
Chapter 12: Hardware Pong

XGameStation™ Micro Edition Digital Logic Exploration Kit 1.0
1

Chapter 12: Hardware Pong
Excerpt from the “Digital Logic Exploration Kit 1.0” Lab Manual for the XGameStation Micro Edition

www.xgamestation.com

12.1 - Introduction
In this final chapter I wanted to make something that would be a little bit cooler than the “usual” introduction to
digital devices. So we are going to make an LED-based Pong game. Unfortunately, we can’t pile up a ton of chips
to make this game entirely in hardware. Instead, we will use the SX processor to handle a lot of the game’s
algorithms. While this chapter is relatively short, the comments found in the pong game’s source code fill out the
remaining details.

12.2 - Parts List
• 4 LEDs

• 1 K Ohm resistor

• 100 Ohm resistor

• Momentary switch

• Digital Logic Exploration Kit Breadboard and Wires

12.3 - Experiment
Our “creative” implementation of Pong is based around a single row of LEDs, which will act as our playfield. So
how will a one-dimensional playfield work? A couple seconds after startup, the LEDs will light up individually
giving the appearance of a ball traveling down the field and back. When the ball returns to the starting LED, the
user has to press the switch in time to “hit” the ball and avoid losing a life. To make the game more interesting
and challenging, the player loses a life by pressing the switch too early as well. As a final detail, the 4 LEDs will
show the user the current level, in binary, before the gameplay begins.

When a life is lost the number of lives left is displayed, also in binary. After 8 or so successful hits the level is
ended with the next level displayed on the LEDs. The higher levels increase the speed of the ball traveling back
and forth. This will continue until it is impossible to continue for a non-Jedi player.

12.3.1 - The Source Code

The source code for the PONG demo is similar to some of the other experiments that we have run. It has the
standard Delay macro and the LongDelay subroutine. The only difference with the LongDelay subroutine is that
the caller of the function specifies the 3 counter values. This is so we can control how long the LongDelay is.

The source code is divided up into three different game states: GAME_STATE_LEVEL, GAME_STATE_GAME, and
GAME_STATE_LIVES. The current game state is contained in the variable called GameState. GAME_STATE_LEVEL
displays the current level on the LEDs for a designated time. The source code for this section is below

 mov Temp1, Level ;Copy level to temp value
 rl Temp1 ;Shift left
 rl Temp1 ;Shift left
 rl Temp1 ;Shift left
 rl Temp1 ;Shift left

Chapter 12: Hardware Pong

XGameStation™ Micro Edition Digital Logic Exploration Kit 1.0
2

 and Temp1, #LED_MASK ;Mask only the important upper bits
 mov RB, Temp1; ;Display the level on the LEDs

 ;Now delay to show this display for approx 4 secs
 mov Temp1, #$04 ;Use temp value for loop
LevelDispDelay
 mov W,#0 ;Delay for aproximately 1 second
 mov Counter1,W ;clear counters
 mov Counter2,W
 mov Counter3,W
 call LongDelay ;call delay func
 decsz Temp1 ;decrement counter skip if 0
 jmp LevelDispDelay Jump back up

 ;We are finished now so continue onto the game
 mov GameState, #GAME_STATE_GAME ;next game state

 ;initialize the level counter
 mov LevelCounter, #$06 ;6 successful hits per level

 ;Increase Pong speed
 sub LevelSpeed, #$0F ;increase level speed

This code starts by taking the current level that the player is on and shifts the value left 4 times since the LEDs
are connected to the higher pin numbers on port RB. Then it delays for approximately a second. After this the
game state is changed to GAME_STATE_GAME. The LevelCounter is reset to 6 hits per level and we increase the
level speed by decreasing the variable LevelSpeed since this variable is used as a delay. The GAME_STATE_GAME
section is the largest section and is broken up and shown below.

 mov w, RB ;clear RB except the input
 and w, #$01 ;mask off the input
 or w, #$10 ;start light one
 mov RB, w ;output it

 ;setup the loop
 mov Temp2, #3

ShiftLEDsLeft

 ;now start our delay between light shifts
 mov w, LevelSpeed
 mov Counter1,W ;clear counters
 mov Counter2,W
 mov Counter3,W
 call LongDelay ;call delay func

 ;shift the LEDs to the left
 mov w, RB ;get the current light display
 and w, #LED_MASK ;mask off just the LED value
 mov Temp1, w ;move to temporary variable
 rl Temp1 ;rotate left the value
 mov RB, Temp1 ;finally display the value back onto the port

 decsz Temp2 ;decrement our loop counter
 jmp ShiftLEDsLeft

This portion of the game loop starts by turning on the first LED. After it turns the light on it delays by LevelSpeed.
Once the delay is finished the light is shifted to the left. This loop is repeated 3 times until the last light is turned
on.

 ;Here we shift the LEDs back to the player

Chapter 12: Hardware Pong

XGameStation™ Micro Edition Digital Logic Exploration Kit 1.0
3

 ;setup the loop
 mov Temp2, #3
 mov Input, #0

ShiftLEDsRight

 ;now since we need to check for inputs on the rotate right we will write our own delay
here
 mov w, LevelSpeed
 mov Counter1,W ;clear counters
 mov Counter2,W
 mov Counter3,W

ShiftRightDelay
 decsz Counter1 ;decrement the counters and skip when zero
 jmp ShiftRightDelay ;jump

 ;we check here for input
 mov Temp1,RB ;get the input
 and Temp1, #$01 ;mask off input
 cjne Temp1, #$01,NoButton ;skip if there is no input
 mov Input, #$01 ;set the input flag
 ;continue counting down
NoButton

 decsz Counter2
 jmp ShiftRightDelay
 decsz Counter3
 jmp ShiftRightDelay

 ;shift the LEDs to the right
 mov w, RB ;get the current light display
 and w, #LED_MASK ;mask off just the LED value
 mov Temp1, w ;move to temporary variable
 rr Temp1 ;rotate right the value
 mov RB, Temp1 ;finally display the value back onto the port

 ;check for premature and correct input
 cjne Input, #$01, NoInput ;check for input flag
 ;now we need to see if this was premature
 cje Temp2, #$01, NotPremature ;check to see if this was premature
 ;they hit the button before the last light therefore they die
 mov GameState, #GAME_STATE_LIVES ;going to game state lives
 jmp DoneStateGame ;end it right now

NoInput
 ;check to see if this is the last led
 cjne Temp2, #$01, NoInputOk ;check to see if this was premature
 ;they missed the button so go to gamestate lives
 mov GameState, #GAME_STATE_LIVES ;going to game state lives
 jmp DoneStateGame ;end it right now

NoInputOk

 decsz Temp2 ;decrement our loop counter
 jmp ShiftLEDsRight

NotPremature

 ;they hit it correctly so continue on
 decsz LevelCounter ;decrement successful hit counter

Chapter 12: Hardware Pong

XGameStation™ Micro Edition Digital Logic Exploration Kit 1.0
4

 jmp DoneStateLevel ;continue playing this level

Now we will proceed by shifting the pong ball back towards the player. The big difference here is that we need to
check for player input on the switch. Since the LongDelay subroutine does not have the ability to check for input
we will make our own delay and during that delay we will check for input. If the player does press the button the
variable Input will be set. The LEDs are shifted to the right and then the Input variable is checked to see if the
button was pressed before the pong ball is at the first LED by this line of code.

 cje Temp2, #$01, NotPremature ;check to see if this was premature

If they hit it correctly the LevelCounter is decremented and checked to see if it equals zero. If not we play the
same level at the same speed. If the user didn’t press the button the NoInput code section is run to determine if
the PONG ball is at the last light. If either the player has missed the ball or if they pressed the button prematurely
the GAME_STATE_LIVES game state is run.

 ;decrement the number of lives and display them
 decsz Lives
 jmp MoreLives

 ;no more lives so just flash the lights forever
NoMoreLives

 ;turn all lights off
 mov RB, #00

 mov w, #0
 mov Counter1,W ;clear counters
 mov Counter2,W
 mov Counter3,W
 call LongDelay ;call delay func

 ;turn all lights on
 mov RB, #$f0

 mov w, #0
 mov Counter1,W ;clear counters
 mov Counter2,W
 mov Counter3,W
 call LongDelay ;call delay func

 jmp NoMoreLives

The above section of code is from the GAME_STATE_LIVES and it decrements the current player lives. It then
checks to see if it is at zero and if it is the lights are turned off and on repeatedly over and over.

MoreLives

 ;there are more lives so just display them binary
 mov Temp1, Lives ;Move lives to temp variable
 rl Temp1
 rl Temp1
 rl Temp1
 rl Temp1
 mov RB, Temp1

 mov Temp2, #3 ;delay for 3 secs
LoopLivesDisp
 mov w, #0
 mov Counter1,W ;clear counters
 mov Counter2,W
 mov Counter3,W

Chapter 12: Hardware Pong

XGameStation™ Micro Edition Digital Logic Exploration Kit 1.0
5

 call LongDelay ;call delay func

 decsz Temp2 ;decrement loop counter
 jmp LoopLivesDisp

 ;Game state back to game
 mov GameState, #GAME_STATE_GAME

This code is called when the player dies but still has lives left. It will display the number of current lives and then
return back to the GAME_STATE_GAME code section.

12.3.2 - Building and Running the Device

Now take a look at the schematic in Figure 12.1. Go ahead and build this circuit and hook it up to the XGS. Load
the source code into the XGS Micro Studio and program the XGS ME. All of the code is commented and I suggest
spending some time reading through it to thoroughly understand how all of this is working. Once you’re ready turn
the switch to run mode and see how far you can get in levels. One trick I’ve learned is to press and hold the
switch when the ball gets to the second to last LED, but after a while (level 10 or so) it gets pretty hard. When the
player has lost all of their lives, all the LEDs will blink on and off, indicating game over. Check out figures 12.2 and
12.3 to see a completed implementation.

Figure 12.1 - Hardware pong schematic.

Figure 12.2 – Pong!

Chapter 12: Hardware Pong

XGameStation™ Micro Edition Digital Logic Exploration Kit 1.0
6

Figure 12.3 – More Pong.

12.4 - Summary
That about wraps up the XGameStation Micro Edition Digital Logic Exploration Kit! We finished up with a nice
playable game which could be easily changed to add some more features, like sound through the 8 Ohm PC
speaker. You can use these building blocks that you have learned throughout this manual to make larger
experiments and add some of your own expansion boards to the XGS. If you come up with anything particularly
cool, don’t hesitate to share with the community.

