

XGameStation Micro Edition

Plasma Effect
By Michael Ollanketo

; MIC_PLASMA_04.SRC

 TITLE "Plasma demo v04"
; Plasma effect for the XGS ME

In this lesson you will learn how to create an animated plasma effect on the XGameStation Micro
Edition (XGSME). Differences between NTSC and PAL will be pointed out in this document.

Figure 1: NTSC version Figure 2: PAL version

These images were grabbed through a TV-card, and the noise you see is because of the card and will
not be present on an actual TV. The reason why the NTSC and PAL versions have different colors is
that color is handled differently on NTSC and PAL devices, so getting the same results regardless of
the format would require some extra work.

What this demo does is the following: a colorful animated plasma is drawn at the center of the screen,
according to an algorithm which will be explained later. A text scroller is drawn on both sides of the
plasma. The text scrolls vertically, and in opposite directions on either side of the screen. An XGS
logo is drawn at the bottom of the screen, in the overscan area. The NTSC version of the demo also
slowly fades the hue to give a wider range of colors. All of this will be explained throughout this
tutorial.

Ok, so we’re ready to start writing some SX52 assembly. First we start off with some common
directives that you will see in all programs. We tell the IDE that we are using an SX52, that we want
an HS3 oscillator, crystal drive and crystal feedback enabled, and the reset vector should be the label
”Start”.

Legend
; n Instruction takes n cycles
; m (n) Instruction takes m cycles, and the entire group it belongs to takes n cycles
foobar NTSC-specific code
foobar PAL-specific code

; Works only at 80 MHz

; This file needs 7 include files:
; astaroth.mus Music data
; font5x7.src Font data
; general_define.src Defines constants (EQU) and some system variables
; general_macro.src Useful general purpose macro definitions and
; system functions
; sine.src Sine table
; xgslogo.src XGS overscan logo
; xgsmp.src Music player
 DEVICE SX52, OSCHS3, XTLBUFD, IFBD ; Set everything for the XGS ME
 RESET Start
 FREQ 80_000_000 ; this is a directive to the ide only
 ; if you want to put the XGS ME into RUN mode
 ; you must make sure you go into the
 ; device settings and make sure that
 ; HS3 is enabled, and crystal drive and
 ; feedback are disabled and then re-program
 ; the chip in PGM mode and then switch it to RUN

 IRC_CAL IRC_FAST ; Prevent a warning
 ID "micplsma" ; ID string

;##

; Global variables, starting at bank #2
 org $20

; I'm using Remz' code here, I only modified it to use a black overscan
; instead of the blue.
include "general_define.src"
 org $30
pixel ds 1
horzPtr1 ds 1 ; Sine table "pointer"
horzPtr2 ds 1 ; Dito
temp ds 1 ; Temporary
temp2 ds 1 ; ...
vertPtr1 ds 1 ; ...
vertPtr2 ds 1
cnt1 ds 1 ; Loop counter and temporary
cnt2 ds 1 ; ...
scroller1 ds 1 ; Scroller 1 position
scroller2 ds 1 ; Scroller 2 position
scroller1_2 ds 1 ; Backup
scroller2_2 ds 1 ; ...
xCnt ds 1 ; Loop counter
yCnt ds 1

 org $40
chroma_cnt ds 1 ; Controls the frequency of burst phase changes
chroma_delta ds 1 ; Controls the amplitude of burst phase changes

Next, we include some common definitions and variables and declare some variables of our own
for use in this program. The include file general_define.src contains some common variables,
mainly counters, a burst_phase variable which is used to store the current color reference burst
and a phase_alt variable for controlling the phase alternation in PAL mode. We place these
variables in bank $20 and put our own variables in banks $30 and $40. The music player will use
banks $A0, $B0 and $C0 for its variables. More on how to use the music player later.

include "general_macro.src"
include "astaroth.mus" ; Include song data
include "xgsmp.src" ; Include music player
;##

 org $0 ; Set the start of the program code

 org $+2 ; leave 2 free word here for the debugger

; Jump table
InitMusic jmp @XgsMpInit
UpdateMusic jmp @XgsMpUpdate

Start ; Our real code starts here

 ; Initialize variables
 bank $40
 mov chroma_cnt,#0
 mov chroma_delta,#1

 bank $30
 mov vertPtr1,#0
 mov vertPtr2,#0
 mov yCnt,#0

 mov 10,#$00
 mov 11,#$08
 call InitMusic ; Initialize the music player
 _bank $20 ; Set bank $20, and ensure bit 7 of FSR is

; cleared

Since functions have to reside on the lower half of a page, we create a jump table here that we can
use later on. The @ sign causes the assembler to insert a PAGE instruction to cope with jumps to
other pages.

The INITIALIZE_VIDEO macro in general_macro.src sets up the video port (RE) for output and
initializes the burst_phase variable. We then proceed to render our active scanlines. I’ve chosen
to have 192 active scanlines in both versions of the demo, since they are guaranteed to be visible
both on NTSC and PAL displays even though you could use a higher resolution in the PAL
version.

The music player contains two public functions; XgsMpInit which is called to initialize the player,
and XgsMpUpdate which is called every frame to update the track positions and output any
changes. The song was composed in MML (Music Macro Language) and converted to a suitable
format with XGSMC (XGSME Music Compiler).

Registers 10 and 11 in bank 0 are used to pass the address of the song to XgsMpInit. They form a
16-bit address together, with 10 containing the lower 8 bits and 11 the upper 8 bits. Registers 10-15
can be used at all time as extra variables no matter what bank is selected. The XgsMpInit function
will set bit 7 of FSR (the File Select Register) as it uses banks $A0-$C0, so we need to clear that bit
ourselves after the call since the BANK instruction only modifies bits 4..6 of FSR. I’ve written a
macro called _bank to enforce updating of FSR bit 7.

 INITIALIZE_VIDEO ; Initialize I/O controller for video
Begin_Raster ; Loop here for each scanline

 ; Use 192 active scanlines
 mov scanline, #192

mov !OPTION, #%11000100 ; Sets prescaler to 1:32

Raster_Loop1

 PREPARE_VIDEO_HORIZ burst_phase ; Prepare required video signal

; for a scanline
 PREPARE_VIDEO_HORIZ_PAL burst_phase
 clr RTCC ; 1. Reset the realtime cycle counter
 bank $30 ; 1
 mov RE, #BLACK ; 2. Output black

 mov xCnt,#100 ; 2. 100 "pixels"

 ; Copy pointers for use in the scanline loop
 mov cnt1,horzPtr1 ; 2
 mov cnt2,horzPtr2 ; 2
 bank $20 ; 1 (10)
 DELAY(492) ; Delay a while to center the effect

DELAY(495) ; Delay a while to center the effect

On each side of he plasma there is a short text message scrolling vertically. Each of the 192
“active” scanlines are drawn in the following manner: left scroller, plasma, right scroller. The
scroller consists of thirty two characters (“NTSC PLASMA FOR THE XGS-ME * “/”PAL PLASMA
FOR THE XGS-ME * “). Each character is eight pixels high, giving a total of 256 pixels. So for
every scanline we divide the scroller position (0..255) by eight to get an offset into the string. We
then AND the scroller position with seven to get the row within the character. The below figure
shows this process:

Figure 3: Scroller character row selection

The M register is used to select the page to read from, while W contains the 8-bit offset. After the
read, W will contain the lower 8 bits of the read word and M will contain the upper 4 bits.

The setup code for each scanline is slightly different for NTSC and PAL, so I have two different
macros to handle each format, called PREPARE_VIDEO_HORIZ (NTSC) and
PREPARE_VIDEO_HORIZ_PAL. These macros send out the horizontal sync signal and the color
reference burst among other things. PREPARE_VIDEO_HORIZ_PAL also takes care of the color phase
alternation, in which the reference burst is shifted approximately 45 degrees every scanline. Both
macros use variables in bank $20 so we need to be sure that bank $20 is selected before using the
macros.

The RTCC (Realtime Cycle Counter) is used for scanline timing, so we start off by setting it to count
up every 32nd cycle.

 ; Convert the scroller position (0..255) to a string
 ; position (0..31) and character offset (0..7) and
 ; read a character from the string.
 bank $30 ; 1
 mov M,#TEXT_PAGE ; 1. Set page to read from
 mov W,scroller1 ; 1. Scroller position
 mov temp,W ; 1
 and W,#7 ; 1
 mov temp2,W ; 1. Save character row (0..7)
 clc ; 1. Divide by 8 (char height)
 rr temp ; 1 ...
 clc ; 1 ...
 rr temp ; 1 ...
 clc ; 1 ...
 rr temp ; 1 ...
 mov W,temp ; 1. String position (0..31)
 iread ; 4 (17)

 ; Multiply by 8 (height of char)
 mov temp,W ; 1. temp=x
 add W,temp ; 1. W=x*2
 mov temp,W ; 1. temp=x*2
 add W,temp ; 1. W=x*4
 mov temp,W ; 1. temp=x*4
 add W,temp ; 1. W=x*8

 ; Now read one row of character data
 mov M,#FONT_PAGE ; 1. Set page to read from
 add W,temp2 ; 1. Offset = char*8 + (scroller&7)
 iread ; 4. Read one byte (=row)
 mov pixel,W ; 1. Save it
 mov temp,#8 ; 2 (9). Number of pixels to draw

 ; Draw the row
:Draw_char_line_1
 mov W,#(COLOR14+8) ; 1
 rr pixel ; 1. Place lsb in C
 sc ; 2 / 1. Skip if bit is set
 mov W,#BLACK ; 1. Bit was clear, should be black
 mov RE,W ; 1. Output color
 DELAY(7)
 djnz temp,:Draw_char_line_1 ; 4 / 2

We have now read the correct byte, or row, from the character to draw. We now loop eight times,
shifting out one bit each iteration, and draw either the desired color or black depending on whether
the bit was set or not. The character rows are stored backwards, with the leftmost pixel in bit 0
which means that we rotate right every iteration to the the current pixel. This figure shows the
process of drawing one row of the letter ‘S’:

Figure 4: Representation of 1-bpp characters

The plasma effect is achieved by sampling three sine curves. See the below figure.

Figure 5: Sine curves

The ”red” and ”green” curves move in the opposite direction for every pixel, while the ”blue” curve
moves every scanline. This creates the impression of a number of expanding and shrinking blobs. All
three curves are also moved for each frame to scroll the entire plasma across the screen.

In the scanline loop we sample each of these curves by reading bytes from the table contained in
sine.src with three different offsets. These samples are added, and then we OR in some additional bits to
ensure that we never get zero luma (which would send out an incorrect sync signal and disrupt our
video output). Here cnt1 and cnt2 controls the “red” and “green” curves, while vertPtr1 controls the
“blue” curve.

Each element in the sine table has the page number stored in the upper 4 bits. That way we don’t have
to reload M for every iread.

 mov RE,#BLACK ; 2. Output black
 bank $20 ; 1
 DELAY(40)

; Set up the plasma rasterizer
bank $30 ; 1. Set active register bank

 nop ; 1. Delay for a few cycles..
 nop ; 1
 nop ; 1 (4)

 ; Draw one line of the plasma
draw_scanline
 add cnt2,#$FE ; 2. Subtract 2 ($FE == -2)
 inc cnt1 ; 1 (3)

 ; Read from sine table
 mov M,#SINE_PAGE ; 1
 mov W,cnt1 ; 1
 iread ; 4
 mov pixel,W ; 1 (7)

 ; Read another byte
 mov W,cnt2 ; 1
 iread ; 4
 add pixel,W ; 1 (6)

 ; ..and another
 mov W,vertPtr1 ; 1
 iread ; 4
 add W,pixel ; 1 (6)

 ; OR in some additional bits

 or W,#$8A ; 1

 ; Output the pixel data
 mov RE,W ; 1

 djnz xCnt,draw_scanline ;4 / 2
 ; Total: 3+7+6+6+1+1+4 = 28 clocks

 mov RE, #BLACK ; 2. Output black
 dec vertPtr1 ; 1. Decrease vertical pointer

 bank $20 ; 1
 DELAY(39)

 ; Draw the second scroller. Same procedure as for
 ; the first one.
 bank $30 ; 1
 mov M,#TEXT_PAGE ; 1
 mov W,scroller2 ; 1
 mov temp,W ; 1
 and W,#7 ; 1
 mov temp2,W ; 1
 clc ; 1
 rr temp ; 1
 clc ; 1
 rr temp ; 1
 clc ; 1
 rr temp ; 1
 mov W,temp ; 1
 iread ; 4 (17)

 ; Multiply by 8
 mov temp,W ; 1
 add W,temp ; 1
 mov temp,W ; 1
 add W,temp ; 1
 mov temp,W ; 1
 add W,temp ; 1 (6)

 mov M,#FONT_PAGE ; 1
 add W,temp2 ; 1
 iread ; 4
 mov pixel,W ; 1
 mov temp,#8 ; 2 (9)

:Draw_char_line_2
 mov W,#(COLOR2+8) ; 1
 rr pixel ; 1. Place lsb in C
 sc ; 2 / 1. Skip if bit is set
 mov W,#BLACK ; 1. Bit was clear, should be black
 mov RE,W ; 1. Output color
 DELAY(7)
 djnz temp,:Draw_char_line_2 ; 4 / 2
 mov RE,#BLACK ; 2

 inc scroller1 ; 1

This line of the plasma is done. We output black for a while and then draw the second scroller,
which moves in the opposite direction of the first one. The code is very similar to that of the first
scroller. We also change the vertical sine table offset (which moves the blue curve in figure 5).

 inc scroller2 ; 1
 bank $20 ; 1
 cjb RTCC,#131,$; Delay for the remainder of the scanline
 cjb RTCC,#130,$; Delay for the remainder of the scanline

 djnz scanline, Raster_Loop1 ; Loop for the next scanline

 ; page_200 trick: this clunky trick is to prevent involuntary jumps
 ; between a page boundary.
 jmp @page_200
IF $ > $200
ERROR "Page Spillage!"
ENDIF

;##

; Let’s start a new page to avoid overflow..

org $200
page_200
 page $; Set the new page

 bank $30
 mov cnt2,#34 ; Number of scanlines
 mov cnt2,#(34+23) ; Number of scanlines
:Vblank_Loop1
 bank $20
 PREPARE_VIDEO_HORIZ burst_phase
 PERPARE_VIDEO_HORIZ_PAL burst_phase
 clr RTCC ; Reset realtime cycle counter
 bank $30

Here we draw the bottom overscan. This consists of eighteen black lines and a sixteen pixels high
“XGS” logo, for a total of thirty four lines. The PAL version has another 23 lines of bottom
overscan, which will be black.

The logo is contained in xgslogo.src and is 24*8 pixels with one bit per pixel. Each line of the logo
is drawn twice to make it look taller, and a gradient is applied at runtime for better looking results.
This figure shows the effect of applying the gradient and scaling the logo:

Figure 6: Overscan logo

The code for drawing the overscan logo is very similar to that for drawing the text scrollers earlier.
The difference is that each row is twenty four bits instead of eight, so we have three times as much
code.

Each NTSC frame is made up of 525 lines, while a PAL frame has 625 lines. This gives 262 and
312 lines per field, respectively, if we ignore the fractional part. I chose to spend the extra 50 lines
in the PAL version on the top and bottom overscans. These are areas of the frame that may or may
not be visible, depending on the device. If you look at the code you will notice that I have added a
total of 23+28 lines of extra overscan for the PAL version, which doesn’t add up to 50. This is
because we have a longer vertical sync period in the NTSC version (20224 cycles compared to
15360).

 cjae cnt2,#30, :Black_line1
 cjb cnt2,#14, :Black_line2

 ; Draw XGS overscan logo

 mov RE,#BLACK ; 2. Output black
 mov cnt1,#8 ; 2. Number of pixels
 mov M,#LOGO_PAGE ; 1
 mov W,yCnt ; 1
 iread ; 4. Read first byte
 mov pixel,W ; 1

 ; Calculate the logo gradient
 mov temp,cnt2 ; 2
 sub temp,#22 ; 2. 22 = first_line-char_height = 30-8
 sb temp.7 ; 1. Skip if the result is negative
 not temp ; 1. Invert bits
 mov W,#7 ; 1. Keep lower 3 bits
 and temp,W ; 1
 add temp,#(COLOR11+2) ; 2. Add base color

 bank $20 ; 1
 DELAY(1614 - 2 - 14 - 8 - 1 - 10)
 bank $30 ; 1

:Draw_bits_0_7
 mov W,temp ;#(COLOR14+5) ; 1
 rr pixel ; 1. Place lsb in C
 sc ; 2 / 1. Skip if bit is set
 mov W,#BLACK ; 1. Bit was clear, should be black
 mov RE,W ; 1. Output color
 DELAY(31)
 djnz cnt1,:Draw_bits_0_7 ; 4 / 2
 mov RE,#BLACK ; 2

 ; Read the next byte
 mov cnt1,#8 ; 2
 mov M,#LOGO_PAGE ; 1
 inc yCnt
 mov W,yCnt ; 1
 iread ; 4
 mov pixel,W ; 1 (10)
:Draw_bits_8_15
 mov W,temp ;#(COLOR14+5) ; 1
 rr pixel ; 1
 sc ; 2 / 1
 mov W,#BLACK ; 1
 mov RE,W ; 1
 DELAY(31)
 djnz cnt1,:Draw_bits_8_15 ; 4 / 2
 mov RE,#BLACK ; 2

 ; ..and finally the last one
 mov RE,#BLACK ; 2
 mov cnt1,#8 ; 2
 mov M,#LOGO_PAGE ; 1
 inc yCnt
 mov W,yCnt ; 1
 iread ; 4
 mov pixel,W ; 1 (12)
:Draw_bits_16_23
 mov W,temp ;#(COLOR14+5) ; 1
 rr pixel ; 1
 sc ; 2 / 1

 mov W,#BLACK ; 1
 mov RE,W ; 1
 DELAY(31)
 djnz cnt1,:Draw_bits_16_23 ; 4 / 2
 nop ; 1
 nop ; 1

 mov RE,#BLACK ; 2
 sub yCnt,#2 ; 2. Set yCnt back to its prior value

; yCnt is increased by 3 on even scanlines
 ; (logo is 24 pixels wide = 3 bytes/row)
 mov W,cnt2 ; 1
 not W
 and W,#1 ; 1
 add yCnt,W ; 1
 add yCnt,W ; 1
 add yCnt,W ; 1

 jmp :Next_line ; 3
; This line should apparently be black.
:Black_line1
 mov RE, #BLACK ; (2 cycles) sync
 jmp :Next_line
:Black_line2
 mov RE, #BLACK ; (2 cycles) sync
 jmp :Next_line

:Next_line
 bank $30

cjb RTCC,#131,$; Wait for this scanline to end
cjb RTCC,#130,$

 djnz cnt2, :Vblank_Loop1
 ; END BOTTOM SCREEN OVERSCAN

 ; VERTICAL SYNC PULSE
:Begin_Blank
 mov RE, #SYNC ; Send sync signal
 mov !OPTION, #%11000111 ; Turns off interrupts, sets prescaler

; to 1:256
 mov RTCC, #0 ; Start RTCC counter

We are done with the bottom overscan. Now we send out the sync signal to the video port and reset
the realtime cycle counter.

Here we have about 20000 cycles (about 15000 in PAL mode) to do anything we want. Typical
things to do here could be collision detection, enemy A.I, music player updates etc.
In the NTSC version I am changing the color reference burst every 128th frame so that the hue of
the plasma will change slowly with time. This is not done in the PAL version, since color works
different for PAL.

To make the logo look twice as high we only increase the row counter every other scanline.

We use the RTCC to control the length of each scanline. In PAL mode we have 32 cycles less
because the line setup is slightly longer.

;##

 ; The idea here is to change the color burst phase every
 ; 128th frame (when chroma_cnt hits zero). The burst phase
 ; is either incremented or decremented depending on the value
 ; in chroma_delta. The delta is inverted (negated) when the
 ; color burst is 0 or 13.
 bank $40
 mov W,chroma_delta
 dec chroma_cnt
 decsz chroma_cnt
 jmp no_chroma_change
 bank $20
 swap burst_phase ; Swap nibbles
 add burst_phase,W ; Add delta
 and burst_phase,#15 ; Only four bits of chroma
 cje burst_phase,#13,invert_delta
 cje burst_phase,#0,invert_delta
 jmp dont_invert
invert_delta
 bank $40
 not chroma_delta
 inc chroma_delta ; not+inc == neg
 bank $20
dont_invert
 swap burst_phase ; Swap nibbles back to original order
 or burst_phase,#BLACK_LEVEL ; OR in some base luma
no_chroma_change
 bank $30
 ; Update sine table pointers
 add horzPtr1,#$FE
 inc horzPtr2
 add vertPtr2,#2
 mov vertPtr1,vertPtr2

 mov yCnt,#0 ; Reset yCnt

 ; Update text scroller positions
 inc scroller1_2
 dec scroller2_2
 mov scroller1,scroller1_2
 mov scroller2,scroller2_2
 bank $20

 mov 10,#$00
 mov 11,#$08
 call @UpdateMusic ; Update music each frame
 _bank $20

 ; We are done, now wait for the remaining time to finish this video

; frame and prepare overscan (bottom and top) for the next!

Now we wait for the vertical sync period to end. The realtime cycle counter will increment every
256th cycle, according to the setting in the OPTION register. The $ sign simply states that we want to
jump to the instruction itself, which saves us from creating a label for each such loop. When the
vertical sync period is over we draw the top overscan and start all over again with the next frame.

Another frame has been drawn so it is time to update the music track position, and output any new
sounds. Again, we pass the address of the song as a 16-bit value in the global registers 10 and 11.

 cjb RTCC, #79, $; Wait for remaining vsync (79*256 cycles = 20224,
; close enough)

 cjb RTCC, #60, $; Wait for remaining vsync (60*256 cycles = 192us)
 ; END VERTICAL SYNC PULSE

 ; TOP SCREEN OVERSCAN
 mov !OPTION, #%11000100 ; Sets prescaler to 1:32
 mov scanline, #32
 mov scanline, #(32+28)
:Vblank_Loop3
 PREPARE_VIDEO_HORIZ burst_phase ; Prepare video signal
 PREPARE_VIDEO_HORIZ_PAL burst_phase ; Prepare video signal
 clr RTCC
 mov RE, #BLACK ; Output black
 cjb RTCC,#131,$
 cjb RTCC,#130,$
 djnz scanline, :Vblank_Loop3 ; Repeat..

 jmp @Begin_Raster ; Loop back for the next frame

; Code ends here. Data follows below

;##

; Sine table
; Calculated using the following formulae:
;
; floor(cos(i*PI/64)*15.7 + 15.7)
;
; SINE_PAGE*$100 is added to each entry to avoid having to
; set the M register for each read since (M:W)->M:W
;
SINE_PAGE EQU $0A
org SINE_PAGE*$100
include "sine.src"

;##

; XGS overscan logo
LOGO_PAGE EQU $0B
org LOGO_PAGE*$100
include "xgslogo.src"

;##

; 5x7 font
; Each character is packed into 8 bytes (1 bit per pixel)
; First char is space, capital letters A..Z follow.
FONT_PAGE EQU $0C
org FONT_PAGE*$100
include "font5x7.src"

The code for the demo is done. Hopefully, at this point you have grasped the theory behind the
effect and also picked up a few things about the SX52 and the rest of the XGSME’s hardware. The
realtime cycle counter is a very handy feature which can be used in a lot of cases, and is much more
elegant than nested loops or other cycle counting constructions. The music player and the sound
chip will be explained in more detail in another tutorial, so don’t worry about them for now. If you
feel uncertain about something, try reading the tutorial again and look at the code. And remember
that the best way to get better at something is to practice.

;##

; Scroller text. 32 chars
TEXT_PAGE EQU $0D
org TEXT_PAGE*$100

dw $0E
dw $14
dw $13
dw $03
dw $00
dw $10
dw $0C
dw $01
dw $13
dw $0D
dw $01
dw $00
dw $06
dw $0F
dw $12
dw $00
dw $14
dw $08
dw $05
dw $00
dw $18
dw $07
dw $13
dw $1B
dw $0D
dw $05
dw $00
dw $00
dw $1C
dw $00
dw $00
dw $00

