a transmission is already in progress, the ISR simply exits. Otherwise, the
ISR examines each channel's handshaking line. If the line is active, the code examines the
corresponding circular buffer. If any characters are waiting, the ISR moves a waiting character
into the transmit register so that on the next interrupt the character will be sent to the BASIC
Stamp.

Table 15-1: SSIB Configuration
Parameter Description Default Value
XBAUDRATE Baud rate to BASIC Stamp 19200
BAUDRATE_A Baud rate to device A 9600
BAUDRATE_B Baud rate to device B 9600
INVSEND Use inverted mode to BASIC Stamp if 1 0
INVRCVA Use inverted mode to device A if 1 0
INVRCVB Use inverted mode to device B if 1 0
BUFFERLIM Minimum free space before asserting

handshake
2

Compared to the ISR, the main code (beginning at the start_point label) is anticlimactic. Of
course, the first few lines initialize the program, setting up the I/O pins and the periodic
interrupt.

Once the chip is running, the main loop (at mainloop) simply waits for an incoming character,
and moves it to the correct queue. The enqueue and get_byte routines (along with
enqueue1 and get_byte1) handle the mechanics of reading each byte and placing it in the
circular buffer. Previous examples did the buffering in the ISR. However, with two channels, I
decided to move the buffering to the main program (which has practically nothing to do
anyway).

The queuing logic implements a 16-byte circular buffer that is more sophisticated than early
versions you’ve examined. The tricky part of the code computes how much of the buffer is
free. If this number is less than or equal to the BUFFERLIM constant, the SSIB turns off the

Unit 15: A Practical Design

Page 208 • Beginning Assembly Language for the SX Microcontroller

inbound handshaking line for that channel. If the device in question can respond to handshake
requests quickly, you could set BUFFERLIM to 1. However, many devices can still send a
character or two before they respond to a handshake. In that case, you can set BUFFERLIM
to a higher value.

Using the SSIB
Using the SSIB is easy with the BASIC Stamp. You can find a summary of the SSIB’s pins in
Table 15 -2.
Figure 15-2 shows a sample test circuit. In this schematic, the BASIC Stamp at IC1 is receiving
data from the BASIC Stamp at IC2 (which stands in for two external devices). IC3 is the SSIB.

10 MHz Vss
VssVss

SSIB

19

20

28

24

23

22

27

26

25

21

10

1

5

6

7

2

3

4

8

9

N/C

READ_B

READ_A

N/C

N/C

N/C

N/C

RESET

Vss

N/C

Vdd

N/C

OSC1

OSC2

N/C N/C

TX N/C

N/C

1811 N/C

1712 N/C

1613 N/C

1514 N/C

CHANNEL_B

HANDSHAKE_A

CHANNEL_A

HANDSHAKE_B

N/C

BS2

15

16

24

20

19

18

23

22

21

17

10

1

5

6

7

2

3

4

8

9

SOUT

P2

P1

P0

P13

P14

P15

VIN

VSS

ATN

SIN

VDD

RES

VSS

P3 P12

P4 P11

P10

1411 P9

1312 P8

P5

P6

P7

BS2

15

16

24

20

19

18

23

22

21

17

10

1

5

6

7

2

3

4

8

9

SOUT

P2

P1

P0

P13

P14

P15

VIN

VSS

ATN

SIN

VDD

RES

VSS

P3 P12

P4 P11

P10

1411 P9

1312 P8

P5

P6

P7

IC1 IC2

IC3

Vss

Vin Vin

Figure 15-2: Test Circuit for the SSIB

The device connected to the SSIB’s RES1 and RES2 terminals is a 10 MHz ceramic resonator
with capacitors. This three-terminal device has a ground lead in the center. The other two
terminals are interchangeable. If you are simply testing the circuit you can use the SX-Key or
SX-Blitz to generate the 10 MHz clock automatically (it senses the FREQ directive in the

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 209

program). You could also use a 10 MHz crystal with some extra capacitors, but a ceramic
resonator is less expensive and just as good in this application. The SX data sheets show how
to use a crystal if you want to try one.

The listing at the end of this unit shows the code that reads data from the SSIB. Instead of
actually performing other processing, the program does simulated work in the form of a
SLEEP statement. Notice that the BASIC Stamp reads data from the same pin regardless of
which channel it wants to read. However, the BASIC Stamp program’s SERIN command uses
a different handshaking line to select the channel it wants. In this case, using pin 12 selects
channel A and pin 13 selects channel B. Regardless, the BASIC Stamp reads the data from pin
14.

The simulator BASIC Stamp at IC2 (see the listings) just writes bytes out of each serial port
periodically. Of course, the two BASIC Stamp modules won't be synchronized, so only the
buffer allows this arrangement to work. If you set the first BASIC Stamp module to read more
often than the simulator writes, the buffer should never overflow. If you send bytes more
often than you read, the SSIB buffers will fill. In this case, the SSIB will use the outbound
handshaking lines to hold off the simulator.

Table 15 -2: SSIB Pinout
Pin Name Function
1 N/C Not connected
2 Vdd +5 V
3 N/C Not connected
4 Vss Ground
5 N/C Not connected
6 READ_A Signal to read from channel A
7 READ_B Signal to read from channel B
8 N/C Not connected
9 TX Transmit data to BASIC Stamp
10 CHANNEL_B Input for channel B
11 HANDSHAKE_A Optional handshake for device A
12 CHANNEL_A Input for channel A
13 HANDSHAKE_B Optional handshake for device B
14-25 N/C Not connected
26 OSC2 Connection to 10 MHz resonator
27 OSC2 Connection to 10 MHz resonator
28 RESET Pull low to reset; high for normal operation

Unit 15: A Practical Design

Page 210 • Beginning Assembly Language for the SX Microcontroller

About Inverted Mode
The BASIC Stamp and the SSIB can perform serial I/O in standard mode, or in inverted mode.
The mode selection affects the polarity of the signal line, of course, but it also changes the
polarity of the handshaking lines. In standard mode, the handshake lines must go low to
enable data transmission. This works well, because the SSIB has internal pull up resistors to
hold the lines high in the absence of other input.

If you use inverted mode, be aware that the handshake lines will be enabled until the BASIC
Stamp program or other device wakes up and explicitly inhibits transmission. This can cause
problems when the BASIC Stamp misses some characters at the beginning or receives an
erroneous byte right after resetting. A sleeping BASIC Stamp module may also trigger data
transmission since its I/O pins turn off every few seconds for a few milliseconds.

When you have a choice, use standard mode. You can set each channel independently.
Another partial solution would be to use an extra BASIC Stamp pin to reset the SSIB (by
pulling RESET low) after the BASIC Stamp program has control.

Customizing the Period
If you want to modify the timing used to generate the baud rates, you’ll need to understand
how the code handles different speeds. To ensure accuracy, the interrupt rate needs to be
quite a bit faster than the period of a single bit. At 9600 baud, for example, a single bit is
slightly longer than 104 µs. You need to interrupt at least 4 times faster (26 µs). Faster would
be even better. If you don’t interrupt quickly enough, you can miss a start bit. The Nyquist
theorem says you must sample twice as fast, but to make sure you have enough time to work
with a detected start bit, you’ll want to go as fast as you can.

By default the SSIB runs at 10 MHz. This causes the RTCC register to increment every 100 ns.
Causing an interrupt every 130 cycles makes the sampling rate 100 ns*130 = 13 µs; fast
enough to 4x oversample a 19200 baud rate signal (52 µs per bit).

The transmit code assumes that the baud rate divider will be a power of two. The define for
baud9600, for example, is 3 indicating that the divisor for 9600 baud is 2 to the 3rd power, or
8. At 13 µs per cycle, this works out to 104 µs per bit – about 9615 baud. This is about 0.2%
error – perfectly acceptable.

You might want to adjust the clock frequency to take advantage of an existing oscillator,
operate at higher baud rates, or accommodate more channels. There are three things to
consider:

1. The clock frequency
2. The interrupt period
3. The baud rate divider

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 211

Of these, the interrupt period is easiest to set incorrectly. Remember the RTCC keeps counting
even after an interrupt occurs. The more often interrupts occur, the less time is available for
the main program. If you interrupt too frequently, the main code can’t execute at all. As a
practical consideration, you’ll want to keep the interrupt period greater than about 80.

Suppose you wanted to use a 25 MHz clock. This makes each RTCC count worth 40 ns
(1/25000000). If you want to sample a 9600 baud signal 8 times per bit, you need 13 µs
interrupts (as calculated above; this is the same as 13000 ns). Therefore, the interrupt period
is 13000/40 or 325. Unfortunately, it is difficult to program the single-byte RTCC register for
325 counts.

You might be able to work around this with prescaling or using a software prescaler. However,
an easier method is simply to sample the signal more often. If you decide to check the bit 32
times instead of 8, you need roughly 3.3 µs which requires an interrupt period of 3300/40 or
about 82.

So to use a 25 MHz clock, you can set the interrupt period to 82 and the baud rate number to
5 (2 to the 5th power is 32). The actual time will be 40 * 82 * 32 = 104960 ns or 104.96 µs.
Reversing the calculations, the actual bit period will be equivalent to 9527 baud; about 0.7%
error. Using 81 shoots past the desired baud rate (9645 baud) but yields a smaller error
(about 0.5%). In practice, either value will work.

Since the baud rate divisor number is a power of 2, it is easy to figure other baud rates. In the
above example, since 5 sets 9600 baud, 4 will be 19200, 6 sets 4800, and 7 would be 2400.
Since the divisor is a bit number, you can’t exceed 7. To reach 1200 baud you’d need to
change the clock or the interrupt period.

Further Experiments
Using this set up, you can try several other scenarios. For example, try setting the simulator to
output at 2400 baud, but keep the BASIC Stamp channel at 9600. Then try reading one port at
9600 and the other at 2400.

You can change the periodic interrupt rate if you recalculate the baud rates. Just be careful to
leave enough time in between interrupts to run the main program. Depending on the baud
rates, clock speed, and interrupt period, you could accommodate more than just two input
lines.

Unit 15: A Practical Design

Page 212 • Beginning Assembly Language for the SX Microcontroller

Summary
Why design chips like the SSIB? Creating functional modules allows designers that don't have
your tools and skills to still create powerful systems. With the low-cost of the SX chip there is
no reason you can't add more than one to most designs. Even when designing with the SX,
chips like the SSIB can let you distribute the workload among several processors for even
more power.

 The SSIB Code
;===
;Beginning Assembly Language for the SX Microcontroller
;Program 15.1
;SSIB - by Al Williams, AWC http://www.al-williams.com/awce
;v2.0
;===

 device sx28l,oschs3
 device turbo,stackx,optionx
 IRC_CAL IRC_SLOW
 reset start_point
 freq 10000000

; Port Assignment: Bit variables
;
int_period EQU 130
XBAUDRATE EQU 19200 ; baud rate to stamp
BAUDRATE_A EQU 9600 ; Channel A baudrate
BAUDRATE_B EQU 9600 ; Channel B baudrate

; Non inverted modes are best because
; the internal pull up resistors will stop all devices
; from talking, setting any of the below to 1
; makes the handshaking reverse which means
; devices are free to send until the SSIB and/or
; BASIC Stamp wakes up which may cause you problems

INVSEND EQU 0 ; inverted/true to BASIC Stamp
INVRCVA EQU 0 ; inverted/true to Chan A
INVRCVB EQU 0 ; inverted/true to Chan B
BUFFERLIM EQU 2 ; space free in buffer before h/s off

rx_pin EQU rb.2 ;UART receive input
rx_pin1 EQU rb.0
tx_pin EQU ra.3 ;UART transmit output
enablepin equ ra.0
enablepin1 equ ra.1
rxen_pin equ rb.1 ; handshake for buffer A
rxen_pin1 equ rb.3 ; handshake for buffer B

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 213

;
 org 8
head ds 1
head1 ds 1
tail ds 1
tail1 ds 1
byte ds 1
tmpvar ds 1
flags DS 1 ;program flags register
spare7 EQU flags.7
rx_flag1 EQU flags.6
rx_flag EQU flags.5 ;signals when byte is received
spare4 EQU flags.4
spare3 EQU flags.3
spare2 EQU flags.2
spare1 EQU flags.1
spare0 EQU flags.0
 watch byte,8,uhex
 watch head,8,uhex
 watch tail,8,uhex
 watch rx_flag,1,uhex

 org 10h ;bank3 variables
serial = $;UART bank
;
tx_high ds 1 ;hi byte to transmit
tx_low ds 1 ;low byte to transmit
tx_count ds 1 ;number of bits sent
tx_divide ds 1 ;xmit timing (/16) counter
rx_count ds 1 ;number of bits received
rx_divide ds 1 ;receive timing counter
rx_byte ds 1 ;buffer for incoming byte
rx_count1 ds 1
rx_divide1 ds 1
rx_byte1 ds 1

; baud rate bit #
baud2400 = 5
baud9600 = 3
baud19200 = 2
; above 19.2K may not be reliable
; without adjusting int speed (see text)

IF XBAUDRATE=2400
baud_bit = baud2400 ;for 2400 baud
start_delay = (1<<baud2400)+(1<<(baud2400-1))+1
ENDIF

IF BAUDRATE_A=2400
bauda = 1<<baud2400
ENDIF

Unit 15: A Practical Design

Page 214 • Beginning Assembly Language for the SX Microcontroller

IF BAUDRATE_B=2400
baudb = 1<<baud2400
ENDIF

IF XBAUDRATE=9600
baud_bit = baud9600
start_delay = (1<<baud9600)+(1<<(baud9600-1))+1
ENDIF

IF BAUDRATE_A=9600
bauda = 1<<baud9600
ENDIF

IF BAUDRATE_B=9600
baudb = 1<<baud9600
ENDIF

IF XBAUDRATE=19200
baud_bit = baud19200
start_delay = (1<<baud19200)+(1<<(baud19200-1))+1
ENDIF

IF BAUDRATE_A=19200
bauda = 1<<baud19200
ENDIF

IF BAUDRATE_B=19200
baudb = 1<<baud19200
ENDIF

; bit and a half for receiver alignment
baud15a = 3*bauda/2
baud15b = 3*baudb/2

 org $50
scan ds 1 ; buffer A
bufmod equ $F

 org $70 ; buffer B
scan1 ds 1

 org 0
isr bank serial
:transmit clrb tx_divide.baud_bit
 inc tx_divide

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 215

 STZ
 SNB tx_divide.baud_bit
 test tx_count ; are we sending?
 JZ :receive ; if not, go to :receive
 clc ; yes, ready stop bit
 rr tx_high ; and shift to next bit
 rr tx_low ;
 dec tx_count ; decrement bit counter
IF INVSEND
 movb tx_pin,tx_low.6
ELSE
 movb tx_pin,/tx_low.6 ; output next bit
ENDIF
;
:receive
IF INVRCVA
 movb c,/rx_pin
ELSE
 movb c,rx_pin ; serial receive
ENDIF
 test rx_count ; waiting for stop bit?
 jnz :rxbit ; if not, :rxbit
 mov w,#9 ; in case start, ready 9
 sc ; if start, set rx_count
 mov rx_count,w
 mov rx_divide,#baud15a ; ready 1.5 bit periods
:rxbit djnz rx_divide,rxdone ; 8th time through?
 mov rx_divide,#bauda
 dec rx_count ; last bit?
 sz ; if not, save bit
 rr rx_byte
 snz ; if so, set flag
 setb rx_flag
rxdone

:receive1
IF INVRCVB
 movb c,/rx_pin1
ELSE
 movb c,rx_pin1 ; serial receive (B)
ENDIF
 test rx_count1 ; waiting for stop bit?
 jnz :rxbit1 ; if not, :rxbit1
 mov w,#9 ; in case start, ready 9
 sc ; if start, set rx_count
 mov rx_count1,w
 mov rx_divide1,#baud15b ; ready 1.5 bit periods
:rxbit1 djnz rx_divide1,rxdone1 ; 8th time through?
 mov rx_divide1,#baudb
 dec rx_count1 ; last bit?

Unit 15: A Practical Design

Page 216 • Beginning Assembly Language for the SX Microcontroller

 sz ;if not, save bit
 rr rx_byte1
 snz ;if so, set flag
 setb rx_flag1
rxdone1

;
; check for circ buffer send
 test tx_count
 jnz end_int ; busy?
 cje head,tail,end_int1 ; nothing to send
; are we allowed to send?
IF INVSEND
 jnb enablepin,end_int1
ELSE
 jb enablepin,end_int1
ENDIF
 mov fsr,tail
 add fsr,#scan
 mov w,ind
;send byte
 bank serial
 not w ;ready bits (inverse logic)
 mov tx_high,w ; store data byte
 setb tx_low.7 ; set up start bit
 mov tx_count,#10 ;1 start + 8 data + 1 stop bit
 inc tail
 and tail,#bufmod ; circularize
IF INVRCVA
 setb rxen_pin
ELSE
 clrb rxen_pin
ENDIF
; if transmitting why check alt channel?
 jmp end_int

end_int1
; are we allowed to send alt channel?
IF INVSEND
 jnb enablepin1,end_int
ELSE
 jb enablepin1,end_int
ENDIF
 mov fsr,tail1
 add fsr,#scan1
 mov w,ind
;send byte
 bank serial
 not w ; ready bits (inverse logic)
 mov tx_high,w ; store data byte

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 217

 setb tx_low.7 ; set up start bit
 mov tx_count,#10 ; 1 start + 8 data + 1 stop bit

 inc tail1
 and tail1,#bufmod ; circularize
IF INVRCVB
 setb rxen_pin1
ElSE
 clrb rxen_pin1
ENDIF

end_int
 mov w,#-int_period
 retiw ;exit interrupt

; ****** Main program begin

start_point
; want pull ups on all
 mode $E
 mov !ra,#0 ; pull ups on
 mov !rb,#0 ; pull ups on
 mov !rc,#0 ; pull ups on
 mode $F
IF INVSEND
 mov ra,#%0011
ELSE
 mov ra,#%1011 ;initialize port RA
ENDIF
 mov !ra,#%0011 ;Set RA in/out directions
 mov rb,#%00001010
 mov !rb,#%00000101

warmboot
 CLR FSR ;reset all ram starting at 08h
:zero_ram SB FSR.4 ;are we on low half of bank?
 SETB FSR.3 ;If so, don't touch regs 0-7
 CLR IND ;clear using indirect addressing
 IJNZ FSR,:zero_ram ;repeat until done

 mov !option,#%10011111 ;enable rtcc interrupt

 clr rb

; Here is where the action is!
mainloop
 jnb rx_flag,:t1
 call get_byte ; if char, copy to buffer
 call enqueue

Unit 15: A Practical Design

Page 218 • Beginning Assembly Language for the SX Microcontroller

:t1
 jnb rx_flag1,mainloop
 call get_byte1 ; if char, copy to buffer
 call enqueue1
 jmp mainloop

enqueue
; check for buffer overrun!
 mov w,#1
 add w,head
 and w,#bufmod
 mov w,tail-w
 jz queuefull ; if full too bad
 mov fsr,head
 add fsr,#scan
 mov ind,byte
 inc head
 and head,#bufmod ; circular

; calculate buffer limit
 mov tmpvar,tail
 cjae tail,head,:normal
 add tmpvar,#16
:normal
 mov w,head
 sub tmpvar,w
 jz doret ; buffer is empty?
 add tmpvar,#-BUFFERLIM
 jz :hshalt
 jc doret

:hshalt ; buffer full so...

IF INVRCVA
 clrb rxen_pin
ELSE
 setb rxen_pin
ENDIF
doret
queuefull
 ret

enqueue1
; check for buffer overrun!
 mov w,#1
 add w,head1
 and w,#bufmod
 mov w,tail1-w
 jz queuefull1 ; if full too bad

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 219

 mov fsr,head1
 add fsr,#scan1
 mov ind,byte
 inc head1
 and head1,#bufmod ; circular

; calculate buffer limit
 mov tmpvar,tail
 cjae tail,head,:normal
 add tmpvar,#16
:normal
 mov w,head
 sub tmpvar,w
 jz doret ; buffer is empty?
 add tmpvar,#-BUFFERLIM
 jz :hshalt
 jc doret

:hshalt ; buffer full...

IF INVRCVB
 clrb rxen_pin1
ELSE
 setb rxen_pin1
ENDIF
queuefull1
 ret

; Subroutine - Get byte via serial port
;
get_byte
 bank serial
 jnb rx_flag,$;wait till byte is received
 mov byte,rx_byte ;store byte (copy using W)
 clrb rx_flag ;reset the receive flag
 ret

get_byte1
 bank serial
 jnb rx_flag1,$;wait till byte is received
 mov byte,rx_byte1 ;store byte (copy using W)
 clrb rx_flag1 ;reset the receive flag
 ret

Unit 15: A Practical Design

Page 220 • Beginning Assembly Language for the SX Microcontroller

The SSIB Test Program

' Beginning Assembly Language for the SX Microcontroller
' TestSSIB.bs2
' BASIC Stamp program to test SSIB

'{$STAMP BS2}
'{$PBASIC 2.5}

Baudrate CON 32

' Use the next 2 lines when using inv mode serial
' low 12
' low 13

' Use next 2 lines when using non inv mode serial
HIGH 12
HIGH 13

' Read starting numbers
DEBUG "sync A "
SERIN 14\12,Baudrate,[DEC W3]
DEBUG "B "
SERIN 14\13,Baudrate,[DEC W4]
DEBUG "Complete",CR

Top:
 W3=W3+1 ' calculate expected next numbers
 W4=W4-1
 PAUSE 1000 ' do some "work" (pause really)

 ' read numbers
 SERIN 14\12,Baudrate,[DEC W1]
 SERIN 14\13,Baudrate,[DEC W2]
 DEBUG "A:",DEC W1,CR
 DEBUG "B:",DEC W2,CR

 ' see if they met our expectations
 IF (W1=W3) THEN TestB
 DEBUG "Channel A mismatch. Expected ",DEC W3, " got ", DEC W1,CR
 W3=W1

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 221

TestB:
 IF (W2=W4) THEN Top
 DEBUG "Channel B mismatch. Expected ",DEC W4, " got ", DEC W2,CR
 W4=W2
 GOTO Top

Simulated Serial Devices for the SSIB

' Beginning Assembly Language for the SX Microcontroller
' DataStreamForSSIB.bs2

' This BASIC Stamp program just writes out two
' data streams to test the SSIB

'{$STAMP BS2}
'{$PBASIC 2.5}

W1=0
W2=$FFFF

DO
 SEROUT 15\9,84,[DEC W1,","]
 SEROUT 8\10,84,[DEC W2,","]
 W1=W1+1
 W2=W2-1
 PAUSE 5
LOOP

Exercises

1. If you wanted to add more serial channels to the SSIB, what points would you need to
consider?

2. Devise a scheme to buffer 32 characters instead of 16. Show code to increment and
decrement the pointer to the buffer.

3. Could you make the SSIB automatically detect the correct polarity of the input lines? What
would be the plusses and minuses to doing this?

Unit 15: A Practical Design

Page 222 • Beginning Assembly Language for the SX Microcontroller

Answers
1. Adding another channel to the SSIB would require more program memory and data memory
for the circular buffer. Of course, you’d also need addition I/O pins. However, the biggest
limitation to adding another channel would be placing more code in the ISR. Remember, if the
ISR’s execution time exceeds the periodic interrupt rate, the code will not function properly.
Also, as the ISR consumes more time it leaves less time for the remainder of the program. So
if the ISR rate is, for example, 100 µS and the ISR requires 80 µs this leaves only 20 µs for the
remainder of the program.

Of course, with the 28-pin device, there are enough pins for more ports. The SSIB is not over
taxing the part’s memory. You could solve any potential ISR problems by increasing the part’s
speed so that you can execute more instructions in the same amount of time (of course, this
increases current consumption).

2. Buffering 32 characters is somewhat complex because of the SX’s banked architecture.
Remember that the SX has 8 banks of 32 registers. However, the first 16 registers are the
same in each bank. Of those 16 registers, 7 or 8 (depending on the device type) are reserved
for system functions. The remaining 8 or 9 registers are usually used for variables that you
have to frequently access so you can avoid bank switching.

The current serial buffers are at addresses $50 and $70. If you try to grow these buffers
arbitrarily you’ll run into trouble. For example, $50 + $10 = $60, but $60 is really the IND
register (the same as location $00).

Suppose you decided to store the buffer for the first channel in two parts, one at $50 and one
at $70 (you can move the other buffer to another address). When you increment the head or
tail variable you’ll have to take this into account:

 inc head
 cjne head,#$60,:nospan
 mov head,#$70
:nospan
 cjne head,#$80,:doneinc
 mov head,#$50
:doneinc

To decrement, you’d need this code:

 dec head
 cjne head,#$4F,:nospand
 mov head,#$7F
:nospand

 Unit 15: A Practical Design – The SSIB

 Beginning Assembly Language for the SX Microcontroller • Page 223

 cjne head,#$6F,:doned
 mov head,#$50
:doned

3. Detecting the state of the line would require you to sense the input lines at some point
when they were idle. For example, on reset you could read the serial input lines and assume
they are idle. Then you could invert or not invert your inputs as appropriate. The problem is:
what happens if the lines are not idle? You could erroneously sample a start bit, for example,
and then you’d pick the wrong polarity.

When designing a general-purpose component, you need to take great care that your devices
will work under a variety of conditions. Therefore, this method is probably not appropriate
since it could fail in certain cases that are likely to occur, at least for some users.

A better idea would be to reserve an otherwise unused input pin and sense it on reset. The
designer using your chip could then tie the input high or low to set the chip’s polarity. This
would be a must if you were not providing the source code with the part. Currently, the only
way to change polarity is to recompile the source code. Some users won’t be able to do this,
and you may be unwilling to release your source code anyway.

 Appendix A: Instruction Summary

 Beginning Assembly Language for the SX Microcontroller • Page 225

Appendix A: Instruction Summary

Processor Control
Instruction Words Turbo Cycles Description
BANK x 1 1 Sets current register bank
MODE x 1 1 Sets I/O mode
NOP 1 1 No operation
PAGE 1 1 Sets current code page
SLEEP 1 1 Puts processor in low power sleep mode

Appendix A: Instruction Summary

Page 226 • Beginning Assembly Language for the SX Microcontroller

Flow Control
Instruction Words Turbo Cycles Description
CALL 1 3 Call subroutine
CJA 4 4,6 Compare jump above
CJAE 4 4,6 Compare jump above or equal
CJB 4 4,6 Compare jump below
CJBE 4 4,6 Compare jump below or equal
CJE 4 4,6 Compare jump equal
CJNE 4 4,6 Compare jump not equal
CSA 3 3,4 Compare skip above
CSAE 3 3,4 Compare skip above or equal
CSB 3 3,4 Compare skip below
CSBE 3 3,4 Compare skip below or equal
CSE 3 3,4 Compare skip equal
CSNE 3 3,4 Compare skip not equal
DECSZ 1 1,2 Decrement skip zero
DJNZ 2 2,4 Decrement jump not zero
INCSZ 1 1,2 Increment skip zero
IJNZ 2 2,4 Increment jump not zero
JB 2 2,4 Jump if bit set
JC 2 2,4 Jump if carry set
JMP 1 3 Jump
JNB 2 2,4 Jump if bit not set
JNC 2 2,4 Jump if no carry
JNZ 2 2,4 Jump if no zero
JZ 2 2,4 Jump if zero
MOVSZ 1 1,2 Move (with optional inc/dec) skip on zero
RET 1 3 Return from subroutine
RETP 1 3 Return across page
RETW 1 3 Return literal
SKIP 1 2 Skip next instruction
SNB 1 1,2 Skip if bit clear
SNC 1 1,2 Skip if no carry
SNZ 1 1,2 Skip if not zero

 Appendix A: Instruction Summary

 Beginning Assembly Language for the SX Microcontroller • Page 227

Math and Logic
Instruction Words Turbo Cycles Description
ADD 1 1 Add (register + W or W + register)
ADD 2 2 Add (register + register or literal)
ADDB 2 2 Add bit
AND 1 1 And (register and W, W and register, W

and literal)
AND 2 2 And (register and literal or register and

register)
DEC 1 1 Decrement
INC 1 1 Increment
NOT 1 1 Invert
OR 1 1 Or (register and W or W and register or

W and literal)
RL 1 1 Rotate left
RR 1 1 Rotate right
SUB 1 1 Subtract W from register
SUB 2 2 Subtract register from register or literal

from register
XOR 1 1 Exclusive Or register and W or W and

register
XOR 2 2 Exclusive Or register and register or

register and literal

Interrupt Handling
Instruction Words Turbo Cycles Description
RETI 1 3 Return from interrupt
RETIW 1 3 Return from interrupt and add W to rtcc

Appendix A: Instruction Summary

Page 228 • Beginning Assembly Language for the SX Microcontroller

Bit Manipulation
Instruction Words Turbo Cycles Description
CLC 1 1 Clear carry
CLRB 1 1 Clear bit
CLZ 1 1 Clear zero
MOVB 4 4 Move bit
SETB 1 1 Set bit
STC 1 1 Set carry
STZ 1 1 Set zero

Move/Clear/Test
Instruction Words Turbo Cycles Description
CLR 1 1 Clear register, W, or WDT
MOV 1 1 Move W to register, register to W, literal

to W
MOV 2 2 Move register to register or literal to

register
TEST 1 1 Test W or register, set flags

Miscellaneous
Instruction Words Turbo Cycles Description
IREAD 1 4 Reads program memory
LCALL 1-4 3-6 Obsolete
LJMP 1-4 3-6 Obsolete
LSET 0-3 0-3 Obsolete

 Appendix B: Hardware

 Beginning Assembly Language for the SX Microcontroller • Page 229

Appendix B: Hardware

The projects in this tutorial are simple to build using common components. For the maximum
flexibility, you'll want to use a solderless breadboard. If you use the Parallax SX-Tech board
you can simply connect the circuits to the integrated breadboard.

You can also use your own breadboard if you like. The SX chip simply requires a regulated 5
volt supply (a bench supply will work fine) and a connection to the SX-Key programmer. If you
are using an SX-Blitz, or you want to operate the circuit without the SX-Key, you’ll also need a
50 MHz ceramic resonator (Murata CST50.00MXW040 or equivalent). Some of the circuits use
slower clocks, and you’d need a resonator, crystal, or external oscillator if you didn’t want to
change the speed of the example circuit.

To successfully complete the tutorial exercises, you only need a few common parts:

• LEDs (or 5 V LEDs with integrated resistors)
• 470 Ω resistors (if not using 5 V LEDs)
• Push button switches
• Non-critical pull up resistors (10 kΩ to 22 kΩ, 1/4W or 1/8W)
• A piezo electric speaker

Common Circuit
All the circuits require the SX to be connected to the programmer and the chip’s support
circuitry. Again, if you are using an SX-Tech board this is already done. If you are using the
SX-Key, you only need to connect the chip to 5 V, ground, and the SX-Key. You can use an
existing 5 V power supply if you have one (make sure it is regulated). If you want to build a
simple 5 V supply, look at Figure B-1. This supply will handle about 100mA as shown, or can
handle over 1A if you use a 7805 with a heat sink in place of the 78L05 specified. You can use
an ordinary wall transformer to supply the unregulated DC input.

To ensure proper operation, you should also connect the MCLR pin to 5 V either directly or
through a pull up resistor. If you use a pull up resistor you’ll be able to short the MCLR pin to
ground to reset the processor. For the ultimate convenience you could use a push button
switch to make the ground connection.

Appendix B: Hardware

Page 230 • Beginning Assembly Language for the SX Microcontroller

Figure B-1: A Simple 5 V Supply

To connect the programmer, you can use pins with .1 inch spacing. You usually buy these in
strips that you can snap to the correct length with a pair of pliers or even your fingers. Insert
one end into your breadboard and the SX-Key (or SX-Blitz) will plug into the other side. If one
side of the pins is too short, you can usually slide the plastic insulator with a pair of pliers so
that the pins on each side are of equal length. Table B-1 shows the pin connections necessary.

Table B-1: SX28 Pin Connections
5 V Ground OSC1 OSC2 MCLR

15,16 5,6 18 17 4

I/O Circuits
Most of the projects in the tutorial require some input or output. The I/O usually takes the
form of an LED, a push button, both an LED and a push button, or a piezo speaker. Figure B-2
shows the common LED hookup. If you are using 5 V LEDs, you don’t need the resistor as it is
built into the LED. Notice that the LED is polarized; refer to the LEDs specifications to identify
which lead is which. With the LED wired as shown, you must bring the SX pin low to light the
LED.

Figure B-2: An LED Circuit

In Unit 5, some exercises use a push button and a piezo speaker for I/O as in Figure B-3. The
10 kΩ resistor’s value is not overly critical. Anything from 10 kΩ to 22 kΩ (or even more)
should work fine. If a project calls for more switches, you can duplicate the switch portion of

 Appendix B: Hardware

 Beginning Assembly Language for the SX Microcontroller • Page 231

the circuit for other pins. Just use a pull up resistor on the pin and connect the switch to
ground.

Figure B-3: A Speaker and Switch Circuit

Don’t connect an ordinary speaker directly to the SX pin as the load presented by such a
speaker may damage the SX chip. Most ICs, including the SX, can directly drive a piezo
speaker.

Final Projects
The first project is a TouchTone-style phone dialer. For demonstration purposes, you can hear
the tones in a piezo speaker (although they may be quite low – you may have to put your ear
right up to the speaker). If you want to really dial a phone, you’ll need two things: a filter and
an amplifier.

The Ubicom notes on the DTMF generation VP specifies the component values for the low pass
filter. This filter prevents high-frequency noise (an unavoidable byproduct of using PWM to
generate tones) from entering the phone lines. Connect a 620 Ω resistor to the SX output pin
and a .22 µF capacitor from the other side of the resistor to ground (the Ubicom data calls for
600 Ω resistor and .2 µF capacitors, but these values are close enough and easy to obtain).
This will make the tones even weaker than before, however. Some sort of amplification is
necessary if you plan to feed the tones into the phone. You can use any sort of amplified
speaker, signal tracer, or build a small amplifier from an LM386 chip (see Figure B-4) and drive
an ordinary 8 Ω speaker.

Appendix B: Hardware

Page 232 • Beginning Assembly Language for the SX Microcontroller

Figure B-4 : A Phone Dialer

If you wish to perform these next projects, you’ll need a parallel LCD, a 10 kΩ potentiometer,
and a way to connect a PC serial port to a BASIC Stamp module. One way to do this is with a
DB9 cable that has a female end to connect to the PC and bare wires on the other end. You
can also solder a DB9 connector to wires and plug a standard cable into it. In either case, the
wires would plug into your solderless breadboard.

If you want to experiment with proper RS232 communications – which is usually not strictly
necessary – you also need a MAX232 (along with the associated capacitors) or a MAX233
(which requires no capacitors). The MAX232A requires 4 or 5 0.1 µF capacitors, while the
regular MAX232 requires 4 or 5 1µF capacitors.

If you do wish to connect a MAX232, you need the circuit shown in Figure B-5. Note that the
capacitor between Vcc (pin 16) and ground is a decoupling capacitor and may not be
necessary if your 5 V power already contains decoupling capacitors to handle other circuitry.
Obviously, if you aren’t using polarized capacitors, you can disregard the plus signs on the
schematic.

 Appendix B: Hardware

 Beginning Assembly Language for the SX Microcontroller • Page 233

RS-232 Output

TTL/CMOS Output

+5V Input

RS-232 Input

RS-232 Output

TTL/CMOS Output

TTL/CMOS Input

TTL/CMOS Input

RS-232 Input

Vss

Vss

+10V

-10V

Vss

MAX232
16

12

11

10

15

14

13

9

1

5

6

7

2

3

4

8

C1+

T2OUT

V-

C2-

T2IN

T1IN

R1OUT

Vcc

C2+

C1-

V+

R1IN

T1OUT

GND

R2IN R2OUT

1.0 µF

1.0 µF

1.0 µF

1.0 µF

1.0 µF
DIP/SO

Figure B-5: MAX232 Circuit

The MAX233 doesn’t require external capacitors to operate (although decoupling capacitors
are always a good idea). However, the chip is a bit more expensive (usually more expensive
than the 4 capacitors you can eliminate). You can see an example schematic in Figure B-6.

Appendix B: Hardware

Page 234 • Beginning Assembly Language for the SX Microcontroller

RS-232 Output

RS-232 Input

N/C

TTL/CMOS Output

RS-232 Input

Vss

TTL/CMOS Input

TTL/CMOS Input

TTL/CMOS Output

+5V Input

Vss

1.0 µF

N/C

Internal -10V power supply

Internal -10V power supply

RS-232 Output

Internal +10V power supply

MAX233
20

16

15

14

19

18

17

13

1

5

6

7

2

3

4

8

T2IN

Vcc

GND

T1OUT

V+

C2+

C2-

R2OUT

R1IN

R1OUT

T1IN

V-

T2OUT

R2IN

C1+ C1-

12

11

9

10

GND V-

CS- C2+

DIP only

Figure B-6: MAX233 Circuit

