

XGameStation Micro Edition

Floormapped Planes
By Michael Ollanketo

 TITLE "Plane demo v02"
; Textured/shaded planes for the XGS ME
; Works only at 80 MHz

; This file needs 5 include files:
; general_define.src: Defines constants (EQU) and some system variables.

In this lesson you will learn how to create an infinte plane effect on the XGameStation Micro Edition
(XGSME). Differences between NTSC and PAL will be pointed out in this document.

Figure 1: NTSC version Figure 2: PAL version

These images were grabbed through a TV-card, and the noise you see is because of the card and will
not be present on an actual TV. The reason why the NTSC and PAL versions have different colors is
that color is handled differently on NTSC and PAL devices, so getting the same results regardless of
the format would require some extra work.

What this demo does is the following: An XOR pattern is mapped onto a surface according to a simple
scaling algorithm to create the illusion of an infinite plane. The plane is shaded and mirrored across
the center of the screen to make it look like the inside of a cylinder or some other curved shape. An
XGS logo is drawn at the bottom of the screen, in the overscan area. The NTSC version of the demo
also slowly fades the hue to give a wider range of colors. All of this will be explained throughout this
tutorial.

As in the previous lesson, we begin with some assembler directives to set things up for the XGSME.

Legend
; n Instruction takes n cycles
; m (n) Instruction takes m cycles, and the entire group it belongs to takes n cycles
foobar NTSC-specific code
foobar PAL-specific code

; general_macro.src: Useful general purpose macro definitions and
; system functions.
; ninja.mus Music data.
; xgslogo.src XGS logo bitmap.
; xgsmp.src XGS music player.

 DEVICE SX52, OSCHS3, XTLBUFD, IFBD ; Set everything for the XGS ME
 RESET Start
 FREQ 80_000_000 ; this is a directive to the ide only
 ; if you want to put the XGS ME into RUN mode
 ; you must make sure you go into the
 ; device settings and make sure that
 ; HS3 is enabled, and crystal drive and
 ; feedback are disabled and then re-program
 ; the chip in PGM mode and then switch it to RUN

 IRC_CAL IRC_FAST ; Prevent a warning
 ID "micplane" ; ID string

; Global variables, starting at bank #2
 org $20
include "general_define.src"

 org $40
pixel ds 1
xCnt ds 1
yCnt ds 1
temp ds 1
cnt1 ds 1
cnt2 ds 1
u_w ds 1 ; u whole
u_f ds 1 ; u fractional
v_w ds 1 ; v whole
v_f ds 1 ; v fractional
u2_w ds 1
u2_f ds 1
du_w ds 1 ; delta u whole
du_f ds 1 ; delta u fractional
dv_w ds 1
dv_f ds 1
 org $50
temp2 ds 1
vertPtr2 ds 1
chroma_cnt ds 1
chroma_delta ds 1
temp3 ds 1
temp4 ds 1
u_w2 ds 1
u_f2 ds 1
v_w2 ds 1
v_f2 ds 1
one_u2 ds 1
one_v2 ds 1

Each register bank can hold up to 16 words. Normally I choose to put the variables declared in
general_define.src in bank $20, and put my program-specific variables in banks $30 and up. The
music player (xgsmp.src) uses banks $A0-$C0 for its variables by default. If you need to move
several variables from one bank to another you can use the global registers 10-15 in bank 0. That
way you can save yourself some bankswitches.

du_w2 ds 1
du_f2 ds 1
dv_w2 ds 1
dv_f2 ds 1

include "general_macro.src"
include "ninja.mus" ; Include song data
include "xgsmp.src" ; Include music player

 org $0 ; Set the start of the program code
 org $+2 ; leave 2 free word here for the debugger

; Jump table
InitMusic jmp @XgsMpInit
UpdateMusic jmp @XgsMpUpdate

Start ; Our real code starts here

 ; Initialize variables
 bank $50
 mov chroma_cnt,#0
 mov chroma_delta,#1
 clr v_w2
 clr v_f2

 bank #$40
 clr yCnt
 clr v_w
 clr v_f

 ; Initialize music player. Song data starts at $800
 mov 10,#$00
 mov 11,#$08
 call InitMusic
 _bank $20

 INITIALIZE_VIDEO ; Initialize I/O controller for video

Begin_Raster

 ; Initialize texture coordinates and deltas
 bank $40
 clr u_w ; u (horizontal), whole part
 clr u_f ; u, fractional part

This is the starting point of our frame (or rather, field) rasterizer. Each field is composed of 262.5
lines in NTSC mode and 312.5 lines in PAL mode. I have chosen to ignore the fractional part and
settle for 262 and 312 lines per field, respectively. Out of those 262 (312) lines, 184 are made up of
the actual effect, 4 (3) are used for vertical sync, 42 (65) are used for the bottom overscan and the
last 32 (60) lines are used for the top overscan.

To write to a variable you need to select the appropriate register bank. The BANK instruction copies
bits 4..6 of the operand into FSR (the File Select Register). If you want to select one of the upper 8
banks (bank $80-$F0) you have to set bit 7 of FSR yourself, or you can use the _bank macro in
general_macro.src which will do this for you. The CLR instruction is a simpler way of saying MOV
fr,#0. Using CLR will save you one cycle and one instruction word, so there’s a simple 50%
optimization for you!

 clr du_w ; delta u, whole part
 mov du_f,#64 ; delta u, fractional part (64 <=> 0.25)
 clr dv_w ; delta v, whole part
 mov dv_f,#64 ; delta v, fractional part

 bank $20

 ; Upper half

 mov scanline, #92 ; Render 92 scanlines
 mov !OPTION, #%11000100 ; Sets prescaler to 1:32
Raster_Loop1 ; Loop here for each scanline
 PREPARE_VIDEO_HORIZ burst_phase ; Prepare required video signal for

 ; a scanline
PREPARE_VIDEO_HORIZ_PAL burst_phase

 clr RTCC ; 1
 mov RE,#BLACK ; 2 (3)

The texture coordinates and deltas are all 8.8 fixed point numbers. If you’re unfamiliar with fixed
point, this basically means that you can represent real numbers instead of just integers, and that you
can do so with 8 bits of precision for the whole (integer) part and 8 bits of precision for the
fractional (“decimal”) part. As the name implies, the decimal point is at a fixed position unlike the
floating point numbers which traditionally are used to represent real numbers on computers. This
feature makes fixed point numbers very straightforward and efficient to work with, at the expense
of lower precision. The fixed point variables are made up of pairs of variables, with the whole part
having a _w suffix and the fractional part having an _f suffix.

As you may have learned in your SX52 studies, the OPTION register controls interrupts and the
prescaler setting of RTCC (the RealTime Cycle Counter). Bit 7 of OPTION should always be set, and
bits 4 and 5 should be clear. Bit 6 is a master interrupt flag and is active low, so we set the bit to
disable interrupts. Bits 0..2 allows for specification of 8 different prescaler settings ranging from 2
(000) to 256 (111). The prescaler is used when bit 4 is clear, otherwise a prescaler of 1 is implied.

After using the PREPARE_VIDEO_HORIZ macro to set up the current scanline, we reset the RTCC and
output black for a while. The SX52 has a number of ports that you can use to interface with other
devices. For example, port RA is used both for sound output and joystick input, while port RE is
used to send video data. Before you start using a port you need to set it up for reading or writing –
this is what the INITIALIZE_VIDEO macro does for the video port.

What I was looking for here was to create the illusion of perspective. What’s an easy way to do
that? Make things that are closer look bigger! So we need a low-complexity algorithm to scale
things up as they come “closer” to the viewer. My solution to the problem was this: use a
coordinate C={u,v} and two deltas D={u’,v’} and E={u”,v”}. For each pixel we do C := C +
{u’,0}. For each scanline we do C := C + {0,v’} and D := D + E. The horizontal origin (u) is
also moved back every scanline. This creates a shape that narrows down every scanline. If we
draw it bottom-up, we get this:

Figure 3: Texture bending

Our texture is just a simple XOR pattern, which means that we can generate it on-the-fly rather
than storing it in memory. To create the effect of having a bunch of large tiles I use bit 3 of the
texture coordinates in the texel generation. This way we get a virtual texture with 8*8 dot blocks
laid out in a chessboard manner. And when we apply this texture on our virtual surface we get the
following result:

Figure 4: Texture applied to plane

This is all good, but it looks a bit bland. To give you and idea of what I mean I’m going to let you
look at a picture.

Figure 5: Shading

Which of these objects looks more like a sphere? Probably the one on the right. This is because
the object on the right provides our brain with important cues about dimension and depth,
whereas the one on the left looks completely flat. To create the shading effect on the planes I use
a table with 92 entries – one for each scanline. The table contains raw luma values, ranging from
7 to 15. After applying shading to our initial effort we end up with something like this:

Figure 6: Shaded plane

Big improvement, don’t you think? So let’s write the code to do all this.

 bank $20 ; 1
 mov M,#$0C ; Page C holds the shading table (92 entries)
 mov W,scanline ; Select table offset
 iread ; Read one word
 bank $40
 mov pixel,W ; Save the lower 8 bits of the word read

 bank $20
 DELAY(500)

 bank $40 ; 1
 mov u2_w,u_w ; Make a copy of u_w
 mov u2_f,u_f ; ...
 mov xCnt,#160 ; Number of pixels per row

draw_scanline
 mov W,u2_w ; 1. u (whole)
 xor W,v_w ; 1. v (whole)
 and W,#8 ; 1. We're only interested in bit 3

 mov temp,W ; 1. Save W
 mov W,#(15*16) ; 1. Use color15 if ((u ^ v) & 8) != 0
 sb temp.3
 mov W,#(5*16) ; 1. Use color5 if ((u ^ v) & 8) == 0
 nop
 or W,pixel ; 1. OR in some luma

 mov RE,W ; 1

 ADD_8_8 u2_w,u2_f,du_w,du_f ; 6. 8.8 fixed point addition
 djnz xCnt,draw_scanline

scanline_done
 mov RE, #BLACK

 ADD_8_8 v_w,v_f,dv_w,dv_f ; v += delta v

I have written a macro called ADD_8_8 to add two 8.8 fixed point numbers – i.e. 8 bits for the
fractional part and 8 bits for the whole part. The two first operands contains the first numbers, and
the last two operands contains the second number. The result of the addition will be written to the
first number. The macro itself looks like this:

 add \2,\4
 snc
 inc \1
 add \1,\3

What this does is the following: the 8 fractional bits of the second number (operand 4) are added to
the fractional part of the first number (operand 2). If this addition generated carry we need to
increment the whole part. Then we add the whole parts together and we are done. An example of
how this works:

 Add $04C3 (4.76171875) and $0250 (2.3125)

1. $C3 + $50 = $113
2. Carry was set, so increment first number => $05
3. $05 + $02 = $07

The result is $0713 = 7.07421875 = 4.76171875 + 2.3125 OK!

 add dv_f,#3 ; delta v += 0.01171875
 snc
 inc dv_w ; increase whole part if necessary

 add du_f,#1 ; delta u += 0.00390625
 snc
 inc du_w

 mov u2_w,#$FF
 mov u2_f,#$B0
 ADD_8_8 u_w,u_f,u2_w,u2_f ; u -= 0.3125

 bank $20
 cjb RTCC,#131,$; Wait for this scanline to end
 DELAY(8)
 cjb RTCC,#130,$
 djnz scanline, Raster_Loop1 ; Loop for the next scanline

 ; Bottom half

 mov scanline, #92 ; Render 92 scanlines
Raster_Loop2 ; Loop here for each scanline
 PREPARE_VIDEO_HORIZ burst_phase ; Prepare required video signal

; for a scanline
 PREPARE_VIDEO_HORIZ_PAL burst_phase
 clr RTCC ; 1
 mov RE,#BLACK ; 2 (3)

 bank $20
 mov M,#$0C
 mov count1,#92
 sub count1,scanline
 mov W,count1
 iread ; Read from shading table
 bank $40
 mov pixel,W

 bank $20 ; 1
 DELAY(496)
 bank $40 ; 1
 mov u2_w,u_w
 mov u2_f,u_f
 mov xCnt,#160

draw_scanline2
 mov W,u2_w ;1
 xor W,v_w ;1
 and W,#8 ;1

 mov temp,W
 mov W,#(15*16)
 sb temp.3

The RTCC is used to time the length of each scanline in a very simple manner. We just use the CJB
instruction to loop until x*prescaler cycles have passed.

After we have finished drawing the upper plane we draw another plane in the same way, but flip it
across the x-axis. Since the planes move in the same direction, it will look like they are part of one
solid object. And with the shading we apply you won’t be able to see where one plane ends and the
other begins.

 mov W,#(5*16)
 nop
 or W,pixel
 mov RE,W ;1

 ADD_8_8 u2_w,u2_f,du_w,du_f ;6
 djnz xCnt,draw_scanline2

scanline_done2
 mov RE, #BLACK

 ; v += delta v
 add v_f,dv_f
 snc
 inc v_w
 add v_w,dv_w

 ; delta v -= 0.01171875
 add dv_w,#$FF
 add dv_f,#$FD
 snc
 inc dv_w

 ; delta u -= 0.00390625
 add du_w,#$FF
 add du_f,#$FF
 snc
 inc du_w

 mov u2_w,#$00
 mov u2_f,#80
 ADD_8_8 u_w,u_f,u2_w,u2_f ; u += 0.3125

 bank $20
 cjb RTCC,#131,$
 DELAY(8)
 cjb RTCC,#130,$
 djnz scanline, Raster_Loop2 ; Loop for the next scanline

 ; page_200 trick: this clunky trick is to prevent involuntary jumps
 ; between a page boundary.
 jmp @page_200
IF $ > $200
ERROR "Page Spillage!"
ENDIF

;##

org $200
page_200

This is where we do the per-scanline increments of delta u and delta v. Note that all increments are
inverted compared to those used for the upper plane. This is because we are rendering the bottom
plane in the opposite direction.

After doing the increments we wait for this scanline to end and then loop back to draw the next line.
After all 92 lines of the plane has been drawn we jump to the next ROM page and start drawing the
bottom overscan.

 page $; Set the new page

 bank $20

 bank $40
 mov cnt2,#(34+8) ; Number of scanlines
 mov cnt2,#(34+31)
:Vblank_Loop1
 bank $20
 PREPARE_VIDEO_HORIZ burst_phase
 PREPARE_VIDEO_HORIZ_PAL burst_phase
 clr RTCC
 bank $40
 cjae cnt2,#30, :Black_line1
 cjb cnt2,#14, :Black_line2

 ; Draw XGS overscan logo

 mov RE,#BLACK ; 2. Output black
 mov cnt1,#8 ; 2. Number of pixels
 mov M,#LOGO_PAGE ; 1
 mov W,yCnt ; 1
 iread ; 4. Read first byte
 mov pixel,W ; 1

 ; Calculate the logo gradient
 mov temp,cnt2 ; 2
 sub temp,#22 ; 2. 22 = first_line-char_height = 30-8
 sb temp.7 ; 1. Skip if the result is negative
 not temp ; 1. Invert bits
 mov W,#7 ; 1. Keep lower 3 bits
 and temp,W ; 1
 add temp,#(COLOR11+2) ; 2. Add base color

 bank $20 ; 1
 DELAY(1614 - 2 - 14 - 8 - 1 - 10)
 bank $40 ; 1

As in the previous lesson we have an XGS logo stored as an 24*8 pixel bitmap with 1 bit per
pixel, and the least significant bit of each byte holding the leftmost pixel. The logo is drawn in
three loops, each of which will draw 8 pixels. Every iteration of the inner loops one bit is shifted
out using the RR (Rotate Right) instruction. This bit will end up in the C flag, which we can use to
determine if we the pixel should transparent (black) or not.
The logo is scaled up to 24*16 by only incrementing the yCnt variable which selects the line
within the logo on even scanlines. Refer to this figure:

Figure 7: Scaled logo

This line-doubling serves the purpose of making it seem as if we have a very large bitmap, even
though it only uses 24 words of ROM space. Obviously we end up with a very blocky result since
we’re not using any kind of filter, but with regular TVs being relatively unsharp we can get away
with this. A gradient that is calculated at runtime is also applied to the logo to further improve its
look.

:Draw_bits_0_7
 mov W,temp ; 1
 rr pixel ; 1. Place lsb in C
 sc ; 2 / 1. Skip if bit is set
 mov W,#BLACK ; 1. Bit was clear, should be black
 mov RE,W ; 1. Output color
 DELAY(31)
 djnz cnt1,:Draw_bits_0_7 ; 4 / 2
 mov RE,#BLACK ; 2

 ; Read the next byte
 mov cnt1,#8 ; 2
 mov M,#LOGO_PAGE ; 1
 inc yCnt
 mov W,yCnt ; 1
 iread ; 4
 mov pixel,W ; 1 (10)
:Draw_bits_8_15
 mov W,temp ; 1
 rr pixel ; 1
 sc ; 2 / 1
 mov W,#BLACK ; 1
 mov RE,W ; 1
 DELAY(31)
 djnz cnt1,:Draw_bits_8_15 ; 4 / 2
 mov RE,#BLACK ; 2

 ; ..and finally the last one
 mov RE,#BLACK ; 2
 mov cnt1,#8 ; 2
 mov M,#LOGO_PAGE ; 1
 inc yCnt
 mov W,yCnt ; 1
 iread ; 4
 mov pixel,W ; 1 (12)
:Draw_bits_16_23
 mov W,temp ;#(COLOR14+5) ; 1
 rr pixel ; 1
 sc ; 2 / 1
 mov W,#BLACK ; 1
 mov RE,W ; 1
 DELAY(31)
 djnz cnt1,:Draw_bits_16_23 ; 4 / 2
 nop ; 1
 nop ; 1

 mov RE,#BLACK ; 2
 sub yCnt,#2 ; 2. Set yCnt back to its prior value

 ; yCnt is increased by 3 on even scanlines
 ; (logo is 24 pixels wide = 3 bytes/row)
 mov W,cnt2 ; 1
 not W
 and W,#1 ; 1
 add yCnt,W ; 1
 add yCnt,W ; 1
 add yCnt,W ; 1

 bank $20
 jmp :Next_line ; 3

:Black_line1
 bank $20
 mov RE, #BLACK ; (2 cycles) sync

 jmp :Next_line
:Black_line2
 bank $20
 mov RE, #BLACK ; (2 cycles) sync
 jmp :Next_line

:Next_line
 bank $40
 cjb RTCC,#131,$
 DELAY(8)
 cjb RTCC,#131,$
 djnz cnt2, :Vblank_Loop1
 ; END BOTTOM SCREEN OVERSCAN

 ; VERTICAL SYNC PULSE
:Begin_Blank
 mov RE, #SYNC ; Send sync signal
 mov !OPTION, #%11000111 ; Turns off interrupts, sets prescaler to

; 1:256
 clr RTCC ; Start RTCC counter

;##

 ; The idea here is to change the color burst phase every
 ; 128th frame (when chroma_cnt hits zero). The burst phase
 ; is either incremented or decremented depending on the value
 ; in chroma_delta. The delta is inverted (negated) when the
 ; color burst is 0 or 13.
 bank $50
 mov W,chroma_delta
 dec chroma_cnt
 decsz chroma_cnt
 jmp no_chroma_change
 bank $20
 swap burst_phase ; Swap nibbles
 add burst_phase,W ; Add delta
 and burst_phase,#15 ; Only four bits of chroma
 cje burst_phase,#13,invert_delta
 cje burst_phase,#0,invert_delta
 jmp dont_invert
invert_delta
 bank $50
 not chroma_delta
 inc chroma_delta ; not+inc == neg
 bank $20
dont_invert
 swap burst_phase ; Swap nibbles back to original order
 or burst_phase,#BLACK_LEVEL ; OR in some base luma
no_chroma_change

 jmp @page_400
IF $ > $400
ERROR "Page Spillage!"
ENDIF

;##

After drawing the bottom overscan we send out a sync signal to do the required vertical syncing of
the video signal. Again, we use the RTCC to time the length of this period, and within the vertical
sync period we can do whatever we want since we don’t have to worry about generating video.

org $400
page_400
 page $

 ; Change the vertical texture coordinate every frame to create
 ; the illusion of motion.
 bank $50
 add v_f2,#$30 ; v += 0.1875
 snc
 inc v_w2
 mov W,v_w2
 bank $40
 mov v_w,W
 bank $50
 mov W,v_f2
 bank $40
 mov v_f,W

 bank $40
 clr yCnt

 mov 10,#$00
 mov 11,#$08
 call @UpdateMusic
 _bank $20

 ; We are done, now wait for the remaining time to finish this video

; frame and prepare overscan (bottom and top) for the next!
 cjb RTCC, #79, $; Wait for remaining vsync (79*256 cycles = 20224,

; close enough)
cjb RTCC, #60, $

 ; END VERTICAL SYNC PULSE

 mov !OPTION, #%11000100

At the end of each field we increment the vertical starting position within the texture. This will
make it appear as if the planes are moving. Take a look at this figure to see the effect of this:

Figure 8: Scrolling plane

After that we call the music player to let it do any necessary updates before we wait for the vertical
sync period to end. The vertical sync period is exactly 60*256 cycles = 192 �s = 3 scanlines in
PAL mode, while it’s closer to 4 scanlines in NTSC mode. You are free to experiment with other
settings.

; TOP SCREEN OVERSCAN
 mov scanline, #32

 mov scanline, #60
:Vblank_Loop3
 PREPARE_VIDEO_HORIZ burst_phase
 PREPARE_VIDEO_HORIZ_PAL burst_phase
 clr RTCC
 mov RE, #BLACK
 cjb RTCC,#131,$
 DELAY(8)
 cjb RTCC,#130,$
 djnz scanline, :Vblank_Loop3

 jmp @Begin_Raster ; Loop back for the next frame

IF $ > $600
ERROR "Page Spillage!"
ENDIF

;##

; XGS overscan logo
LOGO_PAGE EQU $0B
org LOGO_PAGE*$100
include "xgslogo.src"

org $C00
dw 7
dw 7
dw 7
dw 7
dw 7
dw 7
dw 7
dw 8
dw 8
dw 8
dw 8
dw 8
dw 8

Now we set the prescaler back to 1:32 and draw the top overscan. Once we’ve drawn the top
overscan we have completed one field and can start rasterizing the next field.

This also concludes this lesson which has been the second in this series. The key point in this
lesson was the use of fixed point numbers, which are of great use on processors that lack floating
point hardware. This lesson also indirectly covers the basics of affine texturemapping, which will
be put to use in coming lessons. As you may have noticed, there is a lot of code which is shared
between the different lessons. It is a good idea to make up a skeleton of code that fits your style of
programming, and then you can “fill in the blanks” for each program you write, rather than starting
from scratch every time.

If you are familiar with the concepts of fixed point math and affine texture mapping, this lesson
should have been easy for you to grasp, and you can focus on the SX52-specific things. If this is all
new to you then you could try sitting down with a scientific calculator or a pen and paper and try
out some examples of your own until you get the hang of it. In case your binary arithmetic skills
are a bit rusty now would also be a good time to refresh them, you’ll thank yourself later.

dw 9
dw 9
dw 9
dw 9
dw 9
dw 9
dw 9
dw 9
dw 10
dw 10
dw 10
dw 10
dw 10
dw 10
dw 10
dw 10
dw 10
dw 11
dw 11
dw 11
dw 11
dw 11
dw 11
dw 11
dw 11
dw 11
dw 11
dw 12
dw 12
dw 12
dw 12
dw 12
dw 12
dw 12
dw 12
dw 12
dw 12
dw 13
dw 13
dw 13
dw 13
dw 13
dw 13
dw 13
dw 13
dw 13
dw 13
dw 13
dw 13
dw 14
dw 14
dw 14
dw 14
dw 14
dw 14
dw 14
dw 14
dw 14
dw 14
dw 14
dw 14
dw 14
dw 15
dw 15

dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15
dw 15

