Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

5 I sREEls L . Emge]

DESIGN YOUR OWN

VIDEO GAME CONSOLE

A BEGINNER’S GUIDE TO VIDEO GAME CONSOLE AND EMBEDDED

SYSTEM DESIGN, DEVELOPMENT, AND PROGRAMMING.

André LaMothe

Nurve Networks LLC



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Copyright © 2004-2005 Nurve Networks LLC

Publisher
Nurve Networks LLC

Author
Andre’ LaMothe

Editor/Technical Reviewer
Alex Varanese

Printing
0001

ISBN
Pending

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the user of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Nurve Networks LLC cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or
fitness is implied. The information provided is on an “as is” basis. The authors and the publisher shall have
neither liability nor any responsibility to any person or entity with respect to any loss or damages arising from the
information contained in this book.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

eBook License

This eBook may be printed for personal use and (1) copy may be made for archival purposes, but may not be
distributed by any means whatsoever, sold, resold, in any form, in whole, or in parts. Additionally, the contents of
the CD this eBook came on relating to the design, development, imagery, or any and all related subject matter
pertaining to the XGameStation™ Micro Edition are copyrighted as well and may not be distributed in any way
whatsoever in whole or in part. Individual programs are copyrighted by their respective owners and may require
separate licensing.



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Licensing, Terms & Conditions

NURVE NETWORKS LLC, INC. END-USER LICENSE AGREEMENT FOR XGAMESTATION™ MICRO EDITION HARDWARE, SOFTWARE AND EBOOKS

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PRODUCT. IT CONTAINS SOFTWARE, THE USE OF WHICH IS LICENSED BY
NURVE NETWORKS LLC, INC., TO ITS CUSTOMERS FOR THEIR USE ONLY AS SET FORTH BELOW. IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS OF THIS
AGREEMENT, DO NOT USE THE SOFTWARE OR HARDWARE. USING ANY PART OF THE SOFTWARE OR HARDWARE INDICATES THAT YOU ACCEPT THESE TERMS.

GRANT OF LICENSE: NURVE NETWORKS LLC (the "Licensor") grants to you this personal, limited, non-exclusive, non-transferable, non-assignable license solely to use in a single copy of
the Licensed Works on a single computer for use by a single concurrent user only, and solely provided that you adhere to all of the terms and conditions of this Agreement. The foregoing is
an express limited use license and not an assignment, sale, or other transfer of the Licensed Works or any Intellectual Property Rights of Licensor.

ASSENT: By opening the files and or packaging containing this software and or hardware, you agree that this Agreement is a legally binding and valid contract, agree to abide by the
intellectual property laws and all of the terms and conditions of this Agreement, and further agree to take all necessary steps to ensure that the terms and conditions of this Agreement are not
violated by any person or entity under your control or in your service.

OWNERSHIP OF SOFTWARE AND HARDWARE: The Licensor and/or its affiliates or subsidiaries own certain rights that may exist from time to time in this or any other jurisdiction, whether
foreign or domestic, under patent law, copyright law, publicity rights law, moral rights law, trade secret law, trademark law, unfair competition law or other similar protections, regardless of
whether or not such rights or protections are registered or perfected (the "Intellectual Property Rights"), in the computer software and hardware, together with any related documentation
(including design, systems and user) and other materials for use in connection with such computer software and hardware in this package (collectively, the "Licensed Works"). ALL
INTELLECTUAL PROPERTY RIGHTS IN AND TO THE LICENSED WORKS ARE AND SHALL REMAIN IN LICENSOR.

RESTRICTIONS:

(a) You are expressly prohibited from copying, modifying, merging, selling, leasing, redistributing, assigning, or transferring in any matter, Licensed Works or any portion thereof.

(b) You may make a single copy of software materials within the package or otherwise related to Licensed Works only as required for backup purposes.

(c) You are also expressly prohibited from reverse engineering, decompiling, translating, disassembling, deciphering, decrypting, or otherwise attempting to discover the source code of the
Licensed Works as the Licensed Works contain proprietary material of Licensor. You may not otherwise modify, alter, adapt, port, or merge the Licensed Works.

(d) You may not remove, alter, deface, overprint or otherwise obscure Licensor patent, trademark, service mark or copyright notices.

(e) You agree that the Licensed Works will not be shipped, transferred or exported into any other country, or used in any manner prohibited by any government agency or any export laws,
restrictions or regulations.

(f) You may not publish or distribute in any form of electronic or printed communication the materials within or otherwise related to Licensed Works, including but not limited to the object
code, documentation, help files, examples, and benchmarks.

TERM: This Agreement is effective until terminated. You may terminate this Agreement at any time by uninstalling the Licensed Works and destroying all copies of the Licensed Works both
HARDWARE and SOFTWARE. Upon any termination, you agree to uninstall the Licensed Works and return or destroy all copies of the Licensed Works, any accompanying documentation,
and all other associated materials.

WARRANTIES AND DISCLAIMER: EXCEPT AS EXPRESSLY PROVIDED OTHERWISE IN A WRITTEN AGREEMENT BETWEEN LICENSOR AND YOU, THE LICENSED WORKS ARE
NOW PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THE WARRANTY OF NON-INFRINGEMENT. WITHOUT LIMITING THE FOREGOING, LICENSOR MAKES NO
WARRANTY THAT (i) THE LICENSED WORKS WILL MEET YOUR REQUIREMENTS, (ii) THE USE OF THE LICENSED WORKS WILL BE UNINTERRUPTED, TIMELY, SECURE, OR
ERROR-FREE, (i) THE RESULTS THAT MAY BE OBTAINED FROM THE USE OF THE LICENSED WORKS WILL BE ACCURATE OR RELIABLE, (iv) THE QUALITY OF THE LICENSED
WORKS WILL MEET YOUR EXPECTATIONS, (v) ANY ERRORS IN THE LICENSED WORKS WILL BE CORRECTED, AND/OR (vi) YOU MAY USE, PRACTICE, EXECUTE, OR ACCESS
THE LICENSED WORKS WITHOUT VIOLATING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY MAY LAST, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. IF CALIFORNIA LAW IS
NOT HELD TO APPLY TO THIS AGREEMENT FOR ANY REASON, THEN IN JURISDICTIONS WHERE WARRANTIES, GUARANTEES, REPRESENTATIONS, AND/OR CONDITIONS
OF ANY TYPE MAY NOT BE DISCLAIMED, ANY SUCH WARRANTY, GUARANTEE, REPRESENATION AND/OR WARRANTY IS: (1) HEREBY LIMITED TO THE PERIOD OF EITHER
(A) Five (5) DAYS FROM THE DATE OF OPENING THE PACKAGE CONTAINING THE LICENSED WORKS OR (B) THE SHORTEST PERIOD ALLOWED BY LAW IN THE APPLICABLE
JURISDICTION IF A FIVE (5) DAY LIMITATION WOULD BE UNENFORCEABLE; AND (2) LICENSOR'S SOLE LIABILITY FOR ANY BREACH OF ANY SUCH WARRANTY, GUARANTEE,
REPRESENTATION, AND/OR CONDITION SHALL BE TO PROVIDE YOU WITH A NEW COPY OF THE LICENSED WORKS. IN NO EVENT SHALL LICENSOR OR ITS SUPPLIERS BE
LIABLE TO YOU OR ANY THIRD PARTY FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER,
INCLUDING, WITHOUT LIMITATION, THOSE RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT LICENSOR HAD BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE LICENSED WORKS. SOME JURISDICTIONS PROHIBIT
THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. THESE
LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

SEVERABILITY: In the event any provision of this License Agreement is found to be invalid, illegal or unenforceable, the validity, legality and enforceability of any of the remaining provisions
shall not in any way be affected or impaired and a valid, legal and enforceable provision of similar intent and economic impact shall be substituted therefore.

ENTIRE AGREEMENT: This License Agreement sets forth the entire understanding and agreement between you and NURVE NETWORKS LLC, supersedes all prior agreements, whether
written or oral, with respect to the Software, and may be amended only in a writing signed by both parties.

NURVE NETWORKS LLC
402 Camino Arroyo West
Danville, CA 94506
support@nurve.net



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Version & Support/Web Site

This document is valid with the following hardware, software and firmware versions:

e XGS Micro Edition 1.5 or greater.
e XGS Micro Studio IDE version 1.0.

e XGS ME Programmer Unit Firmware version 1.0.

The information herein will usually apply to newer versions but may not apply to older versions. Please contact
Nurve Networks LLC for any questions you may have.

Visit www.xgamestation.com for downloads, support, the access to the XGS ME user community, and more!

For technical support, sales, or to ask questions, share feedback, please contact Nurve Networks LLC at:

support@nurve.net




Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Introduction

Thank you for purchasing the XGameStation™ Micro Edition! We have worked hard to provide a
unique, high-quality, and educational product that will both engage and entertain. The
XGameStation™ Micro Edition is the world’s first do-it-yourself video game system and an
empowering tool that will bring you an unprecedented level of knowledge and understanding,
whether you're a hobbyist, student, or both.

This document is Chapter 11 from the work “Design Your Own Video Game Console”. We
have broken the book up into separate documents, so that you might load and view it more easily
with lower performance systems.

Installing the CD

The CD contains all the sources, schematics, tools, and content discussed in this document.
There is no installer, simply work from the CD or drag the entire contents from the CD to your
hard drive. Also, you may want to install one or more of the tools, especially Labcenter’s
Proteus PCB Design Tools, so you can look at the XGS ME designs in their native format.

Please read the README.TXT file at the root of the CD for any last minute instructions and
changes. Also, each directory also has a README.TXT explaining the contents. The CD root for
this content is laid out as follows:

XGSME_HW_CD <DIR> - The main directory/CD root for this content (may be within another
directory).

\Datasheets <DIR> - Contains datasheets for all chips.
\General_Papers <DIR> - Contains articles, papers, on SX and XGS programming.

\Schematics_Circuits <DIR> - Contains XGS schematics and circuits.

\SX_Docs_Books <DIR> - Contains SX related docs and eBooks.

\SX_Key_IDE <DIR> - Contains Parallax Inc.'s SX-Key Software.

\Tools <DIR> - Contains various tools for engineering.

\TricksI <DIR> - Contains a eBook version of “Tricks of the windows game

Programming Gurus” and all sources.

\XGSME_Sources <DIR> - Contains source code, demos, games.
\XGSME_Studio <DIR> - Contains complete XGS ME Studio Software and manual.
\XGSME_Tutorials <DIR> - Contains tutorials on XGS ME programming.



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

READ ONLY FLAG

This is a very important detail, so read on. When creating a CD ROM disk all the
files will be written with the READ-ONLY flag enabled. This is fine in most cases
unless you copy the files to your hard drive (which you will) and then edit and try to
write the files back to disk. You will get a READ-ONLY protection error.

Fixing this is a snap. You simply need to clear the READ-ONLY flag on any files
that you want to modify. There are 3 ways to do it. First, you can do it with
Windows and simply navigate into the directory with the file you want to clear the
READ-ONLY flag and then select the file, press the RIGHT mouse button to get the
file properties and then clear the READ-ONLY flag and APPLY you change. You
can do this with more than one file at once by selecting a group of files.

The second way is to use the File Manager and perform a similar set of
operations as in the example above. The third and best way is to the Shell
command:

ATTRIB command with a DOS/Command Shell prompt. Here's how:
Assume you have copied the entire SOURCE directory on your hard drive to the
location C:\SOURCE. To reset all the READ-ONLY attributes in one fell swoop you
can use the ATTRIB command. Here is the syntax:

C:\DIRECTORY> ATTRIB -r *.* /s

This instructs the command shell to clear the READ-ONLY flag "r" from all files "*.*"
and all lower sub-directories "/s".

Getting Started

Before reading this document and experimenting with the hardware and low level
programming | highly recommend you read cover to cover the XGameStation™ Micro
Edition User Guide which will help you become familiar with the tools, IDE, programming,
debugging (if you have an SX-KEY), as well as other aspects of the XGS ME such as
adjustments, troubleshooting, and so forth.

Viewing the Schematics

The XGameStation Micro Edition was designed using Labcenter’s Proteus schematic entry and
PCB layout tools. | consider these to be the best tools for the price and performance. If you wish
to view any of the schematics for the XGS ME then you will need to install Proteus on your
computer, you can find a copy of the installer in the Tools\ sub-directory. However, the latest
version can always be downloaded from their site directly at:

http://www.labcenter.co.uk/



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

(0] 1 =T (=1 s I RSO 8
The XGS Micro Edition System Design and Programming .........ccccoveeereeenieniien e 8
11.1 Introducing the XGS MiICro EditiONn ........cooiiiiiiie e 9
11.1.2 XGS Micro Edition Switches, Adjustments and Indicators ..........ccccceeceveieceeecccien e, 10
11.1.2.1 The POWEr SWILCH ... e 10
11.1.2.2 The XGS ME POWEE SUPPIY ...eeireeeirieiiei e 10
11.1.2.3 The RESET SWItCh...cuei it 10
11.1.2.4 The SYSMODE SWItCh ....coiuiiiiiiii it 10
11.1.2.5 Audio VoIUmMeE AdJUSTMENT.....cooiiiee e 11
11.1.2.6 Vide0o AJUSIMENTS ... e 11
11.1.2.7 ClOCK AQJUSTMENT ...ttt sar e e nee e 11
11.2 The XGS Micro Edition Hardware / Software Model ..........ccocciriiiiiiiiniiee e 12
11.2.1 Basic Operation of the XGS ME ... e 14
11.2.1.1 The CONIOl BUS ..ottt ettt e e st e e eneeens 16
11.2.1.2 ThE POWEE LINES .coiiieiiie ettt 16
11.2.2 Hardware Interfaces and 1/0 Port Mappings -.......ccoceeerieriiieniee e 17
11.3 Programming the XGS ME ........ooi e 17
LI o 1= g YU o] o] Y =T [ | o RS 19
11.4.1 THE 5.0V SUPPIY ettt b e bbb et et esae e sanesane e 19
11.4.2 THE 3.3V SUPPIY ettt b bbbttt et et e e nae e sanesane e 19
11.4.83 T 12.5V SUPPIY .ottt sttt e b e s e 20
11.5 Frequency Divider CirCUIt DESIGN ... ..ooiuiiiiiei ittt st sae e 21
11.6 Joystick Design and Programming .........c.eeeeeiieeieiiiee et 23
11.6.1 Joystick Hardware DeSCIIPHON .......oooiiiiiiiiiiie e 23
11.6.2 Reading The JOYSHICKS ....cciiiuiiiii it e e 27
11.6.3 Implementing the Read Function in SX52 ASM ........cooiiiiiiiiiie e 27
17.6.4 JOYSHCK DBIMO ...t e e et e e e s anb e e e e s anbe e e e sanbeeeeenes 30



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.7 Keyboard Interface and Programming ..........cc.eeeeoieeeeiieiee e 32
11.7.1 Communication Protocol from Keyboard to HOSt .........cccooiiiiiiiiiiiee e 34
11.7.1.1 Keyboard Read AlGOrithim ... 35
11.8 SRAM Architecture and Programming .......c.cooceeeiiiiier et 39
11.8.1 SRAM Hardware INterface .......ooiiriiiieeiiie e 39
11.8.1.1 Random SRAM Access Bandwidth..........cccooviiiiiinnc e 42
11.8.1.2 Sequential Same Page SRAM Access Bandwidth .........ccccooeeriiiiiiiec i 42
11.8.2 AcCesSING the SRAM ... e 43
LIRS o [o [ =TT T =Y (1] o TP 44
11.8.2.2 Reading from the SRAM ... 45
11.8.2.3 Writing 10 the SRAM . ... et 48
17.8.3 DEIMO PrOGIaM ... .ceiiiiiiiiiie ittt ettt s e e e s st e e s nb e e e e sanbe e e e sanbneeesanreeeennee 51
11.8.4 Advanced Uses Of the SRAM ...t 51
11.9 Sound Hardware and Programiming .........coueeoieeeiieiaiee ettt sae e enes 52
11.9.1 The BU8763’s Hardware INterface ..o 54
11.9.2 Programming the BUBTBS ...t e e 56
11.9.2.1 The BU8763’S ReQIStEr Map ......eveiiiiiiiiie ettt e 58
11.9.2.2 Serial Sound Packet Command DIVE .........cocviiiiieiiiiieec e 63
11.9.2.3 Sound Packet Driver GIODaIS ..........ceiiiiieiiiiiii e 64
11.9.2.4 The Complete Sound Packet DIVET ... 64
11.9.2.5 Calling the Packet DIV .......cooiiiieiee et 66
11.9.3 SOUNA DEMIO PrOGIam ...ccueeieiiie ittt ettt sttt e e s be e e s s e e sbe e e enneesneean 66
11.10 XGS Video Hardware and NTSC/PAL Programming.......c.cceeeeeeerierenieesnieeeneeesieeeseee s 67
11.10.1 Video Hardware DeSCHPLION ........eiiiiiieee et 68
11.10.2 ReVIEW Of NTSC VIAEO ... .eiiiiii ittt 69
11.10.2.1 Interlaced versus ProgreSSive SCaNS .......c.coiiiiiiieiiieeeiiee ettt e e 70
11.10.3 Video Formats and INterfaCes. ..o e 71



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.10.4 Composite Color Video Blanking Sync Interface.........cccooviieiiiiiniiin e 72
11.10.5 COlOr ENCOAING ..ttt ettt et satee st sae e e sbe e eneeea 74
11.10.6 PUtting it All TOGEINET ... 75
11.10.6.1 Frame CONSIIUCTION ...c.ouiiiiiiieie ettt s 75
11.10.6.2 Line CONSIIUCTION ....eeiiiiii e 76
11.10.6.3 Generating B/W Video Data........coooueiiiiiiiiiieee e 77
11.10.6.4 Generating Color Video Data ........occueeiiiiiiiiiiiiieeee e 77
11.10.6.5 NTSC Signal ReferenCes ........covoiiiiiiii e 78
11.11 Programming The XGS ME Video HardWare..........cccouueeiiiiiiiiiiniee e 78
11.11.1 Generating a Composite Luma/Chroma Video Signal Voltage .........ccccceevveveiiiienennnee. 78
11.11.1.1 GENEerating LUMA. ... .ciiiiiiie ettt ettt e e s be e e e e e sneeen 78
11.11.11.2 Generating The Color Burst Signal ..........coociiiiiiiiiiiiieee e 79
11.11.11.3 Generating @ Single PiXel.........oo i 80
17.11.2 VIABO DEMOS ...ttt st ea e e e enb et e e sanbe e e e s anbeeeeeanbeeeennes 82
11.11.2.7 VidE0 KEINEI TIPS 1.t eiiiiee ettt e e e 83
11.11.2.1 Single CoIOr Bar DEMIO ...coiuiiiiiie ittt ettt be e e rnee e e s 84
11.11.2.2 COlOr BarsS DEMIO.......eeiiiieeiiie ettt nne e 90
11.11.2.3 Animated Color Bars DEMO ........cccueiiiiieiieecie e 91
11.12 The Onboard ProgrammMEr ........coiueei ettt e e e aae e e e snee e e e eneeas 92
11.13 XGS 30-Pin Interface and SX52 HEAUEIS ........oovcveiiiieiiiiee e 96
11.13.1 EXPANSION SIOt IAEAS ...eeiiiiiiiie ettt e rnreee e e 98
LI B2y 2 o 1= T To [T USRS 98
11.14 MUIIPIrOCESSOr SUPPOIT. ...ttt ettt et b e ae e et e e e rae e e sbe e e ne e e sareeeaaneesnns 99
11.14.1 Adding Multiprocessor Support in FirMWare...........cccoiueeiiiiiie e 99
11.15 XGS ME Programming TULOAIS .....cccueiiiiiieiieeie it 100
11.16 XGS Pico Edition — Bonus SeCion ... ... 101
11.16.1 The Pico EAition Kit........oooiiiiiiiiieee et 103



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.16.1.1 Unpacking the Pico Edition .........ooo i 103
11.16.1.2 Checking the Parts List and Setting up Your Work Space ........cccccceeveerrieeeninenne 104
11.16.2 The Pico DeSIgN FilES ...cco ittt 105
11.16.3 PicO EItion SYSTEMS ..o s s 106
11.16.3.1 Processing UNit.......ueiiiiiii et 107
11.16.3.2 POWET SUPPIY -ttt e e 108
11.16.3.3 RESEE CICUIL ..o et 109
11.16.3.4 SYSIEM CIOCK ... 110
11.16.3.5 The Programming PoOrt........coo e 111
LI R T N N 1L T PO RUSTOUPTOPPRPRR 111
11.16.3.7 GraphiCs HardWare .........coocueiiiiiiiiee ettt 115
11.16.3.8 SOUNA HAIGWAIE ... .eiiiiiii ittt saee e snee s 116
11.16.4 Building the Pico EdItion ........cooiiiii e 117
11.16.4.1 Organizing the Kit Parts and Preparing to Build ... 118
11.16.4.2 Reviewing the Solderless Breadboard............ccoccueiiiiiiiiiinien e 119
11.16.4.3 Building the POWET SUPPIY ...cooueiiiiiiiiieeiee e 121
11.16.4.4 Adding the SX28 PrOCESSON ......eiiiieeiiriieirie et e e 124
11.16.4.5 Building the ClOoCK CirCUIt .......cuveiiiiiiieeeee e 131
11.16.4.6 Adding the LED OUtpUL POI......cooi it 134
11.16.4.7 Building the Video-Out R2R Ladder and Output.......ccccocceeeiiiieeeeniieee e, 137
11.16.4.8 Building the Audio-Out R2R Ladder and Output.......cccocceeeiiiieieiniiene e, 140
11.16.4.9 Adding the JOYSHICK POr.....ccoo i 144
11.16.4.10 Final Systems Check and Wiring ReVIEW ...........ccoiiiiiiiiiieiinieesee e 147
11.16.5 POWEING the PiCO UP ..eeiiiiiiiiiiiiie ettt 147
11.16.5.1 Battery or POWET SUPPIY .....veiiiiiiiiiieiee ettt 148
11.16.5.2 System Start up and FIrMWare........c.ooeeoiiiiiiie e 148
11.16.6 Programming the PiICO .......c.eeiiiiiiiii e 149



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.16.6.1 Loading a Program into SX-KEY ...t 150
11.16.6.2 Downloading and Running a Program ... 151
11.16.6.3 Changing the Clock in Real-TimMe ........ccoiiiiiiiiiiieiee e 152
11.16.6.4 Programming TIPS .....eeeeeieeeeeeeieee ettt e e e e e 152
11.16.7 BIINKING LIGNt TESt..... e e e 153
11.16.7.1 Loading and Running the LED Program ..........cccccoiiiiiiiien e 155
11.16.8 JOYStICK Programming..........coeoiieeriiiiiie ettt e et e e s st e e e s sneeeeeen 156
11.16.8.1 Loading and Running the Joystick Program .........cccccceiiiiiiiiinin e 158
11.16.9 GraphiCs Programming .........ceooiieeriiiiiie ettt e st e e st e e s s snte e e e s sareeeeeas 158
11.16.9.1 Single White Bar DEMO ........coiiiiiiiieie e 159
11.16.9.2 Shaded Bar DEMO.....c.ccuii ittt ettt saee e 162
11.16.9.3 RACEr City DEMO ...ttt et saee e sanee s 163
11.16.9.4 Color Video Generation on the Pico EQItion .........cccoviiiiiiiiiiiinnee e 164
11.16.9.3 Loading and Running the Graphics DemOS ..........ccoceriiiiiiieieiieesee e 169
11.16.10 SOUN ProgramiMing ........ccoceeeiieeiieeeiieaeiee et stee e siee e seeesbe e e saseesbeeessee e saseeeeneeesanas 170
11.16.10.1 Creating NOISE.....c.uii ittt r e st eraee e sanee s 171
11.16.10.2 Creating Pure TONES .......ooi ittt 173
11.16.10.3 Loading and Running the Sound DemOS...........cccecieiiiiinee e 179
11.16.11 Pico Edition ENNancements ... 180
ST 141 0 =R RR 180
T 7] o Yo U SR 181
N I SRR 183



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Chapter 11

The XGS Micro Edition System Design and
Programming

In this chapter, we are going to discuss everything about the XGameStation™ Micro Edition’s
designs, architecture, programming, and integration. This chapter is probably the most project-
centric of the book and more or less reviews the entire design and use of the system. Here are
the major highlights of this chapter:

Figure 11.1 — The XGS Micro Edition Revision 1.5.

PARAUUEL ﬁ'\‘ﬂﬁliﬁ@
|
.
oty

9VIDCHS X4 SYSMODE
Y. '

--------

HI.I AR

“VIDEO HARDWARE""

)
el

'.f o W | m @i lﬂ

Volume)|

)
2

J »ONBOARD™"
!‘! PHOERAMMI‘I

<3 8, o
Re & 0

?!uu'mnl 3 5

\n','l A A

§

i

!

g :

| Pl & Bl A
§

\

JOVETIOR O

8 n

? e % p—) P i.
Eirmware — i .......V‘ ij“ 3
T D e ) - T o
0 » " JoysTick 9) J0YST|CK@]“‘
) %! powerX L ,n§....RESET o

il Switch Button - %



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.1 Introducing the XGS Micro Edition

The XGS Micro Edition (XGS ME) shown in Figure 11.1 is a high speed, embedded system,
game console with the following features:

e A Ubicom SX52 RISC 4-deep pipelined microcontroller running at a maximum speed of 80
MHz, supporting 4K x12 bit WORDS of EEPROM program memory and 262 bytes of internal
RAM. There is also an internal on chip clock that runs up to 4 MHz.

e NTSC/PAL Video generated via software control with color phase burst generation helper
hardware for a total of 32 colors and approximately 10 intensities.

¢ 3 Channel Sound with envelop control and full coverage of the entire musical scale via the
ROHM BU8763 Programmable Melody Generator.

e Atari 2600 compatible DB9 joystick inputs with extra support for other serial and parallel input
devices.

e 128Kx8 of externally accessing high speed 12ns SRAM (Static RAM) via a serializing
address bus and parallel data bus for a SRAM access rate of one byte per 2 clocks per 16
byte page.

e Built in support for the Parallax Inc. SX-Key programming module from
http://www.parallax.com.

Pay close attention to the orientation of the oscillator chips, during transport they
may come loose. The topmost oscillator is the main SX clock and should be 80
MHz, pin 1 is the top left pin of the socket viewing the board as shown in the figure.
The video generation clock should be 3.579594 MHz (or 4.43 MHz for PAL), this
oscillator chip is located to the top left of the SX processor and pin 1 is located at
the bottom left of the socket. Finally, the sound oscillator located at the bottom of
the ROHM melody generator chip is 5.376 MHz pin 1 is bottom left of the socket.
Make sure all oscillator chips are inserted firmly, but do not force them!

The XGS ME was designed with the hobbyist in mind, so there is easy access to the pins of the
SX52 via headers surrounding the SX chip as well as headers exporting out the serial interfaces
from the joysticks along with a super serial interface. The XGS ME is programmed similarly to an
Atari 2600, that is, the programmer controls the timings of the NTSC/PAL raster “on the fly”.
However, the XGS ME has some extra hardware to help with the color burst generation, so
programming video more or less boils down to a deterministic loop that controls HSYNC, VSYNC,
COLOR BURST, LUMA and CHROMA manually, video logic is performed during HSYNC,
VSYNC, and between pixels! In most cases, all game logic; Al, sound, input will be performed
during the vertical retrace period.



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.1.2 XGS Micro Edition Switches, Adjustments and Indicators

Referring to Figure 11.1, the XGS ME has two slide switches, one momentary reset switch, and a
5 pole DIP switch to control main clock speed into the SX52.

11.1.2.1 The Power Switch

The switch at J11 Located at the front of the XGS ME is the power switch, simply switch it to
ON/OFF to enable or disable power. When you switch the power on you will see the +5V and
+3.3V LEDs (light emitting diodes) at the front of the board (D5 and D6) illuminate indicating
“power-good” on both supplies. During power on the system will reset.

11.1.2.2 The XGS ME Power Supply

The XGS ME takes a 9-12V 500+ mA DC supply with a 2.1 mm plug with RING = GROUND and
TIP = +. 9V is the best as 12V tends to create a lot of heat in the heat sink. So, if you have to use
a DC transformer from your region, make sure its 9V, 500 mA+, ring ground, tip plus.

WG e]M Do NOT use an AC power supply, there is no rectification and it will destroy the
XGS! Make sure the power supply is DC, however, it does NOT need to be
regulated, but if it is then it will not hurt the XGS, only AC will hurt it.

11.1.2.3 The RESET Switch

Referring to Figure 11.1, the system RESET switch is located at the front of the XGS ME to the
right of the power indicator LEDs at location J12. Simply press the switch anytime to reset the
system.

\[oad=l The XGS ME also has a power-on reset circuit, so if you cycle the power the XGS will
also resets itself. Nonetheless, it's a good idea to reset the XGS ME whenever you
program it or put it into RUN mode to make sure the system starts up clean. Also, during
reset the SX and the sound processor are reset only, the SRAM will maintain the data in
it, thus you have to manually zero the SRAM if you wish it to be cleared at reset.

11.1.2.4 The SYSMODE Switch

The “SYSMODE” switch is located at the rear of the board by the main SX clock oscillator, its
labeled SW1. The “SYSMODE” switch selects one of the following modes:

SK-KEY MODE (SK-KEY) — Leftmost position, puts the board into SX-Key mode and accepts
programs and debugging control from an inserted SX-Key.

PROGRAM MODE (PGM) — Middle position, puts the board into internal/on board program mode
using XGS Micro Edition studio and the parallel interface cable.

RUN MODE (RUN) — Rightmost position, gates the main clock to the SX52 and runs it at 80, 40,
20, 10, 5 MHz (depending on the clock divider DIP Switch).

10



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Also, when you want the XGS ME to be controlled by the serially controlled SX-KEY
programming module along with the Parallax IDE then you must have the SYSMODE switch to
“SX-KEY”. When you have this setting then the XGS 80 MHz clock is deselected (physically
gated out of the system) and the SX-KEY is allowed to talk to the SX processor. In this mode, you
can use the SX-KEY to generate the clock for the SX, debug, upload software, etc. This mode is
how you will develop software with the SX-Key IDE if you prefer this to the XGS Micro Edition
Studio.

However, even if you set the SX-KEY and IDE for 80 MHz, you must still verify that your code
timing works perfectly with the ONBOARD 80 MHz clock in the “RUN” mode since the SX-KEY
generates the 80 MHz electronically and may not be as accurate as our clock. Thus, your normal
coding might follow this workflow:

Step 1: Code with SYSMODE switch in “SX-KEY” mode with SX-KEY generating clock.
Step 2: Verify program works.

Step 3: Switch SYSMODE switch to “RUN” mode and hit the RESET button at the front of the
XGS ME to insure everything restarts.

Step 4: Verify your program works with the onboard 80 MHz oscillator, GOTO Step 1 and
continue coding.

More or less, you simply want to make an effort to make sure that you check of the system works
with the onboard 80 MHz oscillator if you are doing tight video timing algorithms since the clock
generated by the SK-KEY hardware might be slightly jittery.

11.1.2.5 Audio Volume Adjustment

Located below the clock oscillator of the sound chip is a VOLUME potentiometer (POT) at Pot3
that controls the volume level of the final output signal from barely audible to full volume.

11.1.2.6 Video Adjustments

Most game systems simple generate NTSC/PAL video and leave it to the player to adjust the TV
set to their liking, the problem with this of course is that when someone is done playing the game,
the TV’s display is changed and normal broadcasts look over saturated, too bright, etc. Thus the
XGS ME has two very important controls; BRIGHTNESS at Pot 1, and SATURATION at Pot2.
These control potentiometers are located directly under the AV (Audio / Video) ports and allow
you to manually adjust them, so you don’t have to play with the TV set. Brightness controls the
overall brightness of the signal, and saturation controls the saturation of the color. In many case,
you will find that both controls have a bit of overlap, but by adjusting both you can get any desired
display you wish and without modifying the TVs settings — no more screaming moms!

11.1.2.7 Clock Adjustment

The XGS ME has a clock divider circuit that allows you to divide and gate the main clock speed
without changing the main oscillator chip. The 5 pole DIP switch is located right under the 80MHz
oscillator and is labeled SW2. In normal cases, it will be set to 80Mhz as shown in Figure 11.1
(the topmost switch will be set to the right ON), but the other switches allow you use slower
clocks, each switch gates in a clock signal that are decreasing powers of two, only one switch can
be ON (to the right at once). Table 11.1 shows the frequencies to choose from.

11



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Table 11.1 — Clock divider circuit frequency select.

SW2 Position Frequency into SX52
1 (ON) 80Mhz (default)
2 (ON) 40Mhz

3 (ON) 20Mhz

4 (ON) 10Mhz

5 (ON) 5Mhz

(o2 ) When any switch is ON (to the right), the others must be OFF (to the left).

11.2 The XGS Micro Edition Hardware / Software Model

The XGS ME is composed of a main MPU, the Ubicom SX52, a video generation module
composed of basic TTL/HC logic, a I/O section to serially communicate with joysticks and other
serial 1/0 devices, a 128K Static SRAM module based on a serial address bus and a parallel
data bus, a sound generation module based on the ROHM BU8763 Programmable Melody
Generator, a IBM PS/2 keyboard/mouse port, a 30-pin (15x2 .1” spaced edge connector for
expansion), and a clock divider circuit. Each of the modules is independent of the others and can
operate alone or with the other modules.

However, the system needs the MPU to control the rasterization kernel that renders the screen
thus the MPU is constantly controlling the raster beam, generating sync, luma, and chroma.
Nevertheless, the processor runs at 80 MHz, meaning a clock cycle of 12.5 ns (nanoseconds),
hence, a lot of cycles can happen during the HBLANK (horizontal blank) and VBLANK (vertical
blank) periods which is more than enough time for game logic and other house keeping.

As a comparison, the old Atari 2600 had hardware to help generate sprite “fragments” on a
scanline basis, but still the programmer had to write the “video kernel” that was responsible for
rendering and control all synchronization. The 6507 in the Atari 2600 ran at 1.79 MHz (1/2 the
3.58 MHz color burst) and was internally a 8-bit 6502 with 128 bytes of RAM and access to 4K
of 8-bit ROM.

The XGS ME on the other hand runs at 80 MHz, nearly 45 times faster, has 256 bytes of
internal RAM, has 4K of 12-bit program memory that can be used for ROM assets and data as
well. Additionally, the XGS ME has an external 128K byte SRAM that can be used to hold
procedurally generated imagery, data, and decompressed data. The XGS ME also has sound
generation hardware that can produce sound and music without any MPU load. Thus, with the
right programming the XGS in nearly 10x more powerful than the Atari 2600, and hence we
should be able to make it do amazing things. The demos thus far definitely attest to that.

Later in the following sections we will go into detail of each sub-system for now, let’s discuss in
general how the system works.

12



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.2 — The Ubicom SX52 Processor.

&)
2IC33LuEoOYLa
CoeCaeC=>>CCECECEC-CECL:rLIL

T T O O O B

52 51504948 47 46 45 44 43 42 41 40
RAG6 1 39 RD7
RA7 2 38}~ RD6
MCLR -3 37 RD5
0OSC1 4 36 RD4
0SC2 -5 35 Vss
Vdd 16 52 - PIN 34} vdd
Vss 17 PQFP 33| RD3
RAO 8 321 RD2
RA1 9 31} RD1
RA2 10 30} RDO
RA3 {11 29} RC7
RBO {12 28} RcCé
RB1 {13 27} RC5

1415161718 19 20 21 22 23 24 25 26

NN I

NMOMONONMOMMDTS 200000

rrCrrrdC>"gcoraccIrc

Top View

Figure 11.3 — A Block Diagram of the Internal Structure of the SX52 Processor.

§ 0SCt osge WDT Clock Jree
S i Ly
O (M_OSC Driver | Clock 8-bit Watchdog 8-bit Timer 8
u AMHzZ Internal |- Select Timer (WDT) RTCC
— RC OSC ‘ 4 Port B
@ (divided by P o ‘ Ol:t COMPARATOR ‘
8 steps) e/u Stack
System Clock 4/8 8 8 8
MCLR Prescaler for RTCC
or ‘ Interrupt H MIWU ‘ [Port A] [Port €] [Port D] [Port E]
Postscaler for WDT ) 4
[Brown-Ou e ; Je a8t s s e
/ y élcck h 4 h 4 r y h 4 b AN
4 Internal Data Bus
A F Y 8], 8 s ‘>8 # 4 4 7
rsnion o 1751, ] ; T s | s v dronc
Pipeline 8 Level — 8 ALU Debugd® 1| | Timer 1 ‘ Timer 2
Stack Address Data Pln—Syslem X
rogramming 8-Bit 8-Bit
STATOS 262 Bytes Prescaler‘ Prescaler‘
.— SRAM
Address 12, & |k Words
Write Back OPTION ! 7 Lof EEPROM
F Y
MODE
8, Write Data
7 g, Read Data )
& 12/, Instruction IREAD

13



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.2.1 Basic Operation of the XGS ME

The XGS ME’s core is the SX52 processor, this is a stand alone single chip computer with a huge
I/O interface, built in timers, interrupts, and much, much more. By itself the SX52 can do amazing
things, but with the addition of the hardware it makes for a formidable processing unit. The chip
pinout is shown in Figure 11.2, it consists of a control bus, power lines, and I/O interface. These
are all detailed in datasheet document located on the CD-ROM here:

CDROOT:\XGSME_HW_CD\Datasheets\SX-DDS-SX4852BD-12.pdf.

14



Design Your Own Video Game Console

A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.4 — The Functional Description of the SX52 Pins.

Name Pin Type| Input Levels Description
RAD 11O TTL/CMOS  [Bidirectional KO Pin; symmetrical source / sink capability
RAA (1e] TTL/CMOS  |Bidirectional IYQ Pin; symmetrical source / sink capability
RAZ [l[®] TTLCMOS  Bidirectional IYO Pin; symmetrical source / sink capability
RA3 (I{®] TTL/CMOS  |Bidirectional 11O Pin; symmetrical source / sink capability
RA4 ([®] TTL/CMOS  Bidirectional KO Pin; symmetrical source / sink capability {52-pin pkg. only)
RAS [I[®] TTL/CMOS  Bidirectional 110 Pin; symmetrical source / sink capability (52-pin pkg. only)
RABG 11O TTL/CMOS  [Bidirectional 110 Pin; symmetrical source / sink capability (52-pin pkg. only)
RAT 1[5} TTL/CMOS  [Bidirectional IKQ Pin; symmetrical source / sink capability (52-pin pkg. only)
RBO I[e] TTL/CMOS/ST [Bidirectional 1’0 Pin; comparator output; MIWU/Intarrupt input
RE1 fle] TTL/CMOS/ST |Bidirectional KO Pin; comparator negative input; MIWU/Intarrupt input
RB2 (I{®] TTLU/CMOS/ST [Bidirectional IO Pin; comparator positive input; MIWU/Interrupt input
RB3 [1[®] TTUCMOS/ST [Bidirectional K0 Pin; MWL/ Interrupt input
RAB4 He} TTL/CMOS/ST [Bidirectional YO Pin; MIWL/Interrupt input, Timer T1 Capture Input 1
RB5 I[e] TTL/CMOS/ST [Bidirectional /0 Pin; MIWU/Interrupt input, Timer T1 Capture Input 2
RB& i[5} TTL/CMOS/ST [Bidirectional /0 Pin; MIWLU/Interrupt input, Timar T1 PWM/Compare Qutput
RB7 I[e] TTL/CMOS/ST [Bidirectional YO Pin; MIWU/Interrupt input, Timer T1 Extarnal Event Input
RCO 11O TTUCMOS/ST |Bidirectional IO pin, Timer T2 Capture Input 1
RC1 (I{®] TTU/CMOS/ST |Bidirectional I/O pin, Timer T2 Capture Input 2
RC2 10 TTL/CMOS/ST |Bidirectional /0 pin, Timer T2 PWM/Comparea Qutput
RC3 He] TTL/CMOS/ST |Bidirectional /O pin, Timer T2 External Event Counter Input
RC4 I[s] TTL/CMOS/ST [Bidirectional KO pin
RC5 i[5} TTL/CMOS/ST [Bidirectional I/O pin
RC6 I[e] TTL/CMOS/ST [Bidirectional IFQ pin
RC7 I} TTL/CMOS/ST [Bidirectional I/O pin
RDO I[s] TTL/CMOS/ST [Bidirectional IFO pin
RD1 110 TTUCMOS/ST |Bidirectional IYO pin
RD2 VO TTL/CMOS/ST [Bidirectional I/O pin
RD3 I[s] TTL/CMOS/ST [Bidirectional IFQ pin
RD4 [I[s] TTL/CMOS/ST [Bidirectional I/O pin
RD5 I[e] TTL/CMOS/ST [Bidirectional IFQ pin
RD& [l[e] TTL/CMOS/ST [Bidirectional IO pin
RD7 (I{®] TTLU/CMOS/ST [Bidirectional IYO pin
REO I[s] TTL/CMOS/ST [Bidirectional /O pin
RE1 11O TTL/CMOS/ST [Bidirectional I/O pin
RE2 I[s] TTL/CMOS/ST [Bidirectional IFQ pin
RE3 i[5} TTL/CMOS/ST [Bidirectional I/O pin
RE4 I[s] TTL/CMOS/ST [Bidirectional IFO pin
RES [I[e] TTL/CMOS/ST [Bidirectional IO pin
RE6 I[s] TTL/CMOS/ST [Bidirectional IFO pin
RE7 VO TTUCMOS/ST |Bidirectional IO pin
RTCC [ ST Input to Real-Time Clock/Counter
MCLR [ ST Master Claar reset input — active low
OSC1/InfVpp [ ST Crystal oscillator input — external clock source input
0OSC2/0ut o] CMOS Crystal oscillator output — in R/C mode, internally pulled to V4, through weak
pull-up
Vg P - Positive supply pins (a total of four positive supply pins, one on each side of
the device)
Vss P - Ground pins (a total of four ground pins, one on each side of the device)
Note: | = input, O = output, /O = Input'Output, P = Power, TTL = TTL input, CMOS = CMOS input,
ST = Schmitt Trigger input, MIWU = Multi-Input Wakeup input

Figure 11.3 shows a port system diagram of the SX52 chip, we are mostly interested in the 5 -
I/O Ports A, B, C, D, and E. It is thru these ports that the SX52 is interfaces to the peripheral
hardware of the XGS ME. Many of the Ports are standard 1/O, however some of them have
special functionality that is disabled if you use them for general I/O. Figure 11.4 lists the pins of
the SX52. As you can see from the pin descriptions most of the port I/Os’ are free for usage,

15



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

however, some ports in particular B and C have very important capabilities. For this reason in the
XGS ME design | tended to leave the majority of Ports B and C alone and tried to utilize A, D, and
E mostly for the design. This design allows future modifications thru the expansion port as well as
hobbyists to use the ports directly since they are not connected to external hardware and
minimizes conflicts.

11.2.1.1 The Control Bus
The control bus of the SX52 is amazing simple. It consists only of 4 lines:
RTCC - Input to the real-time clock counter, unused by the XGS ME currently.

MCLR — The master reset line, the XGS ME pulls this low on power up and reset, this resets the
SX52.

OSC1 — The clock input and also used as a voltage VPP (12.5V EEPROM programming voltage)
programming pin when programming the SX52.

OSC2 - Clock output when using the internal XTAL oscillator, but also used to program the SX52
and debug it.

11.2.1.2 The Power Lines

Vdd, Vss — Power and ground respectively. The SX52 runs at 5.0V.

16



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.5 — A Schematic View of the SX52 to XGS ME Port Mappings.

> RC4
I>Ros - -
> RCG - -
> RCT

3
7
]
3
)
3
4
2
7
7
g
9

ROD ?? > ROD - -
il
B
7
T
9
0
1
D
3
4
5
B
7

> RD1
> RD2
T> RD3
T> RD4
I>RD5 - -
> RDG
> RD7

> RED
> RE1
> REZ
> REF
I RE4 - -
> REs - -
> REG
> Re7 - -

VVVVVVVYY

SRAM DATAIN [
>
[
[
[

>

[
[
!
[
[
[

WD ISEL? [

D

JOY_SHID [
SND_SDATA
- VIDZISELY
ISEL3 [
- SERIAL_TXD

- -SHD. S8TB

S¥52- KBMS_DATA,

SRAM CE [
SRAM_RDAVR [
SRAM_BANKSEL
AD
A
A2
A3
- JOY_CLK [>>
SND_SCLK |
VID-ISELD
VID_CSELA [
- VID_ESELT |
WID_CSEL2 [

VID_CSEL3 [t
>
[

SRAM
SRAM,
SRAM
SRAM
SRAM D
SRAM
SRAM
SRAM
SRAM_CLK

- SERIAL_RAD [

JOY_DATAOUT
SND-FREQ_SEL [
IPC: S¥62_TXD
IPC-5x52_RAD

SE2_KBMS_GLOCK [>

11.2.2 Hardware Interfaces and 1/0 Port Mappings

The XGS ME uses a number of lines on the Ports of the SX52 as the I/O interface to each
hardware sections as shown in Figure 11.5. The usage of pins was decreased by using a number
of serializing hardware constructs rather than parallel for each hardware device. Not as fast in
many cases, but definitely 2-3 lines is better than 9-10 lines when port bits are at a premium. In
the following sections we will go into detail as to what each pin does and programming the
hardware.

11.3 Programming the XGS ME

To save you time, | have written a number of basic demo programs that show how to access
each one of the hardware modules; video, sound, joysticks, keyboard, and SRAM. The demos
don’t use any API per-se, but are a good starting point for you, so you don’'t have to reverse
engineer the hardware, experiment with the timing etc., use my demos as a model of how the
particular hardware works and design your own APls. Additionally, there are a number of
complete tutorials at the end of the book in the appendices by various demo coders explaining
how they wrote their demos.

Now, the first thing you will learn when programming the XGS ME is that you have to write the

video kernel yourself, this means that you will have to think way out of the box in ways you
probably have never though before unless you have programmed on Atari 2600 like hardware.

17



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

LIS {=S D [cl At the peak of Atari in the 80’s it was estimated only 100 programmers in the
world had the skill to do it, so this isn’t easy — but if you look at the Atari 2600
games and realize they had a system 45x slower than the XGS ME,
programmed via timeshare with a teletype and did the games in weeks to
months by themselves with no team, then you will quickly realize anything is
possible.

However, the point is that this kind of coding is “Black Art”, your rendering loop must have a
completely deterministic timing structure, so no matter which way something branches, the clocks
must be the same, etc. | will discuss architectures and algorithms later in the video chapters on
this kind of thinking, but it's very easy once you get the hang of it, and a lot of fun figuring out
ways to squeeze more out of the cycles and hardware. Finally, since it is so hard part of our job is
to find methods and abstractions to make it easier to program.

So in essence to program the XGS ME, you write your code with the IDE (either the XGS Micro
Edition Studio or SX-Key ), you directly control the video, audio, joysticks, and SRAM, upload
your demo or game to the system and let it run.

This section has hopefully has given you a general landscape of the XGS ME hardware and its
interfaces to the various hardware sub-systems. Now, let’s jump into actually programming each
hardware section. We will start with the easiest hardware (the joystick) and work our way to the
hardest (the video system). Once you have read all these section you can finally start coding!

Figure 11.6 — The XGS Micro Edition’s Power Supplies.

. B0V, 154 Main Supply . .

S
&
StRATSRGUIER

e
5

+—All
H
kS
;
i1l
o
22 ool |ohEiR
e B
gﬁ
Lz
HEEHEE o
Y
s
=4
o
%ﬁf
=
v

128 P e

© 1 PowerSupply Atcess Port. |

e - B

18



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.4 Power Supply Design

The XGS ME has three power supplies actually; +5V, +3.3V, and +12.5V. If you take a look at
Figure 11.6 the design for all three power supplies. The Proteus design file for the power supplies
is located on the CD at:

CDROOT:\XGSME_HW_CD\Schematics_Circuits\xgs_micro_power_05.DSN

11.4.1 The 5.0V Suppl

The primary power supply for the XGS ME is the 5.0V supply consisting of the LM7805 at U15.
This is a generic 5.0V regulator with a 1.0-1.5A output. The unregulated DC 9-12V comes it at
J10 and then is regulated by this regulator. Notice that the 7805 has short protection and reverse
voltage protection diodes as well as the standard filtering capacitors. The data sheet for the 7805
is located on the CD here:

CDROOT:\XGSME_HW_CD\Datasheets\ua7805.pdf
Also, notice on the XGS the 7805 is heatsinked with a black aluminum sink. Although, the
regulator would work without it, it would burn fingers to the touch. In fact, try touching it you will

find that it’s uncomfortable hot, without the heatsink it would definitely burn your fingers!

The XGS ME itself pulls 400-500ma, but the 7805 is rated for 1.5A (however | wouldn’t pull much
over 1.0A with the current heatsinking).

11.4.2 The 3.3V Suppl

The 3.3V supply is second in line of importance, but ironically only powers a single chip; the
ROHM BUB8763. In fact, | could have completely omitted the 3.3V and powered the ROHM chip
with a Zener diode based regulator since it has such modest current requirements. However, in
the future many hobbyists (including myself) will want to create add on cards that need 3.3V, so
the 3.3V regulator will pay off in the future. With that in mind, the 3.3V regulator that was selected
is a cool little chip manufactured by Texas Instruments called the TPS76933DBVT (the DBVT
part is the package). It's a small package SMT device with a SOT footprint located on the board
at U16 as shown in Figure 11.1. The TPS isn’t powered from the main lines, but from the 5.0V
supply itself, the TPS is daisy chained from the 5.0V supply. This is not because it was easier or
more convenient, but by design. The TPS will dissipate more power depending on the input
voltage, so there is no need to have a large input voltage driving the TPS, all that is needed is a
volt or two over 3.3V and the TPS will be able to regulate with very little power consumed for the
regulation.

TIP In general, give your regulators as much input voltage they need, but try not to drive
them with the max, always try to find a source that is somewhere between the min and
max recommended input voltage. Driving with too high an input even if it's within the
max input voltage limit will cause extra power consumption and heat dissipation.

Additionally, the TPS is short and reverse voltage protected as was the 7805. The complete data
sheet of the TPS is located on the CD here:

CDROOT:\XGSME_HW_CD\Datasheets\tps76933.pdf



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Also, if you're planning on using 3.3V to power expansion cards plugged into the 30-pin
expansion port, you can safely pull 50-75ma out of the 3.3V supply port exported to the 30-pin
expansion port.

11.4.3 The 12.5V Suppl

The 12.5V supply gave me the most headaches in the power system design. The dilemma was
more or less this; the 12.5V supply isn’t for general use, but for programming the SX52. Since the
SX52 uses FLASH ROM for its internal program memory, a high voltage is needed to program it.
Now, there are two ways to get this voltage; step and step down. The step down method is more
straightforward and is how the other two regulators work. A voltage higher than the 12.5V must
be brought into the system, maybe 16-18V this then would be regulated down to 12.5V with a
fixed or adjustable regulator. The only problem is that its VERY hard to find a 12.5V fixed
regulator, so a variable regulator has to be used which means extra parts. But, the really bad
news is that a 14-18V transformer must be used as the input to the XGS ME, this is not only
expensive, but would cause a lot of heat dissipation and more board space. The 18V unregulated
DC would come in, be regulated down to 12.5V then that would be used to feed the 5.0V
regulator (which is actually a bit on the high side, 7-9V is preferred), so bottom line is that more
power, more heat all the way around — bad choice.

The other solution is to use what’s called a “DC-DC Step-Up Converter” that can take a lower
voltage and create a higher voltage. This is accomplished thru a high frequency charge/discharge
cycle. This sounds like a lot of drama, but in the end this was the better choice and the XGS ME
uses a National Semiconductor LM2705 Step-Up regulator shown in Figure 11.1. The complete
data sheet is located on the CD here:

CDROOT:\XGSME_HW_CD\Datasheets\LM2705.pdf
The interesting thing about the LM2705 is that you can set the final output voltage up to 20V
regardless of input which can be anywhere from 2.2 — 7.0V. Referring to the datasheet, the output
voltage is a function of a pair resistors and the formula is shown below:
R1 = R2*(Vout/1.237 — 1)
rearranging and solving for Vout we get,
Vout = 1.237*(R1/R2 + 1)
The XGS ME uses R1 = 243K, R2 = 26.7K resulting in a nominal voltage of:
Vout = 1.237*(243K/26.7K + 1) = 12.495
The operation of the LM2705 is actually quite fascinating, | recommend you read it since this

LM2705 and related families are a great way to get high voltages out of low voltages without
much fuss, of course their current drive is limited (50-150ma in most cases).

([N The 12.5V supply is not exported out to the 30-pin expansion slot since the current
rating on the supply is so low and if an outside source pulls more than 20-30ma it will
decrease the voltage to a point that the onboard programmer might not be able to
function properly.

20



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.7 — The Frequency Divider Circuit.

.................. EEe e e n
.................. .. . ClockDivider. . . . . . ..
OO
Cc37
R23 =
.................. T . . . .
.................. TEMT= . . .-1UF - .
.................. PR TEXT= Ce e e e Ce e e e
.................. ‘U2
Lo 0 0o oo oo plo oo aio oo o6 6o oo o 3 Iop ap A
Main Onboard XTAL.OSC0-85Mhz . . . . . . . ; D1 al 3 .........
................ o a2 L2
................ o) 03 1L
CE : RCO [—2
7 ENP
C36 1 ent
--------- MAIN_OSC_0UT - [P 5 CLK
|__|'_' . A A A i
..... . oo g wR
1uF, -
=TEXT= T4F161
U7 _ VEC=5YCT
- ceme voe |- =
——{ e WE -
——{ne WE —2-
GND  0SC_OUT 2 #i&IN- 05C_OUT -
. econocose | S e
. ECEXTAL OSC

11.5 Frequency Divider Circuit Design

The frequency divider circuit is shown in Figure 11.7, it consists of three parts more or less; a
clock source U17, the binary counter (74F161) at U21, and a 5 pole DIP switch at SW2. The
circuit’'s purpose is to allow the user to select 80, 40, 20, 10, or 5Mhz as the input into the XGS
ME with a simple DIP switch. The operation the of the circuit is as follows; the clock source at

U17 is used to clock the 4-bit binary up counter U21, then signal taps are taken from each of the

bit positions Qa, Qb, Qc, Qd, in essence these signals are each toggling at 1/2 the rate of the
previous, so at the output of Qa is a square wave with frequency f/2 where f is the input clock,
similarly at Qb there is a square wave with frequency f/4, and so forth thus:

Qa(f) = /2
Qb(f) = f/4
Qc(f) = /8
Qd(f) = f/16

With an input frequency f of 80Mhz this results in:

Qa(80Mhz) = 80Mhz / 2 = 40Mhz
Qb(80Mhz) = 80Mhz / 4 = 20Mhz
Qc(80Mhz) = 80Mhz / 8 = 10 MHz

Qd(80Mhz) = 80Mhz / 16 = 5 MHz

21



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

These signals along with the original 80Mhz are connected to the inputs of the 5 pole DIP switch
and are mechanically gated to the main clock output labeled OS1_RUN_IN. Only one switch
should be “On” (to the right) at a time. The switch map is shown in Table 11.2.

Table 11.2 — Frequency Selection Switch Settings

Switch (ON) Frequency
SW1 80Mhz
SW2 40Mhz
SW3 20Mhz
SW4 10Mhz
SW5 5Mhz

(\[oaR=ll The SX52 can also be put into internal oscillator mode with the frequency directives
OSC32KHZ, OSC128KHZ, OSC1MHZ, OSC4MHZ. These along with the external
clocking give the XGS ME a complete range of operating frequencies.

You might be wondering why there is even a clock divider to slow the XGS ME down? The
reason is two fold; first you might want to use a slower clock to make timing calculations easier.
For example, a 10Mhz clock makes timing very easy since each clock is exactly 100ns. But, the
more important reason why to slow the clock down is to decrease the power consumption of the
hardware. CMOS circuits only consume power (for the most part) during transitions from one
state to another, so the faster you clock the system the more transitions the hardware is going to
make.

Of course, the first key component is the SX52 which you will find consumes the most power in
the system, thus if you cut you clock to 40Mhz you will find that the total power in the system is
not halved, but maybe decreases by 20-30% (some systems aren’t clocked directly) which might
make all the difference in a battery operated environment. For example, | have a 6 pack of AA
batteries | used to make a battery pack for the XGS ME, so | can be portable, they last a couple
of hours at 80Mhz, at 40Mhz, | could get maybe 3 hours out of the system.

22



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.6 Joystick Design and Programming

In this section, we are going to discuss both the hardware and the programming of the XGS ME’s
joystick interface, much of this should be review from the previous chapter, so you should feel
right at home.

Figure 11.8 — Atari 2600 DB-9 Connector Pinouts.

Pin Color Function

1 TWhite Tp

2 Blue Down

3 Green Left

4  EBrown Right

5 no contact

6  Orange Fire button

7 Red +5V, max. 50 mi
g Elack Ground

=] no contact

FORWARD
P1 it
1 L £ i
2 LEFT \D \ RIGHT
3 p
+ cf’?c
5 | BACK
6 o7
BEUTTON
=
8 £
9

11.6.1 Joystick Hardware Description

The XGS ME joystick interfaces are pin compatible with the Atari 2600/VCS pin outs. There are
four directional buttons, and one fire button in each stick that “grounds” the input when activated.
Thus, for an interface to work all these inputs must be pulled “HIGH” so the joystick changes can
pull them low. Figure 11.8 depicts the Atari 2600 joystick interface pinouts. Considering that each
joystick has 5 switches that must be read that would be 10 I/O lines from the SX52 which is
unacceptable, thus the joysticks are serialized thru a pair of 74HC166 parallel to serial shift
registers that are daisy chained. Figure 11.9 shows the complete design of the joystick interface,
it's a bit hard to see, so the Proteus design file is also available on the CD at:

CDROOT:\XGSME_HW_CD\Schematics_Circuits\xgs_micro_joystick_05.DSN

23



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.9 — The Complete Joystick Input Design.

............. oo CORN-
............. .. TR - -
iy
0D S ral Heatkr Port
A= D o ME o EEEE
; e 10V fL0R ot i IV Fa0e Tom 3¢ Proces sl
c £ IOV FIRE JOY D DN sice
{= 1oV E N Joi LT 40 0 SERIL N | [
J0Y I RT
O {5 J0v 0T o RES
1o 0 FIRE dov A e |
= Aoy ORT g — e | A
<] OV ELk Jofr O LT[
s < RES = <] doY Gl JovIRT |
B o0 ] JoEHAT 1o I FRE [
e CORN-H1D - Babacadbaannaaaas o e et
............. Jof . Headhr DID AGtag- -+ v s s flgset e
...... Hlaceoaa o e R 1 Y
= B2 [ Douwdig - - H2 hos
DB [, LenGiee)] - = HI
B9 [RGB = Hi
DB [, NC/ - H5 k3
B2 . FlreOmgy - HE
e =M
o DB B.GONGEEY - HE
Fiy DS [, NG Ha
Aotk 1 Sertal Header Port
20 . 6. Bacoocoaaa s

L. dovioef
ooV iow

g Header DIL-10 -
D69 [1, UBAURR] - - < H1- - - -
B2 2, DOUNENE = HZ
B2 P, LeNGRe) - o HI
62 [t RIGITHION] = HY
82 F,NCF wHs e e
089 B FIROEY = He - - - o[- - - -
i = Hi

Itk CONtIVE Mt

You can follow along with the design using either reference. Referring to Figure 11.9 and the
design file for the joysticks, the joysticks are interfaced via J19 and J12, the inputs from the
joysticks are connected to the parallel inputs of the 74HC166 parallel in-serial out chips at U7 and
U8. Also, notice the pull up resistor packs RP1 and RP2, these keep all the inputs HIGH until the
user grounds an input by moving the stick or firing a button. Also, notice on the DB9 joystick
inputs a couple extra signals have been ported to the sticks for extra functionality; JOY_CLK and
RB5, they are semi arbitrary. Also, the first page of the 74HC166’s data sheet is shown in Figure
11.10 and you can find the complete data sheet on the CD-ROM at:

CDROOT:\XGSME_HW_CD\Datasheets\74HC_HCT166_CNV_2.pdf

24



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.10 — The 74HC166 Datasheet.

Philips Semiconductors

Product specification

8-bit parallel-in/serial-out shift register

74HC/HCT166

FEATURES

= Synchronous parallel-to-serial applications

+ Synchronous serial data input for easy expansion
« Clock enable for “do nothing” mode

= Asynchronous mastar reset

+ For asynchronous parallel data load see "165"

« Qutput capability: standard

s o category: M3I

GENERAL DESCRIPTION

The 74HC/HCT166 are high-speed Si-gate CMOS devices
and are pin cornpatible with low power Schottky TTL
{LSTTL). They are specified in compliance with JEDEG
standard no. 7A.

The T4HC/HCT166 are 8-bit shift registers which have a
fully synchronous serial or parallel data entry selected by

QUICK REFERENCE DATA
GND = 0V, Tams = 25 °Ci t, =t = B nis

an active LOW parallel enabla (PE) input, When PE is
LOW one set-up time prior to the LOW-to-HIGH ¢lock
transition, parallel data is entered into the register. When
PE is HIGH, data is entered into the internal bit position Ciy
from serial data input (Dg), and the remaining bits are
shifted one place to the right (G — Qy — Glp, etc.) with
each positive-going clock transition.

This feature allows parallel-to-serial converter expansion
by tving the Q7 output te the Ds input of the succeeding
stage.

The clock input is a gated-OR structure which allows ohe
input to be used as an active LOW clack enable (CE) input.
The pin assignment for the CP and GE inputs is arbitrary
and can be reversed for layout convenience. The
LOW-to-HIGH transition of input CE should only take place
while GP is HIGH for predictable operation. A LOW on the
master reset (MR) input overrides all ather inputs and
clears the register asynchronously, forging all bit positions
to a LOW state,

TYPICAL
SYMBOL |PARAMETER CONDITIONS UNIT
HC HCT
teqld trLH propagation delay CL=15pF Ve =5V
CP o Q7 15 20 ns
MR to Gy 14 19 ns
fmax maximum clock frequency 63 50 MHz
Ci input capacitance 3.5 3.5 pF
Cen power dissipation capacitance per package [notes 1 and 2 41 4 pF
Notes

1. Cpp Is used o determine the dynamic power dissipation (Pp In uW):

Po=Cpp x \u"cc2 xfi+E(CLx Vccz * fc) where:
fi = input frequency in MHz
fo = output frequency in MHz
¥ (G % Vo  5) = sum of autputs
G = output load capacitance in pF
Vg = supply voltage in v

For HC the condition is V, = GND to Veg
For HCT the condition is V, = GND to Vee - 1.5 V

ra

ORDERING INFORMATION

See "TAHCHCT/HUUWHCMOS Logic Package information”,

December 1980 2

Reading the joysticks is rather easy with this arrangement. The SX52 latches the joysticks data
into the shift registers with 3 extra bits per each shift registers (unused now, but useful for more
advanced input devices) and then shifts the data out bit by bit by controlling the clock line on the
shift registers. Thus, to read both joysticks the steps are to first latch the parallel data from the

25



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

joystick switches and then enter into a shifting loop where each bit of the 16-bit data word is
serially shifted into the SX52 for processing. Table 11.3 illustrates the bit mappings for the
joystick data word.

Table 11.3 — Joystick Data Word Mapping

Serial Register Bit Description

do Joystick 0 — UP.

d1 Joystick 0 — DOWN.

d2 Joystick 0 — LEFT.

d3 Joystick 0 — RIGHT.

d4 Joystick 0 — FIRE.

d5 Extra Serial Bit Exported to Serial /O Expansion HDR J5-Pin 1.
d6 Extra Serial Bit Exported to Serial /O Expansion HDR J5-Pin 2.
d7 Extra Serial Bit Exported to Serial /O Expansion HDR J5-Pin 3.
ds Joystick 1 — UP.

do Joystick 1 — DOWN.

di10 Joystick 1 — LEFT.

dt1 Joystick 1 — RIGHT.

di12 Joystick 1 — FIRE.

di13 Extra Serial Bit Exported to Serial /O Expansion HDR J5-Pin 4.
di4 Extra Serial Bit Exported to Serial /O Expansion HDR J5-Pin 5.
di5 Extra Serial Bit Exported to Serial /O Expansion HDR J5-Pin 6.

When you read the data word simply mask off bits 5-7 and 13-15 and then the remaining low byte
contains joystick Q’s state and the high byte contains joystick 1’s state.

The control of the joystick interface is accomplished via only 3 pins from the SX52 they are listed
below in Table 11.4.

Table 11.4 — The Joystick Hardware Port Mapping Bits.

Port Bit XGS ME Bit Description
RAO JOY_CLK Controls the clocks of the shift registers.
RA1 JOY_SH/nLD Controls the shift registers mode of operation.

O0=Parallel Load mode, 1=Serial Shift Mode.

RA2 JOY_DATOUT As the data is shifted out it is available to the SX52
on this pin.

(o) If you see a lowercase “n” in front of a signal or a /", it means “Active LOW”. In Table
11.4 for example, the signal JOY_SH/nLD has two meanings; if 1 then it selects serial
shift, if 0 it means parallel load.

26



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.6.2 Reading The Joysticks

The joysticks must be read at the same time since they are both serialized in the same data
stream. The steps to read the joysticks are outlined below:

Step 1: Place the joystick hardware into “latch” mode, so it can latch the state of the joysticks in
the serial shift registers:

JOY_SH/nLD = 0

Step 2: Pulse the clock line of the serial registers to actually latch the data (all operations are
synchronous, thus occur when there is a complete clock pulse)

JOY_CLK = 0, Delay, JOY_CLK = 1, Delay. JOY_CLK = 0

Where Delay is in ns (nanoseconds) and is determined by the maximum clock rate of the shift
registers, a value of 10-20 ns or 1-2 clocks at 80 MHz is sufficient for the current XGS ME
hardware to settle.

Step 3: Prepare to read in the 16-bits of joystick data in the format outlined in Table 11.4. Data is
shifted out at the MSB, so the first data bit available on JOY_DATAOUT will be d15. To read the
data, the shift registers must be placed into “shift” mode:

JOY_SH/nLD = 1
Step 4: Read the data bits into a bit vector:

for (t=0; t < 15; t++)

/ / read the data

data[t] = JOY_DATOUT;

// clock the next bit out

JOY_CLK = 0, Delay, JOY_CLK = 1, Delay. JOY_CLK = 0
} // end for t

Step 5: Mask and use data.

11.6.3 Implementing the Read Function in SX52 ASM

Next let’s take a look at an actual implementation of the read function that is excerpted from the
demo later in the chapter. The code uses a number of defines that represent the various bit
encodings. These defines are shown below:

i [/,é{:_{ééé////////////////////////////////////////////////////////////
; [1117117117777771/777777/7777777//777777///7/77///7///77//////7//////
g?(\s(EPORT_MASK equ %00000111 ; mask for bits used by joystick interface from

27



Design Your Own Video Game Console

A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

JOY_PORT_CLK equ %00000001
JOY_PORT_CLK_1 equ %00000001
JOY_PORT_CLK_O equ %00000000
JOY_PORT_SH_nLD equ %0000201%

; 1oa
JOY_PORT_SH_nLD_1 equ %00000010
JOY_PORT_SH_nLD_0 equ %00000000
JOY_PORT_DATA equ %00000100

; clock bit mask
; clock high
; clock Tow

; Jjoystick serial registers shift or
bit mask

; joystick serial register shift mode
; joystick serial register load mode

; joystick read data bit comes

; 1n here each shift

Next there are a few globals that the read function passes values back and forth from the caller:

; general
datal6é ds 1 ; general 8/16 bit data vars
data8 ds 1

Below is the actual read function, it is heavily commented and follows the read algorithm exactly.

Read_Joysticks

this function reads in the gqysticks, again, the_only timing bottleneck is the
shift registers (74HC166) which have a maximum clock speed of approx. 25 MHz!
so we need to make sure that at a clock of 80 MHz, the delays are large enough
for the clock, setup, hold, etc. times of the serial chips not to be violate
currently the function works up to 80 MHz

the function works in the following steps

step 1: latch the data from joy 0 and joy 1 into the serial registers

step 2: shift the 16-bits of data out of the shift registers representing the
joysticks button states into the Sx52

step 3: return the data

; parameters on entry

; return values

; data8 - byte holds left joystick [ X | X | X | X | UP | DN | RT | LT | FIRE ]
; datalé - byte holds right joystick [ X | X | X | X | uP | DN | RT | LT | FIRE ]
; SX52 port bit mappings

;RAO -> JOY_CLK

;RAL -> JOY_SH/LD

; RA2 -> JOY_DATAOUT

; step 1: read in port and mask control bits

mov
and

W, RA
W, JOY_PORT_MASK

; step 2: prepare for read

or
mov

W, #(JOY_PORT_CLK_O | JOY_PORT_SH_nLD_0)
RA, W

; step 3: latch joysticks into shift registers

clrb RA.1 ; JOY_SH/LD = (0), set parallel load mode
DELAY (1)

setb RA.O ; JOY_CLK = (1), clock

DELAY (1)

clrb RA.O ; JOY_CLK = (0), clock

DELAY (1)

28



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; step 4: shift data into system, 16-bits
setb RA.1 ; JOY_SH/LD = (1), set serial shift mode

; shift 16-bits of address into latch
mov Countl, #16 ; 16 bits per joystick read

:Read_Joy_Bit_Loop

rl data8 ; rotate results ri?ht thru carry .
ri datal6 ; rotate upper results from from including carry

; read joy in data on port bit first

sb RA.2 ; jump over if set
jmp :Joy_Bit_zero

; bit set, write 1 to joystick results packet

setb data8.0 ; data8[8] = (1)
jmp :Joy_Clock_Next_Bit

:Joy_Bit_zZero
; bit clear, write 0 to joystick results packet
clrb  data8.0 ; data8[7] = (0)
:Joy_Clock_Next_Bit

; clock next data bit

DELAY (1)
setb RA.O ; JOY_CLK = (1), clock
DELAY (1)
clrb RA.O ; JOY_CLK = (0), clock
DELAY (1)

djnz Countl, :Read_Joy_Bit_Loop

; reset all joystick control bits

mov

and W, JOY_PORT_MASK

or W, #(JOY_PORT_CLK_O | JOY_PORT_SH_nLD_0)
nop

mov RA, W

ret

You may notice the DELAY macro in the code, this is simply a macro that delays the sent number
of clocks, for example DELAY(10) would delay 10 clock cycles. The implementation of DELAY is
below for reference:

DELAY MACRO clocks

; first compute fractional remainder of 10 and delay
IF ((clocks // 10) > 0)
; first 3 clock chunks6
REPT ((clocks // 10)/3)
JMP $ + 1
ENDR

; now the remainder if any
REPT ((clocks // 10)//3)
NOP

ENDR
ENDIF

29



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; last compute whole multiples of 10, and delay
IF ((clocks/10) >= 1)

; delay 10*(clocks/10)

mov counter, #(clocks/10) 7 ()
:Loop

jmp $ + 1 3 (3

jmp $ + 1 ; 3

djnz counter, :Loop ; (4/2)
ENDIF

ENDM

-GNV [ell If you find that the Read Joysticks function isn’t working then slow it down by
increasing the delays between states.

To use the Read_Joysticks function, you might do something like this:

mov data8, #0 ; clear joystick return vars
mov datal6, #0

call Read_Joysticks

And joystick 0 would be placed in data8 on return and joystick 1 in data16 on return respectively

11.6.4 Joystick Demo

To demonstrate reading the joysticks | have written a program that read both joysticks and then
exports their values out to ports B and C, so you can view them with the mini-logic probe. We
have to stoop to this level since there is no “printf()”! Anyway, load the demo program
JOY_XME_01.SRC located on the CD at:

CDROOT:\XGSME_HW_CD\XGSME_Sources\joy_xme_01.src
into the XGS Micro Edition Studio, Assembile it, and program it into the XGS ME unit. Remember,
you must have the XGS ME power on and the SYSMODE switch at the rear must be in the PGM
or Program mode to upload to the XGS ME. To run the program place the XGS in RUN mode and
hit RESET and the program will run at the full 80Mhz.

When you run the program, to verify that things are working, you will plug you joysticks into the
ports and then move them around. The demo will drive the ports as shown in Table 11.5.

Table 11.5 — Joystick demo program driver output.

Joystick 0 Joystick 1
Up ----> Port RBO Up -----> Port RCO
Down -----> Port RB1 Down ----- Port RC1

30



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Left ----->  Port RB2 Left ----=> Port RC2
Right -----> Port RB3 Right -----> Port RC3
FIRE ----- Port RB4 FIRE ----= Port RC4

If you wish you can probe these ports with a logic probe (connected to power and ground) and
see them change as you move the joysticks around.

In this section we covered all there is to know about the XGS ME’s joystick inputs. There is of
course a lot more to the hardware as far as its abilities to interface to other serial devices, but the
designs should give you all the insight you need into the extra bits in the shift registers and the
serial expansion port (on the right side of the board).

31



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.7 Keyboard Interface and Programming

The PC keyboard and mouse both follow the exact same kind of protocol, so we are only going to
discuss the keyboard since the mouse is very similar. Referring to Figure 11.11 for the keyboard
hardware and the design file:

Figure 11.11 — The Keyboard Hardware Interface

PS2 Keyboard Interface

svee "
Fiiy 6-Pin Mini-Din

Data
NC1 6 5 .
GND

VCC 4 3
Clock -
NC2 2 1

e Female Computer Side

B B-PINMINI-DIN
<TEXT>

(o | o o] —
o PP

5VCC

R53 | | R54
10k 10k
<TEXT=L) <TEXT>

SX%52_KBMS_DATA : — — : . KBMS_DATA
SX52_KBMS_CLOCK KBMS_CLOCK

The keyboard protocol is straightforward and works as follows; for every key pressed there is a
"scan code" referred to as the "make code' that is sent, additionally when every key released
there is another scan code referred to as the "break code' that in most cases is composed of
$EO followed by the original make code scan value. However, many keys may have multiple
make codes and break codes. Table 11.6(a) lists the scan codes for keyboards running in default

mode.

32



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Table 11.6(a) — Default Scan Codes.

KEY MAKE BREAK' | KEY MAKE BREAK KEY MAKE BREAK
A 1c | Fo,1C 9 46 FO, 46 [ 54 FO, 54
B 32 | FO,32 ) OE FO, OE INSERT | EO,70 |EO,FO0,70
C 21 | Fo,21 - 4E FO, 4E HOME | E0,6C |EO,F0, 6C
D 23 | F0,23 = 55 FO, 55 PG UP | EO0,7D |EO,FO, 7D
E 24 | FO,24 \ 5D FO, 5D DELETE | E0,71 [EO,F0,71

| F | 2B | FO,2B | BKSP | 66 | FO,66 || END |EO0,69 EO,F0,69
G 34 | F0,34 | | SPACE 29 F0,29 PG DN | EO,7A |EO0,FO, 7A
H 33 | FO,33 TAB 0D FO, 0D U ARROW | EO,75 |[E0,FO0,75

| 1 | 43 | F0,43 | | caps | 58 | F0,58 | | L ARROW |EO,6B [E0,FO,6B
J 38 | F0,3B | L SHFT| 12 FO, 12 D ARROW |EO,72 |E0,FO0,72
K 42 | F0,42 | L CTRL] 14 FO, 14 R ARROW | EO,74 |E0,FO0,74
L 48 | F0,4B | |L GUI | EO,1F |EO,FO,1F NUM 77 F0, 77
M 3a | F0,32 | |L ALT 11 FO,11 KP / | E0,4A [E0,F0,4A
N 31 | F0,31 | R SHFT| 59 FO, 59 KP * 7c | FO,7C
0 44 | F0,44 | R CIRL| EO,14 |EO,FO0,14 KP - 7B | FO,7B

' p | 4p | FO,4D | R GUI | EO,27 [EO,FO,27 | KP + | 79 | F0,79
0 15 | r0,15 | |R ALT | EO0,11 |EO,FO0,11 KP EN | EO,5A |EO,FO,5A
R 2D | F0,2D | | APPS | EO,2F |EO,FO,2F KP . 71 FO, 71

s | 1B | FO,1B | |[ENTER| 5A | FO,5A || XP O | 70 | FO,70
T 2c | FO,2C ESC 76 F0,76 KP 1 69 | FO0,69
U 3¢ | Fo,3C Fl 05 F0,05 KP 2 72 FO, 72
v 2a | FO,2A F2 06 F0,06 KP 3 7A | FO,7A
W 1D | FO,1D F3 04 F0, 04 KP 4 68 | FO,6B
X 22 | FO,22 F4 oc F0, 0C KP 5 73 F0,73
Y 35 | FO,35 F5 03 F0,03 KP 6 74 FO, 74

'z | 1a |Fo,1a || F6 | OB | FO,0B || KP 7 | 6C | FO,6C
0 45 | F0,45 F7 83 F0, 83 KP 8 75 F0,75
1 16 | Fo,16 F8 0A FO, 0A KP 9 7D | FO,7D

| 2 | 18 |Fo,1E || F9 | 01 | FO,01 | | ] | 5B | FO,S5B
3 26 | FO,26 F10 09 F0, 09 ; ac | FO,4C
4 25 | F0,25 F11 78 FO,78 ' 52 FO, 52
5 2E | FO,2E F12 07 F0,07 , 41 FO, 41
6 | 36 |ro,36 || ERNT | EO/12, 58:28: : 49 | Fo,49

SCRN | EO,7C | L)
| 7 | 30 | F0,3D | SCROLL| 7E FO,7E | | / | 4n | FO,42
£1,14,77,
8 3E | FO,3E | |PAUSE E1,F0,14, -NONE-
F0,77

The keyboard hardware interface is either an old style male 5-pin DIN or a new PS/2 male 6-pin
mini-DIN connector. The 6-pin mini DIN’s pinout is shown in Figure 11.12 (referenced looking at
the computer’s female side where you plug the keyboard into).

33



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.12 - Female PS2 6-Pin Mini Din Connector at computer socket.

Table 11.6(b) — Pinout of PS2 6-Pin Mini Din.
Pin Function

DATA (bi-directional open collector).
NC.

GROUND.

VCC (+5 @ 100 mA).

CLOCK.

NC.

(2206  BF Gl \ Rt

Table 11.6 lists the signals for reference, the descriptions of the signals are as follows:

DATA is bi-directional and used to send and receive data.

CLOCK is bi-directional, however, the keyboard always controls it. The host can pull the CLOCK
line low though to inhibit transmissions, additionally during host -> keyboard communications the
CLOCK line is used as a request to send line of sorts to initiate the host -> keyboard
transmission.

VCC/GROUND - Power for the keyboard (or mouse). Specifications state no more than 100ma
will be drawn, but | wouldn’t count on it and at least plan for 200ma.

11.7.1 Communication Protocol from Keyboard to Host

When a key is pressed on the keyboard, the keyboard logic sends the make scan code to the
host computer. The scan code data it is clocked out by the keyboard in an 11-bit packet, the
packet is shown in Figure 11.13. The packet consists of a single LOW start bit (35 us) followed

34



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

by 8 data bits (70us each), a parity bit, and finally a HIGH stop bit. Data should be sampled by
the host computer on the data line on the falling edge of the CLOCK line (driven by keyboard).
Below is the general algorithm for reading the keyboard.

Figure 11.13 — Keyboard Serial Data Packet.

QOdd Parity Stop

8 Data Bits Sent d0-d7. Bit=0 Bit=1
Scan Code 0x16, ASCII "1".

11.7.1.1 Keyboard Read Algorithm

The read algorithm makes the assumption that the main host has been forcing the keyboard to
buffer the last key. This is accomplished by holding CLOCK LOW. Once the host releases the
keyboard, then the keyboard will start clocking the clock line and drop the DATA line with a start
bit if there was a key in the buffer, else the DATA line will stay HIGH. So the following steps are
after the host releases the keyboard and is trying to determine by means of polling if there is a
key in the keyboard buffer.

Step 1: Delay 5 us to allow hold on CLOCK line to release and keyboard to send buffered scan
code.

Step 2 (Start of frame): If both CLOCK and DATA are low (start bit) then enter into read loop,
else return, no key present.

Step 3 (Start of data): Wait until clock goes high...

Step 4 (Read data): Read data bits loop.

for t =0 to t <= 7 do
wait for CLOCK to go Tow...
delay 5 us to center sample
bit(t) = DATA
next t

And that’s it! Of course, if you want to be strict then you should read the parity and stop bit, but
you don’t need to unless you want to perform error correction. An implementation of this algorithm
is found in this program located on the CD:

CDROOT:\XGSME_HW_ CD\XGSME_Sources\kbd test xme_ 01.src
The program basically waits for a key press and then echos the scan code out to port C (if you

have LEDs connected you could see it). Another option is to use the SX-KEY debugger and then
place a BREAK at the end of the keyboard read function and then look at the scan code that way.

35



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

The entire demo program is listed below, | have cut out much of the comments and white space,
so please make sure to look at the original source on the CD. The listing is below for reference.

KBD_TEST_XME_01.SRC - Tests PS2 Keyboard Interface
Echos all make/break codes to Port C, assumes interface
RB3 = KBD_CLOCK

RB4 = KBD_DATA

; //////////////// ////////////////////////////////////////////////////////////

0 devic

: //////D/E/V/I/C/E//////////////////////////////////////////////////////////////////
RESET Start
FREQ 80_000_000 ; this is a directive to the ide only

if you want to put the XGS ME into RUN mode
you must make sure you go into the

device settings and make sure that

HS3 is enabled, and crystal drive and

feedback are disabled and then re-program

the chip in PGM mode and then switch it to RUN

00 wrwswswswswsw

CLK_SCALE EQU ; used to make calling the DELAY macro easier
; set this to the frequency / 10,000,000

DEVICE OSCHS3 ; High-speed external oscillator

DEVICE IFBD 0 Crysta feedback d1sab1ed

drive

; /////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////
KBD_DATA EQU 4 ; RC4

KBD_| PORT EQU RB ; the keyboard port
DATA_

; /{/é/{//////é{///////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

Counterl ds 1 ; timing delay counters
Counter2 ds 1

kbddata ds 1 ; return data from keyboard function
kbdcounter ds 1 ; counter for keyboard algorithms

; /////////////////////////////////////////////////////////////////////////////

; /////////////////////////////////////////////////////////////////////////////
SET_KBD_PORT_OUTPUT MACRO

mov w, #$1F ; Set mode register to write direction register
mov m,w

mov KéD_PORT, #%11111111 ; Set port KBD output latch to 1's

mov | KBD_PORT, #%00000000 ; Set port KBD direction to output

i /////////////////////////////////////////////////////////////////////////////
SET_KBD_PORT_INPUT MA

mov w, #$1F ; Set mode register to write direction register
mov m,w

mov KBD_PORT, #%11111111 ; Set port KBD output latch to 1's

mov |KBD_PORT,#%11111111 ; Set port KBD direction to input

///////////{//{//////////////////////////////////////////////////////////////
DELAY MACRO

; this new macro is slightly different than the one found in othe demos .
; this macro can handle large delays up to 25,500 cycles, so to call it use the following
; constructions

; cycle delay
; DELAY(number_of_clocks)

; for 80 mhz clock, microsecond parameters
; DELAY(80*microseconds)

; example you want a 4.5 uS delay

; 80*%4.5 = 36

; DELAY(36)

36



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

g tqe preprocessor can NOT do floating point math, so another construction would be to

scale

é all values by 10 then multiply by 8 rather than 80, for example, a 4.5 uS delay could
e

; written

; DELAY(8%45)

; which is a 1ittle more intuitive

; first compute fractional remainder of 10 and delay
IF ((Cclocks) // 10) > 0)

; first 3 clock chunks
REPT (((c]ocks) // 10)/3)
JvwP $ + 1
ENDR

; now the remainder if any
REPT (((clocks) // 10)//3)
NOP

ENDR
ENDIF

; next multiples of 100
IF ((Cclocks) / 100) >= 1)

; delay 100*(clocks/100), loop equals 100, therefore 1*(clocks/100) iterations

mov counterl, #((c]ocks)/lOO) HE @)
:Loop

mov counter2, #24 HE@))
:Loopl00

djnz counter2, :Loopl00 3 (4/2)

djnz counterl, :Loop ; (4/2)
ENDIF

; last compute whole multiples of 10 and delay
IF (C ((clocks) // 100) / 10) >=
; delay 10*(clocks/10), loop e a1s 10, therefore (c1ocks/10) iterations

mov counterl, #( ((clocks) // 100) 10) HE@))
:Loop2

jmp $ + 1 7 (3)

Jmp $ + 1 ;7 (3)

djnz counterl, :Loop2 ; (4/2)
ENDIF
ENDM

; /////////////////////////////////////////////////////////////////////////////

; Subrout

; /////////////////////////////////////////////////////////////////////////////

De/é{,/////////////////////////////////////////////////////////////////////////

clr counterl ;Initialize Countl, Count2
clr counter2 .
Loop djnz counterl,loop ;Decrement until all are zero

djnz counter2, loop

;th t
8 eéééé[/)//////////////////////////////////e/n//rf/7;/;1/////////////////////////////

; on entry
; on exit
; kbddata contains the 8-bit scan code
; test if CLOCK and DATA are low signifying a START bit
:KBD_Wait_Clock_Low
snb KBD_PORT . KBD_CLOCK
jmp :KBD_Wwait_Clock_Low ; wait for CLOCK=0
; CLOCK=0, ver1fy start b1t, i.e. DATA=0
0 de1ay into signal 5.0 us to get solid sample
;DELAY (CLK_SCALE * 50)
snb KBD_PORT . KBD_DATA
ret ; DATA 1is high return
; CLOCK=0 and DATA=0, therefore start bit detected
; data is now being streamed at 10 - 16.7Khz, or 60-100us clock cycles
; now sync to high clock pulse
:KBD_Wait_Clock_High
sb KBD_PORT . KBD_CLOCK
jmp :KBD_Wait_Clock_High ; wait for CLOCK=1

; CLOCK=1 and DATA=0, therefore start bit detected
; data is now being streamed at 10 - 16.7khz, or 60-100us clock cycles

37



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

:KBD_Init_Read_Loop

clr kbddata ; clear the data storage
clc ; make sure carry is clear
mov kbdcounter, #8 ; read 8-bits

:KBD_Next_Bit

; at entrance to this loop, we are in the high phase of the clock
; wait for the low transition then sample...
; wait for CLOCK to go low

:KBD_Wait_Clock_Low2

snb KBD_PORT . KBD_CLOCK .
jmp :KBD_Wait_Clock_Low2 ; wait for CLOCK=0

; the clock is now low . .

; center sampling point 5.0 us into DATA bit
;DELAY (CLK_SCALE * 50)

; sample data on DATA line and shift into position
movb kbddata.7, KBD_PORT.KBD_DATA

rr kbddata

; clock is still low, wait for high transition

:KBD_Wait_Clock_High2

Sb KBD_PORT . KBD_CLOCK .
qu :KBD_Wait_Clock_High2 ; wait for CLOCK=1
oop 8 times

dan kbdcounter, :KBD_Next_Bit

; we overshifted one bit, restore

ri kbddata

; disregard parity and stop bit for now
//////////// 1///1/71111//7/11/// ///////////////////////////////////////////
Place a BREAK POINT HERE to see the incoming MAKE cod es 1n the deb ug er
After pressing a key on the keyboard the make code wil how up 1 bddata"
///////////////////////////////////////////////////////////////////////////

break
; kbddata holds keyboard scan code

; /////////////////////////////////////////////////////////////////////////////

g gin program af

: /////////////////////////////////////////////////////////////////////////////
org

Start
bank #$20
; let hardware initialize...
call Delay64K ;delay
; set KBD port to 1nput
mov w, #$1 ; Set mode register to write direction register
mov
mov KBD_PORT, #%11111111 ; Set port KBD output latch to 1's
mov IKBD_PORT,#%11111111 ; Set port KBD direction to input
; enable pullups on KBD port . . .
mov w, #$1E ; Set mode register to write pullup resistor
mov m,w
mov !KBD_PORT #%00000000 ; set KBD port pullups on (0=on, 1l=off)
; set data port to output with 0's
mov w, #$1 ; Set mode register to write direction register
mov
mov DATA_PORT, #%00000000 ; Set data port output latch to zero

. mov | DATA_PORT, #%00000000 ; Set data port direction to output
Main

; inhibit keyboard from sending to show it will buffer keys until we want them...
SET_KBD_PORT_OUTPUT
clrb KBD_PORT . KBD_CLOCK

; delay a while .

: (co%-d be an hour, this shows that you can buffer the key as long as you want)
REPT

call Delay64K ;delay

ENDR

; allow keyboard to send by releasing the clock 1line
setb KBD_PORT . KBD_CLOCK
SET_KBD_PORT_INPUT

; call driver to try and fetch key...

call ReadKBD

mov DATA_PORT, kbddata ; store W into RC
jmp Main ; goto main

38



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.8 SRAM Architecture and Programming

Figure 11.14 — The 128Kx8 SRAM Pinout (Jedec Standard, Multiple Vendors.

Logic Block Diagram Pin Configurations
o5
op View
NC 10 T 32[] Vec
As 2 3 Ass
A1a Q3 300 cE,
Az 04 200 WE
Y;I‘ :il Ar 5 2817 Aga
As Oe 27T Ay
As O7 261 Ag
Ay Qs 250 Ay
| Az Qe 240 o
[ B 110q re1o  2[Ag
INPUT BUFFER _LI/ A1 11 221 I(f:g;
A 012 21
Ao N ._L],R 1104 uog E 13 20% 1/0g
Aq -] o1 14 19[q V0s
e | 1o op 015 1 vos
A2 : § . 2 &N [ 46 7ROy o,
3 8 9 —
_’ —
ﬁ‘;_,_ § __Jl> 512 %256 x 8 E |j1> 1104 AA; lo 2 ggz
- ARRAY o
o] Ag 3 30 [JCE
ﬁe: 2 g L 110, Asl] * 20 Bo,
A; ) ___ WE 2 28 104
CE, 27 P o,
— 7~ —? 105 A 7 TSOPI 26 B vo;
1T Voo 8 {)Vlew 25 Bluo,
ﬂ:} ] | N = I (not to scale) 24 FIGND
POWEH 110g A 10 23 30,
iGE COLUMN B E[ A 11 22 \o;
CE; DECODER N Az 12 21 g\fon
WE —H 1107 A7 13 20 B Aq
' AR ig = » BA
_ a2ToRTRSE 100B—1 s 15 il = L
OE ILcac << = I 17 A

11.8.1 SRAM Hardware Interface

The 128K SRAM module is used to augment the terribly small amount of RAM (262 bytes) on the
SX52. However, the internal SX52 RAM can be accessed at full clock speed and many
programmers think of it more as a huge 256 byte register file rather than RAM. No matter how
you think of it, its nice to have more than 256 bytes of RAM to store variables, display buffers,
characters, whatever. To this end | decided to add an external high speed 128K SRAM chip,
Figure 11.14 shows the logical layout as well as pinout of the chip (it's a generic 128K x 8 SRAM,
prototypes are using Cypress CY7C1009Bs though, the data sheet is locates on the CD at:

CDROOT:\XGSME_HW_CD\Datasheets\CY7C1009B.pdf

The tradeoff using an external SRAM however was the huge amount of control lines that the
SRAM needs. There is a R/nW line (actually the chip has three lines to select reading and writing
and output enable, but they are mutually exclusive, so with an inverter we can merge and force
them into a single line), chip select line, data bus (8-bits), address bus (17-bits), -- add them up
and you have 27 lines! Totally unacceptable, that would eat up the entire I/O space, so instead |
made a design decision to go with a serial address bus, that is, we serially shift the address bits
into serial to parallel shift registers then when we are ready to read or write to the SRAM. Figure
11.15 shows the design module for the SRAM system and you can find the Proteus design file on
the CD at:

CDROOT:\XGSME_HW_CD\Schematics_Circuits\xgs_micro_ SRAM_05.DSN

39



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.15 — The SRAM Design.

_THCTIEE

E
E] 22 |1
= ey - B
....... 2 G et I 111 2 R
WE

© O THHCTIEE

Referring to Figure 11.15 and the design file, the SRAM uses the addresses it sees on the
address bus composed on two 74HC164 serial to parallel shift registers at U12 and U13 along
with the 4 lower address lines form the SX52 at A0-A3 along with the bank select line
BANK_SELECT at A16. Thus a complete 17-bit address is composed of:

BANK (1 bit) | PAGE (12 bits) | REGISTER (4 bits)

40



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.16 — SRAM Addressing Scheme.

Bank (1wi4) l Pabr (1teas) } fegiarl d-b4¢)

O\

foed,Sders

Figure 11.16 shows this graphically. In essence, the SX52 can directly access 1 of 16 different
memory locations by changing the lower 4 address lines connected directly to the SX52. Also, the
64K bank can be switched immediately via the SRAM_BANKSEL line, the only speed hit occurs
when 1 of the 4096 pages must be selected. In this case, the 12-bit page address must be shifted
into the shift registers. Therefore, to read or write to the SRAM the process is simple;

Step 1. First shift a 12-bit page address onto the address bus.

Step 2. Select the bank by driving SRAM_BANKSEL LOW or HIGH.

Step 3. Select the register 0-15 within the page by driving SRAM_A0 — SRAM_AGS.
Step 4. Drive the R/nW line to high or low depending on if you want to read or write
Step 5. Select the chip with the SRAM chip select.

Step 6. Read the data on the data bus in parallel or write it.

Now, its important to not that once the page and bank is selected with the serial shifting and the
setting of SRAM_BANKSEL then 1 of 16 memory locations can be accessed at nearly full speed
via the 4 parallel address lines at SRAM_AO — SRAM_AT1, thus as long as you don’t need to
change the page that often, the SRAM can be accessed very fast.

With this new design, we only need 17 lines to access the SRAM, 8 for the data bus, and 5 for the
control bus, and 4 for the register access for the lower 4 address lines, a much better solution
than 27 lines and we still get almost the full benefits of direct access, we simply have to update
the page when needed to get to the next block of SRAM. But, the only downside of course is that
we can’t access the SRAM at full speed randomly. To address the SRAM randomly we have to
shift in 12-bit page address, then set the bank and the lower 4 address bit and then make the
access, thus a completely random access takes 16 cycles roughly to read or write memory.
Therefore, your memory bandwidth decreases as follows:

41



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.8.1.1 Random SRAM Access Bandwidth
system clock/16 clocks = 80 MHz / 16 clocks = 5.0 MHz.

Which is not bad, but makes it hard to access the SRAM during pixel rendering, although
accessing it during HBLANK or VBLANK is easy. However, if you access the SRAM non-
randomly and can access 16 bytes in a page at a time and then update the page, then you
read/write a byte every 3-4 clocks for a memory bandwidth of:

11.8.1.2 Sequential Same Page SRAM Access Bandwidth
system clock/4 clocks = 80 MHz / 4 clocks = 20.0 MHz.

Which is more than enough for video frame buffer techniques. We will discuss some
optimizations later and some different ways to think, but for now a little hint is that if we can live
with non-linear memory addresses, we can use “hash” algorithms to access memory. For
example, to get very fast page changes you don’t necessarily have to shift all 12-bits, you can
use pages that change in powers of 2 that only need one shift to generate as in:

0x001
0x002
0x004
0x008
0x010

0x800
0x000

This way you have 13 pages that you can get to with a single shift operation once you feed in the
first page at 0x000, so accessing 13*16=208 bytes can be done very quickly with only a shift after
each 16" byte in a page is accessed. Hence, think in terms of the minimal amount of changes to
an address per cycle that results in a unique memory location that is repeatable accessible, who
says they have to be linear? In any case, the final minimized control interface for the SRAM is
shown in Table 11.7

Table 11.7 — The SRAM Memory Module Port Mapping Bits.

Port Bit XGS ME Bit Description

RDO SRAM_DO Data bus Line DO (LSB).
RD1 SRAM_D1 Data bus Line D1.

RD2 SRAM_D2 Data bus Line D2.

RD3 SRAM_D3 Data bus Line D3.

RD4 SRAM_D4 Data bus Line D4.

RD5 SRAM_D5 Data bus Line D5.

RD6 SRAM_D6 Data bus Line D6.

RD7 SRAM_D7 Data bus Line D7 (MSB).
RCO SRAM_AO0 Address bus Line A0 (LSB).
RCH1 SRAM_AT1 Address bus Line A1.

RC2 SRAM_A2 Address bus Line A2.

RC3 SRAM_AS Address bus Line A3.

RC4 SRAM_CLK Serial clock line for address shifter.

42



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

RC5 SRAM_DATAIN Serial input for address data.

RC6 /SRAM_CE SRAM chip enable, 0=enabled, 1=disabled.

RC7 SRAM_RD/nWR SRAM read / write control, 1=read, O=write.

RA7 SRAM_BANKSEL Selects the upper or lower 64K bank, O=lower bank,

1=upper bank.

Data bus is bidirectional from SRAM depending on if the SRAM_RD/nWR is low or high;
however, to read or write the SX52 must set the RD port to either output or input
respectively.

Figure 11.17 — SRAM Bank Structure.

S 128

Shaw _fuunsel 20

f:AA\'L 0

©-bH

Qv Banisel=L

11.8.2 Accessing the SRAM

The SRAM is composed of two banks of 64K as shown in Figure 11.17, this gives us access to a
total of 128K of 8-bit or single byte memory. However, as mentioned earlier in the chapter the
SRAM is accessed partially serially in as much as the address bus is generated by serially
shifting 12-bits into position as the page address (0-4095) in a pair of serial to parallel shift
registers along with 4-bits of lower addressing for the word in the page 0-15. However, once an
address is in place then data can be read or written to the SRAM very rapidly.

In general, the steps to read and write the SRAM are same for the address setup, the only step
that differs is when the actual read or write operation is performed, so let’s first take a look at how
to set up the address bus by serializing the 12-bit address and then we will look at the read and
write operations.

43



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.8.2.1 Address Setup

There are two steps to setting up the address bus for the SRAM. Order is unimportant, but both
steps must be performed. You must serialize the 16-bit address into the shift registers as well as
set the bank bit properly. In most cases, it makes more sense to set the bank bit first, so that
would be step one. The bank selection bit SRAM_BANKSEL is connected to RA7, when RA7 is
low the 0-64K bank is selected, when RA7 is high the 64K-128K bank is selected. In essence,
the SRAM_BANKSEL is used as the 17" address bit on the SRAM.

Assuming that you have selecting the bank, then its simply a matter of serializing the address into
the shift registers. However, care must be taken that the SRAM is NOT enabled, you don’t want
erroneous data to be read or written from the SRAM, so before you begin the serialization of the
address, you should set the /SRAM_CE chip enable to high (1), this disables the SRAM (note it is
active low). If you wish you can also at this time select a read or write operation with the
SRAM_RD/nWR bit; read is high, write is low. Either way, you will have to enable the SRAM for
the read or write actually occur.

Once the SRAM is deselected and you have it in a known state then serializing the address is
very simple, you take your 16-bit address vector (in whatever format it is) and then send each bit
MSB to LSB to the serializer one bit at a time and clock the bit in. Here are the full steps to setting
up the address:

Step 1: Deselect the SRAM and place it into either read or write mode:

/SRAM_CE
SRAM_RD/nWR

Step 2: Select the proper bank with the SRAM_BANKSEL bit, 0=bank 0, 1=bank 1.

/SRAM_BANKSEL = X

Step 3: Apply each bit of the 12-bit page address to the serial out line and clock it into the serial
address shift registers, MSB to LSB order:

for (t=12; t > 0; t--)

// place next address bit on data out line
SRAM_DATAIN = address[t];

// clock the next bit out
SRAM_CLK = 0, Delay, SRAM_CLK = 1, Delay, SRAM_CLK = 0
} // end for t

Step 4: Write the lower 4-bits of the final address out on RCO — RC3, these are SRAM_AOQ —
SRAM_AS and represent the byte 0-15 of the currently selected page. This of it as the “word” or
“register” in the page.

SRAM_AQ = a0
SRAM_A1 = al
SRAM_A2 = a2

44



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

SRAM_A3 = a3

Step 5: The address bus is now fully loaded and you can read or write values as well as simply
change the word/register select on the lower 4-address lines or the bank select line.

(\[oaR=ll Notice the delays in clocking the serial shift registers. Again, they have a maximum
clock rate; however, unlike the joystick registers these are much faster and can be
clocked safely up to 50Mhz.

11.8.2.2 Reading from the SRAM

Reading from the SRAM is done in parallel with a full 8-bit data bus, so interestingly once you
have set up the address to the SRAM you can read and write at full speed, you just can’t change
the address. In any case, to read from the SRAM, you must consider the actual read timing
diagrams from the manufacturer which have all kinds of complex setup, hold, and minimum cycle
times. However, as long as you have the address on the address bus for more than 15ns (the
SRAM access time) and as long as you read or write the data at a rate of less than 100Mhz,
everything will work out, so there’s nothing to worry about, single cycle delays at judicious
locations in the code will take care of any timing problems that could arise.

(a8 When reading from the SRAM the XGS ME uses port RD, hence, you  must program
it for Input mode if you want the SRAM to be able to drive the port and the SX52 to read
it. This direction selection is of course accomplished with the port direction register by
setting the direction bits to 1’s for input (0 for output).

With that in mind, let’'s read the SRAM assuming that the address bus is already setup with the
serial shift registers and the SRAM is currently deselected. The read steps are then as follows:

Step 1: Set the SRAM_RD/nWR to read mode:

SRAM_RD/nWR = 1

Step 2: Enable the chip select and delay for 10-15 ns to allow the data to settle:

/SRAM_CE = 0, Delay

Step 3: Read the data off the SRAM'’s data bus which is connected to RDO-7.

mov data, RD

Step 4: Deselect the SRAM:

45



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

/SRAM_CE = 1

Step 5: Read cycle complete.
To help you get started accessing the SRAM, | have written both a read and write function which |

have excerpted from the demo program that follows later in the chapter. Both functions are based
on a set of defines:

SRAM_PORT_CONTROL_MASK equ %11110000

SRAM_PORT_ADDR_MASK equ %00001111
; clock active high

SRAM_PORT_CLK_1 equ %00010000
SRAM_PORT_CLK_O equ %00000000

; address data 16-bit serial
SRAM_PORT_ADATA_MASK equ %00100000
SRAM_PORT_ADATA_1 equ %00100000
SRAM_PORT_ADATA_0 equ  %00000000

; chip enable active Tow

SRAM_PORT_CE_1 equ %01000000
SRAM_PORT_CE_0 equ  %00000000
; read/write line always active high or Tow
SRAM_PORT_READ equ %10000000
SRAM_PORT_WRITE equ %00000000

Also, there are some globals used to pass address and data information back and forth to and
from the functions:

Countl ds 1 ; general counter

count? ds 1 ; ?enera1 counter

index1 ds 1 ; loop index

; general addressing registers

addr_word ds 1 ; generic word address

addr_lo ds 1 ; generic low byte address
addr_hi ds 1 ; generic high byte address
; general

data8 ds 1 ; 8-bit data

datalé ds 1 ; 16-bit data (includes data8:datal6)
templ ds 1 ; temporary storage

temp2 ds 1 ; temporary storage

And here’s the SRAM read function:

Read_SRAM

; this function reads a byte from the SRAM, note that there are timing delays

; in the code, these delays are generalized and can be much smaller, rule of thumb

; is that the SRAMs are 12-15ns access time, that means that they can be accessed

; at full speed without any delay code, however I have placed the delays in the

; code for setup, hold, and accessin? in case we end up using really slow memory 70-100ns
; in_the final design. The only problem though is that the shift registers may not be

; able to keep up with the clocking, the shift registers are 74HC164 and are spec'ed

46



RCO
RC1
RC2

RC3

RC4
RC5
RC6
RC7
RA7

->
->
->

->

->
->
->
->
->

Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

to run at 60 mhz max that means 50 mhz for safety thus, we don't_want to shift

the data faster than 50 _MHz, so that ironically becomes the bottleneck for the SRAM!
currently I have the delays all set to 2 clocks this should work qg_to 80 MHz
before the system goes to fast if you find the SRAM access destabili

increase the delays to 3-4 clocks

zing at 80+ MHz,

parameters on entry

address consists of 17-bits total

bit A1l6 = bank, controls upper or lower bank of 64K
bits A15-A4 = page address, controls which 16-byte ?age is accessed in bank
there are 4096 pages addresses by the 12 addresses

bits A3-A0 are the byte in the page of SRAM, 16 bytes, 0-15 addressed by A3-A0

ines Al15-A4

SRAM is accessed by shifting the page into the shift registers, setting the bank to
upper or lower, and then applying the 4-bit byte address and accessing memory

hence within a page, you can simply change the lower 4-bit byte address which is
directly connected to RCO-RC3 (and of course performing the correct control pattern
to the SRAM for read/write).

this_routine doesn't care about this optimization and simple addresses the memory
completely each time based on the sent address parms

| A%G | A%S | A14 | A13 | A12 | A11 | A10 | A9 | A8 | A7 | A6 | AS | Aﬁ | QS | A2 | Al | Ag

12 b

addr_word
addr_lo
addr_hi
data8

|
4-bit byte address (0-15 bytes per page)
(RC3-RCO)

it Page Address, shifted into shift registers (4096 pages of 16 bytes)

SRAM_BANKSEL (RA7)

4-bit word address of byte in page (0-15)
low 8-bits of address (page)

high 4-bits of address (page)

holds result on exit

control lines from SX52

SRAM_AO, address line 0
SRAM_A1, address line 1
SRAM_A2, address line 2

SRAM_A3, address line 3

SRAM_CLK, used to clock the serial address shift registers

SRAM_DATAIN, serial input to the serial address shi

t registers

/SRAM_CE, connected to the chip enable of the SRAM, active Tow
SRAM_RD_/WR, selects read or write mode of the SRAM, read=0, write=1
SRAM_BANKSEL, selects the lower 64K or upper 64K bank of SRAM, O=lower bank, l=upper bank

3

mo

’

or
mo

3

mov

mo

3

’

mo

step 1: place address into lower 4-bits of W
Vv W, addr_word

step 2: prepare for read

W, #(SRAM_PORT_ADATA_O | SRAM_PORT_CLK_O | SRAM_PORT_CE_1 | SRAM_PORT_READ)
v RC, W

place data bus into read mode )

RD, #%00000000 ;Set port D output latch to data to 0, even though we are going to read
v IRD, #%11111111 ;Set port D[7:0] to input direction

step 3: shift address into address buffers

shift 12-bits of address into page address latch

v Countl, #12 ; 12 bits per page address

:Send_Addr_Bit_Loop

clrb RC.4 ; set SRAM_CLK = 0
; read next bit in address stream
sb addr_hi.3 ; jump over if set
jmp :SRAM_BIT_Zero
; bit set, write 1 to SRAM address in bit
setb RC.5 ; SRAM_DATAIN = 1
jmp :SRAM_Bit_Setup
:SRAM_Bit_zero
; bit clear, write 0 to SRAM_DATAIN
clrb RC.5 3 SRAM_DATAIN = 0
:SRAM_Bit_Setup
DELAY(2) ; setup time for data
setb RC.4 ; set SRAM_CLK = 1
DELAY(2) ; hold time

3
3
3

shift next address bit into position
shift data thru carry, shift carry into address .
shift address over and next bit into position 7 for reading

47



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

rl addr_lo
rl addr_hi
dinz Countl, :Send_Addr_Bit_Loop
rl addr_lo
rl addr_hi
; re-align, so address isn't destroyed
rl addr_lo
rl addr_hi
rl addr_lo
rl addr_hi
rl addr_lo
rl addr_hi
rl addr_lo
rl addr_hi

; step 4: read data
; data is now4shifted into address latch , set clock to 0, read data
RC

clrb o ; set SRAM_CLK = 0

setb RC.7 ; set SRAM_RD_/WR = 1, read mode
clrb RC.6 ; set /SRAM_CE = 0, enable
DELAY(2) ; hold time

mov data8, RD ; read the data into data bus

DELAY(2) ; hold time

setb RC.6 ; set /SRAM_CE = 1, disable

; sram_read complete, leave port as is. .
; results in data8, {eave SRAM in read mode, disabled, clock low

ret

The function is slightly long, but most if its size is due to its generalization. In any case, here’s an
example of making a call to it to read from page 0x000, word 0x01, assuming bank 0 has already
been selected.

; read a single SRAM loc
mov datas8, #$00 ; clear out garbage

mov  addr_word, #$01 ; 4-bit Tower address

mov addr_lo, #$00 ; 12-bit page
mov addr_hi, #$00

call Read_SRAM

On return the data will be in data8.

11.8.2.3 Writing to the SRAM

Writing to SRAM is nearly identical to reading as far as the setup, the address must be available
and the bank selected. Assuming these events then writing is accomplished in these steps:

\[oapIB When writing to the SRAM the XGS ME uses port RD, hence, you must program it for
Output mode if you want it to drive the data bus. This direction selection is of course
accomplished with the port direction register.

Step 1: Set the SRAM_RD/nWR to write mode:

SRAM_RD/nWR = 0

48



Step 2: Enable the chip select and delay for 10-15 ns to allow the data to settle:

Step 3: Place data on Port RD, so the SRAM’s data bus can sense it, delay for 10-15 ns

Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

/SRAM_CE = 0, Delay

mov RD, data
delay

Step 4: Deselect the SRAM:

/SRAM_CE = 1

Step 5: Write cycle complete.

That’s all there is to it. As an example of writing to the SRAM, below is a complete function much
like the read:

Write_SRAM

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

’

H
H
H
H

; addr_word
3 addr_lo

; data8

this function writes a byte to the SRAM, note that there are timing delays

in the code, these delays are generalized and can be much smaller, rule of thumb

is that the SRAMs are 12-15ns access time, that means that they can be accessed

at full speed without any delay code, however I have placed the delays in the

code for setup, hold, and access1n? in case we end up us1ng_rea11y_s ow memory 70-100ns
in_the final design. The only problem though is that the shift registers may not be
able to keep ug with the clocking, the shift registers are 74HC164 and are spec'ed
to run at 60 mhz max that means 50 mhz for safety thus, we don't want to shift

the data faster than 50 MHz, so that ironically becomes the bottleneck for the SRAM!
currently I have the delays all set to 2 clocks this should work qg_tq 80 MHz
before the system goes to fast if you find the SRAM access destabilizing at 80+ MHz,
increase the delays to 3-4 clocks

; parameters on entry X

; address consists of 17-bits total

; bit A16 = bank, controls upper or lower bank of 64k . .
; bits A15-A4 = page address, controls which 16-byte ?age is accessed in bank

; there are 4096 pages addresses by the 12 addresses

; bits A3-A0 are the byte in the page of SRAM, 16 bytes, 0-15 addressed by A3-A0

ines Al5-A4

; SRAM is accessed by shifting_ the page into the shift registers, setting the bank to
; upper or lower, and then applying the 4-bit byte address and accessing memory

; hence within a page, you can simply change the lower 4-bit byte address which is

; directly connected to RCO-RC3 (and of course performing the correct control pattern
; to the SRAM for read/write).

; this_routine doesn't care about this optimization and simple addresses the memory

; completely each time based on the sent address parms

'IAil\.GIAil\.SIA14|A13|A12|A11|A10|A9|AB|A7|A6|A5|A2|Q3IA2|A1|A2

|
|
I
| 12 bit Page Address, shifted into shift registers (4096 pages of 16 bytes)

s SRAM_BANKSEL (RA7)

- 4-bit word address of byte in page (0-15)
- low 8-bits of address (page)

addr_hi - high 4-bits of address (page)

- byte to write

control lines from SX52

RCO -> SRAM_AO, address line 0
RC1 -> SRAM_A1l, address line 1
RC2 -> SRAM_A2, address line 2
RC3 -> SRAM_A3, address 1line 3

|
4-bit byte address (0-15 bytes per page)
(RC3-RCO)

49



; step 1:
mov

; step 2:
or

mov

Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

RC4 -> SRAM_CLK, used to clock the serial address shift registers

RC5 -> SRAM_DATAIN, serial input to the serial address shift registers
RC6 -> /SRAM_CE, connected to the chip enable of the SRAM, active Tow
RC7 -> SRAM_RD_/WR, selects read or write mode of the SRAM, read=0, write=1
RA7 -> SRAM_BANKSEL, selects the lower 64K or upper 64K bank of SRAM,

place address into lower 4-bits of w
W, addr_word

prepare for write

W, #(SRAM_PORT_ADATA_O | SRAM_PORT_CLK_O | SRAM_PORT_CE_1 | SRAM_PORT_WRITE)
RC, W ; output control and word address within page

; place data on data bus

mov
mov

; step 3:

RD, datad t port D output latch to data
IRD, #%00000000 set port D[7:0] to output direction

shift address into address buffers

; shift 12-bits of page address into latch

mov

:Send_Addr_Bit_Loop

clrb

Countl, #12 ; 12 bits per address

RC.4 ; set SRAM_CLK = 0

; read next bit in page address stream

sh addr_hi.3 ; jump over if set
jmp :SRAM_BIT_Zero
; bit set, write 1 to SRAM address in bit
setb RC.5 ; SRAM_DATAIN = 1
jmp :SRAM_Bit_Setup
:SRAM_Bit_zero
; bit clear, write 0 to SRAM_DATAIN
clrb RC.5 ; SRAM_DATAIN = 0
:SRAM_Bit_Setup
DELAY(2) ; setup time for data
setb RC.4 ; set SRAM_CLK = 1
DELAY(2) ; hold time

; shift next address bit into position
; shift data thru carry, shift carry into address .
; shift address over and next bit into position 7 for reading

rl addr_lo

rl addr_hi

dinz Countl, :Send_Addr_Bit_Loop

rl addr_lo

rl addr_hi

;_extra shifts to re-align, so address isn't destroyed

rl addr_lo

rl addr_hi

rl addr_lo

rl addr_hi

rl addr_lo

rl addr_hi

rl addr_lo

rl addr_hi

; step 4: write data,

; data is now shifted into address latch , set clock to 0, write data
clrb o ; set SRAM_CLK =0

clrb RC.7 ; set SRAM_RD_/WR = 0, write mode
clrb RC.6 ; set /SRAM_CE = 0, enable
DELAY(2) ; hold time

setb RC.6 ; set /SRAM_CE = 1, disable

; sram write complete

Teave port as is, incase of another write

; sram is disabled, clock is down, write mode

ret

Once again, the function is long, but it’s just a lot of housekeeping to perform the operation and
all the shifting. Here’s an example of write a 0x55 to page 0xFFF, word 0x08:

O=1lower bank, 1=upper bank

50



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; write a single SRAM loc )
mov  datas8, #$55 ; data to write

mov  addr_word, #$08 ; 4-bit Tower address

mov addr_lo, #$FF ; 12-bit page
mov addr_hi, #$0OF

11.8.3 Demo Program

To demo the SRAM is rather hard without any other graphics or sounds to rely on for feedback,
so | will leave it to you. However, if you do have the SX-KEY and its debugger support then you
can trace the program and verify that the data is written and read properly. The demo program is
located on the CD at

CDROOT:\XGSME_HW_CD\XGSME_Sources\sram_xme_04.src

Simply load it into the editor, assembly it, and run it. Of course make sure the XGS ME is in PGM
mode when programming and you have reset it after placing the XGS ME in RUN mode.

11.8.4 Advanced Uses of the SRAM

You have seen how to use the SRAM as it was intended; to be serially addressed and then
accessed; however, as a game developer there are many more ways to improve its usage and
speed of access. Here are some ideas to get you thinking:

¢ Instead of accessing the memory randomly use powers of 2 or other hashing, interleaving
structures. In general, it takes 12 cycles to shift an address into the serial registers, if you
could decrease this shifting by a factor of anything it would be better. Once way is of course
to use pages at powers of two: 1,2,4,8,16,... a total of 13 locations with near single cycle
access time.

e If you don’t need to use bytes then use 4-bit nibbles, the XGS was designed so that a single
color or brightness can be stored in a nibble, hence, you could store data in nibble format and
store 2 values at once in the same byte.

e Procedurally generate graphics data and store it in the SRAM. There are numerous articles
are fractals, cellular automata, plasmas, etc. that can be used to make graphics “textures”
that you can use in your game.

e Decompress data into the SRAMSs, you can use RLE encoding to encode large amounts of
data in your ROM and then decompress it into the SRAM and use it when you wish.

51



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

e Use the SRAM as interpreter memory. You can write a script engine or interpreter that runs
out of ROM, but runs programs out of SRAM.

In this section, we covered the SRAM more or less. There isn’t much more to it. The actual
hardware is simpler than the software. The only considerations when using the SRAM are speed,

clever addressing schemes, and that it’s not initialized, so make sure you don’t assume on
RESET or power up, the SRAM contains anything, but garbage.

11.9 Sound Hardware and Programming

Figure 11.18 — Block diagram of the ROHM BU8763 melody generator.

o
=
@]

]

~— o~
= =
0 0
w w
[= [=

TEST3

=t
-
2]
w
=

[14] [13] [ro] [r1]

Y Y

>
a—a‘lDGND

=

=

=

w

o

2
qia‘lAVDD
SI—@lAGND

Lt TEST CIRCUIT

WAVEFORM
GENERATOR

SMOOTHING
DAC>‘ FILTER

WAVE GEN 3())

CLOCK CONTROL
GENERATOR REGISTER

~ T
2

]

TESTS |-4 J

AOUT | @

L] 4]

X
3]
5]

Le]

m
[
(2]
14

[
=

MCLK
CKSEL
SDATA

The sound system is based on the ROHM BU8763 Melody Generator shown in Figure 11.18.
This chip is used in many cell phones as the melody generator and is pretty powerful. It has 3
channels that can all play independently. Each channel is capable of playing either a pure sine
wave or a square wave. Additionally, there is envelope control for each channel, meaning a
channel can be played at a constant amplitude or an “envelope” will modulate the amplitude.
Unfortunately, the chip does not support total control over the envelope in a programmable
manner like the SID chip or AY-3-8910, but rather allows you to turn the envelop on and off, this
results in a note length that is roughly the envelope of striking a piano key. However, there are
two envelop lengths for fast notes and slow notes giving you a little control. Finally, the total
volume and independent volume of each channel is controllable.

52



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

You might wonder why the BU8763 is capable of sending out either a sine or square
wave. The answer lies in the “fexture” or “thickness” of the sound. Both words
completely arbitrary; however, they try to give the listher more or less harmonics. A
harmonic of a pure sine wave is a multiple of that sine wave’s frequency. For example, a
note with frequency 440 Hz has harmonics at 880 Hz, 1320 Hz, and so forth. If you take
a pure sine and add a few harmonics you get a much more textured or rich sound, it
doesn’t sound so “electronic”. In any case, if you take a sine wave of frequency f and
then add all possible harmonics to it you will get a square wave with frequency f.
Therefore, a square wave is really an infinite sum of harmonics of a root frequency.
Refer to Fourier Transforms if you are interested about the mathematical construction
and proof of this. In any case, the BU8763 allows both a pure sine and a modified
square wave, giving you the ability to play pure tones and well as richer square wave
notes.

The full technical specs and programming model for the BU8763 is located on the CD-ROM here:
CDROOT:\XGSME_HW_CD\Datasheets\BU8763fv.pdf

please read it thoroughly since | am only going to go over the chip’s general functionality and

sending commands to it. The commands and programming model is too long to paraphrase here,

so read the document for more details. Figure 11.19 details the functions of each pin of the chip.

Figure 11.19 — The BU8763 Pin Descriptions.

Pin No.| Pin name Functions /0 Type Circuit Others
1 MCLK Master clock input | CMOS A
2 CKSEL Master clock select | CMOS A Hi : 2.688MHz, Lo : 5.376MHz
3 SCLK Serial clock input | CMOS A
4 SDATA Serial data input | CMO0Ss A
5 SSTB Serial strobe input | CMOSs A
6 RSTB Reset input | CMOCS A Lo : Reset
7 TESTS test pin (0] Analog @ Do not connect
8 AOUT Melody output pin (o] Analog C
9 AGND Analog ground PWR
10 AVDD Analog power supply PWR
11 TEST4 test pin (0] CMOS B Do not connect
12 TEST3 test pin | CMOS A Please connect to ground
13 TEST2 test pin | CMOS A Please connect to ground
14 TESTH test pin | CMOS A Please connect to ground
15 DGND Digital ground PWR
16 DVDD Digital power supply PWR

The sounds chip is controlled thru a simple serialized protocol. Table 11.8 lists the 1/O pins the
SX52 uses to communicate with the BU8763 chip.

53



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Table 11.8 — The Sound Hardware Port Mapping Bits.

Port Bit XGS ME Bit Description

RA3 SND_SCLK Serial data stream clock input.
RA4 SND_SDATA Serial data input.

RA5 SND_SSTB Serial strobe input.

RA6 SND_CKSEL Master clock frequency select.

The protocol will be explained in detail when we discuss sound programming, but in short. The
SX52 must send a “packet” of information containing a command to the BU8763, this packet is
sent serially via the 3 serial lines. The last line simply controls the frequency of the master clock;
if SND_CKSEL (RA6) is low then the 5.376 MHz clock is selected, if (RA6) is high then the
master clock is divided by 2 resulting in a 2.688 MHz, clock thus increasing your tone coverage.

Figure 11.20 — The Design of the XGS Sound System Module.

IEC
Cc1
. L . L ) 33vec -
3 Channel Sound Generator ! !__l_
=
: s : s U9 ey © : : : o : CREE RCA ALUDIO
12— QEMC  33WCC ? AUDIG_OUT |>-—|:|—Z TIP
e I NG == . . R : LT . i
= ne NG (2= Ferite Filter
_L— GND  QSC_OUT |
RING
— ECEX008C X X L . L . RGAAUDIO
aister Tong 5.736 Mz <TEXT»
A STERT= . . A . A . A
IWCC
Py
inteface from 5% Pracessar c11
. . . L . . R20 R21 R . . . JI};
SND-FREG_SEL [>- 11— 10F
: . . L . . hran b L . . . )
T | B drs
. . I
: * Il
R13 R14 LIE
“8ND_5CLK [> :ﬁ s : u1o - - ;
i 1k
<TENT> L1 { e ovop
CKSEL DGND
R15 Ri16 SCLK  TESTI |5
SND_SDATA [ L SDATA TEST: —23 £ L
1K 1k | 88TB  TEST3 [ =
TEXT> RETB  TEST4 f—f e
. . L N . -~ ] st o L
R17 R18 AOUT  AGND
SND_86T8 [> b " o X X ROLM BU8763 S
<TEXT> —
TERT> F POT3 - VOLUME -
500k
L . ... RI19 L R . . . L Wolume Adjust | L
5YS_RESET [>
R P T A Lo : .Cm_m L L
<TENT>
H > AUDIo_ouUT
1 1UF
B . B . B = A . . . STERT=. | B . B

11.9.1 The BU8763’s Hardware Interface

The XGS ME is attached to the BU873 thru only a few I/O lines are you can see in Table 11.8;
however, there are some interesting design decisions that we should discuss. Please refer to
Figure 11.20, the sound module design for the XGS ME along with the actual Proteus design file
located on the CD here:

CDROOT:\XGSME_HW_CD\Schematics_Circuits\xgs_micro_sound_05.DSN

54



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Starting with U9 this oscillator generates the basic clock for the BU8763. In fact, this oscillator
should be a 3.3V oscillator, but in the XGS ME design, a 5.0V oscillator is used, but he inputs are
tolerant, so there isn’t a problem. Moving on in the design, the left side of the sheet shows all the
inputs, but since these are from the SX52 which is a 5.0V device a voltage divider network is
used to roughly half each signal so a LOW is 0V and a HIGH is 2.5V roughly. This works for the
BU8763 and doesn’t keep it overdriven by constantly sending 0-5V signals into it. The next
interesting thing is the final output AUDIO_OUTPUT at R55. R55 isn’t really a resistor, but a
“ferrite bead”, ferrite beads are used for RF filters in audio and video circuits, basically, the
ferrite bead is a piece of ferrite material with wire wound around it as shown in Figure 11.21. As a
signal is passed thru the bead the bead acts as a frequency dependant resistor and passes low
frequencies while not passing higher ones. This way we can filter out noise on the audio like that
it might have picked up from the system clocks etc. You can get beads that are tuned to have low
impedance at some frequency range and then their impedance goes up 10-100 fold as the
frequency goes up thus becoming filters.

Figure 11.21 — Close up of Ferrite Bead Used for Filtering.

o SOUND M
o —r =

Ferrite Filte A 16 R"19_
; ' -."-Iﬂ*“?
AC-+1 BUSTED PSC A1S

C=1I—-y
2ot

(7 IW‘H’.

c- 1~y
~ e‘-li‘l%-v

cr(iim—y

c—lfl‘*-;
c-1iri—3

Also, note that the audio signal out of the BU8763 first goes thru a coupling capacitor and then
a potentiometer. The coupling capacitor “strips” away any DC offset voltage since capacitors
only pass AC, so the output is only AC, finally the potentiometer allows the volume to be
adjusted.

55



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.22 — The BU8763 Programming Packet Description and Timing.

Parameter Symbol Min. Typ. Max. Unit Conditions

Digital power supply DVDD 2.7 3.0 3.6 \

Hi level input voltage WViH 2.5 - - A

Low level input voltage Vi — - 0.5 V

Hi level input current IiH - - 10 HA

Low level input current I -10 - - nA

Hi level output voltage VoH 23 - - \

Low level output voltage VoL - - 0.5 \

MCLK input frequency 1 FMCLK1 - 5.376 - MHz | CKSEL=Low
MCLK input frequency 2 FMCLK2 - 2.688 - MHz | CKSEL=High
SCLK input frequency FSCLK - - 3.0 MHz

MCLK duty DMCLK 40 50 60 %

SCLK duty DSCLK 40 50 60 %

Data setup time Tsc 200 — — ns

Data hold time The 190 - - ns

SCLK to SSTB width Tss 0.0 - - ns

SSTE pulse width Tos 200 - - ns

SSTB to SCLK width Ths 200 - - ns

| '

:THC ng: ITss Tos , THs
1

| 1 !

NN\

SDATA D10 / D2 D1 DO
(G X
SSTB %} I_I

Address is upper 3bit in serial data, DATA is lower 8bit. (MSB first base)

SDATA is taken in to the inside with a positive edge SCLK, then SDATA is taken in to the register with a positive edge
of SSTB.

In the case that the clock number of SCLK is 12 or more, the data of 11CLK of before SSTB comes into effect.

D10 D9

N

11.9.2 Programming the BU8763

Programming the BU8763 is entirely performed via a serial interface to the BU8763 from the
SX52. Commands must be constructed by the SX52 and then serially shifted into the BU8763
with the proper timing and protocol. Figure 11.22 depicts the timing data and packet protocol for
the BU8763. Referring to Figure 11.22, all BU8763 commands consist of 11 serial bits, LSB DO
first, and MSB D10 last. To send a command to the BU8763, first each bit must be clocked into
the BU8763 this is accomplished by placing each bit on the SND_SDATA line and then strobing
the SND_SCLK line with a duty cycle of 50-50 roughly and a total period of 400 ns. Refer to
Figure 11.22 for the exact specs. Once the entire ll-bits of the current command are sent the
BU8763 then SND_SSTB line must be pulsed LOW to HIGH for a minimum duration of during of
200 ns then the chip processes the command immediately. Taking the protocol into
consideration, the first hurdle is to simple write a driver to perform the communications. This is
more or less a serial driver that we pass the 11-bit command in the form of 2-bytes and the driver
sends the command with the proper timings and returns.

56



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.23 — The BU8763’s Register Map and Bit Encodings.

Register map
< Data structure>
Address is upper 3bit in senal data, DATA is lower 8bit. (MSB first base)

Address Data
p1o| 09 | ps | o7 [ pe | ps | pa | b3 [ b2 | b1 | DO
Address D7 D6 D5 D4 D3 D2 D1 Do
WAVE1T [ WAVEZ2 | WAVE3 | TNSEL | FSEL
_ Data on/off on/off on/off mode | MOL/MF - - SLEEP
0 Operating
Initial 0 0 0 0 0 0 0 1
Data WMODE[1:0] FLAVOR | ENVON | ENVM ATT123[2:0]
1 Mod WAVE GEN select | wave anfoff time gain data
ode
- MLDY 0 MLDY 1:001 2:100 3:000
L L DTMF1| O 8 DTMF 1:000 2:001 3:000
Data WFEQ[1:0] FREQ[5:0]
WAVE GEN select frequency data
2 Frequency
Initial 00 MLDY 1:000000 2:000000 3:000000
‘ DTMF 1:000000 2:000100 3:001000
. Data - - - - VOLUME[3:0]
3 Gain -
Initial 0 0 0 0 0000
4-7 Reserved

Address 0 - Wave generator select, MELODY / DTMF setting

Address Bit Name Initial State
0 D7 WAVE1 0 WAVE1 control
0: output off
1: output on
D& WAVEZ 0 WAVEZ control
0: output off
1: output on
D5 WAVE3 0 WAVES3 control
0: output off
1: output on
D4 TNSEL 0 QOutput select MELODY, DTMF/TONE

0: MELODY select
1: DTMF/TONE select

D3 FSEL 0 Register select MELODY, DTMF/TONE
0: MELODY select
1: DTMF/TONE select

D2-D1 Resarved 00

Do SLEEP 1 Power down control
0: operating mode
1: power down mode

57



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.9.2.1 The BU8763’s Register Map

The register map of the BU8763 consists of 8 addresses, only 4 of which are used (these are
shown in the first part of Figure 11.23):

Register Address 0: OPERATING
Register Address 1: MODE
Register Address 2: FREQUENCY
Register Address 3: GAIN

58



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.24 — MODE and OUTPUT FREQUENCY Register Mappings.

Address 1 : Mode setting

Address Bit Name Initial State
1 D7-D6 | WMOD[1:0] 00 Envelope ON, Envelope mode, generator attenuation
00: WAVE 1
01: WAVE 2
10: WAVE 3

D5 FLAVOR | MLDY:0 | Special square / sine wave
DTMF:1 | 0: special square

1: sine wave

(Same setting WAVE1,2,3)

D4 ENVON 0 Envelope ON/OFF
0: envelope OFF
1: envelope ON

D3 ENVIM 0 Select enevelope mode
0: for slow tempo 1.6sec
1: for high tempo 0.8sec

D2-D0 | ATT123[2:0] | MLDY D2 D1 DO Attenuation
100t 0 0 0 0dB
3:000 0 0 1 _2.50B
0 1 0 ~6.0dB
DTMF
1:000 0 1 1 _8.5dB
2008 1 0 0 ~12.0dB
1 0 1 _14.5dB
1 1 0 ~18.0dB
1 1 1 —24.0dB

= Setting of D4-D0 is available for sound source selected at D7-DE.

Address 2 - Output frequency

Address Bit Name Initial State

2 D7-D6 | WFEQ[1:0] 00 Specified wave generator

00: select WAVE 1 generator
01: select WAVE 2 generator
10: select WAVE 3 generator

D5-D0 | FREQ[5:0] | MLDY | Address 0: MELODY setting @TNSEL=0
1:000000 DTMF/TONE setting @ TNSEL=1

2:000000 i E
5000000 see the following table about the output frequency

DTMF
1:000000
2:000100
3:001000

* Satting of D5-D0 is available for sound source selected at D7-DE.

59



Address 3: Gain

Figure 11.25 — The GAIN Register Mapping

Address Bit Name Initial State
K] D7-D4 reserved 0000

D3-D0 | VOLUME 0000 D3 D2 D1 DO ATT
0 0 0 0 0dB
0 0 0 1 —2dB
0 0 1 0 —4dB
0 0 1 1 -6dB
0 1 0 0 -8dB
0 1 0 1 -10dB
0 1 1 0 -12dB
0 1 1 1 -14dB
1 0 0 0 Reserved
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

Each registers has a number of bits that define what the register does. Figures 11.24 - 11.25

Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

illustrate the register maps and bit definitions for registers 0-3. The only register which has more

information encoded is the FREQUENCY bits within address 2, the OUPUT FREQUENCY
register. There are 6 bits [5:0] that define the frequency. This gives a total of 64 notes that any
channel can play. Additionally, with the use of the SND_CKSEL line the master clock can be
halved doubling the frequency range or dropping the sounds down a number of octaves. In

essence giving the sound system a total range of 128 notes.

60



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.26a — Frequency Settings and their Musical Note Values.

Output frequency in case MELODY

FREQ[5:0]| D5 | D4 | D3 | D2 | D1 | DO | Scale F-rrgg?lilz] g ::fqu ﬁ; E[;L?’
00h o fo]lo|lalo]| o] At 109.95 110.00 -0.05
01h o oo o o] 1] aam]| 11650 116.54 -0.03
02h o [olo|lo|l 1] o] Besi 123.53 123.47 0.05
03h o Jololo| 1] 1] cuo 130.84 120.81 0.02
0dh o oo 1] o] o]cudey| 13861 128.59 0.02
05h o oo 1ol 1] bpue 146.85 146.83 0.01
06h o oo 1| 1] o] o#oewy | 15556 155.56 —0.01
o7h o oo+ 1] 1] Em 164.71 164.81 —-0.07
08h o lo|l1|olo]| o] Fra 174.64 174.61 0.01
09h o o 1] o o] 1] Feam | 18502 185.00 0.01
0Ah o o] 1ol 1] 0] oem 195.80 196.00 —0.10
0Bh o o] 1|0 1]| 1 |octsun| 20741 207.65 012
och o o1 |1 ]o] o] At 219.90 220.00 —0.05
oDh o o[ 1] 1| o] 1] asam | 23333 233.08 0.11
0Eh o o1 |1 ]1] 0] Bei 247.06 246.94 0.05
OFh o o1 |1 1] 1] cuao 261.68 261.63 0.02
10h o [1 oo o] o]ctdn| 2172 277.18 0.02
11h o [1]ololo] 1] bpe 293.71 293.66 0.01
12h o [1 oo 1] o] owoeny | 31114 311.13 —0.01
13h o [1 ool 1] 1] Em 329.41 329.63 -0.07
14h o [1 o1 ]o] o] Fra 348.55 349.23 —0.19
15h o [ 1o 1| o] 1] Feitam | 37004 369.99 0.01
16h o |1 ]o| 1] 1] 0] awew 392.52 392.00 0.13
17h o [ 1] o] 1| 1] 1 [ctsom| 41584 415.30 0.13
18h o 11 ]oalo] o] atw 439.79 440.00 —0.05
19h o [ 1] 1] o] o] 1] atiam | 4e667 466.16 0.11
1Ah o [1 1 ]oal1] 0] Bed 494.12 493.88 0.05
1Bh o [1 1o 1] 1] cuao 523.36 523.25 0.02
1Ch o [1 1] 1] 0] o] ctam| 55448 554.37 0.02
1Dh o [1 1] 1ol 1] bpe 587.41 587.33 0.01
1ER o [ 1 11| 1] o] owieny | e2222 622.25 —0.01
1Fh o [1 a1 1] 1] Em 658.82 659.26 —0.07
20h 1 ]lo|olo]ol o] Fr 697.10 698.46 —0.19
21h 1 1o o] o] ol 1| Famsn | 74000 729.99 0.01
22h 1ol ol o] 1] 0] e 785.05 783.99 0.13
23h 1o o] o 1] 1 |cwsom| a3tes 830.61 0.13
24h 1 ool 1ol o] A 879.58 880.00 —0.05
25h 1 o] o] 1] o] 1| aes | o333 923,33 0.11
26h 1 ool 1] 1] 0] e 988.24 987.77 0.05
27h 1 ool 1] 1] 1] cay | 104673 1046.50 0.02
28h 1o 1] 0] o] o]cram| 110801 1108.72 0.02
20h 1o 1]o]o] 1] pue 1174.83 1174.66 0.01
2Ah 1 o[ 1] o] 1] o] oteety | 124444 1244.51 —0.01

61



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.26b - Frequency Settings and their Musical Note Values

(Continued).
Communications
FREQ[5:0] | D5 | D4 | D3 | D2 | D1 | DO | Scale F:'gqp_i‘[’fi;] g r’;"ﬁ';] E[;;?'
2Bh 1 Q 1 0 1 1 E{mi) 1317.65 1318.51 —0.07
2ch 1ol 1] 1o o] Foa 130419 | 1396.91 —0.19
2Dh 1o 1| 1] ol 1] Faam | 148018 | 1479.98 0.01
2Eh 1 Q 1 1 1 Q G(sal) 1670.09 1567.98 0.13
2Fh 1 Q 1 1 1 1 GH(solt) 1663.27 1661.22 0.13
20h 1 1 0 (i Q 0 Alla) 1759.16 1760.00 —0.05
31h 1 1] oo o] 1| aan | 186667 | 186466 0.11
3zh 11 loflo| 1] o]l B 1976.47 | 1975.53 0.05
33h 1 1 0 [i] 1 1 Cidao) 2093.46 2093.00 0.02
34h 1 1 0 1 Q 0 CH{dost) 2217.82 2217.46 0.02
35h 1 1 0 1 Q 1 Dile) 2349.65 2349.32 0.0
36h 1 1 0 1 1 0 Det(ledt) 2488 89 2489.02 —0.
a7h 1 1 0 1 1 1 E{mi) 2635.29 2637.02 —0.07
38h 1 1 1 [i] 0 0 Fifa) 2788.28 2793.83 —0.20
3h 111 ] o] ol 1| Feram | 208035 | 205008 0.01
3Ah 111 ]o] 1] o] e | 314019 | 313598 0.13
3Bh 11 1] o] 1] 1 |ctson| 332673 | 332244 0.13
3Ch 1 1 1 1 Q 0 Alla) 3518.32 3520.00 —0.05
3Dh 1 1 1 1 0 1 Att(latt) 3733.33 3729 0.1
3Eh 1 1 1 1 1 0 Bisi) 3952.94 3951.07 0.05
3Fh 1 1 1 1 1 1 Cidao) 4173.9 4186.01 —0.29
Output frequency in case DTMFTONE
FREQ[50] | D5 | D4 | D3 | D2 | D1 | Do | WAVE | Scale FFTEYE:"Ej'Z] ! :";" r[ﬁ'z"] E[Eg“i’r
00h 00| 0] 0] 0] 0 |WAVE1| DIMF_LH | 120863 1209.00 0.03
01h oo oo o] 1 [waver| omFnH | 133333 1336.00 020
02h 0| o] o] 0| 1] 0 |WAVE1| DIMF.H | 147388 | 1477.00 022
03h oo o] o1 ] 1 [wave1t|DMFH | 183107 | 183300 012
04h 0o [ofo]1]0o] o |[wavez]| otmrL 697.10 697.00 0.01
05h oo o] 1|01 |[wavEz]| otmrL 770.64 770.00 0.08
06h 0o | o] 1] 1] 0 |wavEz2]| DIMFL 852.79 852.00 0.09
07h o lolol1]1]1 [wavez]| oiMEL 938.55 941.00 026
08h oo 1]o]o] o |[waes| TonE 383.56
09h oo 1]o]o] 1 [wavEs| TonE 400.00
0Ah 0| o | 1]o0o]1] o |wavES| TONE 1000.00
0Bh oo 1]of 1] 1 |waes| TonE 1473.68
0Ch oo 1]1]0o] o [waes| TonE 2000.00
0Dh oo | 1] 1]0o] 1 [waes| TonE 251545
0Eh oo 1]1]1]0o [waes| TonE 4000.00

+ Evian whan mora than OFh 15 set, 11's not changad.

Figures 11.26a and 11.26b illustrate the note values for all the values 0-63 of the frequency

selection bits.

62



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

\[o2R=l You may notice all the DTMF values. DTMF stands for Duel Tone Multi Frequency.
These are the tone pairs used to make phone calls, each tone pair represents a
different symbol on the hand set, by playing these tones phones make phone calls. The
BU8763 is used in many cell phones and thus has support for DTMF coding — you might
be able to use these if you want to make the XGS ME make a phone call if you place
the phone up to it with it loud enough!

11.9.2.2 Serial Sound Packet Command Driver

The sound packet driver is amazingly short and works up to 85 MHz before the timing falls apart
as written; however, the XGS ME has a nominal clock of 80 MHz, so this isn’t a consideration
really. In any case, let’s start with the defines for the driver, they are all more or less derived by
extracting all the bit values for the BU8763’s registers maps and trying to make sense of them:

; sound Packet Driver Defines

; port defines for SX52 interface
SCLK_BIT equ

SDATA_BIT equ 4

SSTB_BIT equ 5

; sound chip register adggesses

SND_REG_OPER equ

SND_REG_MODE equ $01
SND_REG_FREQ equ $02
SND_REG_GAIN equ $03
SND_REG_RES1 equ $04
SND_REG_RES?2 equ  $05
SND_REG_RES3 equ $06
SND_REG_RES4 equ $07

; basically the following flags and bit constants are all straight out
; of the BU8763v.PDF file that describes the BU8763 chip

; operating flags

SND_OPER_WAVE1_ON equ  %10000000
SND_OPER_WAVE1_OFF equ %00000000
SND_OPER_WAVE2_ON equ %01000000
SND_OPER_WAVE2_OFF equ %00000000
SND_OPER_WAVE3_ON equ %00100000
SND_OPER_WAVE3_OFF equ %00000000
SND_OPER_TNSEL_DTMF equ %00010000
SND_OPER_TNSEL_MELODY equ %00000000
SND_OPER_FSEL_DTMF equ %00010000
SND_OPER_FSEL_MELODY equ %00000000
SND_OPER_SLEEP_ON equ %00000001
SND_OPER_SLEEP_OFF equ %00000000
; mode flags

SND_MODE_WMODE_WAVE1 equ %00000000
SND_MODE_WMODE_WAVE2 equ %01000000
SND_MODE_WMODE_WAVE 3 equ %10000000

63



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

SND_MODE_FLAVOR_SQUARE equ  %00000000
SND_MODE_FLAVOR_SINE equ %00100000

SND_MODE_ENVON_OFF equ  %00000000
SND_MODE_ENVON_ON equ %00010000
SND_MODE_ENVM_SLOW equ  %00000000
SND_MODE_ENVM_FAST equ  %00001000
SND_MODE_ATTN_0_ODB equ  %00000000
SND_MODE_ATTN_2_5B equ  %00000001
SND_MODE_ATTN_6_0DB equ  %00000010
SND_MODE_ATTN_8_5DB equ %00000011

SND_MODE_ATTN_12_0DB equ  %00000100
SND_MODE_ATTN_14_5DB equ %00000101
SND_MODE_ATTN_18_0DB equ %00000110
SND_MODE_ATTN_24_0DB equ %00000111

SND_MODE_ATTN_MASK equ %00000111
; frequency flags

SND_FREQ_WAVE1 equ %00000000
SND_FREQ_WAVE?2 equ  %01000000
SND_FREQ_WAVE3 equ %10000000
SND_FREQ_MASK equ %00011111
; gain flags

SND_GAIN_VOLUME_ODB equ  %00000000
SND_GAIN_VOLUME_2DB equ %00000001
SND_GAIN_VOLUME_4DB equ %00000010
SND_GAIN_VOLUME_6DB equ %00000011
SND_GAIN_VOLUME_S8DB equ %00000100

SND_GAIN_VOLUME_10DB equ %00000101
SND_GAIN_VOLUME_12DB equ %00000110
SND_GAIN_VOLUME_14DB equ %00000111
SND_GAIN_VOLUME_MASK equ %00001111

By logically OR’ing and AND’ing these together and then building commands up and sending
them to the BU8763 any command / function can be selected.

11.9.2.3 Sound Packet Driver Globals

Next up are the globals used by the serial packet driver, they are used mostly to construct the
awkward 11-bit command packet in a sane manner. They are listed below:

; variables so sound function can be called via a macro with parameters

screg ds 1 ; X X X X X R2 R1 RO
scdata ds 1 ; D7 D6 D5 D4 D3 D2 D1 DO
scfreq ds 1 ; XX F5 F4 F3 F2 F1 FO

11.9.2.4 The Complete Sound Packet Driver

Finally, here’s the packet driver in SX52 assembly language:

write_snd_command

64



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; writes a command to the BU8763, all time delays good up to 80 MHz

on entry , lower 3 bits of sdreg contain address
and all 8 bits of sddata contain data
screg =X X X X X R2 Rl RO
scdata = D7 D6 D5 D4 D3 D2 D1 DO
control signals:

RA3 -> SCLK - serial clock 200ns/200ns min
RA4 -> SDATA 400ns
RA5 -> SSTB - 200ns min

Al1l commands are sent in a serial stream 11 bits at a time in the following format:
Address | Data

Fhdhhhdhddhhhhhhhhdhhhhhhhhdhhhhhhhhdhhhdhhhh ki ®

*pl0 *D9 *D8 *D7 *D6 *D5 *D4 *p3 *p2 *pl * pO0 *
Fhhhdhhhfhhhhhhhhhhfhhhhhhfhhhfhhhhhhfhhhhhhhhhhhfhhhhhhhhhhfhhhhhhhhk
write Command Sequence Psuedo Code
Reset System (5ms)
write Command Begin...
data[] is binary vector holding 11 bits of command
Start
for bit = 10 to 0
begin
SDATA = data[bit]
Data Setup Time, SCLK = (0, 250ns)
SCLK = (1, 250ns)
next bit
SSTB(1, 250ns)

End Write Command

mov Countl, #11 ; 11 bits per command
:Send_B1it_Command_Loop
clrb RA.SCLK_BIT ; SCLK = (0)
; read next bit in command stream
sb screg.2 ; jump over if set
jmp :Bit_Command_zero

; bit set, write 1 to SDATA

setb RA.SDATA_BIT ; SDATA = (1)

jmp :Bit_Command_Setup
:Bit_Command_zero

; bit clear, write 0 to SDATA

clrb RA.SDATA_BIT ; SDATA = (0)
:Bit_Command_Setup

DELAY(30) ; setup time for data

setb RA.SCLK_BIT ; SCLK = (1)

DELAY(30) ; wait 200ns+

; shift next bit into position .

; shift data thru carry, shift carry into address .

; shift address over and next bit into position 2 for reading
ri scdata

ri screg

djnz Countl, :Send_Bit_Command_Loop

65



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; strobe the command in

zero BU673 SSTB line

mov RA, ; clear RA first
DELAY(30) ; wait 200ns+

setb RA.SSTB_BIT ; strobe BU673 SSTB line
DELAY(30) ; wait 200ns

clrb RA.SSTB_BIT

ret

Interestingly, the entire driver is less than 20 lines of code - and it’s un-optimized! Again,
reaffirming the incredibly rich instruction set of the SX52.

11.9.2.5 Calling the Packet Driver

Calling the packet driver consists of building up a command and making a call to the sub-routine.
| have opted to do the construction of the 11-bit encoding in the subroutine itself, so the caller
simply places an address and data into 2 bytes and calls the function. Here’s an example of
initializing the OPERATING register (0):

mov screg, #SND_REG_OPER

mov scdata, #(SND_OPER_WAVE1_ON | SND_OPER_WAVE2_ON |
SND_OPER_WAVE3_ON | SND_OPER_TNSEL_MELODY |
SND_OPER_FSEL_MELODY | SND_OPER_SLEEP_OFF)

call write_snd_Command

The screg and scdata bytes will be merged into a single 11-bit value and serially sent to the
BU8763 and the command will be executed. Now, let’s see a fully demo.

11.9.3 Sound Demo Program

The sound demo sets up all three channels with various settings, so you can experiment with
them and then plays a number of notes up the scale with envelopes on etc. The program shows
off all the major aspects of programming the BU8763. The file is located on the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\sound_xme_02.src

To run the program, first put the XGS ME into PGM mode, load the program into the XGS Micro
Edition Studio IDE, make sure the XGS ME is powered up of course, cable inserted, and then
RUN the program, this will Assembly and Program the code into the XGS ME, when complete
switch the XGS ME into Run mode with the SYSMODE switch. Of course, you must have the
audio cable connected to your TV set. You should immediately hear the audio scale playing.

For fun try, changing the main clock of the XGS ME by changing the clock divider setting DIP
switch at SW2, the sounds will also have the same length and frequency since they are being
generated by asynchronous hardware (the BU8763), but the rate at which the scales change or
the tempo will slow down.

In this section we covered the venerable ROHM BU8763 and its interfacing to the XGS ME. This
is a great chip and amazingly powerful. Although the chip does not have distortion or white noise,
| am confident that high speed random tone commands can help in this area, and that voice
synthesis should be easy with the chip as well, only your imagination limits what it can do.

66



Widea Unit:. Color Burst Phase Modulator Plus Intensity

Interface from $x Pricessr

16 Calor Selection” ~ T C

D_CSE [>

Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.10 XGS Video Hardware and NTSC/PAL Programming

Figure 11.27 — The Video Hardware

MDED_OUT

MOZCSEL [~

VD CsEl [

w0 o

18Inenzny Gelpotin. | | |
D-ISED ———

D19

WOZISEL [=

DI3ES [

Interty (44 R2R Latsr

T HE

=
AT : P AT AP AT
svee B suee
. | : P P . . . . . -
e TE =
I il Phase Delay Ut F .
UB ~ redm B
1 fopre ssvee |2 Calor Piase Oielay Ssleftion Bark
2 nc Ne - UtA i<}
| e i 3 i) o t 3
GND 0sC_ouT W w 0 X
S R s
vz b
Ecomo 0sC o A [ERpr
CBURST 3 578504 Whz w
. L e %
L | faRcTmaE . b
Color Birs Rsfirince Sigl iy
: 11
= |t
2w v ilc
Tl wnp i
g Do HEATET
19 mnesyee
1 - cio - RiEESID.
FARETEE s-aND
LSRG X LA | . cod -
W =
¥ T
: : e =t
lor Phssa Dalay Urk 1 R L dEm
Color Pliase Delay Seleition Bk |
IGHT £ U4
Pl prames 1T} | fElips Lt
w wed 14y
AR A il L
]
e CI 0
.
POT2- SAT o s
0 FARCTEE B
1
Rl i ==
R e ol emh
R M
I M L 3 ¥ .
- ACHET,
19 impesyee
L L VEEBNG,
AT V838D,
oupler T Bie Fier’ | ey
R10
A ¥y iR FEC
EEC RPN
u

: - ©* RCAVIDEO
MpEs_out [——2—{ e
o | Rewraa

RING
ks
D 1=

Referring to Figure 11.27, the video generation hardware consists or 3 main sub-sections. A
Color Burst Phase Generation unit that is used to generate a base reference color burst for
each scanline and then allow the phase shift at any time to be selecting from 0-15 values, thus
creating 16 colors or the chroma signal. Additionally, there is a 4-bit R2R ladder D/A (digital to
analog) converter that controls the intensity or LUMA. The final section mixes these signals
together and outputs them to the Video Out RCA connector. The control of the video hardware is
amazingly simply with the use of only 8-bits as listed in Table 11.9 below.

Table 11.9 — The Video Hardware Port Mapping Bits.

Description

Bit 0 of the intensity signal that controls LUMA.
Bit 1 of the intensity signal that controls LUMA.
Bit 2 of the intensity signal that controls LUMA.
Bit 3 of the intensity signal that controls LUMA.

Port Bit XGS ME Bit
REO VID_ISELO
RE1 VID_ISEL1
RE2 VID_ISEL2
RE3 VID_ISEL3
RE4 VID_CSELO
RE5 VID_CSELH1
RE6 VID_CSEL2
RE7 VID_CSEL3

Bit 0 of the color phase selection value.
Bit 1 of the color phase selection value.
Bit 2 of the color phase selection value.
Bit 3 of the color phase selection value.

67



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

There are 4-bits of D/A conversion for the intensity signal VID_ISELO0-3 thus giving a total of 16
values, however, a number of them at the low scale of the range must be used to “jump” from
“sync” 0.0V to “black” 0.25 - 0.3V. For example if the entire D/A range is 1.0V then 0.3 /1.0 =
30%, 30% of 15 is 5, thus the 4-bit value of 0 is sync while the 4-bit value of 5 is black, leaving us
with only the values 6-15 or 10 different intensity levels.

The color phase selection value VID_CSELO0-3 gives a total of 16 values. Value 0 is used as the
“reference” color burst at the beginning of a scanline. Then when you want color you use
value greater than 0. Each increment of 1 is approximately 10-12 ns which causes a phase shift
around the NTSC color wheel, so that after 15 shifts you make your way around more than half
the color wheel or on average 12*15 = 180 ns. This is more than enough colors to make a game.
However, there are tricks to get the other half of the color wheel which | will discuss later in the
chapter when we talk about programming.

11.10.1 Video Hardware Description

Referring to Figure 11.27 and the Proteus design file of the video hardware located on the CD at:
CDROOT:\XGSME_HW_CD\Schematics_Circuits\xgs_micro_video_05.DSN

Let’s take a look at the how the video hardware works from an electrical point of view. The
interface to the video hardware is via 8-port bits, VID_ISEL0-3, and VID_CSELO-3. The data of
these ports is completely under control of the SX52. Let’s begin with the intensity/sync control bits
VID_ISELO-3. These 4-bits are fed into a R2R digital to analog converter which converts bit
values 0-15 to voltage 0-1.5V (approximately), thus by send out different bit codes the raster can
be instructed to sync, draw black, white, or grays in-between. The final output of the R2R ladder
is fed into a potentiometer (5-20K value), which allows the overall intensity of the signal to be
controlled, also there is a 100 ohm to ground resistor to help match the input impedance of the
TV of 75 ohms. 100 ohms was chosen since when taken in parallel with the reflected impedance
of the systems behind it, the overall impedance is about 75 ohms creating a maximum power
transfer to the load. That’s all there is to the intensity or luma signal. This alone can be used to
generate black and white video. The chroma or color hardware is much more interesting.

The details of NTSC are of course in the previous chapter and re-iterated below, but in essence
we need to create a phase shifted 3.58Mhz (4.43Mhz PAL) color burst signal at the beginning of
each line and then phase shift this amount by some angle 0-360 to select various colors. This is
accomplished almost all by hardware for you. The lines VID_CSELO-3 are used to select the color
you which sent out to the analog mixing hardware. The operation is as follows; U6 generates the
color burst reference clock (3.58Mhz NTSC or 4.43Mhz PAL), this clock is fed into a pair of
74HC244 buffers in a chained configuration. Digitally, the input and output are identical; however,
the timing is skewed. Each buffer in the 244s create a delay of 8-12ns, this delay causes a phase
shift in the digital signal. Together the two 244s create 16 different delays. These delays are
“tapped” into a pair of 74HC4051 8:1 multiplexers which basically allow the signal VID_CSELO0-3
to select of 1-16 of the phase delayed signals, each representing one of sixteen colors around the
color wheel, equidistant spaced.

The final phase delayed signals is of course still a square wave, and the TV needs a sine wave
so a low pass filter is used to filter out the higher harmonics. The filter is composed of R10 and
C1. Then the chroma signal is AC coupled thru C2, so only the AC component comes thru and
the DC offset does not. This AC only chroma signal is then summed with the luma signal thru the
saturation potentiometer and then final sent to the video output via a ferrite filter to once again
remove higher frequency noise that might be present on the line from the board, so the TV signal
is clean.

68



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Before moving on to programming, let’s review NTSC video signal generation once again (for a
more technical treatise of NTSC/PAL video refer back to Chapter 9).

Figure 11.28 - Horizontal scan versus display brightness

- - o LI
Scan Ling
White Level
100 IRE Horizontal
I Blanking
TR : Interval
BCK Level | aetup i — A

7.5IRE ___ : : i

i i i i

Blanking Level i i i i i

0 IRE ' ' '

“IRE” stands for International Radio Engineers and is an arbitrary scale of units that
relates to the voltage of the signal, |[140| IRE = 1.0V these days; however, previously
140 IRE 1.4V. There is an EXACT spec for broadcast, but many video generation
hardware units assume a total of 1.0V for the total SYNC -> WHITE video amplitude
peak-peak voltage.

11.10.2 Review of NTSC Video

A video image is "drawn' on a television or computer display screen by sweeping an electrical
signal (that controls a beam of electrons that strike the screen’s phosphor surface) horizontally
across the display one line at a time. The amplitude of this signal versus time represents the
instantaneous brightness at that physical point on the display. Figure 11.28 illustrates the signal
amplitude relationship to the brightness on the display.

At the end of each line, there is a portion of the waveform (horizontal blanking interval) that
instructs the scanning circuit in the display to retrace to the left edge of the display and then start
scanning the next line. Starting at the top, all of the lines on the display are scanned in this way.
One complete set of lines makes a frame. Once the first complete frame is scanned, there is
another portion of the waveform (vertical blanking interval, not shown) that tells the scanning
circuit to retrace to the top of the display and start scanning the next frame, or picture. This

69



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

sequence is repeated at a fast enough rate so that the displayed images are perceived to have
continuous motion.

11.10.2.1 Interlaced versus Progressive Scans

These are two different types of scanning systems. They differ in the technique used to "render”
the picture on the screen. Television signals and compatible displays are typically interlaced, and
computer signals and compatible displays are typically progressive (non-interlaced). These two
formats are incompatible with each other; one would need to be converted to the other before any
common processing could be done. Interlaced scanning is where each picture, referred to as a
frame, is divided into two separate sub-pictures, referred to as “fields”.

Two fields make up a single frame. An interlaced picture is painted on the screen in two passes,
by first scanning the horizontal lines of the first field and then retracing to the top of the screen
and then scanning the horizontal lines for the second field in-between the first set. Field 1
consists of lines 1 through 262 1/2, and field 2 consists of lines 262 1/2 through 525. The
interlaced principle is illustrated in Figure 11.29. Only a few lines at the top and the bottom of
each field are shown.

(o)W Most computer displays that output to TVs are progressive scans, that is, they draw a
single frame 60 times a second without interlacing. However, some computers and
game systems do put out interlaced video. The old Amiga computer was one such
example that had an interlaced video mode option to double the number of scanlines.

Figure 11.29 - Interlaced scanning system

-lq.u_lln_l‘-_l‘-_:.--.---.--.llr“‘-.:l_ll.--.....--..

__-—-__-___-_-—-

———
-

<

™

FIELD 1 FIELD 2

Refrace

NOTE: Exaggerated in the
vertical dimension for clarity

-
-
-
-
-

e s

-
-—-...._____‘
-

erssemsgeereem e I T——_—t L

Picture Sereen

70



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

A progressive, or non-interlaced, picture is painted on the screen by scanning all of the
horizontal lines of the picture in one pass from the top to the bottom. This is illustrated in Figure
11.30.

Figure 11.30 - Progressive (non-interlaced) scanning system

........................................ \

Reirace
Scan Line

vertical dimension for clarity

MNOTE: Exaggerated in the |

Piciure Sereen

11.10.3 Video Formats and Interfaces

There are many different kinds of video signals, which can be divided into either two classes;
those for television and those for computer displays. The format of television signals varies from
country to country. In the United States and Japan, the NTSC format is used. NTSC stands for
National Television Systems Committee, which is the name of the organization that developed
the standard. In Europe, the PAL format is common. PAL (phase alternating line), developed
after NTSC, is an improvement over NTSC. SECAM is used in France and stands for sequential
coleur avec memoire (color with memory). It should be noted that there is a total of about 15
different sub-formats contained within these three general formats. Each of the formats is
generally not compatible with the others.

Although they all utilize the same basic scanning system and represent color with a type of phase
modulation, they differ in specific scanning frequencies, number of scan lines, and color
modulation techniques, among others. The various computer formats (such as VGA, SVGA,
XGA) also differ substantially, with the primary difference in the scan frequencies and
resolutions. These differences do not cause as much concern, because most computer
equipment is now designed to handle variable scan rates (multisync monitors are now the de-
facto standard). This compatibility is a major advantage for computer formats in that media, and
content can be interchanged on a global basis.

Table 11.10 - Typical Frequencies for Common TV and Computer Video Formats

71



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Television Television High Definition/

Format for Format for Standard Video Extended
Description North America Most of Europe Definition Digital Graphics Graphics
e and South Television Array (PC) Array (PC)
P America Format
Vertical
Resolution Approx 480  Approx 575 (625 418%801 g ' di7ff2§r:rr1t 480 768
Format (visible (525 total lines) total lines) ’f
. ormats
lines per frame)
Horizontal Determined by Determined by
Resolution bandwidth,  bandwidth, 220 OT 40T 1004
Format (visible ranges from ranges from 320 ,formats
pixels per line) 320 to 650 to 720
Horizontal Rate
(kHz) 15.734 15.625 33.75-45 31.5 60
Vertical Frame
Rate (Hz) 29.97 25 30-60 60-80 60-80
Highest
Frequency 4.2 5.5 25 15.3 40.7
(MHz)

There are three basic levels of baseband signal interfaces. In order of increasing quality, they
are:

e Composite video (or CVBS), which uses one wire pair.

e Y/C (or S-video), which uses two wire pairs.

e Component Video, which uses three wire pairs.
Each wire pair consists of a signal and a ground. These three interfaces differ in their level of
information combination (or encoding). More encoding typically degrades the quality but allows

the signal to be transported using fewer wires. Component video obviously has the least amount
of encoding, and composite video the most.

11.10.4 Composite Color Video Blanking Sync Interface

Composite signals are the most commonly used analog video interface. Composite video is also
referred to as CVBS, which stands for color, video, blanking, and sync, or composite video

72



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

baseband signal. It combines the brightness information (luma), the color information (chroma),
and the synchronizing signals on just one cable. The connector is typically an RCA jack. This is
the same connector as that used for standard line level audio connections. A typical waveform of
an all-white NTSC composite video signal is shown in Figure 11.31(a).

Figure 11.31(a) - NTSC composite video waveform

White Level
100 RE —
) / Active Video \
Horizontal Blanking 32.6us
10.9 us

Black Level (Setup)
5 IRE

Blanking Level
0 IRE

AT N :
Vo |

Color Burst {40 IRE p-p)

Sync Tip 8-10 cycles 3.56Mhz
Front Porch Color Burst Back Porch
1.508 2 503 1.Girs
Syne Tip
4.Tus
Breezeway
0.6us

This figure depicts the portion of the signal that represents one horizontal scan line. Each line is
made up of the active video portion and the horizontal blanking portion. The active video portion
contains the picture brightness (luma) and color (chroma) information. The brightness information
is the instantaneous amplitude at any point in time. The unit of measure for the amplitude is in
terms of an IRE unit. IRE is an arbitrary unit where 140 IRE = 1Vp-p (or sometimes 1.4Vp-p).
From the figure, you can see that the voltage during the active video portion would yield a bright-
white picture for this horizontal scan line, whereas the horizontal blanking portion would be
displayed as black and therefore not seen on the screen. Please refer back to Figure 11.31(a) for
a pictorial explanation. Some video systems (NTSC only) use something called "setup” which
places reference black a point equal to 7.5 IRE or about 54mV above the blanking level.

73



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.31(b) - NTSC composite video waveform

Timing and Level Standards of NTSC RS170A Waveform

Front Porch 1.5uSec + 0.1pSec

—
3
Blanking 10.9uSec + 0.2uSec
~-——————————— Sync to Blanking End 9.4pSec + .1pSec >
Color
~————————Sync to Burst End 7.8pSe¢ e PB:rf:kn _
1.6uSec Ref. White
Breezeway .6uSec—#— —a—Burst 2.5p5ec —p=—
Ref. Black
—g— Sync 4.7uSec = 0.1pSec —p= L
-7.5 IRE
40 IRE ——4IRE \
Ref. Burst - —-——-']r
Amplitude
Blanking Level
Ref. Sync Amplitude

40 IRE (286mV)

Figure 11.31(b) depicts yet another timing drawing the NTSC video signal, this time, more
formally labeled at the RS-170A color standard (created in the early 1950’s as the successor to
the B/W only RS-170 standard created in 1942 approximately.

11.10.5 Color Encoding

Color information is superimposed on top of the luma (brightness) signal and is a sine wave with
the colors identified by a specific phase difference between it and the color-burst reference phase
at the beginning of each scanline. This can be seen in Figure 11.32, which shows a horizontal

scan line of color bars.

74



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.32 - Composite Video Waveform of the Color Bars.

140
120
100
a0
60
40
20

|

Amplitude = Saturation {amount of color)

Phase Difference = Hue {(color)

The amplitude of the modulation is proportional to the amount of color (or saturation), and the
phase information denotes the tint (or hue) of the color. The horizontal blanking portion contains
the horizontal synchronizing pulse (sync pulse) as well as the color reference (color burst)
located just after the rising edge of the sync pulse (called the "back porch"). It is important to
note here that the horizontal blanking portion of the signal is positioned in time such that it is not
visible on the display screen.

11.10.6 Putting it All Together

Generating a NTSC (or PAL) signal means controlling the signal into the TV such that all the
timing specifications are met. There are a number of aspects that must be taken into
consideration to achieve this successfully. However, one important detail is that the video signal
does not have to be perfect, that is, the timings can be slightly off per line, per frame, per color
burst, etc. nevertheless, the amount of “slack” must be consistent. In general here are the steps
to generating an NTSC signal.

11.10.6.1 Frame Construction

A Frame is composed of 262.5 lines (non-interlaced), 262 will suffice. Of those 262 lines, many of
them are invisible due to overscan, and some must be used for the vertical retrace pulse.
Therefore, a rule of them is to generate a video signal frame with the following algorithm:

// Draw the active region of the scan, 240 lines
For 1line = 1 to 240

Begin

Gegerate the next scanline

En

// Draw the bottom over scan
For 1line = 1 to 10

75



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Begin )
Gegerate the next black scanline
En

// Generate a vertical sync ﬁ;u'l se, basically apply OV to the signal for
// the time duration of scanlines
Vvideo = 0.0V

Delay(4 Scanlines)

// Draw the top over scan

For 1ine = 1 to 8
Begin
Gegerate the next black scanline
En

If you add up the lines, you will get a total of 262 lines including active, inactive, and retrace or
vertical sync. However, in reality even this is too many. | find that most TVs can display 192 lines
safely, some 224, so unless your demos can look “ok” missing the top and bottom of the image
on some sets then a safe rule of thumb is 192 lines of active video sandwiched within equal
amounts of overscan on the top and bottom.

11.10.6.2 Line Construction

Generating a line is a little more tricky that generating a frame since the real work must be done
on each line. The basic idea is that you must generate the video signal which controls the luma
(brightness), the chroma (color), and synchronization all within the same signal. This is
accomplished by mimicking the signals you see in Figures 11.31(a) and 11.31(b). Each line
consists of a total of 63.5us where 52.6us is actual video data and the other 10.9us is sync and
setup data. However, you can slightly alter them if you wish. For example, if you want to make the
video portion of a line 50us rather than 52.6us then it will work since you can just stuff black into
non-active region; however, the more you alter the spec (especially in terms of the length of the
sync and color burst) the higher the chances are that the signal will not work on some older (or
newer sets).

To generate the actual video signal the XGS ME gives you total control over the actual output
voltage of the video line, therefore, you program the voltages as a function of time to create each
video line. For example, each line consists of the following areas:

“Front Porch” - The spec calls for a “front porch” of 1.5 us consisting of black, therefore you
would tell the XGS ME video hardware to send out black, then you would delay for 1.5 us (talking
into consideration the amount of time to execute the actual instruction that turns black on).

“Sync Tip”- The next part of the spec is the horizontal sync or HSYNC, this should be
approximately 4.7 us, therefore, you would tell the video hardware to output a 0.0V for 4.7 us.

The next portion of the video signal is the “Color Burst” which consists of a pre-burst phase
called the “Breezeway”, the burst itself called the “Color Burst” and finally the post-burst called
the “Back Porch”.

“Breezeway”’- This part of the spec says to output black for 0.6 us.

“Color Burst”- This is the most complex part of the specification and the one that would be

nearly impossible to do without the extra hardware support of the XGS ME. You could do the
color burst totally with software, but the MPU would be so tied up during each pixel it would leave

76



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

little time for anything, but a pong game. In any case, we will explain how this works shortly, but
for now, you need to know that you must generate 8-10 cycles of color burst tone (9-10 for
PAL). This is a 3.579545Mhz “tone” (4.433Mhz for PAL) signal that the TV locks onto and uses
as a phase reference for the remainder of the video line. The color of each pixel is determined by
the phase difference from the color burst reference at the beginning of each line and the color
burst tone of each pixel. In any case, 8-10 clocks must be sent, | usually send 9-10 cycles of
color burst. Each cycle at 3.579594 MHz takes 279.36ns, therefore, if you want 10 cycles of color
burst, you must turn the color burst hardware on for 279.36ns * 10 = 2.79us approximately.

“Back Porch”- Immediately following the color burst is the final part of the setup for the actual
pixel data, this is called the “back porch” and should last 1.6 us.

11.10.6.3 Generating B/W Video Data

The remainder of the video information is 52.6 us, this is where you insert your pixel data. Now, if
you wanted a B/W only signal then you would modulate the video signal from BLACK (0.3V) to
WHITE (1.0+ V) for the remainder of the line and be done with it. For example, each line could
rasterize a line buffer, or a sprite and different values would map to different voltages from
BLACK to WHITE. With this approach most TVs have an input bandwidth wide enough to display
about 320 luminance changes per active line, that means that no matter how fast you try to
change the luminance signal only 320 times a line will you see anything. Let’s see how we
roughly estimate this.

The line length is 52.6us, we want to make 320 changes in that time, that means that we need to
send data at a rate of:

52.6 us / 320 = 164.375 ns per change

Inverting this gives us the frequency which is 1/164.375 ns = 6.0 MHz roughly! Ouch, that means
that the input to the TV’s luminance has to be 6.0 MHz or greater. Sorry to say, it's not. In most
cases, you are lucky if you get 4.5 — 5.0 MHz input bandwidth, this 320 is a definitely upper
limit on B/W luminance transitions per line.

11.10.6.4 Generating Color Video Data

Generating color video is much more complicated than B/W, however, if we take a practical
approach rather that a mathematical, its quite easy. Forgoing the complex quadrature encoding of
color and luminance and the encoding and decoding of the signals, creating a color is very easy.
For each color clock on the active scan line, you must generate a 3.579545Mhz sine wave, this
must ride on top or be super imposed on the luminance signal (the XGS ME hardware does all
this). The overall amplitude of the signal is the brightness or luminance just as it was with B/W,
but the color signal’s saturation is simple the peak-peak (p-p) value of the color signal 3.579545
MHz signal as shown in Figure 7.6. The actual color that is displayed has nothing to do with the
amplitude of the video signal, but only the PHASE difference from the reference burst from the
original color burst reference at the beginning of each line.

To re-iterate, to generate color, we simply produce a 3.579594 MHz signal, super impose or add
it to the overall luminance signal, and the phase difference between our color signal and the
reference is the color on the screen! Cool.

Taking this further, let’s break up the line into pixels once again and see how many can be

displayed each line. There are 52.6 us of active video time. We have to generate a 3.579545
MHz signal and stuff it into each pixel; given this how many pixels can fit into a line?

77



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Color Clocks Per Line
52.6us / (3.579545Mhz ") =188.

This means that at best case you can have 188 colored pixels per active scanline, but it gets
worst! That doesn’t necessarily mean that you can have 188 DIFFERENT colored pixels across
the screen, it just means you can request that from the poor TV with limited bandwidth. Again,
this is a give take world, and in many cases, you would never have 188 different colors on the
same line, it would look like a rainbow. In most cases, objects have constant color for a few pixels
at a time. In any case, many video system over drive the video to 224, 240, or 256 virtual pixels
(but, the color will not change that fast), you can do this if you wish, however, | suggest using a
nice 160 x 192 display or thereabouts which will always look pretty good, has enough resolution,
and you will almost get a 1:1 color change per pixel even if you change each pixel’s color.
However, give everything a try and see what you get.

11.10.6.5 NTSC Signal References

Here are a number of web sites and documents to help you understand the NTSC / PAL video
formats:

http://www.ee.washington.edu/conselec/CE/kuhn/ntsc/95x4.htm
http://www.bealecorner.com/trv900/tech/RS170A.jpg
http://www.bealecorner.com/trv900/tech/
http://www.maxim-ic.com/appnotes.cfm/appnote_number/734/In/en
http://pdfserv.maxim-ic.com/en/an/AN734.pdf

11.11 Programming The XGS ME Video Hardware

The XGS ME’s video hardware has both a D/A to convert the overall voltage requested for
luminance to the video line as well as a color burst generator and selector. The color burst
circuitry gives the XGS a very powerful shortcut for generating color. Nevertheless, you must
control the video completely with software via the VID_ISEL port (intensity select) and
VID_CSEL (color burst select), refer back to Table 11.9. Both controls are 4-bits wide (a nibble
each) and encoded into the single Port E. This was by design. By using a single port to contain
both the intensity (lower 4-bits) and the color (upper 4-bits) we can make changes to the video
much faster (only one port has to be written) and we can play with bit shifting algorithms to do
cool things.

11.11.1 Generating a Composite Luma/Chroma Video Signal

Voltage

The first step to generating a video signal is being able to generate a voltage in the luminance
section of the video hardware. This is trivial, just place a number into the lower nibble of Port E
and that number 0-15 will be converted into a voltage 0.0V to 1.0V roughly.

11.11.1.1 Generating Luma

For example, let’s see you are constructing your video line and need the “front porch”, this is
BLACK which is approximately 0.3V, let’'s compute the value needed to generate 0.3V:

Proportion of total range we must traverse: 0.3V /1.0V =.3

78



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Compute binary value to generate voltage for 4-bit D/A: (0.3) * (15) = 4.5, rounding up to 5.
Therefore, if we output the integer 5 to the luminance bits (lower 4-bits) we will generate a 0.3V at
the video output:

mov  RE, #5 ; generate black

Similarly, “sync” is 0.0V which would obviously be integer 0:

mov RE, #0 ; generate sync

Finally, “white” is 1.0V which would be full power or integer 15:

mov RE, #15 ; generate white

Considering this, we loose the values 0-5 to represent sync to black and thus have the values 7 —
15 (9 values) for “shades” of color or B/W gray scale. Of course, you can fudge this, you can get
away with using 4 for the black and inch up to 8-15 values for shades, but this will not work on
some set, so better safe than sorry. Like | said, TVs are very forgiving, but not all of them. Table
11.11 lists the integral luminance values and their rough meanings.

Table 11.11 — Integral Luminance Values and Their Meanings.
VID_ISEL (RE lower 4-bits) Value Voltage (V) Meaning

0.0 SYNC

0.66

0.132

0.198

0.264

0.330 BLACK

0.396 DARK GRAY
0.462

0.528

0.594

10 0.660 MEDIUM GRAY
11 0.726

12 0.792

13 0.858 LIGHT GRAY
14 0.924

15 1.0 WHITE

CoNoOCOP,WN—-O

11.11.11.2 Generating The Color Burst Signal

At this point, if all you were to do is generate a B/W signal with the lower 4-bits of Port E and
followed the RS-170 spec you would see video. And in fact it, would even be color, yellow to be
exact, since the upper 4-bits would have 0000b in them which defines a color burst reference and
a color of yellow all the time. Now, let’s cover in detail how to generate the color signal.

79



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Let’s begin with the color burst signal at the beginning of the RS-170A spec for each line. After
the initial SYNC pulse, there is a 0.6 us pre-burst delay then you need to generate 8-10 clocks of
color burst 3.579545 MHz tone. To do this, in you loop all you need to do is send out BLACK in
the lower bits (integer value 5, 0101b) and in VID_CSEL you will send out the value for the color
burst reference which is also 0000b. You will do this for a time of approximately 2.5-2.8 us
depending on if you want 8-10 cycles of color burst. During this 2.5 - 2.8us you are free to do
what you want, as is when you are doing the sync pulse, you just have to make sure you are
BACK to your raster code when the time is up. For example, when you request an HSYNC you
can sit in a dead loop for 4.7us or you can do something. At a system clock rate of 80 MHz, that
means each clock cycle is 12.5ns, therefore, in the HSYNC alone you have:

4.7us / 12.5ns = 376 clocks!

Which with the SX52 and its pipelined RISC CPU is more or less 376 instructions! Also, during
the actual color burst you have another 2.8us which is equal to:

2.8us / 12.5ns = 224 clocks!

So you have a total of 376 + 224 = 600 cycles to set things up. A ton of time to get ready for the
line. To send the actual color burst, you need to send both a luma value of BLACK (0.3V) in the
lower 4-bits of Port E as well as the color burst in the upper 4-bits or Port E. Here’s an
example:

; for 10 cycles, approx. 2.8 uS send color burst and black
; 0000 for VID_CSEL, color 0, reference color burst

; 0101 for VID_ISEL, luminance 5 (black)

mov  RE, #%00000101

And then you would delay for 2.8us to let the system output the 10 cycles of color burst,. You can
delay either with code that does work or a dead loop. After the color burst, there is a 1.6 us
“back porch” where you must keep the LUMA at BLACK, but you need to turn OFF the color
burst. To turn off the color burst signal completely in all cases, you send it a value of integer
15, this send a “ground” the summing circuit in the analog section and basically kills the
3.579594 MHz signal from getting into the video amplifier. Here’s how you would do that:

; for 1.6 us send no color and black

; 1111 for VID_CSEL, no color at all

; 0101 for VID_ISEL, luminance 5 (black)
mov  RE, #%11110101

And that’s it. You are now ready to send pixels.

11.11.11.3 Generating a Single Pixel

Once the scanline is set up you make your way into the active region of the line. This is 52.6us of
time. Here is where you modulate both the intensity of the video signal for the LUMA
(brightness) in the lower 4-bits of Port E as well as selecting colors with the upper 4-bits. And
here comes the cool part — wherever you want color, just put the color into the upper 4-bits of
Port E and the color will show up! This is the hardware working for us. The hardware is always
oscillating at 3.579545 MHz, so when you send the color burst the hardware send the burst, but
then stays in steps with the original signal, so no matter where you turn the color signal back on,
it is phase locked to the original color burst. How we get color is to phase shift our color signal for

80



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

each pixel with the original color burst, but how? This is where the “phase shift modulation”
hardware comes into play. There is a chain of 16 delay buffers connected to the color burst
generator. Each delay is about 10-12ns depending on the chip technology. This gives us a total
delay of about 15 * 12ns = 180 ns. Table 11.12 lists the phase angle delays and their general
color and angle.

Table 11.12 — Colors Generated by Phase Shifted Color Burst

Color Approx. Phase Approx. Delay VID_CSEL Value
Burst 0 degrees 0ns 0

Yellow 15 12 1

Red 75 58 5

Magenta 135 105 9

Blue 195 151 13

Cyan 255 198 15

Green 315 244 -

If you look at the table and consider that the largest delay we can getis 15 * 12ns = 18 Ons then
you quickly realize we are barely going to get to CYAN let alone GREEN. The problem is that we
need a total of 360 degrees to cover the circle or a total or 288 ns of delay, so how can we get
Cyan and Green? The trick is to understand the color burst signal is a “reference”, no on said
that we MUST use the non-delayed value for color burst, why not use the END of the delay chain
for the color burst and then we can use negative phase shifts, or in other words if we use the very
last color as the color burst and then draw a color with the color right before it then we get (-15)
degrees phase angle or (+345) degrees, thus we can work our way backward to get the rest of
the colors.

TIP To get the first half of the color circle use color 0 as the color burst and then color 0, 1,
2,3, 4...14 as the colors. To get the second half of the color circle use color 14 as the
color burst and then colors 0, 1, 2,....14 as the colors.

81



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.33(a) — Color Burst Reference 0, Colors 0 — 14.

Figure 11.33(b) — Color Burst Reference 14, Colors 0 — 14.

Figure 11.33(a) and 11.33(b) depict actual screen shot examples when color 0 is used as a color
burst reference (Figure 11.33(a)) as well as color 14 as a color burst reference (Figure 11.33(b)).
Color 15 is NO COLOR or GROUND, so it's unused as a possible color.

11.11.2 Video Demos

First some terminology — historically, video systems that controlled the raster mostly with software
are called “video kernels”. Old Atari 2600 and video arcade game programmers used to write a
game that was also the kernel, that is, the game logic was so closely tied to the video they were
the same thing. Thus, generalizing a software only video system is rather hard. There are some
techniques that can be coded such as crude frame buffers, line buffer, sprite systems, and so

82



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

forth which I will code in the next chapter (when | get a chance on the next revision of this
document). But, for now | leave it all to you. Given that, | have written two of the easiest programs
to experiment with. The first program draws a single blue bar in the middle of the screen. It’s very
short and you should be able to follow it in detail and experiment with it. Like | said, | don’t follow
the RS-170A spec to the letter, but | am always close. For example, there are really 262.5 lines
per screen, | use 262, and other small changes to the color burst, syncs, and general timing to
make things easier. The general technique | use to code these demos is a “hard coded” kernel,
that is, the kernel is the display. In the second demo, | make a little more complex kernel that
shows how during the VSYNC you can do animation.

The key to all this raster programming is that your code can NOT deviate a SINGLE cycle, not
even ONE! All paths thru your code must be the SAME. This is a little hard to get used to, but you
will get the hang of it by counting clocks, adding delays and so forth. | suggest you start by
experimenting with color bars and then move onto writing kernels with logic that track the beam
each frame and draw dots or simple sprites, then you can try scanline buffers, and full frame
buffers. Remember, each color clock is free since the hardware does the color for you, so you
have about 20-22 cycles per pixel to do work with a color display, that means you can be fetching
from memory, doing translations, and so forth. The trick to writing video kernels is to organize
your games and demos like this:

11.11.2.1 Video Kernel Tips

e During the vertical blank and sync do all game logic, input, and sound, generate all static data
for the video kernel.

e During each line rasterization, the HSYNC should be used to access the new “row” or “data
set” for that line.

e During each pixel you should send out the pixel data and fetch and decode the next or do any
comparison logic.
There literally is no limit to what can be done at 80 MHz with color and intensity support, |

estimate Wolfenstein 3D can definitely be written on the XGS ME, considering | have seen
something like it on the Atari 2600! With that in mind let’s look at the demos.

83



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.34 - The Single Color Bar Demo Running at 80 MHz.

11.11.2.1 Single Color Bar Demo

The single color bar demo is located on CD-ROM at:
CDROOT:\XGSME_HW_CD\XGSME_Sources\ntsc_color xme_01.src

Figure 11.34 is a screen shot of this video thrill ride in action. To run the demo, you must power
on the XGS ME, plug in the A/V cable, set your TV for NTSC (if it has a setting), assemble and
upload the program and set the system to RUN mode.

| don’t like gigantic listings in books, so | usually don’t list complete programs, but the color bar
demo isn’t that long, so | am going to list it here if you happen to be reading this without a
computer. To save pages, it's in a small font.

LI11777777777777717777777777777777/7777777/777777//7/7/77//7////77///////////////
NTSC_COLOR_XME_01.SRC - NTSC Color Test, 80 MHz version

This demo draws a single color bar midway on the screen

it ONLY works at 80 MHz

Architecture 2 - video System . .
8-bit video drive consisting of (2) 4-bit nibbles formatted as shown below

color (0-15) Intensity (0-1.0v)

Color (Chroma) upper 4-bits | Intensity (Luma) Tlower 4-bits
|VID_CSEL3|VID_CSEL2|VID_CSEL1|VID_CSELO|VID_ISEL3|VID_ISEL2|VID_ISEL1|VID_ISELO|
b7 b6 b5 b4 b3 b2 bl b0

The video Hardware Port Mapping Bits from the SXx52

;Port Bit XGS ME Bit Description

84



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; REO VID_ISELQ Bit 0 of the intensity signal that controls LUMA.
; RE1 VID_ISEL1 Bit 1 of the intensity signal that controls LUMA.
; RE2 VID_ISEL2 Bit 2 of the intensity signal that controls LUMA.
; RE3 VID_ISEL3 Bit 3 of the intensity signal that controls LUMA.

RE4 VID_CSELO Bit 0 of the color phase selection value.

RES VID_CSEL1 Bit 1 of the color phase selection value.

RE6 VID_CSEL2 Bit 2 of the color phase selection value.

RE7 VID_CSEL3 Bit 3 of the color phase selection value.

Notes on video hardware specs

color 0 - Phase reference

Color 1 - 14 - phase de1ayed co1ors at 10-12ns per de1ay approx.

color 0: yellow....orange...red....pink....magenta....violet..... blue:Color 14

Color 15 - ground, no burst, use for B/W signal generation.
Intensity .3v (6) approx. black, 0.0v sync (0), allows 10 shades :)
/////////////////////////////////////////////////////////////////////////////

Set device att

/////////////////////////////////////////////////////////////////////////////

DEVICE SX52
RESET Start
FREQ  80_000_000

this is a directive to the ide only

if you want to put the XGS ME into RUN mode
you must make sure you go into the

device settings and make sure that

HS3 is enabled, and crystal drive and

feedback are disabled and then re-program

the chip in PGM mode and then switch it to RUN

CLK_SCALE EQU 8 ; used to make calling the DELAY macro easier
; set this to the frequency / 10,000,000
DEVICE OSCHS3 ; High-speed external oscillator
DEVICE IFBD ; Crysta] feedback disabled
DEVICE XTLBUFD ; Crystal drive disabled

; 6444ééé//////////////////////////////////////////////////////////////////////
S JIITT11111171117111111111111711171111711171111111171117111711111111711111111

; sync and black

BLACK_LEVEL EQU (6) ; approx. .3v .
SYNC EQU (15*%16 + 0) ; no color burst with Ov
BLACK EQU (15%*16 + BLACK_LEVEL) ; no color burst with .3v

; reference color burst and 7 colors

CBURST_ON EQU (0*16 + 5)
CBURST_OFF EQU (15*%16 + 5); same as black
COLORO EQU (0*16 + BLACK_LEVEL)
COLOR1 EQU (1*16 + BLACK_LEVEL)
COLOR2 EQU (2*16 + BLACK_LEVEL)
COLOR3 EQU (3*16 + BLACK_LEVEL)
COLOR4 EQU (4*16 + BLACK_LEVEL)
COLOR5S EQU (5*16 + BLACK_LEVEL)
COLOR6 EQU (6*16 + BLACK_LEVEL)
COLOR7 EQU (7*16 + BLACK_LEVEL)
COLORS8 EQU (8*16 + BLACK_LEVEL)
COLOR9 EQU (9*16 + BLACK_LEVEL)
COLOR10 EQU (10*16 + BLACK_LEVEL)
COLOR11 EQU (11*16 + BLACK_LEVEL)
COLOR12 EQU (12*16 + BLACK_LEVEL)
COLOR13 EQU (13*16 + BLACK_LEVEL)
COLOR14 EQU (14*16 + BLACK_LEVEL)
COLOR15 EQU (15*%16 + 15) ; equivalent to CBURST_OFF and WHITE
DARKGRAY EQU (15*16 + 8)

GRAY EQU (15*%16 + 10)
LIGHTGRAY EQU (15*16 + 12)

WHITE EQU (15*16 + 15)

85



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

OVERSCAN_COLOR EQU WHITE
HSYNC_COMP EQU +0)

: /////////////////////////////////////////////////////////////////////////////

Global varia

; /////////////////////////////////////////////////////////////////////////////

countl ds ; delay counter
count2 ds 1 ; delay counter

; these are just working vars for the code, nothing special

Tuma ds 1 ; temp for Tuma

chroma ds 1 ; temp for chroma

comp_video ds 1 ; temp sum of luma and chroma
burst_phase ds 1 ; temp for burst phase index
scanline ds 1 ; scanline counter

counter ds 1 ; general counter

counter2 ds 1 ; general counter

timerlow ds 1 ; timer low and high

timerhi ds 1

; 4éé4éé///////////////////////////////////////////////////////////////////////
S JIITT11111171117111111111111711171111711171111111171117111711111111711111111

s IIITII1100707 7777771077777 7707777077777777777777777777777777777777777777/7/777

DELAY MACRO clocks

; this new macro is slightly different than the one found in othe demos

; this macro can handle large delays up to 25,500 cycles, so to call it use the following
; constructions

; cycle delay
; DELAY(number_of_clocks)

; for 80 mhz clock, microsecond parameters
; DELAY(80*microseconds)

; example you want a 4.5 uS delay

; 80*%4.5 = 36

; DELAY(36)

g tqe preprocessor can NOT do floating point math, so another construction would be to

scale

5 all values by 10 then multiply by 8 rather than 80, for example, a 4.5 uS delay could
e

; written

; DELAY(8%45)

; which is a 1itt]l more intuitive

; first compute fractional remainder of 10 and delay
IF ((Cclocks) // 10) > 0)

; first 3 clock chunks
REPT (((c]ocks) // 10)/3)

JMP $ + 1
ENDR

; now the remainder if any
REPT (((clocks) // 10)//3)
NOP

ENDR
ENDIF

; next multiples of 100
IF ((Cclocks) / 100) >= 1)

; delay 100*(clocks/100), Toop equals 100, therefore 1*(clocks/100) iterations
mov counter, #((clocks)/100) ; (2)

:Loop
mov counter2, #24 ; (@
:Loopl00
djnz counter2, :Loopl00 ; (4/2)
djnz counter, :Loop ; (4/2)

86



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

ENDIF

; last compute whole multiples of 10, and delay
IF (C (Cclocks) // 100) / 10) >= 1)

; delay 10*(clocks/10), loop equals 10, therefore (c1ocks/10) iterations

mov counter, #( ((clocks) // 100) / 10) HE@))
:Loop2

jmp § + 1 i (3)

Jmp $ + 1 ; (3)

djnz counter, :Loop2 ; (4/2)
ENDIF
ENDM

; 644é/////////////////////////////////////////////////////////////////////////

s IIIITIIT100707 7777771077777 7777777777777777777777777771777777777777777/7/7/777
WATCH Tuma,8,UDEC

WATCH chroma, 8,UDEC
WATCH comp_video,8,UDEC

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

org $0

; This funcion delays a full 65536 counts and returns

Delay_Long clr countl ;Initialize Countl, Count2
clr count2 0

:Loop djnz countl, :Loop ;Decrement until all are zero
djnz count2, :Loop ;
RET ;then return

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
Start

bank  #$20
; Initialize 1/0 controller

mov RE, #%00000000 ;Set port E output latch to zero

mov |RE, #%00000000 ;Set port E direction

mov RB, #%00000000 ;Set port B output latch to zero
mov IRB, #%00000000 ;Set port B direction

mov Tuma, #0

mov timerlow, #0

mov timerhi, #0

mov burst_phase, #(COLORO-1)
; /////////////////////////////////////////////////////////////////////////////
; /////////?///////////////////////////////////////////////////////////////////
Main
; 192 scanlines of active video
Begin_Raster

mov scanline, #192 ; render 192 active scanlines
Raster_Loopl

; front porch 1.5us

mov RE, #BLACK ;7 ( 2 cycles ) black
DELAY (CLK_SCALE*15-2)

87



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

;call pDelay_Long

; hsync 4.7us
mov RE, #SYNC ; (2 cycles ) sync
DELAY (CLK_SCALE*47 - 2)
;call Delay_Long

; pre-burst .6us
mov RE, #BLACK ; ( 2 cycles ) sync
DELAY (CLK_SCALE*6 - 2)
;call pelay_Long

; color burst reference 2.5us (9-10 clocks)
mov RE, burst_phase ; ( 2 cycles ) sync
DELAY (CLK_SCALE*25 - 2)
;call Delay_Long

; post-burst 1.6us

mov RE, #BLACK ; ( 2 cycles ) sync
DELAY (CLK_SCALE*16 - 2)
;call Delay_Long

; draw scanline (52.6 us)

; step out to mid screen approx. 52.6us/2
DELAY (CLK_SCALE*263)

; now draw a blue bar for 5us
mov RE, #(COLOR14 + 4)
DELAY (CLK_SCALE*50-2)

; now draw black for the remainder of the scanline
mov RE, #BLACK
] DELAY(CLK_SCALE*526 - 8*263 - 8*50 - 2)
y loop
djnz scanline, Raster_Loopl

; /////////////////////////////////////////////////////////////////////////////
; VERTICAL BLANKING A

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

mov scanline, #28
Vblank_Loopl

; front porch 1.5us
mov RE, #BLACK ; ( 2 cycles ) black
DELAY (CLK_SCALE*15-2)
;call pDelay_Long

; hsync 4.7us
mov RE, #SYNC ; ( 2 cycles ) sync
DELAY (CLK_SCALE*47 - 2)
;call pelay_Long

; pre-burst .6us
mov RE, #BLACK ; ( 2 cycles ) sync
DELAY (CLK_SCALE*6 - 2)
;call pDelay_Long

; color burst reference 2.5us (9-10 clocks)
mov RE, burst_phase ; ( 2 cycles ) sync
DELAY (CLK_SCALE*25 - 2)
;call Delay_Long

; post-burst 1.6us
mov RE, #BLACK ; ( 2 cycles ) sync
DELAY (CLK_SCALE*16 - 2)
;call pDelay_Long

; draw scanline (52.6 us)
mov RE, #OVERSCAN_COLOR ; ( 2 cycles ) sync
DELAY (CLK_SCALE*526 - 2 - 4)
;call Delay_Long
; loop . .
djnz scanline, Vvblank_Loopl

88



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; /////////////////////////////////////////////////////////////////////////////
; END BOTTOM SCREEN

; /////////////////////////////////////////////////////////////////////////////

; \//éé_{_{é{\{/é\/{//////////////////////////////////////////////////////////////////

s AIIITIIT107707 7777771077777 7777777777777777777777777777777777777777777/7/7/777

mov scanline, #4
Vblank_Loop2
mov RE, #SYNC ; (2 cycles ) sync
DELAY (CLK_SCALE*635 -2 - 4)
djnz scanline, vblank_Loop2

; /////////////////////////////////////////////////////////////////////////////
; END VERTICAL SYN

; /////////////////////////////////////////////////////////////////////////////

; /////////////////////////////////////////////////////////////////////////////

5 CREEN

: /////////////////////////////////////////////////////////////////////////////
mov scanline, #38 ; render scanlines

Vblank_Loop3

; front porch 1.5us
mov RE, #BLACK ;7 ( 2 cycles ) black
DELAY (CLK_SCALE*15-2)
;call pelay_Long

; hsync 4.7us
mov RE, #SYNC ( 2 cycles ) sync
DELAY (CLK_SCALE*47 - 2)
;call Delay_Long

; pre-burst .6us
mov RE, #BLACK ;7 (2 cycles ) sync
DELAY (CLK_SCALE*6 - 2)
;call Delay_Long

; color burst reference 2.5us (9-10 clocks)
mov RE, burst_phase ; ( 2 cycles ) sync
DELAY (CLK_SCALE*25 - 2)
;call pelay_Long

; post-burst 1.6us
mov RE, #BLACK ; ( 2 cycles ) sync
DELAY (CLK_SCALE*16 - 2)
;call Delay_Long

; draw scanline (52.6 us)
mov RE, #OVERSCAN_COLOR ;7 ( 2 cycles ) sync
DELAY (CLK_SCALE*526 - 2 - 4)
;call Delay_Long
; loop
djnz scanline, vblank_Loop3

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

LI T 0111101 11111111111 00000000 0L 1100004000000

The calls to the DELAY() macro are always in clocks. Since the system clock is at
80Mhz, it makes it hard to think in terms of microseconds since 80 clocks is 1
microsecond, to facilitate easier thinking, | scale the sent values to DELAY in the calls
themselves, so that | can think in terms of 10"'s of microseconds, so if | want a delay of

89



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

2.5 microseconds | can use the number 25 (10*2.5) scaled by a number. This makes it
easier to write, think, and represent fractional delays as well. Refer to the DELAY macro
for more details.

The code that draws the scanline is highlighted for reference. In essence, it sets the raster to
black, then delays enough time for the raster to get to the middle of the screen, then turns the
raster to blue, then delays for 5us which creates a blue region, then turns the raster back to black
and delays the remainder of the time needed for a total of 52.6us scanline time.

Figure 11.35 — Color Bar Demo.

11.11.2.2 Color Bars Demo

The next demo is much more complex. The kernel draws a number of color bars and then
changes the reference color phase each time step to animate the colors. Figure 11.35 shows the
demo in action. The demo is located on the CD at:

CDROOT:\XGSME_HW_CD\ XGSME_Sources\ntsc_color_xme_02.src
The code for the demo is very similar to the single color demo, except for the code that draws the

raster line during the active scan has been replaced with this code that basically draws a few
pixels of each shade of each color:

; draw scanline (52.6 us)

DELAY (CLK_SCALE*50)
color_Loop_Init

mov chroma, #COLORO ; (2
color_Loop_Body

mov RE, chroma ;(2)

90



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

DELAY (10)
inc RE ; (D
DELAY (10)
inc RE ; (D
DELAY (10)
inc RE ; (D
DELAY (10)
inc RE ; (D
DELAY (10)
inc RE ; (D
DELAY (10)
inc RE ; (D
DELAY (10)
inc RE ; (D
DELAY (10)
inc RE ; (D
DELAY (10)
inc RE ; (D
DELAY (10)
dec RE ; (D
DELAY (10)
dec RE ; (D
DELAY (10)
dec RE ; (D
DELAY (10)
dec RE ; (D
DELAY (10)
dec RE ; (D
DELAY (10)
dec RE ; (D
DELAY (10)
dec RE ; (D
DELAY (10)
mov RE, #BLACK ;(2)
DELAY (10)

add chroma, #16 ; (2)
cjbe chroma #COLOR14, Co1or Loop_Body ;(6/4)
DELAY(CLK_SCALE*526 - CLK_SCALE*50 - 15*(28+18*10))

11.11.2.3 Animated Color Bars Demo

The next demo takes the color bar demo and adds a twist to show the color space of the system;
after a number of frames, the color burst reference is incremented and the screen is drawn again,
this creates a “glowing color shift”. The demo is located on the CD at:

CDROOT:\XGSME_HW_CD\ XGSME_Sources\ntsc_color_xme_03.src

The code that performs the animation is done during the vertical blank sync period (4 lines of time
is more than enough). Here’s the code below for review:

64444éﬁ{/éé//////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////

enable sync for scanlines worth

mov RE, #SYNC ;7 (2 cycles )
clc ; (1 cycle)
add counter3, #20 ; (2 cycle )

91



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

jnc Next_Burst_End ;7 ( 2/4 cycles )
Next_Burst_Start
add burst_phase, #16 ; ( 2 cycles )
Next_Burst_End
DELAY (CLK_SCALE*4%*635 - 2 - 3 - 4) ; 4 scanlines of sync

The code basically sets the raster to “sync” then performs the “game logic” to change the color
burst, when the code completes then it delays the remainder of the time needed for the 4 sync
pulses.

Figure 11.36 — The Connection Diagram for the XGS ME Programming System.

11.12 The Onboard Programmer

The SX series processors are programmed via the OSC1/0SC2 pins via a complex serial
protocol. Referring to Figure 11.36, the programming of the SX52 is accomplished via the PC-
>Parallel Cable->XGS ME. On the XGS ME another processor, an SX20 that is used to handle
the high speed timing and ultra accurate cycle counting that is necessary to program the SX52
core. Thus, the XGS ME has an entire “slave” processor (an SX20) just to program the SX52.
The PC talks to the SX20 then the SX20 talks to the SX52.

IS {=S ) [cl The SX20 isn’t absolutely necessary since the parallel port is fast enough to
communicate directly with the SX52, however, the problem is that the timing of
the parallel port isn’t reliable due to asynchronous processes, threads, etc. In
the days of DOS, it would have worked, but under Windows
98/ME/XP/2000/2003, parallel port access is too unreliable when tight timing
constraints are imposed.

The interesting thing about programming the SX processors is that they can be programmed “in
circuit”, this is called “In System Programming” or ISP. Anyway, the process follows the following
steps more or less:

Step 1 (Initialization): The host programmer places the SX processor into ISP mode.

Step 2 (Programming): The host programmer communicates with the SX processor via a serial
protocol and sends commands and receives information. Programming is performed in this step.

92



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Step 3 (Shutdown): The host programmer releases the SX and pulls out of ISP mode, the SX
resets and runs the program.

Programming FLASH based memories is usually a repetitive process where the
memory is programmed then tested, if the value isn’t correct then its
reprogrammed until it reads the correct value. For example, the XGS ME IDE
allows you to change the number of times the programming of a word occurs and
other various repeat counts. You can find this dialog from the main menul; Build ->
Tool Settings -> Configure Tools -> Hardware Tab -> Programmer Repetition.

The details of ISP mode are beyond the scope of this text, but you can read about them in the
following document located on the CD:

CDROOT:\XGSME_HW_CD\SX_Docs_Books\sxisp.pdf

Figure 11.37 — Programming Waveforms for the SX52.

drive OSC1 to Vpp level

toggle OSC1 9 times (min)

ive OSC1 J
osci nnhnIEEnnnnnnn r[::r
T Bl

| release OSC2, OSC2 is open drain

drive OSC2 low
Internal RC clock | | | |

_Y._‘
128 kHz

ISP Mode Entry with External Clocking

Vpp = 12.5V

OSC1/Vpp |

0SC2 4| | I_T_

F )

| release OSC2

drive OSC2 long enough

Internal RC clock mmwﬂ_m_
= TN - = -~ g

4 MHz - 32kHz Internal RC changed to
128 kHz

ISP Mode Entry with the Internal RC Oscillator

93



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

But, briefly take a look at Figure 11.37 which shows the waveforms for entering into ISP mode.
The hard part about entering into ISP mode is that that the system external oscillator must be
electrically switched out of the system. Also, the programming hardware must be able to generate
the Vpp voltage of 12.5V (we have this handled though), and this voltage along with 0V, 5V, must
be able to be gated to the OSC1 pin, we will see the hardware that does this momentarily.

Figure 11.38 — ISP Protocal.

In System Programming Protocol

3

1 frame

N

—)11cycle |(—

fsyc i C3 j c2 { c1 | co | D1 { Do | D7 i D2 { D1 | DO |

4 clocks per cycle

ISP Commands:

0o 1 2 3 nop 4'hf
erase 4'h0
J_I—l_l——l—l_l— read_dev 4'h1
read_fusex 4'h2
77z prog_fusex 4'h3
Load 4'h4
prog 4'h5
L daia‘\::aen;gleedat el 4'h6
inc 4'h7

ISP Frame

Figure 11.38 shows the actual protocol for ISP mode. As you can see there are 4 command
cycles C3-C0, followed by 12 data cycles D11-D0, each “cycle” is composed of 4 clocks. The
communications system is a single wire protocol that is pulled HIGH at the SX end, so commands
are inserted by pulling the line LOW at either end. The transmission rate is 128Khz. So, the
system is anything but simple, and getting it to work in practice is fraught with details. Also, you
can see the commands that ISP supports, nine in total, but they are more than enough to
program the SX chips.

(o) For more information on the actual programmer’s code and firmware refer to the
XGameStation™ Micro Edition User Guide on CD.

94



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.39 — The XGS ME Programmer’s Schematic.

- \kitage Gantrol.Dutput. Ay

Firmurare Programming Port

il
Ly

S50 Programring Hist

Ly

Erarnal X rorarmr Gutpit Fo . ©

maE—————
;

L

L«” N

L icag L.

F

i
IF
+

R Re8 ) BED. RSt

0,00, Fu gl T e, Ty,

R

T
.E;I o
is
i
i
24
]

Now, let’s take a brief look at the schematics for the programmer module, Figure 11.39 shows the
complete programmer system and the file below contains the Proteus design file:

CDROOT:\XGSME_HW_CD\Schematics_Circuits\xgs_micro_programmer_05.DSN

The design includes the parallel port interface at J2, the firmware programming port (to program
the SX20 itself, this is done at the factory) at J3, an array of indicator LEDs at D9-D13, the SX20
itself at U18, and a transistor array Q1-Q7. The circuit works as follows; the PC establishes
contact with the SX20 via the parallel port and the 4 data/control lines:

PP_DATA_OUT - Data out to the parallel port from the SX20.
PP_DATA_IN — Data in from the parallel port to the SX20.
PP_CLOCK - The clock form the PC.

PP_STROBE - The strobe from the PC.

The SX20’s firmware allows the PC to send commands to it and then the SX20 controls the
analog transistor array and can gate signals to the OSC1 pin (0V, 5V, 12.5V) for purposes of
entering ISP mode and programming. The communications on OSC2 are sent back to the SX20
and thru the protocol back to the PC. The transistor array operates each transistor is a simple

saturated mode where when the transistor is turned on the voltage is gated out and summed at
the OSC1 node.

NOTE

A cleaner solution would have been to use an analog switch rather than the transistors,
but analog switches require that the VCC voltage is greater than the maximum voltage
conducted, thus we would have to power the analog switch with the 12.5V supply to get
it to pass the signal which | didn’t want to do, also the transistors are an excellent

95



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

- example of gating signals with discrete components.

Figure 11.40 — Closeup of the 30-Pin Expansion Interface.

F }

%
‘T-
>
2
-
0

11.13 XGS 30-Pin Interface and SX52 Headers

The last topic of discussion is the 30-pin expansion port on the XGS ME and the headers
surrounding the SX52. Let’s start with the 30-pin expansion interface. Figure 11.40 shows a
screen shot of the board that indicates where pin 1, 15, 16, and 30 are on the 30-pin interface.
Also, Table 11.13 lists the pins and their function.

Table 11.13 — Pinout for 30-pin expansion slot.

Pin # Signal Name Pin # Signal Name

1 RBO 15 RC6

2 RB1 16 RC7

3 RB2 17 RDO

4 RB3 18 RD1

5 RB4 19 RD2

6 RB5 20 RD3

7 RB6 21 RD4

8 RB7 22 RD5

9 RCO 23 RD6

10 RC1 24 RD7

11 RC2 25 RA7

12 RC3 26 33VCC

13 RC4 27 5VCC

14 RC5 28 MAIN_OSC_OUT
29 OSC1_RUN_IN
30 GROUND

96



S
| AN 0 ST

S GsE1RON N

Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.41 — Electrical Pinout of Expansion Port.

Q
a
g
v
v
\4

m
3
b
2
!
Q
2

JOYSTICK 1
15

12

PS2 KEYBEDARD PORT

|é00000000000|

o o
. -

| (500000000000 |

e
=B

o
g| (J.)OOOOOOOOOOO |
=

CONN-|

CONN-H1Z - - -

HiZ - - -

x
=

97



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

You can create a board to plug into the this edge connector with double sided contacts at .1”
spacing (2.54mm) 15 fingers per side (or you can purchase them from us). Figure 11.41 shows
the actual pinout of the connector in a mechanical view. The circuit diagram is shown in Figure
11.42 and the design files are on the CD at:

CDROOT:\XGSME_HW_CD\Schematics_Circuits\xgs_micro_expansion_05.DSN

The design is very straightforward, just a selection of key I/O, power, and clock lines have been
exported to the 30-pin header. To build devices that use the expansion port you simply make sure
that you grab the signal from the appropriate pins. However, there are some things to look out for.
Some pins on the expansion port are used by other parts of the XGS ME system and if you drive
them or load them you might disturb other sub-systems. For example, the PS/2 keyboard/mouse
interface’s clock and data lines are on RB3, RB4, so if you were to drive these lines and try to
read the mouse/keyboard you would get garbage, so the trick is to look at the main SX52
interface map in the design file:

CDROOT:\XGSME_HW_CD\Schematics_Circuits\xgs_micro_interfacemap_05.DSN

And based on this select which lines of the 30-pin you can use or want to use or are willing to
disturb. For example, you might make a GPU card that must use all of RB, no problem, just tell
the user he can’t use the keyboard at the same time.

Also, you will notice the lines MAIN_OSC_OUT and OSC1_RUN_IN, referring to the clocking
system in Figure 11.7 these are the main clock and the divided clock, this way you can always
run your card at the max speed if you wish, but you also can tell what speed the processor is
being clocked at. Finally, the 5.0V and 3.3V supplies are exported, please try not to load them too
much, | suggest using CMOS or LS chips, don’t try and run relays off the card!

11.13.1 Expansion Slot Ideas

There are so many things you can do with the expansion slots, but here are some of my favorites:

e A USB interface.

e An IDE interface.

e An Ethernet interface.

e A FLASH memory module.

e Interface a 6502, Z80, ARM7 or other processor on the card.

e A GPU on a FPGA and output NTSC or VGA graphics.

e Wireless communications card using Motorola Zigbee technology.

e Take the audio or video outputs and plug them into ports on the card and further process
them and or mix them with extra hardware.

11.13.2 SX52 Headers

You may notice the headers around the SX52. There are 4 banks of 12 headers around the
SX52, these connect 1:1 with the pins of the SX except for the +5 supplies on each side of the

98



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

chip. You can connect directly to these ports and probe signals or extract signals that aren’t
available on the 30-pin.

Figure 11.43 — SX52 to SX20 Inter-processor Communications Block Diagram.

I’:~ By Cehema L

Sy e 5 Pt S AT A

11.14 Multiprocessor Support

Although there is no firmware currently to support multiprocessing, there is hardware support for
it. At the last minute | decided to add a pair of lines between the SX20 and the SX52. The
motivation for this what that it seemed such a waste to let the SX20 just sit there underutilized
while the SX52 does all the work. | didn’t want to make a lot of connections between the two
chips to load the SX52’s interface, but at least a pair of them would suffice to support full duplex
bi-directional communications. Figure 11.43 shows a block diagram of the connections. Table
11.14 shows the connections as well.

Table 11.14 — Interprocessor communications ports.

Pin on SX52 Pin on SX20
RA7 (2) mmmmmmmmmeeee > RB1 (8)
RB7 (19) mmmmmmmeeeee > RB2(9)

The only caveat is that RA7 on the SX52 is also connected to the SRAM’'s SRAM_BANKSEL line,
thus if you send data thru this line you would be changing the A16 line on the SRAM, but as long

as you know this there is no problem. Or you could completely forget the RA7 line from the SX52

and do all communications thru the RB7 <-> RB2 gateway, the choice is yours.

11.14.1 Adding rocessor Support in Firmware

The first step in getting multiprocessor support is that you are going to have to take the firmware
that is programmed on the SX20 that communicates with the XGameStation™ Micro Edition
Studio and augment it with extra code that allows programming to occur transparently, but then
after programming the SX20 goes to work for you and waits and listens on the communications
lines for commands. The source code for the firmware is located on the CD at:

CDROOT:\XGSME_HW_CD\XGSME_Sources\Firmware\sx_prog_unit01.SRC
Remember, to program the SX20 you will need a SX compatible programmer such as a SX-KEY

from Parallax Inc., we have added a “Firmware Input Port” located on the bottom left of the
XGS ME, Figure 11.44 shows a closeup. So step 1 is to take our source, modify it, add extra

99



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

functionality to receive and send commands thru the interprocessor 1/O ports and then upload the
new firmware.

Figure 11.44 — The Firmware Programming Port for the SX20.

R4 R39 RA37 R3E* RA33 R3Z2 R29 A28
IR P¥® iTe 1% J5PF P.¥ e 4R VR
R4l 2, '0 A28 4,0 A4 L 's A2D . 1O
A T 4 v
Y RISITE 2o ,s1"8 VY08
. ® . 'S R . O

O~neGARD -

BX PrOGeAMMr o

JOYSTICK O

B KYCON

e

S |

The next question is what kinds of support to add? Well, there are trillions of things you can add,
for example, you can create a very complex math engine on the SX20 that supports 32 bit fixed
point, floating point, vectors, matrices, etc. and then each frame you send all the math to the
SX20, let it do it, then simply collect the results next frame! This way you could offload heavy
calculations or the generation of algorithm data to the SX20. Also, if you're really smart, why not
store more data on the SX20? The SX20 has 2K WORDS of memory, our firmware takes about
half of the memory as is, so you could write your communication handler and then use the rest of
the memory for data storage. Or another cool idea is to use the SX20 as a remote register file if
you for some reason couldn’t use the SRAM.

The only downside is that the SX20 runs at 4Mhz max since its internally clocked, so there is no
direct way of getting around that. However, if you really wanted to you could jump the 80Mhz

clock to the OSC1 pin of the SX20 if you really wanted to push it, then of course the firmware
timing would be off and have to be adjusted since it was designed for 4Mhz.

11.15 XGS ME Programming Tutorials

On the CD there are programming tutorials that cover specific examples of both NTSC and PAL
demo/game programs. There are located here:

CDROOT:\XGSME_HW_CD\XGSME_Tutorials\*.*

100



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.16 XGS Pico Edition — Bonus Section !!!

For readers that like a more “hands on” approach and actually want to build something from the
ground up then the XGS Pico Edition is for you. The XGS Pico Edition is a “specification” of
how to build a small game system using many of the technologies from the commercial XGS
Micro Edition, but scaled down, so the number of parts is a bare minimum and the parts don’t
include any surface mount components that aren’t manageable.

The Pico Edition (PE) is based on the SX28 based embedded system developed in Chapter 9
and then augmented with simplified graphics, sound, input, power and clocking based on the
XGS Micro’s design philosophies. Therefore, to understand the Pico Edition you must read in
detail this chapter completely since the section below is more of a practical treatise on
construction rather than technical explanation and simply shows you the systems of the Pico
Edition along with construction instructions.

To begin with you might be asking how do you get the parts for the Pico Edition?

= You can buy them yourself from a distributor like DigiKey.com, Mouser.com, JDR Micro
Devices, Jaycar etc.

= You can buy a Pico Edition kit from the www.xgamestation.com site or get one bundled
with this book in eBook or printed format.

If you want to save the time of hunting the parts down, ordering, and then waiting for them then
the pre-packaged kit might be the way to go. However, if you're like me then finding the parts is
half the fun and it's a very educational process to go thru at least once in your life. Gives you
respect for people that do parts procurement for battleships!

Figure 11.45(a) — The Hand Built XGS Pico Edition.

=
)

101



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.45(b) — The Hand Built XGS Pico Edition with Color Coding.

POWER LED
SUPPLY  OUTPUT

The Pico Edition is built on a single “solderless” breadboard as shown in Figure 11.45(a)
(which shows a completed unit with optional SX-KEY programmer plugged in). Figure 11.45(b)
shows the same image with color coding to indicate the various sub-systems. The fun thing about
the Pico Edition is that you build it yourself and it's very small and can be battery powered, plus
you can make modifications to it very easily without taking a soldering iron to it as you would your
$200 XGS Micro Edition or other equally expensive manufactured embedded system or kit.

Next, the Pico Edition’s graphics are very similar to the Micro, so coding for both is very similar.
However, the Pico does NOT have color helper hardware as does the Micro Edition, thus if you
want color, you have to “code” it yourself, but you will learn more about this later in this section.

Finally, the Pico Edition is designed around the SX28 rather than the SX52. The main reason is
the SX28 comes in a 28-pin DIP package, so we can work with it without a soldering iron;
furthermore, the programming of the two processors is nearly identical. The major differences
between the processors are shown in Table 11.15

Table 11.15 — Comparison of SX28 and SX52

SX28 (Pico Edition) SX52 (Micro Edition)

Program FLASH 2048 12-bit WORDS 4096 12-bit WORDS

User SRAM 128+8 = 136 BYTES  256+6 =262 BYTES

Max Speed 75MHz+ 75MHz+

I/0 Ports A(4),B(8) ,C(8) =20  A(8), B(8), C(8), D(8), E(8)=40

Note: The parenthetical numbers define how many bits are supported by each port.

102



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Other than the memory size differences and the number of I/O ports the SX28 and SX52 are
nearly identical from a programmer’s point of view. The major difference architecturally is simply
that the memory addressing is slightly different in both processors and some minor code changes
have to be made to perform direct, indirect, semi-direct addressing between to two processors
respectively with the same code.

Please refer to the SX28 User Manual and data sheet located on the CD here for details:
CDROOT:\XGSME_HW_CD\Datasheets\SX-DDS-SX2028AC-16.pdf

Lastly, the engineering of the Pico Edition is based largely on the Micro Edition outlined in the
beginning of this chapter, so please read all about the Micro Edition even if you don’t have one,
so that you can understand the engineering that the Pico Edition was derived from, we won’t
cover it yet again here since its already explained in the pages above as well as the body of the
book in a general sense. Also, if you do have a complete copy of this book and not just this
excerpted chapter then make sure to read Chapter’s 8, 9, and 10 as well.

11.16.1 The Pico Edition Kit

If you have purchased a Pico Edition kit then you should have in your possession a bag of loose
parts along with a CD that contains this chapter alone or the entire eBook “Design Your Own
Video Game Console” or possibly you have a hard copy of the book. In any case, if you're
reading this chapter then you are ready to build the Pico Edition and start experimenting.

The XGS Pico Edition kit contains mostly discrete electronic components that are
fairly immune to static discharge. However, the SX28 chip itself is a CMOS
component and is susceptible to static damage. Therefore, make sure that before
handling the kit parts and the SX28 itself you ground yourself by touching some
nearby metal (a lamp, leg of the table, computer case, etc.) to discharge any static
charge that might have built up on you. And when handling the SX28 don’t walk on
carpets with it if possible unless the chip is stuck in the black anti-static foam.
Basically, unpack the parts on a table, work there. No break dancing or twister on
the carpet with the SX28!

11.16.1.1 Unpacking the Pico Edition

The first step before unpacking the XGS Pico Edition parts is to clear off a clean, open, work
space that is free of dust, dirt, etc. and is well lit; If you have an anti-static mat to work on that’s
even better, just make sure to connect the ground strap to something metal nearby. Next,
simply take out the parts from the kit, first remove the solderless white breadboard and place it
down, then remove the video cable, joystick assembly, and battery, finally remove the foam that
the SX28 is mounted on. Next, slowly pour the parts out on your work area. It's amazing how little
parts can bounce 2-5 ft when you pour them out, so do this slowly! Then organize everything
neatly. Figure 11.46 shows a complete kit organized on a white piece of construction paper after |
have organized all the parts and inserted them into the black anti-static foam that comes with the
kit.

103



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.46 — A Complete XGS Pico Edition Kit.

Now that you have your kit organized, let’s do a parts check and begin putting the XGS Pico
Edition together.

11.16.1.2 Checking the Parts List and Setting up Your Work Space

After you have organized all the parts, the first step is to take a survey and make sure you have
everything. All our kits are triple checked, but if you put the kit together then you need to have all
the parts listed below. In either case, you should have all the parts (or substitutes) shown in Table
11.16.

Table 11.16 — XGS Pico Edition Parts List

Quantity Reference Description
Designator
ICs / Active
(1) U1 Ubicom SX28 Microcontroller DIP 28
(1) U2 80.000 MHz 8-Pin DIP, Half Size Oscillator
(1) U2 (extra) 78.750 (22X NTSC) MHz 8-Pin DIP, Half Size Oscillator
(1) K] LM7805 Voltage Regulator, TO220 Package.
Optronics
(4) D1-D4 Red LEDs (Light Emitting Diode).
(1) D5 Green LED (Light Emitting Diode).

104



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Capacitors

(1) Cc2 10uF Electrolytic Radial, 0.1” Lead Spacing (polarized).
(1) C5 1uF Tantalum Dipped, 0.1” Lead Spacing (polarized).
(3) C1,3,4 0.1uF Monolithic, 0.1” Lead Spacing (non-polarized).

Resistors / Pots

(2) POT1, 2 500 Ohm Potentiometers.

(5) R2, 3, 4,5, 22 200 Ohm Axial 0.25W Resistors.
(10) R6-9, 13, 14-17, 21 360 Ohm Axial, 0.25W Resistors.
(6) R10-12, 18-20 180 Ohm Axial, 0.25W Resistors.
(1) R1 10K Ohm Axial, 0.25W Resistors.

Other / Mechanical / Cable / Wiring / Power

(1) J4 4-Pin Right Angle Header for SX28 Programming.
(1) N/A 9V Battery.

(1) J1 9V Battery Clip/Strap W/4” Leads.

(1) SWi1 SPST Micro Switch 2-Lead.

(20) N/A 4.5” 24 Gauge Hookup Wire.

(15) N/A 2.5” 24 Gauge Hookup Wire.

(1) J2 DB9 Male Color Coded Cable Assembly.

(1) J5,6 RCA Male A/V Cable Assembly (red/white).

11.16.2 The Pico Design Files

The XGS Pico Edition consists of a single design file in Proteus Labcenter format, thus to open
the file you will need to install the Proteus Labcenter demo from the CD located in the \Tools sub-
directory. The actual ISIS design file can be found on the CD here:

CDROOT:\XGSME_HW_CD\Datasheets\xgs_pico_edition_kit_01.DSN

Also, | have exported the file out to a high resolution image file, so you can use that instead. The
image file is located here:

CDROOT:\XGSME_HW_CD\Datasheets\xgs_pico_edition_kit_01.GIF
Either way you want to work with the schematic is fine as long as you can see the symbols and
read the reference designators for the parts. Figure 11.47(a) shows the complete schematic of

the XGS Pico Edition. Figure 11.47(b) is the same schematic with color coded areas depicting
each sub-section for easy reference.

105



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.47 (a) — The XGS Pico Edition Schematic.

5.0V, 1.5A Main Supply

STRATCOHER

£ g SX28 Processing Unit
N o
a0 ut
c1 e
our 0
ey
Led Indicators

R2 R3 R4 F5 Joystick Port DB9-M
o - - = z Video Intensity DA R2R Ladder Audio Intensity D/A R2R Ladder
D1 D2 D3 D4 2 = R14 VIDEO QUT J5
N AN A S O - 7
o e e = oy
o=
= = = = P o
oo o0 oo an <

o External System Clock
c3
" CIF

5.0V, 1.5A Main Supply : see

a2 s e

PRI 2 e ] g i

2 s i r—
- LI o
J_-. = R22

o 1 a0 v
s

c4
s s svee
[T T
> D5 4
it

o0

Led Indicators

R2 R3 R4 RS JoystickPort DBO-M
o o - - e Video Intensity D/A R2R Ladder Audio Intensity D/A R2R Ladder
D1 D2 03 D4 = R14 | MDEOOUT U5
Y Y Y Y 0l 3
i e e i P —
L — = svee
- e - External System Clock
c3

- NSRS

J3
ok

11.16.3 Pico Edition Systems

In this section, we are going to describe the design of each sub-system of the Pico Edition. Since
the majority of the Pico Edition’s capabilities are derived from software rather than hardware
augmentation (as in the XGS Micro Edition) the explanations will be rather brief and non-technical
(for a more technical explanation, refer the Micro Edition coverage in the sections above).

106



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.48 — The XGS Pico Edition’s SX28 Main Processing Unit.

5VCC
SX28 Processing Unit
U1
Cl — —— r1ce NCIR 22
0.1uF 3 VDD OSC1 6
MONO =] NCA1 0SsC2 —55
= VSS RC7 54
-] NC2 RC6 >3
=] RAO RC5 >
— RA1 RC4 ===
8_ RA2 SX28 DIP RC3 %
To 1 RA3 RC2 ES
1] RBO RC1 KR
o] RB1 RCO 7
KKl RB2 RB7 EGE
T2 RB3 RB6 s
— RB4 RB5 p—=
SX28DIP
<TEXT>
GND

11.16.3.1 Processing Unit

The XGS Pico Edition is based on the Ubicom SX28 microcontroller (U1). Figure 11.48 shows a
close up of the SX28 in the Pico’s design. There is nothing special about the design. The SX28 is
simply powered up and the power lines at 2 and 4 are bypassed with a 0.1uF monolithic capacitor
and that’s about it. The clock for the SX28 can be either internal or external via the OSC1, OSC2
pins fed by an external oscillator (80.000Mhz or 78.750Mhz) or even an SX-KEY programmer.

As noted elsewhere, the main differences between the SX52 and SX28 are that the SX28 has
half the FLASH ROM and half the RAM as the SX52 does. Other than that, the processors are
nearly identical as far as their programming models and internal peripherals go. Of course the
SX28 also has less external I/O pins than the SX52.

107



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.49 — The XGS Pico Edition Power Supply.

- 5.0V, 1.5A Main Supply. .~~~ = . . BVCC
PWR IN 8-12V (500maA+) i
us3 §
- J S L. UAGSOS T 5.0V Power Indicator
TEXTS
. B o z . R22 . .
L . o S - 300 . . . .
Motes: . =3 C2 o ﬂ} <TEXT>. . .
10 0UF Cd ——
9Yy Battery Clip ELEC o1F T .
Pin 1-RED
MO TANT
Pin2-BLACK | . . S B o N o SZ& D5 .
T . o R LED . .
<TEXT>.
- GND
GND :

11.16.3.2 Power Supply

The Pico Edition needs power like any embedded system. However, we can be a little less robust
in the design of the power supply for the Pico Edition than we were for the XGS Micro Edition.
The power requirements of the Pico Edition are in the 50-200 mA depending on what’s on / off
and what the system is doing. This can easily be met with an external regulated power supply,
but | thought it would be nice to be able to use either battery power or unregulated power for the
Pico Edition, so a complete voltage regulator circuit was still used. Figure 11.49 shows the power
supply for the Pico Edition.

The power supply is based on the LM7805-5V regulator and is almost identical to our other 5V
designs, but with the protection diodes removed. Let’s review the design now. Referring to the
Pico’s design file or Figure 11.49 the power supply consists of the input J1 (battery clip), the
filtering capacitors C2, C4, and C5. Also, there is a “power good” indicator made from LED D5
and resistor R22 that illuminates showing that the power is on in some form at least.

The circuit’s operation is rather straightforward. Unregulated power comes in from J1 (usually a
battery connected to the J1 battery clip), C2 filters this power which is then brought into the

LM7805 regulator at U3, U3 then regulates the power down to 5V and outputs across two more
filter capacitors C4 and C5 where the output is taken.

(\[o20=l | have found that the XGS Pico Edition will work for hours on a standard 9V battery.

108



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.50 — The XGS Pico Edition Reset Circuit.

SYCC

SX28 Processing Unit . . | R1. .. Reset Button
10K

U1 Resst, Pullup SW']..
;— RTCC WCLR gf + ..-/ P
- oo foltox ) 1 ) . - SW-SPST . |
i_ NC1 0502 % .q} . . - <TEXT>, | —
=< 1Lvss re7 =
g— NC2 RCE % GND
—— R Res 22 .
L | ras ro4 22 .
TRy wesor B0
-2 {Rraa ro2 22
18 1 ren RC1 2
L 1 rei rCo £
22 kg2 RE7 —L
15 {res rBS —E
BCS i res 5

SX2EDIP
STEXT>.

11.16.3.3 Reset Circuit

The SX processors actually have complete POR (power on reset) circuits internally, however, if
you’re going to hook other devices up to a global reset, its best to have some form of reset in your
system. The XGS Micro Edition has a more complete RC charging external POR, but that’s
overkill for the Pico Edition. All we need with the Pico Edition, is something to keep the SX28 out
of reset as well as a way to reset the Pico via a momentary button. These two design goals are
met with a single resistor and momentary switch as shown in Figure 11.50.

When the system is powered up the internal POR circuit will bring the SX28 out of reset and into
run mode. When you want to reset the SX28 then pressing SW1 grounds the reset pin and resets
the SX28, when SW1 is released then the SX28 will come out of reset and the resistor R1 makes
sure that any noise on the reset line won't be detected as a weak logic LOW and inadvertently
reset the SX28.

109



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.51 — The XGS Pico Edition System Clock Circuit and Programming Port.

3X28 Processing Unit

U1
. woR 2
2 1yoo osct
= e osca £
2 {yss RCT 2
£ ez RCE 24
?— Ra0 RCS %
L1 Ra RCs 22
T sasor BT
2 | Rras Re2 20
10 Ireo RCT 2
NN e RCO &
22 {pe2 RB7 [—L
28 | pes RE6 (O
NS =yt rE5 2

SX28DIP
<TEXT>

SVEC

External System Clock = 4
C3 &
Il 0OSC ENABLE SWITCH / JUMPER
A . . .
0UF J3
MONO CONMN-H2
Uz IE‘EEYA>|
— 1 cemc vee £ :
|
i— N NC —g
GND  0SC_OUT
WCG

i ECSX 0SC
e ECSXTAL OSC
GND 1-100 Mz 5.0V, 8-Pin Half Size OSC | -
CMOS Output | |e]—

fiotes oo J4 |06 |

1. To pr[)gram SX28, OSC Enable Swwtch/Jumper must be OFF
2. To run SX28 with external oscillatoraltor, OSC Enable switch must be ON
3. BYCC and GND are assumed available and regulated for SX-Key

(=
[

]
O
>

GND
03C2
OSCA

SHKEY PCRT

11.16.3.4 System Clock

All SX processors have internal oscillators based on RC circuits that can run from 31.25KHz to
4MHz. Additionally, the SX can be clocked with a simple external RC circuit (this is not
recommended if accuracy is important since the RC circuit is inaccurate due to the parts and can
drift due to temperature changes). The best idea is to use an external clock source. The Pico
Edition takes this route and uses an independent crystal oscillator in a 8-pin DIP package (half
size package). Both an 80.000MHz and a 78.750MHz oscillator are supplied with the Pico kit
when purchased from www.xgamestation.com. The 80.000MHz oscillator allows software to be
ported from the XGS Micro Edition very easily while the 78.750MHz oscillator helps with
generating color NTSC signals and counting clocks since 78.750 MHz is an even multiple (22
times) of the NTSC color burst frequency of 3.579545 MHz:

78.750 MHz = 22 * 3.579545 MHz.

In either case, the SX28 can be clocked either by an external oscillator or by the SX-KEY inputs
from connector J4, a jumper (or wire) is used to gate this. Figure 11.51 shows the complete clock
circuit paths. Referring to Figure 11.51 the SX28 can be clocked by either the clock oscillator’s
output at pin 5 thru the jumper at J3 into OSC1 OR the SX28 can be clocked from the OSC1 input
via the SX-KEY port at J4.

110



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Typically, you will disable the jumper at J3 while you are programming and working with
the Pico Edition while using the SX-KEY, that is, you will let the SX-KEY generate the
clock signal and gate it into OSC1. When you are satisfied with your code, you will
remove the SX-KEY from the programming port at J4 and then enable the system
external clock from U2 by connecting the jumper at J3 to OSC1 (which is just a piece of
wire).

11.16.3.5 The Programming Port

Referring back to diagram Figure 11.51 you can see the programming port for the SX28. This is
nothing more than a simple 4-pin right angled header that you plug the SX-KEY into and then
connect the lines VCC (+5), GND, OSC1, and OSC2. However, when the SX-KEY is plugged in
or in control, the jumper at J3 must be disconnected, that is, the oscillator U2 must not output
into the SX28, that is, two sources can’t drive the OSC1 pin! Just make sure only one source is
clocking the SX28, either the SX-KEY or the oscillator at U2.

11.16.3.6 I/0
The 1/O for the XGS Pico Edition consists of the media outputs (that we will discus in the next
section) along with conventional digital I/Os that are provided by the SX28 and augmented with a
little bit of hardware into useful groups:

=  Four LED indictors.

= A joystick port.

= A general 3-bit I/O port.
There are no complex design decisions here, just a hard fast delineation of the port bits into

useful group that allow a programmer to see output, plug in a joystick, and finally do some other
communication with the port bits that are left.

111



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.52 - The Pico Edition’s LED Outputs.

BVCC

SX28 Processing Unit
Cl = —— Rree WCIR [—22
0.1uF <— voD osC1 2=
MONO = ner oscz 22 - :
) vss RCT |22
Led Indicators o | o Ne Ree (24
e 7 RAQ . [ 22 .
= RA1 RC4 |22 - :
LED 2
o g Rao  SX28DP g;
— 0 RA3 RC2 19
T RBO RC1 W
o . . 4| L ret Roo -2 .
1= Rreo RB7 f———=<> 102
R3 R4 R5 2 Jres RB6 [—le——<[> 101
200 200 200 —— RB4 RB5 |———<T> 100
LTEXT> LTEXT> LTEXT> Sx28DIP
| <TEXT>
D2 D3 D4 -
. SZﬁl SZ§ . SZ& GND
LED LED LED
[<TEXT=> [<TEXT=> [<TEXT=>
GND GND GND

LED Indicators

The one thing | should have added to the XGS Micro Edition were some LEDs! In hindsight, they
would have helped with debugging and general information indicators. The problem was of
course | ran out of I/O ports and board space, so LEDs and an even better 2-digit 7-segment
display didn’t make it into the final cut. But, the Pico Edition is the perfect place to correct this
omission and add some LEDs. Two LEDs probably would have been sufficient, but four LEDs
allows a nibble (4-bits) to be displayed which is very useful. Figure 11.52 shows the hardware
that makes up the LED outputs. Basically, LEDs D1-D4 and current limiting resistors R2-R4 make
up each individual indicator. They are gated to SX28 ports RAO-3 respectively. Table 11.17 lists
the I/O assignments for the LEDs.

Table 11.17 — Port Bit Mappings for LEDs.

Port LED Designator
RAO D1
RA1 D2
RA2 D3
RA3 D4

112



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.53 - The Pico Edition Joystick Cable Assembly.

Joystick Port

The Pico Edition uses an Atari 2600 compatible joystick just like the Micro Edition. This interface
specification is the absolute simplest joystick on the planet (well the joysticks used on SpaceWar!
might be simpler). You can refer back to section 11.6 if you want to refresh yourself about the
details of the pinouts and so forth for the Atari 2600 joystick, but in a nutshell we need to read the
5 signals:

up, down, left, right, and fire.

Additionally, we need to connect ground to the joystick. If you recall that's how the Atari sticks
work, they simply “ground” the directional inputs and / or fire button and then you read this data.
This system works if you tie each input from the joystick to an 1/O pin with a weak pull up
connected to it (1-10K is a good choice). This is easy for the SX28 since we can turn on the
internal pull up for any I/O pin with the MODE register. We will see this code in detail when we
discuss programming the joystick later in the section.

Now, the one big difference in the Pico Edition and Micro Edition’s joystick design is that in the
Micro Edition’s design two sticks can be used and the data is latched into a pair of 74HC164
parallel to series shift registers and then serialized into the SX52. This is a minimalist approach to
save a lot of I/0 pins. However, for the Pico Edition | opted to simply connect each joystick input
bit switch directly to an 1/O pin using up a total of 5 of the SX28’s 1/0Os. However, the nice thing is
we do not need external pull up resistors for each signal since we can use the SX28’s built in pull
up resistors via the SX28 mode register and of course there is no 74HC164 needed.

Finally, we need some kind of cable to actually get the signals into the Pico Edition, so the kit
comes with a manufactured cable assembly with a male DB9 along with color coded solid wires
connected to it, so you can use the cable in the Pico Edition and your other experiments. Figure
11.53 shows a close up of the cable and Table 11.18 lists all the pinouts and signals.

113



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Table 11.18 — The Color Coding and Mapping for the Pico’s Joystick Cable Assembly.

DB9 Pin# Color (backup) Function
1 White Up

2 Blue Down

3 Green Left

4 Brown (yellow) Right

5 NC None

6 Orange (red) Fire

7 NC None

8 Black Ground

9 NC None

The colors used for the cable might vary slightly due to manufacturing availability. Your
kit might have a pink instead of red, etc. just use the colors closest to the color stated in
Table 11.18 and match each color to its best mapping and everything will be fine.
Otherwise, it will feel like maneuvering hyperspace for “Star Raiders” on the Atari
400/800!

That's all there is to the joystick port, the Atari joystick is nothing more than a set of normally open
digital switches that are “grounded” when depressed. Of course, don’t forget to hook up the
ground (black) wire when you actually assemble the hardware, otherwise there will be no ground
signal.

Figure 11.54 - The Pico Edition’s 3-bit General I/O Port.

SvCC

SX28 Processing Unit
U1
C1 — ;— RTCC MCLR %
0.1uF = v 0scl 5=
MONO 4—' NC1 0sC2 G
—{ vss RC7 |5+
1 NC2 RC6 53
7—' RAO RC5 7
—— RA1 RC4 |—==
g_ Rap SX28DIP 20 %
T RA3 RC2 T
— RBO RC1 [—= .
% RB2 RB7 1;—@ 0.2
v RB6 15—<I> 101
—— RB4 RB5 f——-—-<T> 100
SX28DIP
<TEXT>
GND

General Purpose I/0 Port

The last bit of I/O for the Pico Edition is a 3-bit port is made from the left over bits of port RB:

114



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

RB5 < Bit0
RB6 < Bit 1
RB7 < Bit 2

Figure 11.54 shows a close up of the 3-bit port. Three bits might not seem to be a lot, but it’s
enough to perform serial communications or even control a serial EEPROM like the ATMEL
AT24C1024 (128K x 8) serial EEPROM (8-pin DIP package) which can be used to add 128K of
FLASH ROM storage to the little Pico Edition. But, that’s just one idea. There are a trillion or so
uses for the 3-bits!

Figure 11.55 — The Pico Edition’s Graphics Hardware.

A Ll
.. 8X28 ProcessingUnit .~ . . . ... R
oo T oo Videolntensity DFAR2R Ladder. . . .. ...
. .ZU“'""ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁw'D'EbﬁdUTﬁ
Cl == . ;_ RTCC MELR % R14 . . . . . . . 5 .
I\Oilé)l.ll\ro : 3 vDD osct 26 :360 } TIP
=1 NC1 osc? =2 ; o .
4 25 ]_ RCA/FEM
: 5 Ves RC7 24 <TEXT> - R18 POT1 -
- NC2 RCE B B R , &
—=— rRAD RCS 52 . . P 180 . - > . RING .
8_ RA1 SX28DIP RC4 T . . - I Ld <TEXT= 3 . A RCA .
= 1 Rao RC3 2l : . R15 . . . Lo . ReA
-2 1 Rras RC2 |20 — 1} A S| STEXT
70 1gvD_eE —_— *500, 1K, 2K, 5K
11| Re0 RCT oo & 360 JENT —
2 RB1 RCO [——mmem <TEXT> [TR19  Notes: .
=1 RB2 RB7 —= | _
13 RB3 RBE6 16 180 *- 500 ohm —_
14 RBA4 RE5 15 Ll <tEXT> optimal.
SX28DIP m
| e———
1 <TEXT> 360
- <TEXT> M
180
L <TEXT=
R17
| p— |
| —
360
<TEXT> r
R21
360
L <TEXT>

11.16.3.7 Graphics Hardware

The graphics hardware of the Pico Edition is a simplified version of the Micro Edition’s. If you
recall, the Micro Edition uses a NTSC/PAL oscillator that feeds a non-inverting buffer delay chain.
Each one of the buffer’s takes 5-12 ns which creates a phase delay from 0-360 degrees relative
to the color burst for the color or CHROMA signal. The XGS Micro creates color by sending out a
color burst at the beginning of each line with zero delay (0 degrees) then using a pair of 4051
selectors, 1 of 16 different colors (phase delays which map to angles) is selected. This signal is
then summed with the LUMA (brightness) signal and finally feed to the video port.

The Pico Edition does not have the color support that Micro does. Instead the Pico only gives you
LUMA control via a 4-bit D/A converter as shown in Figure 11.55. Ports RC3-RCO0 are used as the
value for the LUMA signal allowing the Pico to generate 16 different voltages from 0-1.5V roughly
(sync to white). However, the XGS Pico Edition can create color! To do this, you must create a
color burst signal yourself in your actual video kernel. This is difficult, but not impossible. This is

115



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

possible since the XGS Pico Edition is so fast (80 MHz) that you can synthesize a 3.58 MHz
NTSC or 4.43MHz PAL color burst. For, now though, let’s just look at the hardware.

Referring to Figure 11.55 RC3-RCO0 feeds a R2R ladder network with its output feed into a 500-
1K Ohm potentiometer. This construction results in the range 0-1.5V and can be adjusted with the
POT, so the overall amplitude (and brightness) can be limited. The R2R ladder is simply a more
precise D/A that a power of 2 resistor network and easier to build since the R2R ladder is built on
values of R, and 2R which are easier to find rather than incremental powers of 2 starting at R.
R2R ladders are covered numerous times in the book in the early chapters.

The video signal is generated simply by controlled the port RC3-RCO0 with the proper timing and
sending 4-bit values that represent sync, black, and LUMA values.

The lower 4-bits of Port RC are used for video, but the upper 4-bits RC7-RC4 are
used for the audio DAC, therefore, care must be taken not to overwrite or mix data
when writing to either of these ports.

Figure 11.56 — The Pico Edition’s Sound Hardware.

5VCC

S%98 Processing Uit Audio Intensity D/A R2R Ladder
rocessing uni
<TEXT>
C1 == . | 2]rrec WCIR |22 - []RrR10  PQT2
0.1uF § VDD 03C1 % 180 ;
. = Net 08C2 52 wup_ses 7 <TEXT> =
5 V8S RC7 24 AUD_ISELZ
5 NC2 RC6 53 PUDTELT LI 100,500, 1K AUDIOOUT
7 ] RAO RC5 99 AUDISELD 360 ’ ’ C ’ T'E‘X'T ' 9 ’
— ra1 RC4 = <TEXT» ATEA TIP
B | pno SK28DP 32T  [1R11 . Notes: _
=2 Ra3 rc2 |22 . .| |180 . . 7-5000chm _ RCAFEM
—1‘1’ RBO RCT —:g rs <TEXT> OPlimal. : ;
e <] O ) g
13 16 RCA
1| 23 RS s i <TEXT>
—~— RB4 RB5 |2 - <TEXT> - - b R19 el
SX28DIP o,
-4 =TEA> L1 eTEXT> - =
- R9
GND A A A . _:_. A
.o .o .o .o . . 360 . . .o .
<TEXT> L
R13
360
@_ A T . . . L) <TEXT>

11.16.3.8 Sound Hardware

The sound hardware of the Pico Edition is radically different that the XGS Micro Edition. The Pico
Edition doesn’t have a sound synthesizer chip like the XGS Micro does (ROHM8763), rather the
Pico Edition leaves the sound completely up to the programmer via a simple D/A 4-bit port
connected directly to a POT and the audio out port as shown in Figure 11.56. Therefore, to create
sounds the actual PCM (pulse coded modulation) values must be sent to the audio D/A. This is

116



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

good and bad. It's bad because you have to interleave all your sound effects with your game
code and logic and can skip beat. Also, it's bad since you only have 2K of total memory and data
space, so | doubt you are going to digitize and play any MP3s! Unless you add fat EEPROM to
the system. That gives me an idea — “build a MP3 player out of the Pico Edition”!

However, the directly controlled audio D/A is nice because it gives you the ability to play
synthesized sounds directly and to plug it into algorithms to create very unique sounds. For
example, say you want to hear a noise when a ship explodes. No problem, just output a
combination of variables that have something to do with the ship’s state, position, etc. directly to
the audio D/A -- chances are it will sound cool.

This in fact is how many Atari 2600 and early 8-bit console/arcade sounds effects where made.
Engineers would simply plug the audio output directly to some algorithm’s output or state and see
if it sounded good. This way there were no direct algorithms or memory used on sound. Of
course, this doesn’t mean you can’t have a digitized sine wave with say 128 steps and then code
a simple synthesizer that plays the sine wave faster or slower with amplitude scaling based on a
series of notes — do that, and presto you have a crude MOD player!

In any event, the hardware for the sound system is identical to the video system’s, simply a D/A
constructed from a R2R ladder as shown in Figure 11.56. The POT on the output of the audio
controls the volume from 50-100% roughly. Lastly, values from 500-2K OHM for the POT work
best.

11.16.4 Building the Pico Edition

Now that we have discussed the hardware behind all of the sub-systems of the XGS Pico Edition,
its time to build it. | suggest you read this section once completely and then once again as you
build the XGS Pico, so you don’t miss anything. Of course, if you are a boy genius then just use
the design file located here:
CDROOT:\XGSME_HW_CD\Datasheets\xgs_pico_edition_kit_01.DSN

Or you can work directly from the schematic capture shown in Figure 11.57.

117



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.57 - The Complete XGS Pico Edition’s Design.

5.0V, 1.5A Main Supply

R1 Reset Button
10
Rese = SW1

SX28 Processing Unit
u1
4

Led Indicators

R2 R3 R4 RS Joystick Port DBO-M
m py a m e

Video Intensity D/A R2R Ladder Audio Intensity D/A R2R Ladder

VIDEO QUT J5
Xl oy

o=

P

1
1
1
EXl
¢
[0.0 oA\‘G

=

AUDIO OUT J&
EXl oy

awce
External System Clock.
c3
S ENBLE S CHUPE:

11.16.4.1 Organizing the Kit Parts and Preparing to Build

Building electronics can turn your workspace into a mess in minutes. Worst yet, dealing with such
small components, it's easy to loose something. Thus, the first step in building the XGS Pico
Edition is organizing all your parts, so you can quickly find and place them into position. | suggest
that you gather all the resistors, caps, LEDs, and pots into groups and insert them into the black
foam, additionally separate out the wires of differing length and put them in two piles, this way it
will be easy find parts and work will go smoothly. Figure 11.58 shows a close up of the electronics
to begin construction of the XGS Pico Edition (Figure 11.46 is a wide angle view that shows the
breadboard, wires, battery, and cable)

Figure 11.58 — The Pico Edition’s Parts Organized and Ready for Construction.

b S R e e
AVITEODV ~WLN !
AA/OVETXS L

—— -

118



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

The next thing to do is review the design file for the XGS Pico Edition over, and over, and over
again!

Figure 11.57 shows the design as an image for reference. The design is a little hard to follow in
some areas since the symbols and or mechanical assemblies might not make sense unless you
see the final product, therefore, be sure to use the design as well as the final physical device
which is shown in Figure 11.45(a). This way if there is a certain connector you see on the design,
but you can’t figure out which connector it is based on the parts kit, you should be able to when
you look at the finished product.

Bottom line is review all this information before starting!

Figure 11.59 — The Solderless Breadboard.

wmm w5y uw

M)
T
PR
sm===
PR
«wwE
PR
PR

SX28AC/DP
sicom= ACO311AB

T
spwwwws
T
T
" wwew
PR
55--'
R
e mw
e
PR
e
-mmw
xmw
abcde

wn|gpe=m=""

11.16.4.2 Reviewing the Solderless Breadboard

The solderless breadboard used for the Pico Edition should look something like that shown in
Figure 11.59 (your particular model might be larger, smaller, or have different color codings).
Referring to the Figure, the breadboard is basically a platform with hidden electrical connections
under the plastic (you should have already read all this). In this particular breadboard, the top and
bottom rows have horizontal groupings of 5 hole rows each with a RED and BLUE line above and
below respectively. The way the board is connected electrically is very simple, here are the rules:

Rule 1. The + (Red, positive) rows are all connected together on the top as are the — (Blue,
negative). However, the + and — are not connected together. Similarly, on the bottom of the board
the + row is all connected and the negative row is all connected, but not together. These + and —
rows are where you connect power usually. Some people connect + and — to both the top and
bottom, that is there are + and — rails on the top of the board that are used as feeds as well on
the bottom of the board, but | prefer to only connect +5 to the top Red + row and then connect 0V
(ground) to the bottom — line. This way the top of the board is +5 and the bottom is 0V (ground)
and nothing gets shorted out. It always makes me nervous when +5 and GND are next to each
other.

Rule 2. There are 64 pairs of columns, each column consists of 5 holes, each of the 5 holes in
one set of holes is connected. Therefore in column 25 for example, hole a, b, ¢, d, e is all
connected as well as f, g, h, 1, j, but those sets are not connected together. Figure 11.60
illustrates the connectivity with color coding and shading.

119



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.60 — The Solderless Breadboard with Color Coding to Help Show Connectivity.

@ sxasacop
uicon~ ACO311AB

So the point of the solderless breadboard is that you can plug chips and components into it and
use the properties of the vertical columns to electrical connect things together. This gives you a
platform to insert parts and helps minimize how many wires you have to use to connect things
together.

Now, were going to build the XGS Pico Edition system by system, step by step. The technique
will be to first insert the parts for the system and then to insert the passive components and then
finally any hook up wires. This way you will the maximum working space and will minimize errors.
Additionally, there will be photos of the XGS Pico Edition as we progress thru each stage.

At the time of this writing the solderless breadboard was identical to the one shown
in the figures and described thereof. However, due to out of stock problems,
WARNING! changing vendors, etc. you might have a board that looks slightly different,

il especially if you put the kit together yourself. If so, just look closely at it and make
sure you understand what is connected to what and where the connection paths
are.

Figure 11.61 — The Design for the XGS Pico Edition Power Supply.

o
................... . L e
....... 5.0V,.1.5A Main Supply. . . . .g. 5YCC R
................... DH-’SVCC e
. PWR N 812 (500mar) U3 5 A 1
................... o TR S N R

J1 LAT805 b 5.0V Pawer Indicator
1 1 =3 3
o1 AT e}
(o, )
z R22
Not [ N} P
. Notes i STEXT>. . . . . . .
_______ =2 | L =3cs
. 8V Battery Clip ELEC - L 0AWF . . T P
Pin 1 - RED
....... [le e B TANT L
- Finaleack - SAy D5
....... LED . . . . . .
.............. <TEXT> . . . .

120



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.16.4.3 Building the Power Supply

The power supply is always a good place to start when building anything electronic. It’s like
building the foundation of a house, everything relies on it. The XGS Pico Edition has a very
simple voltage regulator based design. Figure 11.61 shows the actual design file with an excerpt
of the power supply. The design for the power supply alone can be found on the CD here:

CDROOT:\XGSME_HW_CD\Datasheets\xgs_pico_edition_kit_power_01.DSN

The first step is to collect the parts you will need for the power supply. There are listed in Table
11.19.

Table 11.19 — Parts List for Power Supply Construction.

Reference Designator Description

K] The 7805 voltage regulator.

J1 The 9V battery clip.

Cc2 10.0uF polarized electrolytic capacitor (canister shaped).

C4 0.1uF non-polarized monolithic ceramic capacitor (flat, small).
C5 1.0uF polarized tantalum capacitor (tear drop shaped).

R22 200 Ohm current limiting resistor.

D5 Green LED for power good indicator.

Figure 11.62 — The Parts Needed to Build the XGS Pico Edition’s Power Supply.

Figure 11.62 shows the parts needed to build the power supply to help you identify them. Now,
before you begin there are some rules of thumb;

Rule 1. Try to use the most appropriate length wires for each connection. There are only two
lengths of wires, so use common sense, don’t use long wires for short contacts, don’t use short
wires for long contacts.

Rule 2. Use Figure 11.xx as a master guide to the positioning of the parts, | have build the Pico
Edition many times and found these locations to be optimal for the most part. You don’t have to
be exactly perfect in your positioning relative to Figure 11.xx, but you will find that it evenly
spaces the design as much as possible.

121



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Rule 3. Remember, the electrical contacts run vertically for each column and break across the
middle of the solderless breadboard. Also, the +/- rows on the top and bottom are continuous, but
do not connect to each other across the top and bottom! That is the + on the top and the + on the
bottom are not connected, similarly the — on the top and bottom are not connected. If you want to
connect them run a wire(s) across the + and — from top to bottom respectively. However, as a
rule | usually connect only the — on the bottom rail and the + on the top rail.

Figure 11.63 — The Completed XGS Pico Edition Power Supply.

Let’s begin by looking at the completed power supply section by itself, Figure 11.63 shows this.
Use this as your model as you build the system. As long as you assemble the power supply as
shown in Figure 11.63 and it matches the design file then you are fine. Here is a step by step list
to follow:

Step 1: Insert the 7805 5V voltage regulator U3 into the breadboard.

Step 2: Insert the 10.0uF electrolytic filtering capacitor (C2) from pin 1 of the 7805 to ground.
Note that (C2) is polarized and must be inserted correctly with the + and — leads connected
properly. Inspect the capacitor to verify, it will either have both the + and — contacts labeled or
possibly just the — (negative) contact. Make sure to insert the — lead into the ground rail of the
breadboard (use the bottom most — rail ).

Step 3: Insert the monolithic filtering capacitor (the flat small one) C4 from pin 3 of the 7805 to
ground. The monolithic is non-polarized, so either direction is fine.

Step 4: Insert the 1.0uF tantalum filtering capacitor C5 from pin 3 of the 7805 to the ground rail.
The tantalum capacitor is polarized once again. However, the polarization is very hard to read.
Look closely and you should see a small “+” and “-* indicator marking each lead, make sure to
triple check the polarity and insert with the + lead connected to pin 3 of the 7805 and the — lead to
ground.

Step 5: Pin 2 of the 7805 (U3) is the “ground” for the 7805, this must connected to the ground
rail. Use a short wire and connect pin 2 of the 7805 to the ground rail. Also, the output of the
regulator is at pin 3, connect a wire from pin 3 of the 7805 to the + rail at the top of the
breadboard.

122



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Step 6: At this point, the regulation circuit is complete, but we need a way to get power into the
regulator. This is what the 9V battery clip is for, connect the black (-) lead of the battery clip to the
lower — ground rail and connect the red (+) lead to the + (positive) top rail of the breadboard.

Step 7: Insert the green power good LED into the ground rail and the column of contacts above it,
make sure that the cathode (-) is connected to ground. You can always tell the cathode or
negative lead of an LED by looking inside carefully, the larger of the two contacts is the negative
or cathode (it looks like an upside down “L”). Additionally, insert the 200 Ohm current limiting
resistor R22 into the board making contact with the (+) side of the LED and crossing over the
center of the breadboard, then insert a connecting wire from the other side of the resistor to the
(+) rail at the top of the breadboard.

Step 8: Verify all connections three times! That's right (3) times. Verify them with the picture in
Figure 11.63 as well as the actual design shown in Figure 11.61. Also, make sure you have all
your polarities correct for the capacitors that are polarized (C2 and C5).

Step 9: Preliminary power check. Now that the power supply is built, there’s no time better than
the present to test it out. So insert the 9V battery into the battery clip and you should see the
green LED turn on to a reasonable brightness. If you don’t there’s a mistake, unplug the battery
and check everything.

If you want to test the regulation of the circuit use a multimeter and measure the
voltage from the ground rail to the positive rail, it should be 4.99 — 5.0V. If its not
then there is a problem. Also, realize that the circuit is actually “loaded” already.
The LED and resistor R22 are using about 10-20mA.

Figure 11.64 — The SX28, Power On Reset and the Programming Port Design.

H R1 Reset Button
Kk

10
$X28 Processing Unit Resel, Pulp SW1.

} L]
SW-SPST
& U1 . . <TEXT> . J__

- Rrrce mctR (22 B
0.1uF 2 vop osc1 (2 GND
MONG = ner oscz 2%

2 {vss Re7 -2

2 ne2 RC6 (22

7— RAO RC5 7

L Rra1 RrCa |22

TR sxasop RSE [T

% RA3 RC?2 %

2 reo RCT (12

o ren Rco (12

2 {rs2 re7 (L

Tt RB3 RBE6 G

4 _Jreg RES |12 5VCC

SXZ80IP
1 <mEXT>

<
[«

GI:ID. Ja[éé |

Q
o
>

0sC2
0sc1

4
GND

SX-KEY PORT

Note: When inserting SX-KEY
make sure pins line up!

123



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.16.4.4 Adding the SX28 Processor

The next logical step is to add the SX28 to the board, with it we can immediately start

programming and experimenting with the Pico Edition. Figure 11.64 shows the design file for the

SX28, power on reset circuit as well as the programming port. This is of course an excerpt of the

complete design file. The excerpted file is located on the CD here:
CDROOT:\XGSME_HW_CD\Datasheets\xgs_pico_edition_kit_sx28_01.DSN

Next, let’s collect the parts needed to add the processor, Table 11.20 lists all the parts out.

Table 11.20 — Parts List for SX28, Power On Reset, and Programming Port.

Reference Designator Description

U1 SX28 (28-pin DIP package).

C1 0.1uF non-polarized monolithic ceramic capacitor (flat, small).
J4 4-Pin right angle connector for SX-Key.

R1 10K Ohm current limiting resistor for reset circuit.

SWi1 SPST momentary switch for reset.

Figure 11.65 — The Parts Needed for the Pico’s Processor, Power On Reset, and
Programming Port.

I.Ilgﬂ

>w
a»
88
ey <
>Q
wo
-

124



Design Your Own Video Game Console

A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.66 — The Completed Processor Assembly, Power On Reset Circuit, and

Programming Port.

ceu

=4 -

- -
L B B B B B B O B
LB B BN B B B B O B B
LR BN B AR B A B B B A A
e s e PP REPEENEPYGEDS

-
o3

-

2
'EE R R R
L B B A A A )
A I

-«
o

Gl

0l

s T F F 8NN
-lllIlI.'.l'\‘I

J

"".v'*

-~
L}

-
=
-
-
-
-
-
-
-
-
-
Ld
-
-
-
-
-
-
L4
-

G

G

nr

Si

e wswr

a4 mwe>e

Figure 11.67 — The Inserted SX28 Processor.

11.66 shows the processor, reset circuit, and programming port all wired up. Use this image as a

Additionally, Figure 11.65 shows all the parts laid out for reference and identification and Figure
reference you build each system.

SX2BAC/DP

wicom* ACO31IAB

..

11.16.4.4.1 Inserting the Processor

125

The first step is to insert the SX28 processor into the breadboard. Referring to Figure’s 11.66 and
11.67, the processor should be inserted so that pin 1 of the SX28 aligns with column 32 roughly

of the breadboard (this is just a suggestion though).



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Before inserting the SX28 make sure that all the pins are straight and at 90 degree
angles to the DIP body, this will help the chip during insertion. If the pins are bent
straighten them with a pair of needle nose pliers or use a flat surface to “align” the
pins in a plane.

Figure 11.68 — Close-up of the SX28 with Power and Filtering Capacitor Inserted.

11.16.4.4.2 Connecting Power

Once the processor is inserted then its time to add the power lines and the filtering capacitor (C1)
across the power pins as shown in Figure 11.68. Here are the steps:

Step 1: Connect the filtering capacitor (C1) between pins 2 (VDD) and 4 (GND) of the SX28. (C1)
is not polarized, so the orientation is irrelevant.

Step 2: Connect the +5 (VDD) line at pin 2 of the SX28 to the top +5 power rail and connect GND
line at pin 4 of the SX28 to the ground rail at the bottom of the breadboard.

That’s it! The SX28 is now connected to power and filtered by (C1).

You might want to add a 1-10uF tantalum “storage” capacitor in parallel with the
existing 0.1uF decoupling capacitor across the power leads of the SX28. This will
help with ground bounce and give the SX28 a source of power that is lower
impedance than the power supply which is father away. However, | have found that
the SX28 is ok with our regulation circuit and 0.1uF filter. Nonetheless, if you draw
more current from the 1/O ports of the SX28 then you will need to add this extra
capacitor to keep the power clean.

126



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.69 — A Close up of the Power On Reset Circuit Added to the SX28 Design.

[ B B " B E BN LR B B B - . LR B B B == » >
I = = " s a8 w AR B - & F == LR R 2 2 LR B B B
-
—

w o M « o o =3 “«

o~ ™ a8 o - - = -]

% % H % " W ¥ N0 NN N WU U U U UE DO N YYD
LB B B B B B B l‘ N 7 & § 8§ W NN YOO Y@ YYD
® 5" 5" " HENAN ] @ & & B N " FRF RS EYPYYOYPTD
L B B B B B B B A A S 5 B FEYYEE RN
L B B B B B B B - - L BN B B B BN B B B

SX28AC/DP
~ AC0311AB

LI B B B B B B 5 5 " PP PFPE D
LR B B B B B B A LR B B B B BN B B
LI B B B B B A 55 PP P PFBE DS
LR B B B AR B B A ) 55 PP PP E DS
LA B B B B B " 5" PP PFPGE D
w =3 w

o~ > “w

11.16.4.4.3 Adding the Power On Reset Circuit (POR)

The power on reset circuit consists of a momentary SPST switch (SW1) that momentarily
grounds the SX28 along with a 10K Ohm pull up resistor (R1) that makes sure the SX28 stays out
of reset. Figure 11.69 shows a close up of the reset switch and resistor that you need for this part
of the assembly.

Figure 11.70 — The Parts Needed for the POR Circuit.

A

2

As you can see from Figure 11.70, there’s not much! To assemble the POR circuit; follow these
steps:

Step 1: Insert the SPST switch (SW1) into column 31 roughly on the breadboard and the lower
ground rail, refer to Figure 11.69 for a close up view.

Step 2: Make a connection from the non-grounded side of the SPST switch to the reset line of the
SX28 (/MCLR) at pin 28. This basically grounds the reset pin when the switch is depressed.

127



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Step 3: Insert the 10K Ohm resistor (R1) to make contact with pin 28 of the SX28 (top left pin)
and contact with the (+5) upper power rail. This maintains a “weak” digital HIGH on the /MCLR
line keep the SX28 out of reset.

That’s it, make sure to verify everything with the images and design file.

Figure 11.71 — A Close up of the Programming Port.

. SX28 Processing Unit

U1
;— RTCC MCLR % .
=] VDD osc %
] NC1 Qsc?2 7
3] VES] RC7 B
%] NC2 RC& B
7— RAOD RC5 7 .
— RA1 RC4 |—=
g_ RA2 SX28 DIP RC3 %
0] RA3 RC2 G
BT RBO RC1 K
2] RB1 RCO 7
3] RB2 RB7 6
T RB3 RB6 ? . .
—— RB4 RB5 —— svCC :
. SX28DIP ' ' '
<TEXT>
R B A
enp - J4 | 0600 |
bid °-88
SX-KEY PORT

Note: When insering SX-KEY
make sure pins line up!

11.16.4.4.4 Adding the Programming port

The programming port as shown in Figure 11.71 doesn’t consist of much thanks to the amazing
hardware design of the SX series of processors (which of course makes the software a nightmare
when programming the unit). Basically, the programming port needs to interface to the Parallax
SX-Key programming unit shown in Figure 11.72. Note: that this image is the underside of the
key with markings, but when you plug the key in, its component side up.

Figure 11.72 — The Parallax Inc. SX-KEY Programming Unit.

128



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

The SX-Key interface is a standard 4-pin 0.1” separation header interface female, so we need a
male interface that we can insert into the SX-Key as well as gain access to on the breadboard.
Figure 11.73 shows a close up of the mechanical 4-pin right angled header that is used (J4)

Figure 11.73 — The 4-Pin Right Angle Programming Header Used to Interface with the
Parallax SX-KEY.

Notice that one set of leads of (J4) are longer than the other, use the longer set of leads to plug
into the breadboard, so they make good contact, the shorter leads will interface to the SX-Key.

Figure 11.74 — Placement of the SX-Key Programming Port on the Solderless Breadboard.

Building the programming port consists of inserting the 4-pin header and wiring it. Here are the
steps:

Step 1: Insert the programming port header (J4) as shown in Figure 11.74, the leftmost pin of the
programming header should be located around column 20 of the breadboard.

Step 2: The SX-Key needs (4) connections left to right as inserted into the board, (GND, VDD,
0OSC2, OSCH1). Use hookup wire and connect the power contacts as well as OSC1 and OSC2 to
the SX28 at pins 27 and 28 respectively. Refer to the design file as well as Figures 11.71 and
11.74. The final connections should look something like that shown in Figure 11.75.

129



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.75 — The SX-Key Programming Port Fully Connected to Power and the SX28.

As usual verify the connections of the programming port, it is very important they are perfect. The
wrong power lines connected can burn out your SX-Key! Once again, from left to right the pins
are labeled:

HDR Pins: 4,3,2,1
Labels: GND, VDD, OSC2, OSC1

130



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.76 — The Design for the Pico Edition’s Clock Circuit.

S$X28 Processing Unit

e e MCLR [
—— voD osC1 =
——{ e osc2 |52
- ves RCT ==
e I RCE ==
——| RAD RCs =
—— Rt RC4 ==
S_ Fnp  SXZ8DIP D70 3;
——| Raa RC2 ==
| RBo RC1 ==
e Rl RCO ——
-5 re2 RBT [—=
< Res RBE =
=] re4 RES }—=
. SX28DIF '
. STEXT® .
. External System Clock . A . .
C3 &
I OSC ENABLE SWITCH / JUMPER
MONO CONN-H2
U2 NG L S i
;— OEMC vee ? S | | :
- NC NE = Lo . e .
=] NC NC =
GND  OSC_OUT
BYCC
e s e T o .
— ECSXTAL OSC
D . . 1100 Mnz 5.0V, §-Pin Helf Size 0SC. _ .
CMOS Output e B O

1. To program Sx28, O5C Enable Switch/Jumper must be OFF. ) o ) o
2. To run SX¥28 with external oscillatoralltor, OSC Enable switch must be ON %
3. DVCC and GND are assumed available and regulated for SX-Key.

. . . . . : .o . - . .GND J4 0600
Q .
O
>

SH-KEY PORT

11.16.4.5 Building the Clock Circuit
The clocking of the XGS Pico Edition comes from one of three potential sources:

1. An external oscillator (the kit comes with an 80.000 MHz and a 78.750 MHz).
2. The internal oscillator from 32KHz — 4MHz.
3. The SX-Key’s clock generation.

Now, there is a little bit of a trick to getting either the external oscillator or the SX-Key to clock the
SX28 processor. The problem is that you need to “jumper” the clock oscillator into the circuit, but
remove it if you want to program the SX28 with the SX-Key. If you refer to the design file located
here:

CDROOT:\XGSME_HW_CD\Datasheets\xgs_pico_edition_kit_clock_01.DSN
The design file shows just clocking aspects of the complete Pico design. Figure 11.76 illustrates
the actual circuitry for the clock. In the design jumper (J3) is used to connect/disconnect the

external oscillator from the SX28 processor. However, (J3) is nothing more than a piece of
hookup wire. So if you want to clock the SX28 with the external 80.000 MHZ (or whatever)

131



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

oscillator then you need to make sure that the SX-Key is not plugged in, but the jumper from the
output of oscillator at pin 5 (upper right hand corner) is connected to pin 27 (OSC1) of the SX28.
Likewise, when you want to program the SX28 or use the SX-Key in any other way, you need to
disconnect the oscillator’s pin 5 from the SX28 processor’s pin 27 (OSC1) pin — simple.

Figure 11.77 — The Parts for the Oscillator Clocking Circuit.

80.000M42 §
. | Ecs-22008 |
o CHINA K3C |

{ 78.750MHz I
’ | ECs-22008

%  CHINA K3C i

Figure 11.77 shows the parts that come with the kit for the clocking circuit. Basically, there are
two oscillators; one is the standard 80.000 MHz that the XGS Micro Edition uses, so porting
programs is easy. The other is a more specialized 78.750 MHz oscillator which as you know is an
integral multiple of the NTSC color burst frequency to help make color programming easier. Lastly
there is a decoupling capacitor that must be placed across the power leads of the oscillator to
minimize noise and filter the power. In any case, Table 11.21 lists the parts for the oscillator
circuit.

Table 11.21 — The Pico Edition Clocking Circuitry Parts List.

Reference Designator Description
U2 80.000 / 78.750 MHz 8-pin DIP / half size oscillator.
C3 0.1uF non-polarized monolithic ceramic capacitor (flat, small).

Figure 11.78 — Placement of the Oscillator.

'—\ has Bl 4 anms mms

- . n LON B B BN - . - - r
LI - - .ae - - s a :‘ L L
[ SR F | L B B B B B B B B lm LB B B B A )
[ A B ] _ . sRE PN
R RN EERE RN R sEEE e
' ll.‘..;\:u..l:nllullll TR
P R B P ]

i

,u,‘..lll.'.'llI. LI B B B |
T ] TR ]
A A R
PR LI LI B B
lynn.nuu--- 'R TR
WM R Em seece Jsa mEEEE® mwm|
LB B B B - e 8 EE 2 5 aas - . N - e = E P 535S » "D .

132



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

To assemble the clocking circuit, it's a matter of selecting a place to insert the oscillator,
connecting the power leads and finally inserting the de-coupling capacitor. Here are the steps:

Step 1: Insert the 80.000 MHz oscillator (U2) (the pre-loaded demo on the XGS Pico uses the
80.000 MHz). Refer to Figure 11.78 for placement, pin 1 of the oscillator (U2), that’s the bottom
left pin as shown in the figure, should be inserted to align with column 26 of the breadboard
(remember just a suggestion that works and makes for a nicely and open layout). Also, your
oscillators might have slightly different text on them, just make sure that the pin 1 indicator (the

black dot) is oriented to the bottom left of the insertion point.

Step 2: Insert the decoupling capacitor (C3) as shown in Figure 11.79. Remember, (C3) is non-
polarized, so either orientation is fine. Also, be careful that the leads do not make contact with the
casing of the oscillator, this could cause a short. The capacitor needs to be across or in parallel
with VCC (+5) and GND of the oscillator. In other words, pin 8 (top left) which is +5 and pin 4
(bottom right) which is GND. The problem is that you can’t straddle the oscillator with the
capacitor since the leads will touch, so you must insert the cap as | have in the figure and then
run a line from the cap to the GND pin of the OSC. This is shown in Figure 11.79 as well.

Step 3: Power the oscillator (U3) up by connecting power and ground. VCC (+5) for the oscillator
is located at pin 8 (upper left), connect this to the +5 top power rail, then connect GND of the
oscillator at pin 4 (lower right) to the lower ground rail of the breadboard.

Step 4: Although, not shown in the figures, | want you to connect the jumper wire (J4) from the
output of the oscillator to the OSC1 pin (27) of the SX28 with a hookup wire. Remember, you
must connect / disconnect this line when you want to program the SX28 and / or use the SX-Key

for clocking the SX28.
Figure 11.79 — The Complete Clocking Circuit for the XGS Pico Edition.

L - -
R R ..-\,‘w. ‘.
\- .
t-oocoocno“w
TEEEEEE RS
[
[ B A B
[
T .-
L ..
C .-
LA B B A B A
L B B B B B B B
= &

-
»
»
.
.
.
.
L
L
.
.

As usual make sure to verify the connections of everything with the images and the design file.
Even though there isn’t much to the clocking circuit, | have seen people put the oscillators in
backwards and they can potentially burn up in seconds if you do this! Pin 1 of the oscillator is
marked with a black dot usually, or is always to the bottom left of how the text is printed on the

oscillator itself as read from left to right, top to bottom.

133



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.80 — The LED Output Design File.

5vCC

S5X28 Processing Unit
U1
Gl == ;— RTCC WMCLR %
- 0AUF - < voD osct [
MONO 4— NC1 Qsc2 T
) vss RC7 ==
Led Indicators =5 Ine2 RCH [—2E
s RAO RCS %
RA1 RC4 ==
g Rap  SX28DP D0 %
70 RA3 RC2 T
T RBO RC1 W
] RB1 RCO 7
—~— RB2 RBT ——<> 10 2
R2 . . R3 . ||R4 % RB3 RE6 :g—<]> 101
200 . . 200 . . .|| 200 —— RB4 RB5 [————<> 100
L TEXT> L TEXT> L TEXT> SX28DIP
D1. . D2 . D3 -
AV VXA W .
LED LED LED
<TEXT> . = [|<TEXT= . . |<TEXT=
GND GND GND GND

11.16.4.6 Adding the LED Output Port

The LED output port for the XGS Pico Edition is rather simple, but very useful nonetheless, as
discussed its nothing more than a direct port link from RA3-0 to a set of LEDS via current limiting
resistors. Figure 11.80 shows the design file image excerpt from the master design for the LED
output port. Figure 11.81 shows the parts needed to build the port.

Figure 11.81 — The Parts Needed for the LED Output Port.

B
<mw

The first step to build the LED output port is to collect the parts. In this case, that’s rather easy
since they are all the same. You just need the (4) red LEDs along with (4) 200 Ohm resistors.
Table 11.22 shows the exact parts list and reference designators for the sub-system and Figure
11.81 shows the parts you need for the assembly.

134



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Table 11.22 - The Parts List for the XGS Pico Edition’s LED Output Port.

Reference Designator Description
D1-D1 Red colored LED.
R2-R5 200 Ohm current limiting resistor.

Figure 11.82 — The Completed LED Output Port all Wired Up.
ML R B E B Te— LA -

XI1RAC/DFP

Co3l IAB

. |
A

Figure 11.82 depicts a close-up of the completed LED output port and its connections to the
SX28, use it as a reference as you build the port yourself. Here are the steps to assemble the
port:

Figure 11.83 — The Placement of the LEDS and Resistors for the Output Port.

i

<
..
M - .

-

A

g 1=
I 8

s ew - w

IR R LR

PR P ,

LR RN R {

LR LR L ' PR

, i J A

B ATITEL ] -
SEEEs SEE WY

— T ———

Step 1: Insert the LEDs (D1-D5) into the breadboard as shown in Figure 11.83. Remember, the
negative (-) GND side of each LED is the larger mechanical internally if you look inside the LED,
that is the one that looks like a ledge. | suggest inserting D1 at column 15, D2 at column 16, and
so forth. One end of the LED should go into the ground rail at the bottom the other end to the
column of contacts.

135



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Step 2: Insert the 200 Ohm current limiting resistors (R2-R5) in parallel with each LED (D1-D5)
respectively. Refer to Figure 11.83 for this, but basically each resistor should make contact with
the LED’s (anode) (+) side and then cross over the middle of the breadboard and make contact
with the same column on the other side.

Step 3: Now that you have all the LEDs and current limiting resistors in place, the last thing to do
is connect them to the outputs of the SX28. Refer back to Figure 11.82 for this that shows a long
shot of the entire board. You will need (4) hook up wires for this. Start by hooking up the left most
LED circuit at open end of the current limiting resistor to RAO (pin 6 of the SX28), then the next
current limiting resistor (attached to D2) to RA1 (pin 7 of the SX28), do this until each LED circuit
is driven by an output RAO, RA1, RA2, RAS.

You can either decide to drive the LEDS from left to right or right to left. For
example, if you connect RAS3,2,1,0 to the LEDs left to right then when you output a
binary number you will see it on the LEDs, however, if you want to think of bit 0, 1,
2, 3 starting from the left and moving to the right on the LED display then you
would connect them in the opposite order. It’s up to you. In either case, just make
sure that each current limiting resistor circuit for each LED is connected to one of
the outputs at RA0:3 (pins 6-9 on the SX28).

Once again, re-verify the design file against the circuit against your wiring. Also, make sure that
you have the polarity of the LEDs correct. Referring to the internal leads inside each LED, the
larger cathode goes to ground, and the smaller anode connects to the current limiting resistor.

Figure 11.84 — The Video Output Design File.

5VCC
A
SX28 Processing Unit . .
Video Intensity D/A R2R Ladder
= p— VIDEOQO QUT
C1 — ;— RTCC MCLR % R14 ;
notigr'\fo £ voD oscl 3¢ .'_'360 ] TIP
—=— NC1 osc2 =2
g ves o % TEXT> R1g  POT1 RCA/FEM
5 1 NC2 RC6 53 1 1
—— RAO RC5 53 180 o RING
5 | * sxespip R[5 R15 SIEAIS 3 RCA
o] RA2 RC3 —ogvo s —
=1 ra3 RC2 — 1 Rl e
10 | pen vl IETTEREE & 360 *500, 1K, 2K, 5K
] [ 1gvD_eEl <TEXT> =
— RB1 RCO . . <TEXT> - - py o, o - SMEAIZ T
12 {7 0_SED R19 Notes:
—=— RB2 RB7 [—= —
T iy res & || 180 . . .-800chm - —
14 RE4 RES 15 e <TEXT> optimal.
R T S S 16 . . | -
| S|
— =TEXT= R . R i 360 P I e I
- <TEXT>
GND - T R20 . . . .
180
...... <TEXT= - - .« - .« .« .
R17
| I R N N T T L
| I )
360
<TEXT> S
R21
...... o R
<TEXT>

136



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.16.4.7 Building the Video-Out R2R Ladder and Output

The video generation circuit is built from a simple R2R ladder consisting of 4-bits of D/A accuracy.
This gives us 16 voltages to vary the video signal, more than enough to represent sync, black,
and 10-12 different intensities or LUMA values. Figure 11.84 shows the circuit diagram excerpt
for the design. Notice how this is different from the Micro Edition design — the Pico Edition does
not have color “helper’” hardware. Thus, if you want to generate color you can surely do so, but
you must generate the timing directly and simulate the CHROMA signal on top of the LUMA
signal (more on this later).

Figure 11.85 — The Parts for the Pico Edition’s Video Output Circuit.

=7
N

_—— “

= P

The video circuit is deceptively simple since software is used to drive it. More or less it's nothing,
but a 4-bit D/A converter with a 500 Ohm potentiometer at the tail of it to give you some control
over the overall amplitude of the signal. From your reading you should know that an R2R ladder
consists of resistors with value R and 2*R, thus any resistor value can be used for R and you
don’t need power of 2 resistor values as you would with a D/A consisting of R, 2R, 4R, 8R...2"R
networks. In this case, | have chosen the value of R to be 180 Ohms and thus 2R is 360 Ohms.
Also, as noted there is a POT at the end of the circuit that acts as a voltage divider and
impedance matcher that allows some control over the overall voltage output and hence
brightness of the video. | find values from 500 — 2K Ohm work well for this POT. Table 11.23 lists
the parts needed to construct the video circuit and Figure 11.85 shows the parts laid out for
reference.

Table 11.23 - The Parts List for the XGS Pico Edition’s Video Output Circuit.

Reference Designator Description

R14-R17, R21 360 Ohm Axial, 0.25W Resistors.

R18 — R20 180 Ohm Axial, 0.25W Resistors.

POT1 500 Ohm Potentiometer.

J5 (1/2) RCA Male A/V Cable Assembly (red portion).

137



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.86 — The Complete Pico Edition Video Circuit.

(D ))_h

e T e

To begin with refer to the design file image shown in Figure 11.84 along with the complete circuit
shown in Figure 11.86. The complete circuit is a bit hard to follow due to the rats nest of wires,
but it's a good frame of reference.

Figure 11.87 — The Initial Placement of the R2R Network Resistors, POT, and A/V Cable for
the Video Circuit.

The construction of the video circuit consists of inserting the 360, 180 Ohm resistors, the POT,
the A/V cable (video portion) and finally the connection wires from the SX28. Referring to the
figures above, here are the steps you should take.

Step 1: Create the R2R network using the topmost section of the breadboard to the right of the

SX28. | suggest starting with column 47 or so as your first insertion point to place R14, following
the circuit diagram, continue to insert all the 260 Ohm resistors R14-R17, and R21. This is very

tricky since you need to have the exact electrical connectivity shown in the circuit diagram of

138



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.84. You might end up doing it a couple times, but just keep working on it until you are
satisfied the network is correct.

Step 2: Add the 500 Ohm potentiometer POT at column 61 as shown in Figure 11.87. Finally,
make sure that you insert R21 as shown in Figure 11.87.

Step 3: Now insert the 180 Ohm “bridge” resistors R18-R20. These are very simple electrically
as far as the network goes and more or less “bridge” each sub-circuit together, there are (3)
resistors and they simply connect between the nodes of each D/A bit as shown in the design and
Figure 11.87.

Step 4: Next insert the A/V cable’s video leads into the breadboard. It really doesn’t matter if you
use the RED (YELLOW) or WHITE leads, but lets just use the convention that RED (or YELLOW
if you have it) is video and WHITE is always audio. If you inspect the cable J5/J6 you will see
that each of the stripped end pairs has a colored wire (RED or WHITE) along with a bare wire
(GROUND). You need to connect the RED wire pair to the video circuit. The RED lead should go
to the center contact of POT1 and the GROUND lead should go to the rightmost contact of the
POT1 as shown in Figure 11.87.

Step 5: Now it’s time to complete the wiring from the SX28’s output port to the video R2R ladder.
As shown in the design and Figure 11.84, the SX28 drives the R2R ladder via port RC0-3. Refer
to Table 11.24 for the port mappings as a second reference. Connect a wire from each pin of the
SX28’s port bits RC0,1,2,3 to the appropriate network resistor node. There should be (4)
connections.

Table 11.24 — Bit Mappings for the Pico Edition Graphics Hardware.

Port Bit Bit Signal Name Reference Designator
RCO Bit 0 VID_ISELO R17
RC1 Bit 1 VID_ISEL1 R16
RC2 Bit 2 VID_ISEL2 R15
RC3 Bit 3 VID_ISEL3 R14

Step 6: The last part of the video circuit is to connect the (GROUND) from the potentiometer to
the system ground rail at the bottom of the board. This is shown as the rightmost wire in Figure
11.86. Simply connect the rightmost contact of POT1 to the BLUE ground rail at the bottom of the
board. When complete your circuit should look identical to that shown in Figure 11.86.

The video and audio R2R ladder circuits are by far the most complex of the design,
so make sure you triple check them. It's very easy to confuse your eyes with all the
similar looking wires all over the place. Take your time and check it over and over
and over and make sure you haven’t made an incorrect assumption about
conductivity of the breadboard. Remember, only the columns are shorted together
on either side of the center separator, these columns act as shorts or connections,
that is all.

139



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.88 — The Audio Output Design File.

5VCC

Sics B A Audio Intensity D/A R2R Ladder
rocessing uwni
—___1
<TEXT>
C1 == 1 {rrec McR 28 : . [1r10 . POT2
0.1uF § VDD 03C1 % 180 ;
MONO = et 0SC2 [—22 i iees R7 - <TEXT> 3
3 VSsS RC7 54 BUDIGELD —
o | N2 RC6 |53 womm L 100, 7500, 1K AUDIOQUT
7 RAQ RC5 59 AUD TBELD 360 : : T ’ TiE‘XT ' 9 ’
T 1Rrat RC4 - <TEXT= L el TIP
8 | pae SX28DP S0 [T2T ~ T1R11 . Notes: _
o | A T " |10 . . -5000hm _ RCAFEM
% RBO RCA —1: AN <TEXT= OPtimal. . ]
f e e 7 ~— | RBG
13 16 RCA
T RB3 RB& ? 360 <TEXT>
12 res4 RB5 |—2 - <TEXT> - b R19 =
SX28DIP 180
L =TEA> L] eTEXT> - =
- R9
GND o o o .
. . 360 . . . .
<TEXT>
R13
360
S <TEXT>

11.16.4.8 Building the Audio-Out R2R Ladder and Output

The audio generation circuit is identical to the video output circuit. It uses a simple R2R ladder
consisting of 4-bits of D/A accuracy. This gives us 16 voltages to vary the audio signal (about 2V
P-P). Although, 4-bit sound may seem like its not enough amplitude range to create good sound,
trust me, it's more than enough for a video game system and can reproduce digital sounds just
fine as long as the playback rate is high enough.

Figure 11.88 shows the circuit diagram excerpt for the design. Notice that the audio system for
the Pico Edition is radically different from the Micro Edition’s. The Micro Edition of course uses a
ROHM BU8763 sound chip to generate sound whereas the Pico Edition uses a more direct D/A
digital output approach. This is good and bad. lts good since you can directly control the DAC and
generate any waveform you wish, but its bad since you must control the DAC to create any
waveform you wish thus eating processor cycles at all times. Therefore, most sound effects must
be interleaved with rendering code to maintain enough “bandwidth” to keep the sound running
smoothly without pops or stops. Of course, you can always play a sound “offline” and halt the
game logic while the sound effect takes place.

140



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.89 — The Parts for the Pico Edition’s Audio Output Circuit.

"N

4 N

The audio circuit is identical to the video circuit and thus uses the exact same parts. To reiterate
the audio circuit is nothing, but a 4-bit D/A converter with a 500 Ohm potentiometer at the tail of it
to give you some control over the overall amplitude of the signal. From your reading you should
know that an R2R ladder consists of resistors with value R and 2*R, thus any resistor value can
be used for R and you don’t need power of 2 resistor values as you would with a D/A consisting
of R, 2R, 4R, 8R...2"R networks. In this case, | have chosen the value of R to be 180 Ohms and
thus 2R is 360 Ohmes. Also, as noted there is a POT at the end of the circuit that acts as a
voltage divider and impedance matcher (to help match the input of the audio amplifier) that
allows some control over the overall voltage output and hence brightness of the video. | find
values from 500 — 2K Ohm work well for this POT. Table 11.25 lists the parts needed to construct
the audio circuit and Figure 11.89 shows the parts laid out for reference.

Table 11.25 - The Parts List for the XGS Pico Edition’s Audio Output Circuit.

Reference Designator Description

R6-R9, R13 360 Ohm Axial, 0.25W Resistors.

R10-R12 180 Ohm Axial, 0.25W Resistors.

POT2 500 Ohm Potentiometer.

J6 (1/2) RCA Male A/V Cable Assembly (white portion).

141



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.90 — The Complete Pico Edition Audio/Video Circuit.

To begin with refer to the design file image shown in Figure 11.88 along with the complete circuit
shown in Figure 11.91 (this shows both the audio and video circuits wired).

Figure 11.91 — The Initial Placement of the R2R Network Resistors, POT, and A/V Cable for
the Audio Circuit.

v\

Juw » :
msam y
mebesdsnun s

142



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

The construction of the video circuit consists of inserting the 360, 180 Ohm resistors, the POT,
the A/V cable (audio portion) and finally the connection wires from the SX28. Referring to the
figures above, here are the steps you should take.

Step 1: Create the R2R network using the bottommost section of the breadboard to the right of
the SX28. | suggest starting with column 47 or so as your first insertion point to place R6,
following the circuit diagram, continue to insert all the resistors 260 Ohm resistors R6-R9, and
R13. This is very tricky since you need to have the exact electrical connectivity shown in the
circuit diagram of Figure 11.88. You might end up doing it a couple times, but just keep working
on it until you are satisfied the network is correct.

Step 2: Add the 500 Ohm potentiometer POT at column 61 as shown in Figure 11.91. Finally,
make sure that you insert R13 as shown in Figure 11.91. Remember, the audio and video circuits
are literally copies of each other.

Step 3: Now insert the 180 Ohm “bridge” resistors R10-R12. These are very simple electrically as
far as the network goes and more or less “bridge” each sub-circuit together, there are (3) resistors
and they simply connect between the nodes of each D/A bit as shown in the design and Figure
11.91.

Step 4: Next insert the A/V cable’s “audio” leads into the breadboard. It really doesn’t matter if
you use the RED (YELLOW) or WHITE leads, but lets just use the convention that RED (or
YELLOW if you have it) is video and WHITE is always audio, thus insert the WHITE leads. If you
inspect the cable J5/J6 you will see that each of the stripped end pairs has a colored wire (RED
or WHITE) along with a bare wire (GROUND). You need to connect the WHITE wire pair to the
video circuit. The WHITE lead should go to the center contact of POT2 and the GROUND lead
should go to the rightmost contact of the POT2 as shown in Figure 11.91.

Step 5: Now it’s time to complete the wiring from the SX28’s output port to the audio R2R ladder.
As shown in the design and Figure 11.90, the SX28 drives the R2R ladder via port RC4-7 (the
lower bits are video if you recall). Refer to Table 11.26 for the port mappings as a second
reference. Connect a wire from each pin of the SX28’s port bits RC4,5,6,7 to the appropriate
network resistor node. There should be (4) connections.

Table 11.26 — Bit Mappings for the Pico Edition Audio Hardware.

Port Bit Bit Signal Name Reference Designator
RC4 Bit0 AUD_ISELO R9
RC5 Bit1  AUD_ISELT1 R8
RC6 Bit2 AUD_ISEL2 R7
RC7 Bit3 AUD_ISEL3 R6

Step 6: The last part of the video circuit is to connect the (GROUND) from the potentiometer to
the system ground rail at the bottom of the board. This is shown as the rightmost wire in Figure
11.91. Simply connect the rightmost contact of POT2 to the BLUE ground rail at the bottom of the
board. When complete your circuit should look identical to that shown in Figure 11.90.

143



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.92 — The Pico Edition Joystick Port Design.

svce-
Vi
SX28 Processing Unit
U1
Cl — ——{rTCC WCIR |22
; : 0.1uF VDD OSC1 ===
(Pin 7 to +5VCC, Optional) MONO 3 e ppiode gg
5VCC =—{ Vss RCT 5=
ls 1 NC2 RC6 =
J2 —— RAO RCS =52
O 5 |FAT sxosoip RYUToT
O RA2 RC3 2L
O £ =2 1pas RCo =20
2 JOY_0_UP 10 19
O 7 ] Tovoon |11 ] REC RC1 =%
OC 3 oo | 12 SS; Egg —7 o5
8 JOY_0_RT 13 _<>16 )
C 4 | JOv_0_FIRE| . 14 RB3 RB6 15 101
O RB4 RB5 100
O 5 ' " SX2BDIP : : :
\JO- ' il B & ] <TEXT>
CONN-D9 — —
<TEXT>

11.16.4.9 Adding the Joystick Port

The Pico Edition’s joystick port is nothing more than the mechanical DB9 connector with 6 wires
soldered to it. This simple design is a result of directly connecting the joystick inputs to the 1/0
pins of the SX28. Figure 11.92 shows the joystick design which is really just a DB9 male
connector along with the pin mapping.

Figure 11.93 — The Male DB9 Joystick Connector.

144



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.94 — The Joystick Connector’s Color Coding.

Figure 11.93 and Figure 11.94 show images of the DB9 male itself along with the opposite end
with the bare wires you will insert into your board. The color coding may be slightly different, refer

to Table 11.27 as your guide.
Figure 11.95 — The Pico Edition Joystick Assembly.

If you are making your own joystick cable assembly, then simple get a “solder cup
DB9 male connector along with the wire colors listed in Table 11.26 (use the non-
parenthetical colors) and build a nice cable. When you’re done it should look

something like that shown in Figure 11.95. Also, make sure to reinforce the wires

with tape or shrink tubing.

145



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

The only real assembly for the joystick port is to connect each of the bare wires into the
breadboard and make the appropriate connections to the SX28. Table 11.27 illustrates the proper
mapping and connection network.

Table 11.27 — The Mapping and Connection Network for the Joystick Cable.

DB9 Male Pin# Color (backup) Function / Signal Name SX28 Port / Pin
1 White Up/JOY_0_UP RBO (10)

2 Blue Down /JOY_0_DN RB1 (11)

3 Green Left/JOY O LT RB2 (12)

4 Brown (yellow) Right / JOY_0_RT RB3 (13)

5 NC None

6 Orange (red) Fire / JOY_O_FIRE RB4 (14)

7 NC None

8 Black Ground

9 NC None

Figure 11.96 — The Joystick Port Assembly Inserted into the Solderless Breadboard.

Now, that we have all the information we need, let's connect the joystick cable.

Step 1: Connect all the direction lines along with the fire line from the DB9 male connector to the
SX28. You should make connections to pins 10, 11, 12, 13, and 14 of the SX28. Refer to Figure
11.96.

Step 2: The joystick works by simple ground, so the last step is to connect the ground line
(BLACK wire) to the bottommost BLUE ground rail.

That’s it, the joystick is completely connected. The only thing you need to worry about is the wires

coming undone, they are solid conductors plus the joystick cable itself is very heavy; therefore,
when inserting the joystick into the DB9 male make sure to lie some of the joystick on the table

146



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

next to the unit, so you don’t accidentally pull the conductors out when moving the joystick
around.

11.16.4.10 Final Systems Check and Wiring Review

Now that you’re completely done with building the XGS Pico Edition it's time to verify the design. |
suggest you perform this step, not once, not twice, but three times. | usually verify all my work
four times and have someone else verify it if possible. With electronics you have to be careful
since unlike a computer program, you can’t press CTRL-ALT-DEL you have to buy new
electronics! Of course, | am being a bit dramatic here, the XGS Pico Edition doesn’t have much to
blow out, so in most cases if something is connected wrong it just won’t work. However, | suggest
verifying each system with the design files as well as the images from all the figures in this
section. When you are absolutely certain everything is correct then you are ready to connect
power.

11.16.5 Powering the Pico Up

The next step it to power up the Pico Edition. There are two ways you can power the Pico; either
with the 9V battery and clip or if you wish you can connect a 7-9V external unregulated /
regulated DC power supply to the regulation circuit (the Pico has a voltage regulator, but no
bridge rectifier, so it at least wants DC). Also, before powering up the Pico, you should connect
the A/V cables to your TV set (sorry only NTSC is supported with the onboard demo). Make sure
to connect the Video cable to the video input and the Audio cable to the audio input of your set
and set the TV to “external video input”. Remember, we used RED or YELLOW for video and
WHITE for audio.

Each Pico Edition’s SX28 (if you get it from the XGameStation Site) is loaded with a graphical
demo program that will immediately run and test the system. Allowing you to see something, and
move around with the joystick (if you have one).

Figure 11.97 — Connecting the 9V Battery to the XGS Pico Edition

147



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.98 — A Typical External Power Supply to Connect to the XGS Pico Edition.

11.16.5.1 Battery or Power Supply

Once you have completely verified the XGS Pico Edition’s assembly and you are confident its
good to go then there is nothing else to try, but to power this baby up and see what happens. |
suggest you use the 9V battery that comes with the kit (if you bought it) otherwise you can use a
7-9V unregulated or regulated power supply connected to the 9V battery clip. Figure 11.97 shows
a close up connection of the 9V battery to the battery clip, while Figure 11.98 shows an external
power supply that you might use to power the Pico Edition, you would need the FEMALE
connector to accept the supply input, but as long as its 9-12V DC at 500mA+ then it will work fine.

If you do use an external power supply, do not apply more than 9V to the voltage
regulation circuit of the Pico Edition. There is no heat sink on the 7805, therefore
WWLGHIN el the 7805 regulator will get VERY hot and might burn up with voltages over 10-12V.
So play it safe and don’t input anything over 9V DC into the Pico if you want to
directly connect an external power supply.

Figure 11.99 — The Pico Edition Demo Program Running.

11.16.5.2 System Start up and Firmware

Once you power the Pico Edition up you should immediately see the black and white display
shown in Figure 11.99. This is a port of the XGS Micro Edition Demo “Racer City”’ by Alex

148



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Varanese to the Pico. The port took about 1-2 days and was derived from. The source is too long
to list, but can be found here on the CD:
CDROOT:\XGSME_HW_CD\XGSME_Sources\racer_city_pico_01.SRC

Additionally, Alex wrote a small article on the porting of “Racer City” which can be found on the
CD here:

CD FILE FOR RACER CITY PORTING

If you don’t see the game demo running, then make sure to press the “reset” SPST switch
(SW1), and make sure that the 80.000 MHz oscillator is jumped to the SX28’s OSC1 pin 27. If the
game looks fuzzy or too bright/dim then adjust the video brightness adjustment POT1.

If you have the SX-KEY programmer connected to the Pico Edition then you must
WL\ ell disable the jumper from the 80.000MHz oscillator and set the output of the SX-KEY
to 80.000 MHz.

Figure 11.100 — The SX-KEY Inserted into the XGS Pico Edition for Programming and
Debugging.

11.16.6 Programming the Pico

If you purchased an XGS Pico Edition kit from the XGameStation site or other distributors then
the SX28 chip will already be pre-loaded with a game demo of some kind (Racer City at the time
of this writing); however, if you want to re-program the SX28 then you are obviously going to need
the SX-KEY hardware and software to do this. If you haven't already purchased an SX-KEY from
the XGameStation site then you will need to do so to program the XGS Pico Edition. You can
however, use any 3" party programmer that has the same 4-pin electrical interface as the
Parallax Inc. SX-Key. However, | don’'t know of any that work as well as the Parallax SX-KEY. In

149



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

either case, you will need the SX-KEY hardware and to install the SX-KEY software. The SX-KEY
software can be found on the CD here:

CDROOT:\XGSME_HW_CD\SX_Key_IDE\SX-KeyEditor3_0.exe
Or you can download the latest version from Parallax Inc. at:
http://www.parallax.com/

Once you have the SK-KEY software loaded, you will load ASM programs into it and then
download them into the SX28 via a serial connection and the SX-KEY hardware. The connection
you need to make is from your PC thru a serial cable (connected to COM1 or 2) into the SK-KEY
itself and then the SX-KEY connects to the Pico Edition, the final portion of this arrangement is
shown in Figure 11.100. This book doesn’t show how to use the SX-KEY software since there is a
free copy of “Beginning Assembly Language for the SX” on the CD which has detailed
instructions on using the SX-KEY software. The PDF file is located here:

CDROOT:\XGSME_HW_CD\SX_Docs_Books\BegAssemforSX.pdf

However, the process is so simple, let’s briefly take a look at the steps. Also, please make sure to
install the SX-KEY software and read the help file in detail.

Figure 11.101 — Loading a Program into SX-KEY.

% SX-Key v3.0 - Untitled.SRC
File Edit Run Windows Help
Mew (Assembly) e i
P || e
Mew (SuE) | I “
Close

Save Chrl+5
Save As,..
Reopen 4

Prink...

Exit

11.16.6.1 Loading a Program into SX-KEY

To load a source program into SX-KEY select FILE->OPEN from the main menu as shown in
Figure 11.101, navigate to the file you wish to open and then select and open it. The file should
immediately load into the source display window. For example, let’s open up the Racer City
program. It's located on the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\racer_city_pico_01.SRC

Either copy the source contents from the CD to your hard drive, or navigate manually to the CD
ROM and load the source file into SX-KEY.

150



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

SX-KEY does not like long pathnames, therefore, if you do decide to copy the
source files to your hard drive, | suggest you copy them to the root of your hard
drive only one directory deep. Also, try and make a habit of using short filenames.
The SX-KEY software is a console application at its heart and therefore only has so
much room for string space when passing parameters — long file names and paths
can overrun this buffer and cause your source code not to work!

Figure 11.102 — The SX-KEY RUN Menu.

3‘ SX-Key v2.02 - ntsc_color_xme_02d.s
File Edit Run Help
o lE!r Assemble Chrl+A
el Program Ckrl+P
Run Chrl+R :’K‘U
Debug Chrl+D E_03
Debug (reenter) Chrl+al+D e B
Wigwy Lisk Chrl+L Bt
Clack, .. Chrl-H Tnta
Device. .. Chrl+I I3
Configure. .. Chrl+U
T Hotes=
; Color O - Phase o
Fogorkar o= 4= pl
; Color 15 - ground

11.16.6.2 Downloading and Running a Program

The SX-KEY software allows you to perform assembly, downloading (programming) and running
with a single click. Referring to Figure 11.102, the RUN submenu, below are the operations and
their functionality:

Assemble — Assembles the source program and displays any errors.

Program — Assembles the program if it already hasn’t been recently assembled then programs or
downloads the binary object to the target device via the SX-KEY hardware.

Run — Assembles, programs, and then starts the clock on the SX-KEY which drives the target
device, effectively does everything for you, so you can always RUN to assemble, program, and
start your program.

Debug — Assembles your code with special debugging hooks in it and then starts the debugging
interface allowing you to single step thru your code.

View List — Displays a source level dump of your assembled program with all symbolic and
binary information along with map and symbol table.

151



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Clock — Displays the Clocking dialog which allows you to control the SX-KEY hardware and
generate a clock signal via the SX-KEY on the OSC1 pin of the key interface -- very handy for
experimenting.

Device — Opens the Device dialog window which allows you the ultimate control over the target
chip connected to the SX-KEY. You can upload/download binary data, change fuse registers, and
other very low level hardware settings.

Configure — Opens the SX-KEY general configuration dialog.

In most cases, you will simply use the RUN command from the RUN menu since it assembles,
programs, and runs you code all in one click. However, if you just want to test your source to see
if it assembles properly then of course RUN->ASSEMBLE is the best choice. Please refer to the
SX-KEY online help for more information.

Figure 11.103 — The Clock Dialog.

Clock [
Freq [MHz)

0.400

Ei]

v On

Reset
Okay

11.16.6.3 Changing the Clock in Real-Time

The SX-KEY hardware not only allows you to download and upload code to and from the target
its connected to, but the SX-KEY hardware has an onboard programmable oscillator that allows
you to vary the frequency for 0 Hz to 100 MHz roughly. Figure 11.103 shows the Clock device
dialog launched from the main menu RUN->CLOCK. You simply, slide the control or select the
text edit field that displays the frequency and enter a new frequency. This tool is great for
experimenting with different system frequencies, determining power consumption at different
frequencies and doing design runs without committing to a specific fixed oscillator.

11.16.6.4 Programming Tips

The first thing to remember is that when you are programming the SX28 processor with the SX-
KEY the onboard Pico Edition oscillator must not be connected. The SX-KEY takes over OSC1
and OSC2, so if you have the onboard clock connected them you have a “bus contingency” of
sorts on the OSC1 line. Also, there is absolutely no way to program the SX28 without an SX-KEY

152



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

(or similar hardware). Therefore, if you want to change the program that comes pre-loaded into
the SX28 (if you bought the kit from the XGameStation) site then you must buy an SX-KEY.

Lastly, when programming the “target” SX28 with the SX-KEY hardware/software remember that
what'’s really going on is that a binary image of the program is being “flashed” into the SX28 and
this is a slow process (up to 2 mins for the entire 2K). Also, since the process is so timing
intensive, it's a bad idea to switch to other applications while the program is being burnt. You can
try if you like, but this may mess up the download.

11.16.7 Blinking Light Test

The “Hello World” of embedded systems is of course a blinking LED. This is the first program
you should try to get running on any embedded system since it tests the main functionality of the
system and gives instantaneous feedback.

To blink the LEDs is nothing more than writing 1’s and 0’s to the LED array with a delay between
writes. As you know the LED array uses positive logic (the LEDs will light when there is a digital
HIGH sent them to) and is connected to the I/O port bits RA0 — RA3, therefore, a simple write to
the port with 1’s and then 0’s with a delay is all we need. The program that does this is nhamed
XGS_PE_BLINK_01.SRC and is located on the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_BLINK_01.SRC

You can load the program into the SX-KEY IDE from the source file or if you wish you can type it
in from the source listing below:

LI1111777107777771777717777777777777777777770777777777777777777777/7777/7/77//7/

Source Filename: XGS_PE_BLINK_01.SRC
Description: Pico Edition Blinking Light Demo
Last Modified: 1.25.2005

Instructions:
L1117711117777777777777777777777777777777777//7////7////7/7///////////7///////
; //////////////// ////////////////////////////////////////////////////////////

; Set device att

; /////////////////////////////////////////////////////////////////////////////

; Set device to Sx28, enable external high speed oscillator
DEVICE SX28L, STACKX, OPTIONX, TURBO
IRC_CAL IRC_FAST

RESET Start ; set restart vector to start of code
FREQ  10_000_000

; /////////////////////////////////////////////////////////////////////////////

: /////////////////////////////////////////////////////////////////////////////

; ////é//éé{///////////////////////////////////////////////////////////////////

s LI111117777777777177777777777777777777777777777777777777777/7777777777777777/
variable storage

countl EQU $08
count?2 EQU $09

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

153



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; /////////////////////////////////////////////////////////////////////////////

; Dat
; /E/l/E/l/////////////////////////////////////////////////////////////////////////

; /////////////////////////////////////////////////////////////////////////////

; Begin Prog
: /////////////////////////////////////////////////////////////////////////////
ORG $000
Start
; Initialize 1/0 controller for Pico Edition A->Input, B->Output, C->Output
mov w, #S$1F ; Set mode register to write direction register
mov m,w
mov RA, #%00000000 ; Set port A output latch to zero
mov IRA, #%00000000 ; Set port A direction
mov RC, #%00000000 ; Set port C output latch to zero
mov IRC, #%00000000 ; Set port C direction
mov IRB, #%11111111 ; Set port B direction
mov w, #$1E ; Set mode register to write pullup resistor

mov m,w
mov IRB, #%00000000 ; Set joystick inputs pullups on (0=on, 1l=off)

: /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

Main

mov W, /RA ; grab inverse RA

mov RA,W ; and store it back in RA
REPT 10 L
call delay ; delay to slow down blinking
ENDR

jmp Main ; goto main

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

; delay function counts 64K counts and returns

Delay clr Countl ; Initialize Countl, Count2
clr Count2

Loop djnz Countl, loop ; Decrement until all are zero
djnz Count2, Toop
RET ; then return

; /ééé/é{éé{éé/////////////////////////////////////////////////////////////////
S /II1ITT11171117111111111111711171111711171111111171117111711111111711111111
; /////////////////////////////////////////////////////////////////////////////

Data S

; /////////////////////////////////////////////////////////////////////////////
; ///é/////////////////////////////////////////////////////////////////////////
S /IIIIT1I1T771117111111111117111117111117111117111177111171111171111171111177

The program has a number of code elements or sections each with a very specific purpose, let's
discuss what each section does along with a detailed explanation of how to load the program and
run it:

Setting the Device Attributes — In this section a number of hardware options are set that control
the fuse and option registers on the target hardware (SX28). You can control the carry flag
behavior, the stack, if the processor is to run in full speed and so forth. In general, you should
copy this section for all your programs. The only directive that might change is the FREQ
directive. This is for the SX-KEY software and has nothing to do with the hardware, the FREQ

154



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

directive tells the SX-KEY software to instruct the SX-KEY hardware to run the internal oscillator
on the OSC1 pin at the desired frequency. In this case, it’s set for 10.000 MHz.

Entry Point — In the device attributes section you will notice a directive “RESET start” this is the
entry point directive that tells the assembler where you want code to start execution once the
processor powers up or is reset. Along with this directive is the actual entry point into the code
that has the first instruction(s) you want executed. Here’s where you should start all your
initialization.

Initializing the 1/0 Controller — Now we are getting into the program specific code. The first step
with any embedded system CPU/MPU it to set up the processor’s internal peripherals. In this
case, we are only using the 1/O controller aspects of the SX28, and thus need to set the ports
directions properly, specifically we need to make sure the LED port at RA is set for output.

Main Program Loop — This is where all the action takes place, the program basically reads the
RA port, invert the data, and writes it back out thus toggling or blinking the LEDs. Additionally
there is a call to the delay (10 calls actually) that slow the blinking down.

Delay Subroutine — The delay subroutine is a 16-bit timer that counts 65535 counts and then
returns. The length of the delay consists of the counting operations and any “dead” delay code
you wish to put inside the loop body to slow it down.

11.16.7.1 Loading and Running the LED Program

Now that you have seen the code and have a basic understanding of it, let’s load the code into
the Pico Edition and execute it. The first steps are of course to power up the Pico Edition, insert
the SX-KEY programmer hardware, and make sure that the on-board oscillator is disabled (the
jumper is pulled). Also, hit the reset button on the Pico Edition a couple times to make sure the
SX28 is good to go. Once you have your hardware ready, follow the steps below to load and run
the LED blinking program.

Step 1: Launch the SX-KEY IDE, make sure that you have the SX-KEY hardware plugged into
the Pico Edition programming port and that your serial cable is connected and power is good. If
there is a com problem when SX-KEY boots it will tell you it can’t communicate with the SX-KEY.

Step 2: Load the source file for the blinking program into the SX-KEY IDE, you can either type it
in manually if you want some practice with SX28 source code mnemonics or you can load it from
the CD (or hard drive if you copied the files), the file is located here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_BLINK_01.SRC

Step 3: Once you load the program, then its time to assemble, program, and run it. We can do all
these steps with a single click or keyboard macro. Use RUN->RUN from the main menu or
<CTRL-R> will do the same. The program should assemble perfectly, and you should see the
success dialog. At this point the lights will be blinking at about 1.5-2 Hz.

As an experiment let’s try changing the clock frequency on the fly. To do this select RUN-

>CLOCK or press <CTRL-K> and the Clock dialog will display. Try changing the frequency to 5
MHz or 20 MHz and see if the speed slows down and speeds up linearly.

155



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

There is a bug in SX-KEY that when you hit the close window icon which looks like
WARNING! “[x]” in the Clock dialog’s upper right hand corner, it will lock up the program and

ll the entire system, so always hit the <Okay> button when you’re done with the
dialog!

At this point, you have seen how to load a program and run it and alter the frequency.
Remember, when the SX-KEY is connected to the Pico Edition, its running from the clock
generator on the SX-KEY hardware. If you were to pull the SX-KEY, the lights would stop blinking
since there is no clock. However, if you were to connect the jumper from OSC1 to the on-board
oscillator then you would see the lights are on, but blinking very fast. What happened? The
80.000 MHz is of course 8x faster than the 10.000 MHz that the program default clock frequency
was, so the blinking is faster.

Remember, the FREQ directive has nothing to do with the SX28, it only controls
the SX-KEY’s hardware oscillator. The assembler disregards it as far as the binary
image is concerned. The FREQ directive is read upstream by the IDE and controls
only the SX-KEY’s onboard oscillator (if you have one connected).

11.16.8 Joystick Programming

Joystick programming couldn’t be easier than with the XGS Pico Edition. Unlike the XGS Micro
Edition, the Pico doesn’t use a serialized stream of switch states that need to be streamed in from
the joystick port after parallel latching. Instead, the Pico’s joystick port is directly connected to the
joystick switches, so the joystick is read by reading the port and referring to the port bit states.
The port bits for the joystick are of course RB0-RB4 (refer to Table 11.18 for details).

To write a program that reads the joystick directionals along with the fire button means we need
to read in the port bits RB0-RB4 and do something with them. There are 4 LEDs, so | decided to
map up, down, left, right to the LEDs directly, but the Fire button was the odd man out. However, |
decided that when you press Fire, | would turn off all the LEDs at once. Therefore, at run time,
you can move the joystick around, see the LEDs illuminate, but when you press the Fire button
the intensity decreases, since in effect turning off the LEDs with the Fire button changes the duty
cycle to 50%. Anyway, the program simply needs to set up the I/O controller, then enable the pull-
ups on the joystick port bits RB0-RB4 and then read then joystick bits and then write the
directionals right back out to the LED port while at the same time conditionally checking for the
Fire button down. If Fire is down then the LEDs are temporarily turned off until the next loop, in
affect, causing a “dimming” when the Fire button is down. The program is named
XGS_PE_JOYSTICK 01.SRC and the course code is located on the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_JOYSTICK_01.SRC

You can load the program into the SX-KEY IDE from the source file or if you wish you can type it
in from the source listing below:

L1117771117777777777777777777777777777777777/777/7//77//////////////////7///////
Source Filename: XGS_PE_JOYSTICK_01.SRC

Description: Pico Edition Joystick test Demo

Last Modified: 1.25.2005

Instructions:

II11111777777777777777777777777777777777777777777777777777777771177777171177

156



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; éé{//éé{éé/éé////////////////////////////////////////////////////////////////
S JIIIIIIITIIIIIIIIIIT111111117111111111117711777777777777777711111111111111117
; Set device to Sx28, enable external high speed oscillator

DEVICE SX28L, STACKX, OPTIONX, TURBO

IRC_CAL IRC_FAST

RESET Start ; set restart vector to start of code
FREQ 10_000_000

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
; é/é/é//ééﬁ///////////////////////////////////////////////////////////////////
s JI11117777777777777777777777777777777777777777777777777777777777777777/7//
variable storage .

ggg:g% Egg ggg ; used for delay functions

; 4444éé///////////////////////////////////////////////////////////////////////
s JII111777777777777777777777777777777777777777777777777777777777177771777777777
; 6444/////////////////////////////////////////////////////////////////////////
s JII111117777777777777777777777771777777777777777777777777777777777777/77/7//
; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

ORG $000
Start

; Initialize I/0 controller for Pico Edition A->Input, B->Output, C->Output

mov w, #$1F ; Set mode register to write direction register
mov m, w

mov RA, #%00000000 ; Set port A output latch to zero

mov IRA, #%00000000 ; Set port A direction

mov RC, #%00000000 ; Set port C output latch to zero

mov IRC, #%00000000 ; Set port C direction

mov IRB, #%11111111 ; Set port B direction

mov w, #$1E ; Set mode register to write pullup resistor

mov m, w
mov IRB, #%00000000 ; set joystick inputs pullups on (0=on, 1=o0ff)

; /4é{4/£{éé444/{ééé///////////////////////////////////////////////////////////
S IIIIIIIIITIIIITITT11111111111111111111117711777777777777777711111111111111117
Main
Joystick_Test_Loopl
mov RA, RB ; read joystick port at RB(4:0)
; output state to LEDs at RA(3:0)

; test for fire button
; if fire=0 then set RA=0

sb RB.4
mov RA, #0

jmp Joystick_Test_Loopl
; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

; delay function_counts 64K counts and returns
Delay clr Countl ; Initialize Countl, Count2
clr Count2

157



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Loop djnz Countl, Toop ; Decrement until all are zero
djnz Count2, Toop
RET ; then return

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

Begin Data

i /17 /////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

Since we already detailed the sections of the blinking LED program, we don’t need to go into
review it here since the prolog and epilog sections are the same. The important part of the
program is in the “Main” section which coincidentally has the entry point Main. If you take a look
at the code listing above then you will see the Main entry point and right under it is
Joystick_Test_Loop1 this is where the action takes place. The code is well commented, so
please review the comments to understand what’s going on.

11.16.8.1 Loading and Running the Joystick Program

Now that you have seen the code and have a basic understanding of it, let’s load the code into
the Pico Edition and execute it. The first steps are of course to power up the Pico Edition, insert
the SX-KEY programmer hardware, and make sure that the on-board oscillator is disabled (the
jumper is pulled). Also, hit the reset button on the Pico Edition a couple times to make sure the
SX28 is good to go. Once you have your hardware ready, follow the steps below to load and run
the LED blinking program.

Step 1: Launch the SX-KEY IDE, make sure that you have the SX-KEY hardware plugged into
the Pico Edition programming port and that your serial cable is connected and power is good. If
there is a com problem when SX-KEY boots it will tell you it can’t communicate with the SX-KEY.

Step 2: Load the source file for the joystick program into the SX-KEY IDE you can load it from the
CD (or hard drive if you copied the files), the file is located here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_JOYSTICK_01.SRC

Step 3: Once you load the program, then its time to assemble, program, and run it. We can do all
these steps with a single click or keyboard macro. Use RUN->RUN from the main menu or
<CTRL-R> will do the same. The program should assemble perfectly, and you should see the
success dialog. At this point the LEDs will all be on (remember we are pulling up the inputs and
the depression of the joystick switches causes a LOW).

Step 4: Plug in your Atari 2600 compatible joystick and start trying the directionals, you will notice
that as you move around the LEDs will turn OFF/ON. Then try pressing the Fire button, you will
notice that the LEDs will dim.

11.16.9 Graphics Programming

Graphics programming on the XGS Pico Edition is similar to the XGS without the color support. In
essence, you are responsible for all timing and raster generation. You accomplish this by sending
4-bit values to the lower bits of RC, RC3:0 which are converted to a voltage 0 - 1.5V that is then

sent out to the video cable and ultimately applied to your TV set’s video input. As mentioned, it is

158



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

possible to generate color with your Pico Edition, but you must simulate the color burst and color
information with software (which is very tricky). Thus we will focus on black and white demos first
followed by color video generation later in the section. Of course, the detailed information in this
chapter and Chapters 9 and 10 on video generation and NTSC should be more than enough for
you to program color or anything else you wish with the Pico Edition.

Figure 11.104 - Pico Edition Running the Single White Bar Demo.

11.16.9.1 Single White Bar Demo

An absolute bare minimum demo to show video timings for NTSC/Mono RS170 video is to
generate a single vertical bar in the middle of the screen. Basically, the program must generate
192 lines or so of video each consisting of an HSYNC pulse, followed by black, then a brief
WHITE signal, followed by more BLACK and then repeat. These lines are then followed by the
bottom screen over scan (blank lines), VSYNC, top screen over scan which all together compose
a full frame of video. Figure 11.104 shows this thrill ride of a demo program running. The source
code is named XGS_PE_NTSC_MONO _01.SRC and is located on the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_NTSC_MONO_01.SRC

A partial listing of the code is below with white space removed, so you can see the core of the
program logic.

; /////////////////////////////////////////////////////////////////////////////

; /////////////////////////////////////////////////////////////////////////////

Main

; 192 scanlines of active video

Begin_Raster

mov scanline, #192 ; Render 192 active scanlines
Raster_Loopl

; front porch 1.5us
mov RC, #BLACK ; (2 cycles )
DELAY (CLK_SCALE*15 - 2)

; hsync 4.7us
mov RC, #SYNC ; (2 cycles )
DELAY (CLK_SCALE*47 - 2)

; pre-burst .6us

mov RC, #BLACK ; ( 2 cycles )
DELAY (CLK_SCALE*6 - 2)

159



; color burst Reference 2.5us (9-10 c1ocks)

mov RC, #BLACK ( 2 cycles )

DELAY (CLK_SCALE*25 - 2)
; post-burst 1.6us

mov RC, #BLACK ; (2 cycles )

DELAY (CLK_SCALE*16 - 2)

; draw scanline (52.6 us)
DELAY (CLK_SCALE*260)

Bar_Loop_Init

mov RC, #WHITE ; (2 cycles)
DELAY (CLK_SCALE*25)
mov RC, #BLACK ; (2 cycles)

Bar_Loop_End

Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

DELAY (CLK_SCALE*526 - CLK_SCALE*260 - 2 - CLK_SCALE*25 - 2)

; loop . .
djnz scanline, Raster_Loopl

; /////////////////////////////////////////////////////////////////////////////

; VERTICAL BLANK

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

mov scanline, #28 ; (2 cycles)
Vblank_Loopl
; front porch 1.5us
mov RC, #BLACK ;7 (2 cycles )
DELAY (CLK_SCALE*15-2)
; hsync 4.7us
mov RC, #SYNC ; ( 2 cycles

DELAY (CLK_SCALE*47 - 2)

; pre-burst .6us

mov RC, #BLACK ; C( 2 cycles

DELAY (CLK_SCALE*6 - 2)

; color burst reference 2.5us (9-10 clocks)

mov RC, #BLACK ( 2 cycles

DELAY (CLK_SCALE*ZS - 2)
; post-burst 1.6us

mov RC, #BLACK ; ( 2 cycles

DELAY (CLK_SCALE*16 - 2)

; draw scanline (52.6 us)
mov RC, #OVERSCAN_COLOR
DELAY (CLK_SCALE*526 - 2 - 4)
; loop . .
djnz scanline, Vvblank_Loopl

;7 (2 cycles )

; /////////////////////////////////////////////////////////////////////////////

; END BOTTOM SCRCEEN O

; /////////////////////////////////////////////////////////////////////////////

VERTICAL SYNC

enable sync for 4 scanlines worth of time

mov scanline, #4
Vblank_Loop2

mov RC, #SYNC ; (2 cycles )

DELAY (CLK_SCALE*635 - 2 - 4
djnz scanline, vblank_Loop2

/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////

; /////////////////////////////////////////////////////////////////////////////

; END VERTICAL SYN

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

; TOP SCRCEEN OVERSCA

160



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

s JII1IT1T17777777777777777777777777777777777777777777777777777777777777777777

mov scanline, #38 ; render scanlines
Vblank_Loop3

; front porch 1.5us
mov RC, #BLACK ;7 (2 cycles )
DELAY (CLK_SCALE*15-2)

; hsync 4.7us
mov RC, #SYNC ; (2 cycles )
DELAY (CLK_SCALE*47 - 2)

; pre-burst .6us
mov RC, #BLACK ; (2 cycles )
DELAY (CLK_SCALE*6 - 2)

; color burst reference 2.5us (9-10 clocks)
mov RC, #BLACK ; (2 cycles )
DELAY (CLK_SCALE*25 - 2)

; post-burst 1.6us
mov RC, #BLACK ; (2 cycles )
DELAY (CLK_SCALE*16 - 2)

; draw scanline (52.6 us)
mov RC, #OVERSCAN_COLOR ; (2 cycles )
DELAY (CLK_SCALE*526 - 2 - 4)

; loop
djnz scanline, vblank_Loop3

; é4é/_{_é'/:/ééééé6/é\/léééé‘/\ﬁ//////////////////////////////////////////////////////
S JIIIIIITTITT1177717711111111111111111711171111111171111111111111111111111111

jmp Begin_Raster
s ST I77777177777777777177777777777777777777777777777777777/7177777/777/
The code is nothing more than timing delays which makes sense since we are totally controlling
the raster and the video “kernel” is more or less a simple state machines that outputs various

voltages to the video in which are interpreted as sync, black, and white in the TV monitor. As an
example, here’s the actual code that draws the white bar:

Bar_Loop_Init

mov RC, #WHITE ; (2 cycles)
DELAY (CLK_SCALE*25)
mov RC, #BLACK ; (2 cycles)

Bar_Loop_End

It's literally 3 instructions! These instructions are repeated in the middle of each scanline and this
generates the white bar.

Technically, the program is not 3 instructions, the DELAY macro expands into a
number of NOPs, but abstractly its 3 instructions.

NOTE

161



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.105(a) — Pico Edition Running the Shaded Bar Demo.

Figure 11.105(b) — Video Signal from Pico Edition Shaded Bar Demo.

11.16.9.2 Shaded Bar Demo

Once you play with the single white bar demo a bit, you might come up with the idea of
modulating the video intensity or the brightness (LUMA) signal as the bar is drawn. To do this
instead of sending a constant WHITE signal out which generates a 1.5V signal, you could slowly
raise the video level from BLACK to WHITE and back down to BLACK again with a loop. This is
usually the next step in video generation. Figure 11.105(a) shows a display with this exact
algorithm running. Additionally, as an aside Figure 11.05(b) shows the actual video signal
generated by the Pico Edition when running the program — notice the “stair step” voltage on the
screen, this is exactly what you would expect as the values from BLACK to WHITE are linearly
interpolated (discretely) up and down (this o-scope image shows 3 scanlines, note the HSYNC
pulses). The demo itself is called XGS_PE_NTSC_MONO_02.SRC and is located on the CD
here:

162



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_NTSC_MONO_02.SRC

The listing for the program is almost identical, so to save space | am going to omit the majority of
the listing and show on the changes in the rendering core that draws the shaded bar, that code is
below:

; draw shaded bar increasing intensity
Bar_Loop_Init

mov RC, #BLACK ; (2 cycles)
Bar_Loop_Loopl
inc RC ; (1 cycle)
DELAY(2) ; (10 cycles)
cjb RC, #WHITE, Bar_Loop_Loopl ; (4/6 cycles)

; timing calcs
; (2+6)*(15-6)

; draw shaded bar decreasing intensity
Bar_Loop_Loop2

dec RC ; (1 cycle)
DELAY(2) ; (10 cycles)
cja RC, #BLACK, Bar_Loop_Loop2 ; (4/6 cycles)

; timing calcs
; (2+6)*(15-6+1) - 2

; delay to end of Tine
DELAY (CLK_SCALE*25)

Bar_Loop_End

Remember the 3 lines of code for the single white bar demo in the previous section? The code
above replaces that with two loops; one that outputs increasing intensity and one that decreases
intensity, together they created a single “strip” of shaded bar and each raster of this creates the
final image — cool huh? You’ll also notice me counting clock cycles in the comments. This is a
good habit to get into, don’t be afraid to sprinkle calculations in your code, later when you come
back to it you will know why there is a random (13*7+1) some where in you code!

Figure 11.106 — Racer City Demo Pico Edition Version.

11.16.9.3 Racer City Demo

As an example of porting XGS Micro Edition programs to the Pico Edition to see how easy it was,
| asked Alex Varanese (the author of the Racer City demo for the XGS ME) port the program to

163



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

the Pico Edition, Figure 11.106 shows a screen shot of the program running on the Pico. More or
less, it went flawlessly, only a few things you must keep in mind when porting to the Pico Edition
programs written for the Micro Edition.

e There is half as much memory in the Pico Edition.

e The memory addressing is slightly different in the SX28 that the Pico uses in contrast to
the SX52 that the Micro Edition uses.

e There is no sound hardware support in the Pico, no color hardware, and finally no SRAM.

e The joystick port in the Pico is directly connected to the I/O ports of the SX28, thus there
is no shifting logic as in the Micro Edition.

Taking all these constraints into account, the steps to port are to first start by ripping all the sound
code out. The commenting out color code and replacing it with BLACK signal dummy code. Of
course, the 1/O port the Pico uses for video is different as well. Next, the code needs to fit into a
smaller space and if and careful attention must be made with BANK instructions and memory
addressing code. Finally, if there is any joystick code, the low level driver must be ripped and
replaced with a more simplified port read to RB4:0 and decoded as illustrated previously. Take all
these steps and you are on your way to porting demos. The ported Racer City demo for the Pico
edition is named RACER_CITY_PICO_01.SRC and is located on the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\RACER_CITY_PICO_01.SRC
The program is much too large to list, so please load it from the CD into your editor for review.

Figure 11.107 - The Color Video Demo on the Pico Edition.

LT

11.16.9.4 Color Video Generation on the Pico Edition

Based on the NTSC video explanations from chapter’s 9, 10, and this one along with your
knowledge of how the color burst works and the relationship between phase shift of the color
burst signal modulated on the LUMA signal you should have a good understanding of how color
works. To synthesize a color signal isn’t impossible with pure software, it just takes a very fast
processor. Figure 11.107 shows a screen shot of the NTSC color demo

164



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

XGS_PE_NTSC_COLOR_01.SRC running. As you can see it generates three colored bars in the
middle of the screen. The code for the demo is located on the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_NTSC_COLOR_01.SRC

However, before delving into the code, let’s discuss the strategy and technique to generate color
via pure software. The trick is to run the processor at a frequency that is a multiple of the color
burst of 3.579545Mhz. The Pico Edition comes with an 80.000Mhz oscillator as well as a 78.750
MHz which is roughly 22 times the color burst and exactly for this purpose. Therefore, we can
think of like this. It takes 22 instruction clocks for a single 3.579545Mhz color burst cycle to occur.
This is the key to generating color with software, we simply need to “synthesize” a color burst
sine wave on the LUMA signal at a rate of 3.579545Mhz. To make this example real, let’'s use
some numbers from the demo program. | elected to use 12 times the color burst frequency for
the demo because the SX-KEY hardware when attached to the little Pico Edition can barely
sustain 50 MHz due to noise on the solderless breadboard as the clock is sent into the SX28 via
the connection wires. Additionally, when experimenting with color you are going to want to have
an SX-KEY, so you can change things. Therefore, assuming that you are going to use a SX-KEY
to generate the clock is what most people will do while experimenting, | have decided to clock the
program at 12 times the color burst frequency or 12*3.579545 = 42.95454 MHz.

Figure 11.108 — Synthesizing a Color Burst with Software.

-~
V36T A5 mHE T 2ma, 268w - 1 alweh <
Frecquency Y paied! Q_r.a8d sy mba

ve'da se

£~ 0

(
R e

Fo M2, 45469 wHa Ciaw cotor Gurss)

Referring to Figure 11.108, the color burst signal is 9-10 clocks of 3.579545Mhz in the back
porch area of the initial HSYNC signal. The color burst has a peak to peak of about 0.25 - 0.3V.
To synthesize this signal we can output a square wave at a frequency of 3.579545Mhz by rapidly
change the output LUMA at that frequency while riding it at a little higher voltage, so we don’t go
into sync. This synthesis of a 3.579545Mhz signal is possible since an instruction cycle is 23.380
nS with the processor being clocked at 42.95454 MHz and we can create frequencies that are
sub-harmonics easily. We will get to than in a moment though. The other trick to getting the color
signal to work is to stay in “lock” with the initial color burst. With the XGS Micro Edition, we didn’t
have to do this since the hardware handles it. Basically, on the Micro Edition, at any time you just
select a color 0-15 and the rest is taken care for you. But, on the Pico Edition we have to be a
little more careful. The idea is to think of each line in terms of color clocks rather than in
microseconds. For example, the typical video line is usually 63.5uS, this consists of the HSYNC
and actual data. But, how many color cycles are in a single line? This is easy to compute, you
take the time it takes for a 3.579545Mhz cycle, the period in other words which is 279.365nS and
divide it into 63.5uS:

Number of color clocks per line = 63.5uS / 279.365nS = 227.3 color clocks (approx).

165



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Or 227 rounding down. Therefore, the trick is to think of everything in terms of color clocks not
time. So instead of the HSYNC consisting of 4.7uS in the time domain, we convert this to “color
clocks” like so:

4.7uS / 279.365nS = 16.82 color clocks.

Rounding down or truncating we get 16 color clocks. This is the technique used to generate
color and keep the signal locked to the color burst time base. You do everything in terms of color
clocks then when you want a color, you phase shift the video output with a few cycles that take
the lock step out of phase, then you bring it back in phase and render your next color. With 12
instruction cycles at 42.950 MHz equaling the period of a single synthesized 3.579545 MHz color
signal, that means we can create 12 colors!

As an example, here’s how you would normally create a sync signal based on time:

; hsync 4.7us
mov RC, #SYNC ; ( 2 cycles ) sync
DELAY (CLK_SCALE*47 - 2)

Assuming CLK_SCALE was set such that the number we multiply by is converted to time, this is
exactly how the monochrome demos work. However, in the color demo, we think in terms of color
clocks, and we know we are running at 42.95454 MHz, the CLK_SCALE is 12, but instead of
using time, we use color clocks we want to delay for. We already converted 4.7uS to color clocks
and found that it's equal to 16 color clocks, so we can re-write the above code as follows:

; hsync 4.7us = 16 color clocks
mov RC, #SYNC ; ( 2 cycles ) sync
DELAY (CLK_SCALE*16 - 2)

And that’s all there is to it. You simply convert the monochrome program into color clocks
wherever there is time involved. The only additions of course are the actual color burst and
drawing the actual pixels with the color signal. Let’s discuss that now.

11.16.9.4.1 Creating the Color Burst Signal

Referring back to Figure 11.108 the color burst signal is 9-10 clocks of 3.579545 MHz, let’s call it
10 cycles to make the math easy. So our goal is to create 10 cycles of a 3.579545 MHz
frequency using a processor running at 12 times the color burst frequency. This is easy, we
simply have to send out a square wave to the LUMA circuit at RC3:0 that has 6 clocks of HIGH
followed by 6 clocks of LOW. Additionally, the color burst needs to be 0.25-0.3V peak to peak, but
ride at a 0.3V level roughly, therefore, we must make sure we send a square wave out that meets
these voltages requirement properly. The code to do this is below:

; synthesize color burst tone
REPT 10
mov RC, #CBURST_HIGH ; ( 2 cycles )
DELAY (6 - 2)

mov RC, #CBURST_LOW ; ( 2 cycles )
DELAY (6 - 2)
ENDR

Amazingly simple isn’t it? The value CBURST_HIGH is loaded into the lower 4-bits of RC, a delay
equal to 6 clocks (which includes the time of the load) is performed, then this is followed by yet
another load into RC of CBURST_LOW, and the same delay is performed. The values of these
constants are defined in the “defines” section of the program as:

166



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

CBURST_LOW EQU (2) ; artificial color burst low
CBURST_HIGH EQU (6) ; artificial color burst high

Figure 11.109 — The Actual Synthesized Video Signal.

Now the fascinating thing is the actual video signal, Figure 11.109 shows a photograph of the o-
scope displaying the video signal, it's not the greatest image, but you can see the actual
synthesized color burst! A thing of beauty, all software generated!

NOTE Notice, the slight voltage shift from the sync level of 0.

So during each scanline, instead of sending out BLACK during the back porch of the sync signal,
we delay for 0.6uS for the pre-burst delay then perform the color burst, then delay 1.6uS for the
post-burst delay, exactly as outlined in the NTSC spec. Of course, the delays are converted into
color clocks as well.

11.16.9.4.2 Drawing Three Colored Bars

To draw colored bars the technique of the color signal is extended, so that we are constantly
advancing out on the scanline “color clocks” in sync with the original color burst. Then when we
want to draw something with color, we synthesize a color signal as we did with the color burst, but
we additionally add a base LUMA and finally phase shift the whole process with a few cycles to
create the color. With the example of a 42.95454 MHz clock, each single cycle is 1/12" of the
total color clock. Or in other words, if we think of the phase shift being from 0-359 degrees, then
we can delay 1/1 2" of that with a single NOP instruction, or:

minimum color phase delay = 360/12 = 15 degrees
So we can create 12 colors equidistant around the color wheel for NTSC. The entire color

program is too long, but here’s an excerpt of XGS_PE_NTSC_COLOR_01.SRC, the following
code draws each raster line:

167



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; /////////////////////////////////////////////////////////////////////////////
; /////////?///////////////////////////////////////////////////////////////////
Main

; 192 scanlines of active video

Begin_Raster

mov scanline, #192 ; render 192 active scanlines
Raster_Loopl

; front porch 1.5us
mov RC, #BLACK ; ( 2 cycles ) black
DELAY (CLK_SCALE*5 - 2)

; hsync 4.7us
mov RC, #SYNC ( 2 cycles ) sync
DELAY (CLK_SCALE*16 - 2)

; pre-burst .6 us
mov RC, #BLACK ( 2 cycles ) sync
DELAY (CLK_SCALE*Z - 2)

; synthesize color burst tone
REPT 10
mov RC, #CBURST_HIGH ; ( 2 cycles )
DELAY (6 - 2)

mov RC, #CBURST_LOW ;7 (2 cycles )
DELAY (6 - 2)
ENDR

; post-burst 1.6 us
mov RC, #BLACK ( 2 cycles ) sync
DELAY (CLK_SCALE*6 - 2)

; draw scanline (52.6 us)

; step out to mid screen approx. 52.6us/2
DELAY (CLK_SCALE*85)

; draw color bar 1 with 0 degrees (approx) phase shift (yellow)
; draw 5 complete color clocks

REPT 5
mov RC, #CBURST_HIGH+6; ( 2 cycles )
DELAY (6 - 2)

mov RC, #CBURST_LOW+6 ; ( 2 cycles )
DELAY (6 - 2)
ENDR

delay a bit, this causes a phase shift in the

color phase we are about the synthesize again

the phase delay is simply the time it takes for the (nops / 3.579545-1) * 360_degrees
approximately with a 42.950Mhz clock roughly, we get 23ns per instruction cycle, a
single color clock at 3.579545Mhz is 280ns, therefore the formula is:

phase angle = 360 * (t_delay) / (t_color_clock), therefore per clock cycle

at 42.950mMhz we_get phase_angle = 360 * (23ns) /_280ns

= 15 degrees color phase shift per instruction clock roughly

; 30 degree phase shift
nop ; (1 cycle delay)
nop ;7 (1 cycle delay)

; draw color bar 2 with a phase shift equal to 30 degrees (orange)
; draw 5 complete color clocks

REPT 5

mov RC, #CBURST_HIGH+6; ( 2 cycles )
DELAY (6 - 2)

mov RC, #CBURST_LOW+6 ; ( 2 cycles )
DELAY (6 - 2)

ENDR

; another 30 degree phase shift

168



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

nop ;7 (1 cycle delay)
nop ; (1 cycle delay)

draw color bar 3 with a phase shift equal to 60 degrees total (lavender)
; draw 5 complete color clocks

REPT 5
mov RC, #CBURST_HIGH+6; ( 2 cycles )
DELAY (6 - 2)

mov RC, #CBURST_LOW+6 ; ( 2 cycles )
DELAY (6 - 2)
ENDR

; now draw black for the remainder of the scanline

mov RC, #BLACK
] DELAY (CLK_SCALE*190-CLK_SCALE*85-5%12-2-5%12-2-5%12-2-4)
; loop
djnz scanline, Raster_Loopl

Review the code that draws each colored segment, notice it’s identical except for the
accumulation of phase shift.

In conclusion, generating color NTSC (or PAL) with software is feasible and even fun. The idea of
synthesizing one frequency with a higher harmonic is very cool. Of course, realize that the color
demo as-is won’t work with the 80.000 MHz or 78.750 MHz oscillator, you have to fiddle with the
code to do that since the timing is different. Basically, you will need to change the CLK_SCALE to
22, along with synthesizing the color burst with 11 HIGH and 11 LOW instruction cycles rather
than 6 HIGH and 6 LOW respectively. This is because at 42.95454 MHz the processor was
running at 12 times the color burst, but when you put the 78.750 MHz oscillator in the Pico
Edition, it will be running 22 times as fast as the color burst.

For another excellent treatise on color NTSC generation with pure software and the
TIP SX28 check out Rickard Gunée’s website at
http://www.rickard.gunee.com/projects/.

11.16.9.3 Loading and Running the Graphics Demos

As usual, the steps are the same to load and run any of the graphics demos. The only difference
of course is that you need to connect the video out RCA cable into the Video in of your NTSC TV

set.

Make sure your TV or monitor is NTSC compatible and you select “Video In” rather
than the external antenna or tuner.

Step 1: Launch the SX-KEY IDE, make sure that you have the SX-KEY hardware plugged into
the Pico Edition programming port and that your serial cable is connected and power is good. If
there is a com problem when SX-KEY boots it will tell you it can’t communicate with the SX-KEY.

169



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Step 2: Load the source file for any of the graphics programs into the SX-KEY IDE, you can
either type it in manually if you want some practice with SX28 source code mnemonics or you can
load it from the CD (or hard drive if you copied the files), the files are located here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_NTSC_MONO_01.SRC
CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_NTSC_MONO_02.SRC
CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_NTSC_COLOR_01.SRC
CDROOT:\XGSME_HW_CD\XGSME_Sources\ RACER_CITY_PICO_01.SRC

Step 3: Once you load the program, then its time to assemble, program, and run it. We can do all
these steps with a single click or keyboard macro. Use RUN->RUN from the main menu or
<CTRL-R> will do the same. The program(s) should assemble perfectly, and you should see the
success dialog. At this point if you have your video connector connected to your TV or monitor
you will see the image on the screen. If it’s too bright/dim try adjusting the brightness POT.

11.16.10 Sound Programming

The XGS Pico Edition has no sound generation hardware, thus sound is generated via software
algorithmically. This is a bit tricky since you must interleave sound generation with video, input,
and your game, but that’s the fun part! In any event, the “sound port” is simply a 4-bit D/A
connected to the upper bits of the SX28's port RC or RC[7:4]. To generate sound you must
stream 4-bit values out to RC[7:4], these values are converted to voltages and sent out to the
audio RCA connector and to your audio device. Therefore, in essence you use the SX28 to
generate waveforms in real-time. The only downside is that you have to feed this audio stream at
a constant rate and can't let the stream stop, otherwise you will “hear”it. Therefore, in a real
system the best way to implement the audio driver is via an internal interrupt based on the RTCC.
Additionally, there is the limitation that you only have 4-bits of range or 16 different values, this
might seem impossibly useless, but in reality its more than enough to reproduce arcade game
sounds, speech, music, and digitized sounds.

As an example of how to do sound programming we are going to take a look at two demos. The
first demo uses a pseudo-random number generator based on a linear feedback shift register
or LSFR to generate “white noise” like a car or engine sound makes. The second demo is a little
more complex and uses a “wave table” that has digitized version of pre-selected wave forms. This
wave table data is then selected and streamed out the audio port reproducing the waveform. With
both demos in hand you will know how to make white noise for your engines, rockets, and
explosions as well as how to play tones needed for musical applications.

Figure 11.110 — A White Noise Signal.

170



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

11.16.10.1 Creating Noise

Most game consoles or sound chips have some facility to create “noise” or more specifically
“white noise” which is random signal with spectral energy covering the entire frequency band as
shown in Figure 11.110. Noise, is the basis for sounds like water rushing, an engine idling, or an
explosion. To generate white noise you need a source of random values. Computers aren’t very
good at doing anything randomly; however, they can create pseudo-random numbers with
numerous algorithms that are well documented. One such class of algorithms that create pseudo-
random sequences is called linear feedback shift registers or LFSRs. These are a class of
constructs that circulate binary data and then feed that data back using a number of “taps” and
logic operations to create out of sequence count sequences that are deterministic, but seem
random. Figure 11.111 shows a circuit diagram for a 3-bit LFSR that generates a 3-bit pseudo-
random sequence of: 7, 3, 1, 4, 2, 5, 6, 7,3,1,...(0 is an invalid state).

LFSRs are used widely in the design of the Atari 2600’s sound and graphics
hardware. In fact, the use of LFSRs to create novel counting sequences in the Atari
2600’s run-time behavior are one of the reasons it was so hard to program, and
why its still to this day so hard to emulate the “sound” of the Atari 2600. However,
the LFSRs in the Atari 2600 were also the source of its power. The clever use of
these simple constructs allowed very simple hardware to do very complex things.

Figure 11.111 — A 3-Bit LFSR that Generates a Pseudo-Random Sequence.

(, g,:-c

There are books with hundreds of LFSRs in them that generate all kinds of different sequences,
some randomish, some less random. In any case, we can use a LFSR to create white noise on
the Pico Edition. What | did was to take an initial value in an 8-bit register, shift it, then take the
bits from a couple positions, perform logical operations on them and then feed these bits back
into the circulating stream. The results are a nice pseudo-random sequence that makes perfect
engine, water, and general white noise effects for games. The first demo is called
XGS_PE_SOUND 01.SRC and is located on the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_SOUND_01.SRC

The excerpted source code for the demo is show below:

; /////////////////////////////////////////////////////////////////////////////

; Set device attributes

171



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

s J1111177777777777777777777777777777777777777777777777777777777777777777777777
; Set device to Sx28, enable external high speed oscillator

DEVICE SX28L, STACKX, OPTIONX, TURBO

IRC_CAL IRC_FAST

RESET Start ; set restart vector to start of code
FREQ 10_000_000 ; initial frequency

; use the SX-KEY and Device Clock control to slowly

; change the frequency from 10-70 MHz and listen as the sound
; changes from an "idling engine" to a "running engine"

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

NOISE_SEED EQU %10101011
NOISE_VELOCITY EQU %00000010

: /////////////////////////////////////////////////////////////////////////////

Global vari

; /////////////////////////////////////////////////////////////////////////////

; variable storage

countl EQU $08
count2 EQU $09
var_0 EQU $0A
var_1 EQU $0B

; 4444éé///////////////////////////////////////////////////////////////////////

s JII11777777777777777777777777777777777777777777777771777777777717777777777777

g éé{é/////////////////////////////////////////////////////////////////////////

s IIITIIT100707 7777771077777 77777107777777777777777777777777777777777777/7/7/777

g //é/{é/éﬁé///////////////////////////////////////////////////////////////////

; /////////////////////////////////////////////////////////////////////////////
ORG $000

; Initialize I/0 controller for Pico Edition
5 A->Input, B->Output, C->Output

Start

mov w, #S$1F ; Set mode register to write direction register
mov m,w

mov RA, #%00000000 ; Set port A output latch to zero

mov IRA, #%00000000 ; Set port A direction

mov RC, #%00000000 ; Set port C output latch to zero

mov IRC, #%00000000 ; Set port C direction

mov IRB, #%11111111 ; Set port B direction .

mov w, #$1E ; Set mode register to write pullup resistor
mov

mov Tﬁg #%00000000 ; set joystick inputs pullups on (0=on, 1l=off)
: /////////////////////////////////////////////////////////////////////////////
: /////////////////////////////////////////////////////////////////////////////
Main
Sound_Test_Init

mov var_0, #NOISE_SEED 0 sgarting seed for

; linear feedback shift counter

; this implements a software LFSR with a couple feedback taps
; this was generated totally experimentally, so feel free to try
; different tap point, operations to, the b1ts etc.
; the trick is to keep the sequence "alive" and keep it "random"
Sound_Test_Loopl

mov var_1l, var_0

172



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

r1 var_1l ; arbitrary

r1 var_1l

xor var_0, var_1 ; feedback tap #1

add var_0, #NOISE_VELOCITY ; add in constant value on top of signal

mov var_1l, var_0 ; mask off top 4 bits of noise

and var_1, #$FO

mov RC, var_1l ; output to media port sound channel
; Cupper 4 bits of RC)

REPT 1

call delay ; delay to slow down sound

ENDR

jmp Sound_Test_Loopl
; /ééé./~ééé{ééé/////////////////////////////////////////////////////////////////
S IIIITTIIITIIIIIIII777777117717111111111777777111111711111111117777177111717

; delay function counts 64K counts and returns

Delay clr Countl ; Initialize Countl, Count2
clr Count2

Loop djnz Countl, Toop ; Decrement until all are zero
djnz Count2, Toop
RET ; then return

The action all happens in the main section of the code, here you will see the software
implementation of an LFSR. And remember, there is nothing special about this LFSR, | created it
more or less experimentally until it sounded “good”, Try running the program and adjusting the
frequency of the SX-Key from 10-70 MHz, the sound will vary from an idling engine to a racing
redline.

This demo shows the incredible power of software, procedural sound, and just a little
programming. See if you can alter the code to get more of a water quality or hissing sound rather
than the “engine” sound that it currently makes.

11.16.10.2 Creating Pure Tones

Music is usually based on pure tones rather than white noise, thus we need a way to create pure
tones. The simplest way to create a tone with software is to output a square wave. You can do
this with pseudo-code such as:

repeat forever
begin
Output HIGH to sound hardware
delayChigh time)
Output LOW to sound hardware
delay(1ow time)
en

This code basically generates a square wave that has a duty cycle consisting of “high time”
followed by “low time”. This is perfectly legitimate and will work on the XGS Pico Edition. You
would simply write a $F to the upper 4-bits for RC, delay, then write a $0 to the upper 4-bits of
RC, delay, and repeat the process. This is called “procedural” or “algorithmic” sound.
However, this starts to become cumbersome as you want more complex waveforms. A better
approach is to use a “wave table” or a digitized sample of a waveform. This way you can store a
wave form as a stream of data elements, play them back at some rate, and reconstruct the
waveform. Figure 11.112 shows this concept graphically.

173



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.112 — Playing Sound from a Wave Table.

Wie ve 3@«‘0\ «

Checkoe m

Tr‘*"ﬂb

The cool thing about using wave tables and other digitized wave forms is that you can apply
algorithmic filters to the data itself. For example, you can play it back at any rate, you can scale or
multiply it, you can “accumulate” the sound data, you can clip it, etc. The possibilities are limitless.

As an example of wave table based sound, | thought it would be interesting to show how to create
a square wave, sine wave, and sawtooth wave audio signal based on wave table data.

Figure 11.113 - Waveforms for Sine, Square, and Sawtooth Waves.

8! §$0°\- re \“"F> () g‘awh(ﬂ(q

I, +20,4¢0:
V=4 o s ag kel
VR =R s el aTd) 0 k< |
ot ¢ |

Jh= A+
pe bt

174



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Referring to Figure 11.113 these are the waves (and their mathematical descriptions for a single
cycle) that we want to generate using wave tables, so the first step is to generate the wave table
data for each wave form. There are a billion ways to do this; manually, use the computer, or a
hybrid of the two. But, first we need to decide on a few things. For example, how many samples
per cycle are we going to have? Secondly, what's the maximum amplitude of the waveform? The
second question helps us answer the first. We want to have enough samples, so we cover both
the temporal quality of the waveform as well as the total amplitude or stride of the final D/A used
in the audio system. In our case, we are using 4-bits for the audio D/A, thus there are a total of 16
values (0-15) we need to cover to get the full amplitude range provided by the hardware. Given
that and looking at a sine wave for example, we know that we are going to have to fit the sine
wave into 16 amplitude values, assuming we pretend that 8 is ground and 0-8 are the negative
going half cycle and 8-15 are the positive going half cycle then it stands to reason that we might
want 32 samples at least to cover enough values temporally, so the sound doesn’t “jump”. This
also makes since if we wanted to implement a triangle wave with a slope of 1, starting at 0,
increasing linearly to 15, then sloping down at -1 from 15 back to 0. This again would take 32
values. Thus, we select all wave table entries will have 32 values.

The frequency of the perceived waveform as it's played from the Pico Edition can be computed
from the frequency that the code streams each 32 values out to the D/A. For example, let's say
that we run the streaming code at 1 MHz, and there are 20 instructions executed to send a single
value out to the D/A. Additionally, there are 32 values per complete wave table entry or wave
form. Assuming one cycle per instruction, the final apparent or perceived audio frequency of
playback is:

Perceived Audio Frequency = (1 MHz) / (20 * 32) = 1.5625 KHz

The tone demo we are about to see actually takes about 20 clocks give or take to stream each
wave table value out, thus the wave form frequency is about 1.5 KHz.

A good engineer always knows what his experiments are going to do. Therefore,
always perform some pre-experiment calculations, so you know what to expect.
For example, after | wrote the code, | saw that it takes about 20 cycles per value
streamed out, then assuming a 1 MHz clock signal for the SX28, | can estimate
that the audio will be at 1.5 KHz roughly. This tells me to set my o-scope so that
each time delta per division is .1 — 1ms, so | can see the wave form immediately.

Taking all this in, the second sound demo is called XGS_PE_SOUND_02.SRC and is located on
the CD here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_SOUND_02.SRC

The demo plays back a sine, square, and sawtooth wave from the Pico Edition. The excerpted
core code from the demo is below:

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////

; variable storage

countl EQU $08 ; generic counter vars
count?2 EQU $09

var_0 EQU $0A ; generic scratch vars
var_1l EQU $0B

sample_index EQU $0C ; index var
mem_ptr_low EQU $0D ; 16-bit memory pointer
mem_ptr_hi EQU $OE

175



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

; 4éé4éé///////////////////////////////////////////////////////////////////////
s JIIII1I177777777777777777777777777777777777777777777777777777777/7777777/7777
; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
2 //é//é/éﬁé/4/////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
ORG $000
Start

; Initialize I/0 controller for Pico Edition
; A->Input, B->Output, C->Output

mov w, #$1F ; Set mode register to write direction register
mov m,w

mov RA, #%00000000 ; Set port A output latch to zero

mov IRA, #%00000000 ; Set port A direction

mov RC, #%00000000 ; Set port C output latch to zero

mov IRC, #%00000000 ; Set port C direction

mov IRB, #%11111111 ; Set port B direction

mov w, #$1E ; Set mode register to write pullup resistor
mov

mov Tﬁg, #%00000000 ; Set joystick inputs pullups on (0=on, 1l=off)
; /44{4/é{ééﬁéé/{ééé///////////////////////////////////////////////////////////
S IIIIIIIIITIIIITITT11111111117111111111111711777777777777777711111111111111117

Main
; play each waveform a moment and repeat forever

; play the sine waveform

mov mem_ptr_hi, #sine_table >> 8 ; point M:W at the wave table
; (upper 4-bits)
mov mem_ptr_low, #sine_table ; lTower 4 bits
mov count2, #5 ; how long to play the waveform

call Play_wave play the waveform

; play the square waveform

mov mem_ptr_hi, #square_table >> 8; point M:W at the wave table
; (upper 4-bits)
mov mem_ptr_low, #square_table ; lTower 4 bits
mov count2, #5 ; how long to play the waveform
call Play_wave ; play the waveform
; play the sawtooth waveform
mov mem_ptr_hi, #sawtooth_table >> 8; point M:w at the wave table
; (upper 4-bits)
mov mem_ptr_low, #sawtooth_table ; lower 4 bits
mov count2, #5 ; how long to play the waveform
call Play_wave ; play the waveform
jmp Main ; repeat forever

; /////////////////////////////////////////////////////////////////////////////
; /////////////////////////////////////////////////////////////////////////////
sILLTITTLTT LT LTI 71T L0777 7717777717717771177171771777177

; plays a waveform for a specific number of counts

; expects: mem_ptr_high:mem_ptr_low = start address of 32 value table
’ Count2 =

Play_wave

; the rate at which this code outputs all 32 values from the selected
; wavetable dictates the overall "frequency" of the audio

; play waveform 256 times for each Count2
. clr countl ; reset inner loop counter
wave_Loop_Init

mov sample_index, #0 ; clear out index
wave_Loop

176



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

(1) swap upper and lower
nibble of var_0

(2) mask Tower bits

so they don't disturb video

swap var_0

and var_0, #$FO0

mov M, mem_ptr_hi ; (2) point M:W at the wave table
0 per 4-bits)

m?v W, mem_ptr_low d g lower 4 b1ts

clc 3

add W, sample_index d (1) add the offset into the

. ; wave table data

iread ; (4) get the wave table data value
; after iread we_have
; M:W = sine_table[w]

mov var_0, W ; (1) mov W into var_0

mov RC, var_0

; insert nops or delay here to slow down the "frequency" of playback

inc sample_index ; (1) increment data pointer
cjbe sample_index, #31, wave_Loop ; (4/6) while sample_index <= 31
djnz countl, wave_Loop_Init ; perform inner loop countl<=255
djnz count2, Wave_Loop_Init ; while count2 > 0

ret ; return to caller

; /ééé/é{éé{44/////////////////////////////////////////////////////////////////
s LII11177777777777777777777777777777777777777777777771777777777717777777777777
; /////////////////////////////////////////////////////////////////////////////

0 Data S

; /////////////////////////////////////////////////////////////////////////////

; wave tables
; each wave must be 32 values long and use only the lower 4-bits of each memory word
ORG

sine_table Dw 8, 9, 11,112, 13, 14, 14, 15, 15, 15, 14, 14, 13, 12, 11, 9, 8, 7, 5,

4! 3! i ’ i)

sawtooth_table Dw O, 0 i, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6,6, 7,7, 8, 8, 8, 9, 9, 10, 10,
11, 11, 12, 12 13 13, 14 14,

square_table bpw 15, 15, 15, 15, 15, 15, 15, 15, 15 15, 15, 15, 15, 15, 15, 15, 0, O,

The code consists of three main sections;

The playback controller in the Main — This section calls on the Play_Wave subroutine and
passes the starting address of the desired 32 word wave table entry to play. Additionally, it
passes how long to play the sample.

The Play_Wave function — This subroutine is the workhorse of the demo, it more or less takes
the starting address passes in mem_ptr_hi:mem_ptr_low and streams the wave from that
location in 32 WORDs per cycle. It repeats the process 256*count2 and returns. Notice the use of
the IREAD instruction to read the data stored in the wave tables.

The wave table data — This contains the wave data that | generated using a small C/C++
program. There are 32 WORDS per wave form and each data value only uses 4-bits of the 12-
bits available per WORD. This is of course wasteful, but easier to understand in a demo. In a real
application, you would want to compress three samples per WORD and then extract them out on
the fly during playback.

177



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

The program | used to generate the wave table data isn’t special or complicated to
write, just a tool | made, so | didn’t have to use a calculator or do it manually. The
name of the C/C++ file is xgs_pe_wavegen_01.cpp and it’s located on the CD
(along with the .EXE) here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\xgs_pe_wavegen_01.cpp.
The program should compile with any ANSI C/C++ compiler. To use it simple run

the .EXE and redirect the output to a text file and then copy and paste the data out
and into your application.

Figure 11.114(a) (b) (c) — The Waveform Data Graphed on Graph Paper.

£, Sew —TO oth wave

valve !/ Ve\-‘:%ga,

C, $qvare waye

P2 t3 oty 1§ e T IR 1@ 20 i 37 932y 25 2e 27 25 24 T0

Shwmple mewmbe ~

178



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Figure 11.115 (a) (b) (c) — The Waveforms as they appear on the Oscilloscope.

When you get to running the programs you will hear all three waveforms; sine, square, and
sawtooth. You will notice a slight “quality” difference in each sound. That is, each waveform has a
particular “quality” to it. Also, remember that square waves are really composed of an infinite
series of odd harmonics of the fundamental frequency. So the square wave is really a number of
sine waves all playing in harmony, but of course the filtering on the audio input as well as the
output impedance of the Pico Edition limits the actual sine wave harmonics that make it thru, but
for the most part, the square wave will look nearly perfect to naked eyes on the o-scope. Figure
11.114 (a), (b), and (c) shows graphs of the waveforms from their data sets and Figure 11.115
(a), (b), (c) shows the actual o-scope output, notice they are almost perfect!

To get a “smoothing” action on the output waveforms try putting a 0.1 - 0.33uf
mono/electrolytic capacitor across the audio output. This will minimize the digital
aliasing as the samples jump thru the 16 finite values by smoothly interpolating
each value with a slight piecewise curve based on the exponential charging /
discharging of the capacitor.

11.16.10.3 Loading and Running the Sound Demos

As usual, the steps are the same to load and run any of the sound demos. The only difference of
course is that you need to connect the audio out RCA cable into the Audio in of your TV set or
audio amplifier.

Step 1: Launch the SX-KEY IDE, make sure that you have the SX-KEY hardware plugged into
the Pico Edition programming port and that your serial cable is connected and power is good. If
there is a com problem when SX-KEY boots it will tell you it can’t communicate with the SX-KEY.

Step 2: Load the source file for either of the sound programs into the SX-KEY IDE, you can either
type it in manually if you want some practice with SX28 source code mnemonics or you can load
it from the CD (or hard drive if you copied the files), the files are located here:

CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_SOUND_01.SRC
CDROOT:\XGSME_HW_CD\XGSME_Sources\XGS_PE_SOUND_02.SRC

Step 3: Once you load the program(s), then its time to assemble, program, and run it. We can do
all these steps with a single click or keyboard macro. Use RUN->RUN from the main menu or
<CTRL-R> will do the same. The program(s) should assemble perfectly, and you should see the

179



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

success dialog. At this point, if you have your audio connector connected to your TV or amplifier
you will hear the sounds. If they are too loud or soft, adjust the volume control POT.

11.16.11 Pico Edition Enhancements

The Pico Edition is designed to be a starting point for your own designs. Some ideas to get you
started in moding it are:

1. Add a serial EEPROM to hold data and to increase storage space. One possible idea is to
write a virtual machine or byte code interpreter that runs on the SX28 core that pulls code from
the EERPOM. Or you could use the EEPROM to store data, graphics, sounds, etc. Of course,
you will need a way to program the EEPROM, but this is as simple as hooking up a parallel port
and some electronics to the 3-pin interface. One of my favorite EEPROM s is the Atmel series,
specifically the AT24C1024 (128K x 8) EEPROM. It’s a 8-pin DIP package and very easy to
program. The data sheet can be found here:

CDROOT:\XGSME_HW_CD\DATASHEETS\at24C1024.pdf

2. Add a serial port. This seems like a no brainer considering the 3-bit port is all you need for a
serial port’'s TXD, RXD lines. However, care must be taken since serial ports under the RS232
standard transmit at +-12V. But, you can actually transmit a +5 and 0V to represent 0 and 1
(remember serial communications is inverted) and then use a current limiting resistor on the input
to the RXD line into the Pico Edition (10-50K) to make sure the +-12V inputs don’t hurt the Pico.
Also, another option is to use the MAX2332 or MAX2333 level converters for serial
communications. Their datasheet is located here:

CDROOT:\XGSME_HW_CD\DATASHEETS\

3. Put the Pico Edition on a printed circuit board. The ultimate enhancement is to put the Pico
Edition on a printed circuit board, so it's not so fragile. You can use the Proteus tools, or
EagleCAD or whatever tool you like to design the PCB. To manufacture the PCB in small
quantities, | suggest either www.pcbfabexpress.com or www.pcb123.com.

4. Add a serial LCD interface. There are numerous serial LCDs on the market, search
Digikey.com or any other large distributor and you will find hundreds of LCDs which vary in price,
performance, characters, graphics abilities and so forth. However, | suggest starting off with
something very simple at first. Hantronix.com is a good LCD company that | have used many
times and has a good variety of LCDs.

Summary

Hopefully this chapter has answered all your questions about the XGameStation™ Micro Edition
and its little homebrewed brother the XGameStation™ Pico Edition. We have discussed every
single sub-system, reviewed the schematics, as well as seen demo code that shows how to
communicate with each module. Hopefully, you have a firm foundation now to do anything with
the system; whether hardware or software related. Also, if you're interested in learning more
about graphics programming please refer to the programming tutorials on the CD.

180



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

Epilog

| hope that this book and the design of the XGS ME and PE at least get you started on a journey
to a whole new world of hardware design, gaming and exploration. | have to admit, | am frustrated
that there are so few hours in the day and there is so much more | have to say; however, as we
continually evolve the XGS and the documentation | will continue to add more information,
videos, etc. to this book in newer editions.

This book and the XGS is really a 27 year long project for me started back in 1977, when | was
about 10 years old which is when | started programming computers, my only motivation of course
was to make video games. What | really wanted to do was make my own video game systems
which | did a few years later; however, | had no one to share this amazingly cool stuff with that |
was building. Then about 10 years ago | felt that the time was right to start writing books about
game development, but still | was limited by software only. What | really wanted to show people
was the HARDWARE, but again | had to bide my time and wait for the world to catch up to make
it easy enough for anyone to build a computer, PCB, get software and tools needed to do it, etc.

It was only a few years ago that | felt the pieces were in place, so that anyone could build a game
system; however, | wanted something more commercial to start with so | came up with the
NanoGear concept, but the cost of development and more importantly manufacturing made is
nearly impossible without investment from outside sources which of course would wreck the point
of the device — to make it hacker / programmer / hobbyist / student friendly.

Alas, | put part two of my plan into action which was the development of the XGameStation
concept. More or less | just wanted to build game development boards and kits for people to play
with. The end result of all the work, compromise, and research group feedback is of course the
XGS Micro Edition. | am pretty proud of it actually. Not because it's very powerful, or does
amazing things, but mostly because it actually works as designed, is fun to play with, and really is
so simple anyone can understand it with a little work.

| am so glad | came to my senses and made a lateral move from the XGS Mega Edition and put it
on hold until “later”. The Mega was the system | wanted to play with, but not appropriate for
anyone else to learn from. | was thinking “in the box” too much, basically building a Playstation
level system in the end, and when it was done sitting in my room | realized, “this is way too much,
the message is lost in this hardware”. That day | started on the XGS Micro Edition and | am very
happy | did.

An endorsement of the XGS Micro’s design was how fast the demo coders assimilated the
system. None of them hardware hackers, but all of them within a week or two of reading the XGS
Demo Coder Hardware Manual (I wrote in 4 days, so it was sketchy at best) were writing amazing
applications and games with this little 4K machine, at that point, | knew | had something good.
When | saw the PacMan clone (by Remi Veilluex”) running on the XGS Micro a huge sigh of relief
came out since all my theoretical calculations, estimations, and intuitions were all correct. It was a
nice example of what can be done with very little and | was happy that it all worked out.

At this point, | am already developing the variations of the XGS Micro Edition code named “F-
Type” which are slightly more advanced, contain FPGAs instead of discrete logic and have less
chips, but slower processors in general. Again, these systems solve another problem, the
problem of customers that are interested in FPGA development. However, FPGA based systems
are completely different that discrete systems, just as interesting, but you loose a lot of the “hands
on” fun that you have with the discrete systems since you end up “programming the hardware”
instead of building it. | plan on doing a 6502, Z80, 6809, and ARM based “F-Type” Micro Edition,
but don'’t hold your breath — lots to do in the meantime like work on my “Video Game Processor”,
a single chip game console that is ultra easy to program.

181



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

What else? Well, | guess what | hope happens is that the XGS Micro and the material in this book
spawns a new generation of hardware hackers. These days software has reached a peak of
“Imperfection” if you ask me, from bloated web programming to buggy operating systems,
seems no one knows how to do it anymore, and never on time! — | hope that the XGS Micro
forces everyone to STOP, RESET, and learn from the ground up, what a computer is, how to
build it, how to program it, and of course how to make the most important applications on it —
games! That's how my generation did it. It's not just a coincidence the greatest computer related
revolutions happened in the 70’s and 80’s, people simply knew more, they could do it all.

Nevertheless, it would be pretty cool to see 10,000 — 100,000 new hardware hackers out there
building cool projects and flooding the internet with some desperately needed “deep knowledge”,
right now, its like reading VCR instructions, seems like the quality of information on the net is very
low, | actually never use it, | read books still.

With that, | leave it to you. | have hopefully shown you a new side to computing and gaming and
you have something to get excited about. If you're like me the “shininess” has worn off just
programming video games. They are released like movies; each week, becoming more and more
the same, sure they look amazing, take years, $5-25M to develop, and hundreds of
programmers, artists, etc., but is it just me or did something get really lost in the translation a few
years ago? | think you know what | mean? It’s hard to put your finger on, but they just aren’t the
same. | think one reason is many of us like to play them since we dream of making them, but no
single person is going to make another AAA game again (99.9999% sure of that), so where does
that leave us? As cogs in the machine, that’s it — and that’s just not good enough for me.

Hence, | say let’s try some new stuff; hardware seems to be that new frontier that was forgotten
about, but is always there like a favorite toy in the closet that you put away one day and forgot to
take out and play with.

Software is cool, but there is nothing like building something REAL and watching it turn on and
work — not to mention most embedded game systems boot in 50ms!

Andre’ LaMothe

2004/2005

182



Design Your Own Video Game Console
A Beginner’s Guide to Video Game Console and Embedded System Design, Development, and Programming.

NOTES

183



