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24-Bit Adder Implementation
in a CPLD

The following equations add two bits, A and B, along with
a carry-in, CIN, to get the SUM and a carry-out, COUT.

SUM  = A $ B $ CIN

COUT = (A & B) # (A & CIN) # (B & CIN)

The SUM equation states that SUM is a logical one when
there is an odd number of ones being added. The COUT
equation states that COUT is a logical one if any pair of
the inputs are a logical one. Each of these one-bit adder
stages is called a full adder since each stage has a carry-
in. In contrast, half adders do not have the carry-in.

To build an adder of any size, simply cascade any
number of these one-bit full adders with the carry-out of
each stage feeding the carry-in of the next higher order
stage. However, such an adder incurs an additional
propagation delay for each stage as the carry-out from
one stage feeds the carry-in of the succeeding stage.
This method makes large counters very slow, since each
additional stage adds a level of logic and another propa-
gation delay. To create large and fast counters, use the
following propagate-generate technique to limit the propa-
gation delay to three levels.

To see how the propagate-generate technique works,
note that the equation for COUT has all the information
needed to determine if the one-bit adder stage either
generates a carry out or propagates a carry-in.

COUT = (A & B) # (A & CIN) # (B & CIN)

     = (A & B) # ((A # B) & CIN)

As the equation shows, COUT is generated within the
stage if both A and B are a logical one. A CIN is
propagated to COUT if either A or B is a logical ‘1’.

If a generate term, G, and a propagate term, P, are
substituted in the equation for COUT, the following equa-
tion results:

COUT = G # (P & CIN)

where G = A & B

and   P = A # B

COUT is either generated within the full adder if G is a
logical ‘1’ or CIN is propagated to COUT if P is a logical
‘1’. Thus, for a counter of multiple stages, each stage can
generate an output for G and P without any regard to CIN
since the equations for G and P involve only the A and B
inputs for that stage.

Finally, each stage can compute the sum for that stage
provided it has CIN.

SUM = A $ B $ CIN

Since CIN for a given stage is the COUT of the previous
stage, the incoming CIN is a logical ‘1’ if either the
previous stage generates a carry or if the previous stage
propagates its own incoming carry. For example, the
equations for CIN for the second through fifth bits of an
adder are shown below:

Introduction

High speed DSP and arithmetic functions are in high
demand. There is an ever-increasing need for speed.
The purpose of this application note is to illustrate how to
optimize a 24-bit adder in a Lattice Complex Program-
mable Logic Device (CPLD). It is possible to implement
a full 24-bit adder in just three levels of logic, allowing the
adder to run at slightly over one-third the maximum
operating frequency of the device.

Lattice produces the highest speed In-System Program-
mable (ISP™) CPLDs in the industry. Since the
implementation of an adder in a CPLD requires multiple
levels of logic, it makes sense to use Lattice’s high speed
ispLSI® devices to implement an adder, particularly a
high-performance adder. In this application note, the
basic theory for adders is presented, followed by an
actual implementation into a Lattice device. Using a
Lattice ispLSI 2096VE-200, this adder can be imple-
mented in three levels of logic with an alternate ispLSI
design flow.

One-Bit Arithmetic

A one-bit adder is the basic building block for understand-
ing how to implement arithmetic functions in a CPLD.
Throughout this application note, equations will be given
to explain the theory behind the 24-bit adder. In order to
make the equations more readable, the following symbol
convention is used:
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CIN1 = COUT0 = G0 # (P0 & CIN0)

CIN2 = COUT1 = G1 # (P1 & COUT0)

CIN3 = COUT2 = G2 # (P2 & COUT1)

CIN4 = COUT3 = G3 # (P3 & COUT2)

By substituting in each stage’s equation the value for
COUT coming from the previous stage, the following
equations result:

CIN1 = COUT0

        = G0

     # (P0 & CIN0)

CIN2 = COUT1

     = G1

     # (P1 & G0)

        # (P1 & P0 & CIN0)

CIN3 = COUT2

     = G2

        # (P2 & G1)

        # (P2 & P1 & G0)

        # (P2 & P1 & P0 & CIN0)

CIN4 = COUT3

     = G3

        # (P3 & G2)

        # (P3 & P2 & G1)

        # (P3 & P2 & P1 & G0)

        # (P3 & P2 & P1 & P0 & CIN0)

Now each stage of the multiple-bit adder shown in Figure
1 can compute the sum by substituting the COUT devel-
oped from the propagate/generate outputs of the previous
stage for its CIN.

SUM = A $ B $ CIN

Note that there are three levels of logic.  At the first level,
each stage computes its P and G. The second level
computes the COUT from each stage for use as the CIN
for the next higher order stage.  Finally, at the third level,
each stage of the adder computes the sum of A, B and
CIN.
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Figure 1. 24-Bit Adder Using 1-Bit Stages
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Two-Bit Arithmetic

Note that the equation for COUT uses one more product
term at each stage than the previous stage used. Since
CPLDs have a limited number of product terms per
macrocell, too many product terms in large adders cre-
ates a problem. Breaking the equation for COUT into two
levels would work, but slow down the addition. The
solution is to use adder stages that consist of two-bit full
adders instead of one-bit full adders. Propagate/gener-
ate pairs are generated from each two-bit stage to form
the carry to the next higher two-bit stage. As shown in
Figure 2, using two-bit adders involves half as many
stages. Half as many stages results in half as many
propagate/generate pairs from stage to stage for a given
size adder. As a result, the highest order CIN equation
requires half as many product terms.

The sum equations for the two-bit adder are:

  SUM0 = A0 $ B0 $ CIN0

         = A0 $ ((B0 & !CIN0) # (!B0 & CIN0))

  SUM1 = A1 $ B1 $ CIN1

         = A1 $ ((B1 & !CIN1) # (!B1 & CIN1))

As shown, one of the XORs has been expanded out,
since CPLDs have at most one XOR per macrocell. By
replacing CIN1 with the stage’s internal carry out from the
previous stage, the following equation results:

  CIN1 = COUT0

          = (A0 & B0) # (A0 & CIN0) # (B0 & CIN0)

After simplification, the sum equations become:

  SUM0 = A0 $ ((B0 & !CIN0) # (!B0 & CIN0))

  SUM1 = A1 $ ((!A0   & !B0 &  B1)

         #(!CIN0 & !B0 &  B1)

         #(!CIN0 & !A0 &  B1)

         #(A0    & B0  & !B1)

         #(CIN0  & B0  & !B1)

         #(CIN0  & A0  & !B1))
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Figure 2. 24-Bit Adder Using Two-Bit Stages
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Although the equation for SUM1 is complicated, it is
easier to understand with knowledge of how the one-bit
full adder works and from the definition of XOR. Remem-
ber that for the XOR operation:

Z = X $ Y

Z is the opposite of X if and only if Y is a logical one. Thus
to get SUM0, A0 needs to be toggled (i.e. XORd) when
either B0 is a logical one and there is no carry coming in
(CIN0 a logical ‘0’) or when B0 is a logical ‘0’ and there is
a carry. Similarly, to get SUM1, A1 needs to be toggled
(XORd) either when B1 is a logical ‘1’ and there is no
possibility of a carry coming in (i.e. any pair of A0, B0 and
CIN0 is a logical ‘0’) or when B1 is a logical ‘0’ and there
is a carry coming in (i.e. any pair of A0, B0 and CIN0 is a
logical ‘1’).

The generate equations for the two-bit adder are:

G0 = A0 & B0

G1 = A1 & B1

        # (A1 & A0 & B0)

     # (B1 & A0 & B0)

G1 is generated either when both A1 and B1 are a logical
‘1’ or when at least one of the addends in the second
stage is a logical ‘1’ and there is also a carry being
generated within the first stage of the two-bit adder.

The propagate equation is simpler in the deMorganized
form. Propagate is inactive when there is no possibility for
the two-bit adder to propagate a carry. No possibility of
propagating occurs when both A and B are a logical ‘0’ in
either stage of the two-bit adder.

!P1 = (!A0 & !B0) # (!A1 & !B1)

Although the sum equations and the propagate-generate
equations are more complex for the two-bit full adder
than for the one-bit adder, there are less product terms
needed for the COUTs since there is only one propagate-
generate pair for every two bits being summed.

The CIN/COUT equations are the same when using two-
bit adders as when using one-bit adders, except now CIN
is the carry-in and COUT is the carry-out for the two-bit
adder stage. Again, for a given size adder, using two-bit
adders involves half as many stages, half as many
carries and propagate/generate pairs, and half as many
product terms for the highest order equation for the carry-
in, CIN.

Three-Bit Arithmetic

Figure 3 shows the same counter using three-bit adder
stages. The reasoning used to develop the equations for
the two-bit full adder can be used to develop the equa-
tions for the three-bit adder. While the equations for
SUM0 and SUM1 are the same as the two-bit adder, one
can gain an understanding for the SUM2 equation from
knowledge of how the one-bit adder works and the
definition of XOR. To get SUM2, A2 needs to be toggled
(i.e. XORd) when either:

B2 is a logical ‘1’ and there is no possibility of a carry
coming in from the middle stage of the three-bit
adder (Case 1); or

B2 is a logical ‘0’ and there is a carry coming in
from the middle stage (Case 2).

In Case 1, no carry can come from the middle stage of the
three-bit adder if both A1 and B1 are a logical ‘0’. In other
words, a carry is stopped from propagating if both A1 and
B1 are a logical ‘0’. If neither A1 or B1 are a logical ‘0’, a
propagating carry has to be stopped at the first stage.

In Case 2 where B2 is a logical ‘0’, A2 is toggled when
there is a carry coming in from the middle stage. A carry
comes from the middle stage if A1 and B1 are both a
logical ‘1’. If only one of the A1, B1 pair is a logical ‘1’, then
the middle stage will still send a carry to the third stage if
the middle stage gets a carry from the first stage.

  SUM0 = A0 $ ((B0 & !CIN0) # (!B0 & CIN0))

  SUM1 = A1 $ ((!A0   & !B0 &  B1)

      #(!CIN0 & !B0 &  B1)

         #(!CIN0 & !A0 &  B1)

         #(A0    & B0  & !B1)

         #(CIN0  & B0  & !B1)

         #(CIN0  & A0  & !B1))

  SUM2 = A2 $ ((!A1   & !B1 &  B2)

      #(!A0   & !B0 & !B1 &  B2)

         #(!CIN0 & !A0 & !B1 &  B2)

      #(!CIN0 & !B0 & !B1 &  B2)

      #(!A0   & !A1 & !B0 &  B2)

      #(!CIN0 & !A0 & !A1 &  B2)

      #(!CIN0 & !A1 & !B0 &  B2)

   #(A1    & B1  & !B2)

   #(A0    & B0  &  B1 & !B2)
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   #(CIN0  & A0  & B1  & !B2)

   #(CIN0  & B0  & B1  & !B2)

   #(A0    & A1  & B0  & !B2)

   #(CIN0  & A0  & A1  & !B2)

   #(CIN0  & A1  & B0  & !B2))

As shown next, G0 and G1 are as before.  G2 is seen to
be generated when:

(1)  both A2 and B2 are a logical ‘1’; or

       (2) at least one of the addends is a logical ‘1’
and there is a carry being generated in the
middle stage; or

(3)  at least one of the addends is a logical ‘1’
and there is a carry being generated in the
first stage and the middle stage propagates
the carry to the third stage.

G0 = A0 & B0

G1 = A1 & B1

        # (A1 & A0 & B0)

     # (B1 & A0 & B0)

G2 = A2 & B2

     # (A2 & A1 & B1)

     # (A2 & A1 & A0 & B0)

     # (A2 & B1 & A0 & B0)

     # (B2 & A1 & B1)

     # (B2 & A1 & A0 & B0)

     # (B2 & B1 & A0 & B0)

The propagate equation is again simpler in the
deMorganized form. Propagate is inactive when there is
no possibility for the three-bit adder to propagate a carry.
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Figure 3. 24-Bit Adder Using 3-Bit Stages
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No possibility of propagating occurs when both A and B
are a logical ‘0’ in one of the stages of the two-bit adder.

!P1 = (!A0 & !B0)

#(!A1 & !B1)

#(!A2 & !B2)

Since the SUM2 term for the three-bit full adder already
uses 14 product terms in conjunction with the XOR
operation, we will not bother implementing the four-bit
adder equations, since the SUM3 term for the four-bit
adder would need an excessive number of product terms
for what is available in a CPLD.

Implementing the 24-Bit Adder

ABEL-HDL (High-level Design Language) was used to
implement the equations for each of the three-bit stages
of the 24-bit adder. The first section of the source file
contains “PLSI Property” statements that are ignored by
the ABEL compiler but used later by the Lattice Fitter. The
first several “PLSI Property” statements specify to the
Fitter what part to use, to reserve the ISP™ pins, which
clock to use, and what type of simulation file to produce.
The ‘preserve’ property statements specify to the fitter
which nodes to preserve, thus controlling where the
breaks occur in the levels of logic. The ‘LXOR2’ property
specifies the nodes where the ‘hardware’ or built-in XOR
is to be used. The ‘ecp’ (End Critical Path) states where
product-term-bypass should be attempted to maximize
performance. The ‘CRIT’ property may be used to call for
the bypassing of the Output Routing Pool. These optional
property statements allow easy use of the Lattice Fitter
without sacrificing power. One can leave the property
statements out and let the fitter run with the defaults.  In
this case, one can use knowledge of the function and the
power of the “PLSI Property” statements to guide the
Fitter in giving the exact fit desired.

After the property statements is the section containing
ABEL statements for specifying the inputs and outputs
and for assigning pins. Node declarations are made for
the propagates and generates from each three-bit full
adder stage. Additional node declarations for each stage’s
carry-in, for the D inputs of the flip-flops in the macrocells,
and for the macrocells follow. Note that the node defini-
tion for the D inputs calls for XOR as part of the istype.
This statement is ensures that the XORs are not reduced
to AND-OR when ABEL reduces the logic but are passed
intact to the fitter.

Set declarations, defined next, allow ABEL’s powerful
feature of handling multiple similar signals in a single
equation and in the test vector section. The macro

definitions reduce the size of the source file. The macros
are defined with dummy arguments (arguments pre-
ceded with a ‘?’ symbol). Then, the compiler expands the
macros by substituting the actual arguments for the
dummy arguments. The 24-bit adder uses macros to
define most of the equations used during the expansion
for the SUM outputs. The XOR part of the SUM equations
could have been done inside the macro. Instead, it was
done outside of the macros, as can be seen in the
EQUATIONS section, where the equations for D-inputs
have the XORs explicitly stated. Macros also define the
propagate/generate equations for each three-bit adder
stage.

The EQUATIONS section enables the macros for the
propagate/generates, creates the second level of logic
(the carry-ins), and uses the add macros to form the D-
inputs for the flip-flops at the third logic level. Finally, the
D-inputs are assigned to their respective flip-flops, and
the clock and outputs are assigned.

Testing the Design

After compilation, the report file from the Lattice fitter will
show three levels of logic with the breaks in the logic
levels occurring exactly where they were specified by the
pLSI property statements. Functional simulation could
be achieved by simulation software. In this application, a
judicious choice of test vectors allows a quick confirma-
tion of the design. Since there are three levels of logic, we
can expect that a 125MHz PLD should run about one-
third of that speed or a little faster. Lattice’s static timing
analyzer adds up the prop delays, the set-up times and
the clock-to-Q times. Then the timing analyzer gives the
reciprocal of this time as the maximum frequency of
operation. Here the 24-bit adder is calculated to run as
fast as 46.3MHz.

Summary

Implementing this design in a Lattice ispLSI device al-
lows the design engineer to easily program the CPLD
without the use of a stand-alone programmer.  The need
is eliminated to remove and install devices in sockets.
ISP also allows the use of dense, high-performance
CPLDs in small, high pin-count packages without con-
cern about damaging pins from excessive handling.

In addition to facilitating the programming of the PLDs at
the design stage, ISP affords significant cost savings
during manufacturing, since the blank parts can be as-
sembled onto the PC board just like non-programmable
devices. ISP eliminates all special steps in the manufac-
turing process that used to be required for PLDs.
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Programming is done after assembly using Lattice’s
ispVM™ System software or the PLDs can be pro-
grammed in high volume applications on the same ATE
(automatic test equipment) already used during the final
board test. The ATE test vectors used for programming
are automatically generated from the JEDEC file by using
ispVM System software. There is no need for a separate
PLD programming station, no inventory of programmed
parts, and no need for sockets.
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Source File

The source code for this design example may be down-
loaded from the Lattice web site at www.latticesemi.com.

Technical Support Assistance

Hotline: 1-800-LATTICE (Domestic)
1-408-826-6002 (International)

e-mail: techsupport@latticesemi.com
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