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Preface  
Introduction 
Very few people are interested in microprocessors (or even computers) per se. Instead, they 
are interested in specific tasks that the microprocessor can perform. You don’t really want a 
microprocessor. You want a robot, or a data collection system, or an alarm system. However, 
building these exciting applications requires knowledge of hardware, software, and the 
microprocessor’s capabilities. 
 
The SX chip’s Flash memory can be erased and reprogrammed more than 10,000 times.  This 
allows users the luxury of trial and error with their assembly language programs.  Coupled 
with the powerful and inexpensive SX-Key debugging tools, the SX Tech Tool Kit provides an 
ideal environment for learning and experimentation.  The experiments in this course are best 
performed with the SX-Tech Tool Kit, available for on-line purchase at www.parallax.com.   
 
This book is a compilation of two earlier books: Introduction to Assembly Language 
Programming with the SX Microcontroller and Introduction to I/O Control with the SX 
Microcontroller both by Al Williams.  This new edition has been updated to use with the SX 28, 
and features improved formatting and graphics. 
 
The first portion of this course will introduce you to the SX microcontroller's internal 
architecture as well as show some basic hardware and software concepts. Topics include: 
number systems, programming and debugging, flow control, math, basic I/O, interrupts, and 
virtual peripherals. 
 
The second half of the book will cover more advanced I/O programming and expand on 
several advanced topics. Activities include RS-232 communication, pulse width modulation, an 
A/D converter, and a serial input buffer. 
 
One of the things that makes the Ubicom SX microcontroller so powerful is its versatile I/O.  
Traditionally, microcontrollers have incorporated internal or external hardware for handling 
various I/O requirements.  Particularly with internal hardware solutions, a different 
microcontroller must be selected to match each new design.  Manufacturers have, in turn, 
come up with an increasingly large number of microcontroller packages.  They do so in an 
attempt to fit their products into as many different designs as possible.  The circuit designer 
ends up losing a degree of freedom when attempting to use these products.  For example, 
when one chooses a package with one asynchronous I/O port and one A/D port, adding one 
more A/D line can be costly in terms of redesign time and hardware. 
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One thing that sets the SX apart from most microcontrollers is that it is fast enough to handle 
many forms of I/O in software instead of requiring special hardware.  This allows the designer 
to simply change the SX program to meet the new design requirements. This is possible 
because of the SX chip’s comparatively high processing speed.  In future units, you’ll see how 
to use this processing speed to create asynchronous serial ports, A/D ports, and more. 
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Unit 1: Getting Started 
 
Back in 1943, the chairman of IBM predicted that one day there would be a world-wide market 
for five computers. Today, computers are everywhere. Sure, there are PCs in many homes, 
but the real computer invasion isn't in the home PC. Instead, people buy computers in just 
about every electronic device they own. Today your television, your phone, your microwave 
oven, and your car all have computers (some have several computers). 
 
These computers may not be as obviously powerful as your desktop PC, but they are designed 
to control the real-world. An integral part to designing electronic equipment today (for fun or 
for profit) is understanding how these devices work and how you can use them in your own 
creations. 
 
Why use these microcontrollers? Often a microcontroller can replace a large number of other 
components. For example, consider a phone answering machine. Do you really need a 
microcontroller to do the job? No. If fact, many old fashioned answering machines did not use 
microcontrollers. Instead they had a circuit to detect a ringing phone. The ringing would 
activate a timer chip (or in a really old machine a timing cam on a motor). This timer would 
trip a relay that would take the phone off the hook. Then another timer would start the tape 
player that played the outgoing message. When the outgoing message finished (based on 
time, or sensing foil at the end of the tape), another timer would start a regular tape recorder 
for a preset time to record the call. 
 
Instead of three timers, today's answering machine uses a microcontroller. With just a few 
external parts, the microcontroller can operate the entire system with ease. But there is much 
more. A microcontroller can also sense if someone is really talking on the other end of the line. 
It can accept Touch-Tone commands to allow remote control. It can even store and playback 
voice digitally instead of using tapes. Try making a sophisticated remote control without a 
microcontroller. 
 
So our microcontroller phone machine is much more powerful than its ancestors. It also costs 
less. Microcontrollers are now quite inexpensive - even if you don't account for the number of 
parts it can replace. Fewer parts also make devices smaller, cheaper, and less prone to failure. 

About This Course 
This course is all about incorporating these powerful little computers - microcontrollers - into 
your own designs. Particularly, we will use the Ubicom SX microcontroller along with the SX-
Key development system from Parallax. The SX is an inexpensive yet very powerful 
microcontroller. The SX-Key allows you to program the SX and also debug your programs in 
real-time. In the past, hardware like the SX-Key that allowed you to debug your program while 
the processor was in a real circuit was very expensive (thousands of dollars) and was only 
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available to well-stocked labs. However, the SX-Key is quite affordable (only a few hundred 
dollars, depending on options). 
 
To get the most out of this course, you should already be familiar with elementary hardware 
design. You should understand how LEDs work, for example, and understand basic electronic 
laws (like Ohm's law). This course will focus on designing programs to run the microcontroller 
and thereby control electronic circuits. Although you usually think of programs as software, 
when a program is inside a microcontroller it is often known as firmware - a cross between 
hardware and software. 
 
The labs in this course are best performed with the SX-Tech Board available from Parallax. 
However, you can also wire up your own version of these circuits on any solderless 
breadboard (See Appendix B). 
 
The SX chip is a very powerful chip, but is also useful as a learning tool. Unlike some 
microcontrollers, the SX uses electrically erasable memory to store programs. That means that 
you can write a program, try it, and then reprogram the chip immediately to run a different 
program (or a corrected version of the same program). This coupled with the powerful SX-Key 
tools provides an ideal environment for learning and experimentation. 

Start at the Beginning 
If you are not familiar with the way a computer operates internally, it can seem like black 
magic. It seems as though the little chips can do practically anything, no matter how complex. 
However, beneath this complexity is a surprise. The microcontroller operates very simply. This 
simplicity means that you - the programmer - have to take great pains to create these 
complex behaviors. Programming requires logical thought and attention to detail. 
 
All programs operate by using a program, or a stored sequence of instructions. These 
instructions tell the computer what to do. When the computer first starts, it looks at these 
instructions in sequence. Some instructions read inputs. Others control outputs. Still other 
instructions do some sort of processing. 
 
The Ubicom SX uses a Harvard-style architecture. This means that it has one area where it 
remembers instructions and another area where it remembers data (including inputs and 
outputs). This is a common architecture for microcontrollers (although some computers utilize 
a Von Neumann architecture where data and instructions mix together). 
 
Suppose you started a new job at a factory that makes radios. The plant manager gave you 
the following instructions: 
 

1. Put an empty crate at the base of the conveyor belt. 
2. Flip the big red switch on to start the conveyor belt. 
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3. Watch for completed radios to come off the conveyor belt and into the crate. For 
each radio, click your handheld counter. 

4. When the counter reaches 10, flip the switch again to stop the conveyor belt. 
5. Move the crate and replace it with a new empty crate. 
6. Reset the counter in your hand. 
7. Go back to step 2. 

 
This is exactly like a computer program. It is a sequence of steps. It has inputs (you deciding 
that a radio came off the conveyor belt). It has outputs (you flip the big red switch, for 
example). It also has processing in the form of counting and making decisions. In fact, this is 
just the kind of job a computer excels at. 

Problem #1 
There is a slight problem. Outside of Star Trek computers don't understand ordinary 
instructions like this. How do you instruct the computer to perform these steps? Every 
computer, from the smallest microcontroller to the largest supercomputer, stores its 
instructions in the form of numbers. Even worse, computers store these numbers using base 2 
arithmetic (binary, a subject covered later in this unit). That means that a computer program 
looks like a series of 1's and 0's. This is called machine language, and is the basis of every 
computer program. 
 
Of course, base 2 numbers are not easy for humans to understand, so people usually write the 
numbers in a more manageable system. However, even then it is hard to comprehend a 
program written only in numbers. For this reason, engineers typically use some more 
convenient method of expressing programs. 
 
The most common way to program microcontrollers is using assembly language. This is a 
short hand method that allows abbreviations to stand in for the 1's and the 0's. You might use 
instructions like ADD or JMP (jump). In the old days you'd manually convert this shorthand 
into 1's and 0's, but today a special program known as an assembler does it for you. Of 
course, the microcontroller can't run this program, but your PC can. This is often called cross 
assembling - using one computer to assemble (convert from shorthand instructions to 1's and 
0's) code for another computer. The short hand abbreviations, by the way, are known as 
mnemonics. 
 
Many people find it daunting to program using these low-level instructions. Even though 
mnemonics are easy to read, they still represent the machine language, which is very simple. 
For example, the typical microcontroller can't directly multiply and divide numbers. Instead 
they calculate these operations using addition and subtraction. For this reason, some 
programmers turn to high level languages like BASIC or C - languages you might be familiar 
with from other computer systems. 
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If BASIC and C are available for microcontrollers, why use assembly language or machine 
code? The answer is efficiency. Microcontrollers generally have limited amounts of memory. 
Also, you often need them to perform as fast as possible. A program that uses a high level 
language will often consume more memory than a well-written assembly program. It may also 
run more slowly. 
 
If you do use BASIC or C, you can count on the major portion of the language to run on your 
PC. This is similar to cross compiling. You write you C program on the PC and the PC converts 
your program into machine language. Parallax makes a successful line of products known as 
BASIC Stamp® microcontroller modules that use the PC to convert code into a quasi-machine 
language. The BASIC Stamp module then executes a program that interprets this quasi-
machine language to perform the programming steps. 
 

 

Different types of microcontrollers have different machine languages. However, 
most people find that if they learn one microcontroller’s language, others are 
relatively easy to learn. 

Problem #2 
The next problem is what to do with the 1's and 0's once you have them. Somehow, you have 
to move these 1's and 0's into the computer. Older microprocessors used an external memory 
chip but modern processors have memory on board that you program with a special device 
known as a programmer. Some microcontrollers require ultraviolet light to erase the memory 
but the SX is instantly reprogrammable so you don't need to wait for a special light to erase 
the part. 
 
In a Harvard architecture microcontroller, you can’t change the program code while the 
microcontroller is running. Many microcontrollers can’t even read data from their program 
storage while executing a program. However, the SX has a special feature that allows you to 
read data from the program’s memory while running. This can be useful for storing constants, 
for example. 

Watch Your Language 
In this course, you'll use assembly language to program the SX. However, if you are familiar 
with BASIC or C you'll find parallel code examples to help you visualize the assembly code. 
 
The Parallax BASIC Stamp module uses a particular variant of BASIC known as PBASIC. The 
BASIC code will mimic the BASIC Stamp module’s language so you can apply the same 
concepts with the BASIC Stamp. There are several models of BASIC Stamp modules, and one 
of them, the BS2sx, has a SX microcontroller in it. However, you must program BASIC Stamp 
modules using PBASIC -- you can't use machine language. On the other hand, you might 
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wonder why you'd want to use machine language if you could use BASIC. The truth is, BASIC 
is great, but some jobs require the speed and capabilities you can only get with machine code.  
 

 
Figure 1-1: The SX-Key Editor 

The Working Environment 
Figure 1-1 shows the main screen of the SX-Key software. Looks like a common text editor, 
and at this point it is. You can enter assembly language code in the window. When you want 
to test or run your program you can use the Run menu to check your syntax or program the 
SX chip.  To just check your code for simple errors, use the Run|Assemble menu. You can also 
use Run|Run to execute the code (assuming you have the chip connected to the SX-Key 
hardware).  
 

 

The assemble command only checks for simple syntax errors. Logic errors are up 
to you to find (with help from the debugger). 
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Is That It? 
The real power of the SX-Key is not entering code. The impressive part is when your code 
doesn't work. Then you can use the Run|Debug command. 
 
The debugger (see Figure 1-2) allows you to watch the SX execute your program one step at a 
time and examine its internal workings.  

The Development Cycle 
As you might imagine, such powerful tools greatly simplify programming. However you still 
need a plan. There is an old saying: “People don't plan to fail, they fail to plan.” This is 
especially true when programming. 
 
Earlier you read that programs read input, process it, and produce output. This is not a bad 
place to start when designing your software. Complex projects may require more rigorous 
design techniques, but many times this simple approach is enough. However, nearly every 
program (especially those for microcontrollers) will follow this model. Identifying your inputs, 
outputs, and processing is a solid first step towards realizing your design. 
 
The next step depends on your background, experience, and personal preferences. You might 
start by making a list of instructions similar to the assembly line steps mentioned earlier. Some 
people prefer to draw the steps of their programs using boxes like a flowchart.  
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Figure 1-2: The SX-Key Debugger in Action 
 
Once you have an idea of what your program will look like you can make your first pass at 
entering the program into the SX-Key editor using the assembly language instructions you’ll 
learn in the following units. Your first attempt at running the program might work, but it isn't 
very likely. When things don't go as planned you'll turn to the debugger for a better 
understanding of your program's operating. 
 



Unit 1: Getting Started 

Page 8 • Beginning Assembly Language for the SX Microcontroller 

Even if your program works you may still want to use the debugger to study its operation. 
Sometimes you will see improvements you missed when thinking about the program in the 
abstract. 

Number Systems 
When normal people count they use base 10 or decimal. However, computers like to use 
binary or base 2. Programmers have to switch between the two and often use other systems 
as well. 
 
When you say 138 (in decimal) you really mean: 
 

1×100+3×10+8×1 
 
Decimal digits range from 0 to 9. 
 
Binary numbers are similar, but they use only two digits: 0 and 1. The binary number 1001 is 
really: 

 1×8+0×4+0×2 +1×1 = 9. 
 
You can see how easy it is easy to convert from binary to decimal. Just remember that each 
digit is worth double what the digit to the right of it is worth. 
 
Example:  
 

10011110 = 2+4+8+16+128 = 158 
 
Going the other way is a little more difficult. The trick is to determine which binary digit 
(known as a bit) is the largest necessary to represent the number. Consider the decimal 
number 122. The right-most bit in any binary number is always worth 1. The next bit is worth 
2 then 4, 8, 16, 32, 64, 128, and so on.  
 
Since 128 is bigger than 122, that bit can't be in the equivalent binary number. By convention, 
the right-most bit is considered bit 0 and the other bits are numbered sequentially from right 
to left. So the bit with the value of 128 is bit 7.  
 
However, bit 6, with a value of 64, will have a 1 in the answer since 64 is less than 122. Since 
122-64=58 you'll still have to account for this amount. The next bit's value is 32 and 32 is less 
than 58, bit 5 will also have a 1. The remainder is 58-32=26. 
 
Bit 4 is worth 16 and so it will also be a 1 leaving 10. Bit 3 (8) will also contain a 1 leaving 2. 
Now consider bit 2. It has a value of 4 but this is greater than the remaining value and so it 
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will contain a 0. The next bit is worth 2 so it will be a 1 and it leaves a remainder of 0. 
Therefore, all the bits to the left (in this case, only bit 0) will have a zero value. 
 
So the answer is that 122 = 1111010. You can check your work by reversing the conversion. 
In other words: 

 1×64+1×32+1×16+1×8+0×4+1×2+0×1 = 122. 
 
It should be obvious, but you can add as many zeros as you like to the left of a binary number 
(or any number for that matter). So 1111010 and 01111010 and 0000000001111010 are all 
the same number. 

Other Places, Other Bases 
Since most people use decimal you have to use it sometimes. But many times it is easier to 
use other notations that are easier to convert to binary. The most common alternate base is 
hexadecimal or base 16. 
 
Hexadecimal (commonly known as hex) uses 16 digits -- 0 to 9 and A-F. You can find the 
values in Table 1-1. Notice that to convert between binary and hex you can simply use the 
table. So F3 hex is 11110011 binary. 
 
In hexadecimal each digit is worth 16 times more than the one before. So F3 hex is: 
 

 15×16+3×1=243  
 
And 64 hex is: 
 

 6×16+4×1=100. 
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Table 1-1: Hexadecimal Digits 
Hex Decimal Binary 
0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111  

 
 

 

Many calculators, including the CALC program in Windows, can convert between 
bases automatically. 

Say What You Mean 
With these different ways of writing numbers, it is easy to get confused. Even the SX-Key 
assembler can't magically guess which number system you are using. That’s why it is 
important to specify exactly what kind of number you are writing. 
 
To specify the number system in use, you write numbers with special prefixes. A number that 
begins with a $, for instance, is a hex number. Binary numbers begin with a % character. 
Since decimal numbers are the most common numbers, they don't have a prefix. 
 

 

Not all assemblers use this naming convention. For example, some assemblers 
use suffixes to indicate the number type. Others use different prefixes. However, 
the SX-Key assembler you will use in this course will use the prefixes as indicated. 

Size Matters 
Another concern with numbers is how many bits they occupy. The SX uses an 8-bit word size 
for data. This is often called a byte. The problem with bytes is that they can only hold 
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numbers from 0-255. What if you need bigger numbers? Or negative numbers? Then you'll 
need to resort to special techniques found in Unit 6. 
 
Remember, by convention, you number bits starting at the right-most bit. So the right-most bit 
is always bit 0. The left-most bit in a byte is bit 7. This is somewhat confusing because bit 7 is 
actually the eighth bit (because you started counting at 0 instead of 1). 
 
Incidentally, although the SX uses an 8-bit word for data, its instructions are 12 bits wide. 
Since the Harvard architecture separates code and data, this isn’t a problem, as it would 
appear to be. 

The Hardware Connection 
Of course, as nice as the SX-Key is, it is only a means to an end -- programming the actual SX 
chip! 
 
The SX is an especially speedy processor. It can run at speeds up to 100 MHz and can execute 
most instructions in a single cycle (10 ns per instruction). In a real project, you must supply a 
crystal or a ceramic resonator for speeds greater than 4 MHz. However, when working with 
the SX-Key it provides the clock (you can change the clock speed using the Run|Clock menu). 
 
The SX comes in an 18-pin package and a 28-pin variant. The 18-pin device has 12 I/O pins 
and the 28 pin device sports 20 I/O pins. Both devices have 2 K of program storage and about 
136 bytes of data storage (although future devices may have different amounts of memory). 
There is also a surface mount-only, 20-pin device that is about the same as the 18-pin SX. 
When you write a 1 to an output pin, it generates (roughly) 5 V. If you write a 0 to the pin, it 
outputs 0 V. On input, the pins recognize voltages above a threshold (typically 1.4 V) as a 1 
and below the threshold as a 0. You can make any pin an input or an output and you can even 
switch them during program execution. 
 
Obviously, your choice of parts will often hinge on how many I/O pins you need. If you want 
to use, for example, 4 pins to drive an LCD display, and 8 pins to connect to a keypad, you 
won’t have anything left over for other work if you use the 18-pin SX. However, for this course 
you may also be constrained by the experiment board you are using since it may only have a 
socket for one device or another. 
 
You can find the hardware details of the SX in the official data sheet. However, you'll also read 
more about the SX hardware in the remaining units of this course. 

Summary 
The old saying goes: ”The mightiest oak begins as a tiny acorn.” In a similar vein, the simple 
functions of a microcontroller can build complex systems if you know how to use them. 
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To understand low-level computers like microcontrollers you have to speak their language -- or 
at least the shorthand assembly language and hex codes that most people use to represent 
the arcane machine language. 
 
This unit -- by necessity -- covers these fundamentals. By now you should be itching to really 
use some hardware. You'll get your chance in the next unit. 

Exercises 
 
1. Convert the following numbers to decimal:  

(a) $27 
(b) %101110 
(c) $F1 
(d) $AA 

 
2. Convert the following numbers to hexadecimal: 

(a) 100 
(b) 200 
(c) 17 
(d) %10110110 
(e) %1000001 

 
3. Answer True or False to the following statements: 

(a) Programs consist of a series of steps. 
(b) All computers us a Harvard architecture. 
(c) A Harvard architecture computer uses separate memory for programs and data. 
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Answers 
1. (a) 39 (b) 46; (c) 241; (d) 170 
 
2. (a) $64; (b) $C8; (c) $11; (d) $B6; (e) $41 
 
3. (a) True; (b) False; (c) True 
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Unit 2: Your First Program 
 
By now, you are probably ready to jump in and start a project. Good, because that's exactly 
what you will do in this unit. You should have a PC running the SX-Key software connected to 
an SX-Tech board. If you don’t have an SX-Tech board you can use any other similar 
development board with some LEDs connected to port B so that they turn on when you output 
a 0 from the SX (see Figure 2-1). Connect an LED at least to two adjacent pins on the SX’s B 
port. If you are industrious, wire 8 LEDs, one to each pin on the B port.  
 

 
Figure 2-1: LED Circuit 

 
To start with, you'll enter a program into the SX-Key editor, download it to an SX processor, 
and execute it. You'll see exactly what each part of the program means later in this unit. For 
now, just concentrate on getting familiar with the steps involved and your hardware setup. 

First Step 
If you haven't already, install the SX-Key software as instructed in the manual. The manual will 
also tell you how to start the program, and you should do so now. The first time you start the 
software it will show you a configuration screen Figure 2-2.  
 
From this screen you must select the correct COM port that your computer is using for the SX-
Key hardware. In addition, be sure to check Use SASM so that the SX-Key will use the newer 
SASM assembler. If you have already run the SX-Key software, you can check these options 
from the Run | Configure menu.  
 



Unit 2: Your First Program 

Page 16 • Beginning Assembly Language for the SX Microcontroller 

 
 

Figure 2-2: SX-Key Editor Configuration Screen  
 
Once you dismiss the configure dialog (or you run the SX-Key software again), the initial 
screen is blank and you can enter your program (you can also, of course, load an existing 
program from disk). 
 
What to enter? That's the problem! For now, enter the following simple program exactly as 
shown. Note that each line except the ones containing start_point is indented with a tab. 
This is a common practice in assembly language – placing labels (like start_point) in the first 
column, and placing commands to the right at least one tab. 
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;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 2.1 
;======================================================================= 
 
               device  sx28l,oschs3 
  device  turbo,stackx,optionx 
  IRC_CAL  IRC_SLOW 
  reset  start_point 
  freq  50000000  ; 50 MHz 
 
 
  org  0 
 
start_point mov  !rb,#0    ; make all of port b outputs 
  mov  rb,#0     ; make all port b outputs = 0 
  sleep            ; go to sleep 
 
 

The SX-Key software is not case sensitive, so it doesn’t matter if you use upper case or lower 
case letter (you can change this behavior with the CASE directive, however). It is a good idea 
to save your program from time to time. If Windows freezes or crashes for some reason, you’ll 
be glad you saved. Certainly you should save your work before you try to run the code on the 
SX. 
 
When you finish entering the program, select Run|Assemble from the SX-Key menu. If you 
entered everything with out any mistakes, you'll see “Assembly Successful” In the status bar. 
Otherwise, you'll see a list of error messages (below the text window) and the cursor will jump 
to the first line containing an error. You can click on the error messages to show the 
corresponding source line. Fix the errors and try again. Keep in mind that sometimes one 
mistake will cause several errors. After you fix any obvious mistakes, you can always try to 
assemble your code again to see which errors you’ve actually fixed (and, in some cases, what 
new errors you’ve found or created). 
 
At this point, the only thing the SX-Key software is doing is checking your program for syntax 
errors. It is still possible (and even likely) to make logical errors that the assembler can't catch. 
Think about a word processing program's spell checker. It can tell you if you spell 2 as “tew”, 
but it can't warn you if you spelled it as “too” or ”to”. The assembler has the same problem. It 
can tell if you've made an obvious mistake, but it can't decide if you're program works as you 
expect it to operate. 

Lock and Load 
Once your program assembles correctly, you can download it to the SX chip. The most obvious 
way to do this is to use Run|Program. This assembles the program again and, if the assembly 
has no errors, loads the machine code to the SX chip. You can find more about the hardware 
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setup in Appendix B. Of course, if you are using the SX-Tech board, you can also refer to its 
instructions for the hardware and software setup instructions 
 
However, you may find it better to use the Run|Run menu item. This works just like the 
Program command, but it also starts the program running. If you've already used the Program 
command, you can just use the Run command again, or select Run|Clock to start running. 
 
Either way you start running you should see the LEDs connected to port B light up. Not very 
exciting, but it is a start. At this point you know your hardware is working and your software is 
configured correctly. If things don’t work right, here are a few things to consider: 
 
Be sure the SX-Key is installed in the correct orientation. The markings on the SX-Tech board 
should match the legends on the SX-Key. 
Be careful that the SX chip is installed correctly. On the SX-Tech board, pin 1 of the chip 
(designated by the dot on the IC package) is closest to the edge of the board. 
If the LED on the SX-Tech board is not lit, or appears dim you may have a power supply 
problem. 
 

 
Once you program the SX the chip retains the program until you reprogram it. 

 
If you are guessing what the program is doing, you might wonder why the LEDs light up when 
the pins outputs a zero. This may seem counterintuitive, but it is a common practice. Although 
the SX can sink and source a considerable amount of current, many chips can sink more than 
they can source. Because of this, designers often wire LEDs and other loads so that they turn 
on with a 0 logic level.  

So What? 
On the face of it, this seems unimpressive. You can make LEDs light up with no 
microprocessor at all, right? So add the following line of code right before the line that has 
sleep in it: 
 

mov rb,#$AA   ; make every other port b output = 1 
 
Now when you run the program, you’ll see some lights on and some lights off. Is that correct 
behavior? After all, the program first turned all the lights on. Then it turned some of them off. 
Why can’t you see all the lights turn on before some of them turn back off? The answer is that 
the SX chip is running each instruction in 20 ns! You’d have to have some pretty good eyes to 
see those LEDs light up for 20 ns. 
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However, if you could make the SX run instructions one at a time, you could see it. In fact, 
that is something the debugger can do. Before you dive into the debugger, however, let’s take 
a look at what is happening inside this simple program. 

Inside the Program 
The easiest way to figure out what this simple program is doing is to examine it line by line. 
Along the way, you’ll see some key concepts that you’ll deal with in every program you write. 
The first two lines begin with the device keyword. This is not really an SX command. Instead, 
it is a directive to the assembler. Most keywords have some equivalent machine language 
value. However, directives don’t generate machine code; they simply give the assembler 
instructions. In this case we want the assembler to know that we are writing a program where 
the target SX will be a SX28L and it will use the high-speed oscillator option (oschs2). The 
second line informs the assembler that we want to use several special modes that the SX 
supports. The assembler will use this information to burn the SX configuration fuses. These 
fuses control the chip’s hardware settings and are not part of the actual program. The line that 
begins with IRC_CAL tells the SX-Key software to calibrate the SX’s internal oscillator. 
However, we aren’t using the oscillator, so this line tells the software to just set the oscillator 
to its slowest value. 
 
The next line contains a reset directive. This informs the assembler where the program is to 
start executing. You might think that it would be logical for the program to start at the 
beginning, but you’ll see later that this is not always the case. The name after the directive, 
start_point, is a user-defined label. This label can be any identifier you want and locates a 
spot in the program. 
 

 

Labels and other identifiers can contain up to 32 characters. The first character 
must be a letter or an underscore. The other characters can be letters, 
underscores, or digits. You can’t use reserved words (like sleep and reset) as an 
identifier. 

 
The next line specifies the clock frequency in hertz. This doesn’t really do anything for the SX 
chip, but it helps the debugger determine what clock frequency you want to use. If you don’t 
specify a freq directive, the default is 50 MHz. You can also change the clock frequency for 
running programs using the Run|Clock menu. The assembler allows you to add underscores in 
any number like this to make it more readable. So you may see a similar line written like this: 
 

freq  50_000_000    
 
The next line contains the final directive, org (which stands for origin). This directive instructs 
the assembler to begin generating code at a particular address. In this case, you want to start 
at the beginning so the org is 0.  
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The next 3 lines (or 4 if you’ve added the line of code that turns off some LEDs) are the actual 
program. The lines up to this point were simply directives to the assembler. The first program 
line starts with the start_point label. This is so the reset directive can refer to it. Notice that 
the label appears first on the line. The remainder of the line is the actual instructions for the 
microcontroller. 

Registers 
The data memory of the SX consists of a small number of byte-sized registers. Although there 
are well over 100 registers in the SX, your program can only work with 32 of them at a time. 
In a later unit, you’ll learn about banking which allows you to get to all the registers, but for 
now, suffice it to say that there are 32 registers. Register $08 to $1F are available for you to 
store data. However, registers $00 to $07 are special because they control the SX chip as your 
program executes. 
 
For example, register $05 corresponds to the SX’s port A. When you read a value from register 
$05 (known to the assembler as the ra register), you are actually reading the digital signals 
present on port A’s input pins. If you write to the ra register, you will alter the digital signals 
that appear on port A’s output pins. You can also use $06 (rb) or $07 (rc).  
 
This leads to another problem: How do you know which pins are inputs and which are 
outputs? Initially, all pins are set as inputs. However, your program can change this at any 
time by storing a special value into the port’s direction register. To access the port’s direction 
register you put an exclamation point in front of the register name. Writing a 0 to the direction 
register makes the corresponding bit an output. A 1 makes it an input.  
 
Now the three lines of the program make more sense. The first line uses the mov (move) 
instruction. This instruction moves a zero into the port B direction register (!rb). Notice that 
the 0 has a # character in front of it. This marks it as a constant. Without this #, the 
instruction would move the contents of register 0 into !rb. You can add a base (or radix) 
specifier after the #, so #$FF is a hex constant and #%1011 is a binary constant. 
 
The second line uses the same instruction, but now the destination register is rb instead of 
!rb. This writes the data out to the port. Since all the pins are outputs, each pin will now have 
a 0 V level. This causes the LED to light. 
 
If you added the extra line of code, it writes $AA to the ports. This is the same as %10101010 
so it alternates the LEDs. The final line, sleep, shuts the processor down in low power mode. 
You will rarely use this in a real program – at least, not in this way – most microcontrollers 
never just stop. Later, you’ll see that you might want to sleep until some external event or 
time period wakes you up, but in this case the processor just sleeps forever – something 
almost unheard of for a microcontroller. 
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One other item you might notice in the program is the comments. These start with a 
semicolon and continue to the end of the line. You can use comments anywhere you want to 
make notes about the program’s operation. This is a good idea in case anyone else has to read 
your work. It might even help you when you need to review your code 6 months down the 
road and you can’t remember how things worked.  
 

 

Another use for comments is to temporarily remove a line from your program. 
Just put a semicolon in front of the line you want to “delete” and later you can 
restore it by simply removing the semicolon. 

 
If you were a PBASIC programmer, you might like to think of this program as similar to this: 
 

DIRL = $FF 
OUTL = $00 
END 

 
Notice that PBASIC uses a direction register just like the SX. However, the bit meaning is the 
opposite. In a BASIC Stamp program, direction bits of 0 set input pins, and a 1 sets the output 
pins. The SX is just the opposite. 
 
Taken one piece at a time, this program isn’t very complicated at all. However, there is an 
even better way to understand what it is doing: use the debugger. 

Elementary Debugging 
Once your program is running, you might like to try executing it with the debugger to see how 
it works. This will also give you practice using the debugger, something you are sure to need 
before long. To start, use the Run|Debug command. This is similar to the Run|Run command 
but it also loads a special debugging program into the SX chip. Normally, you don’t know this 
program is present. However, you do have to have some free memory for the debugger or it 
won’t work. In fact, the following requirements are necessary for debugging to work: 
 

• No external clock (the SX-Key supplies the clock) 
• Use the RESET directive 
• No watchdog timer (covered later) 
• 2 free instructions in the first bank of program memory 
• 136 free instructions in the last bank of memory 
• A FREQ directive, unless you want to run at 50 MHz, in which case FREQ is optional 

 
After you press Run|Debug you’ll see the usual programming windows. Then you’ll see three 
windows open up. The Registers window contains the contents of the SX registers and a dump 
of the machine code you are executing. The Code window shows your source code (and the 
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machine code to the left of that). Finally, the Debug window gives you a remote control to 
start and stop your program in a variety of ways. 
 
In Figure 2-3 you’ll notice that the Register window has the first 16 SX registers on the left-
hand side of the screen. You’ll notice the RA, RB, and RC registers, as well as the user 
registers $08 to $0F. The display is in hex, but directly to the right of each value is the same 
value in binary. The other registers (in hex only) are on the right-hand side of the Register 
window. 
 
The center of the screen shows the machine language dump of your program. Notice that 
some instructions you write in your program actually generate more than one machine 
language instruction. For example, the line that reads: 
 

mov !rb,#0 
 
Really generates: 
 

mov w,#0 
mov !rb,w 

 
The debugger hides this from you in the code window, but you will notice that each line takes 
up more than one instruction. That’s why in this program, the first line of code is at address 0, 
but the next line is at address 2. The multi-part instruction is consuming two words instead of 
the usual one. You can also see the instructions in the center portion of the Registers window. 
 
Another peculiarity that appears in the Registers window is the first instruction of your 
program. You’ll notice that although you instructed the assembler to start your program at 
address 0, the actual program starts at location $7FF (the top of memory). There is a single 
instruction at this address: 
 

jmp  000 
 
The program doesn’t contain this instruction directly, but it is a result of using the RESET 
directive. The SX always starts execution at the highest program address, and this instruction 
(a jump) causes the processor to start executing the code at address 0. Notice that this 
instruction doesn’t appear in the code window – that window simply shows the program as 
you entered it. The instructions in the Registers window shows the actual code that is inside 
the SX chip. 
 
The W register (which appears near the top of the register window) is a special register often 
known as the accumulator. Practically all math operations occur in the W register. 
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There is no instruction to move a constant into the !rb register, so the assembler 
automatically used the W register. This can lead to program bugs if you don’t keep it in mind. 
For example, consider this: 
 

mov  w,#$AA 
mov  !rb,#0 

  ; Now w has 0 in it even though  
; you think it has $AA in it! 

 

 
 

Figure 2-3: The Debugger Registers and Code Windows  
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The remote control has buttons that you can use to study your program: 
 

• Hop – Executes one assembly language instruction (remember, this might be more 
than one machine instruction) 

• Jog – Executes assembly instructions in slow motion letting you see the results as 
your program run slowly – press Stop to end Jog mode 

• Step – Executes one machine language instruction 
• Walk – Similar to Jog mode, but steps machine language instructions instead of 

assembly language instructions 
• Run – Runs your program at full speed. The debugger can’t examine registers until 

you press Poll or Stop 
• Poll – This button only becomes active while running. It causes the debugger to 

freeze the processor momentarily, read the registers so you can view them, and 
resume program execution 

• Stop – End a Jog, Walk, or Run command (only active when these commands are 
running) 

• Reset – Starts the program over 
 
As you step through your program, you’ll see a highlight to indicate what instruction your 
program is executing. Also, registers that change value will appear in red. Other controls in the 
remote control include buttons to bring the other windows into view and a button to restore 
the other windows to their default positions. You can select from several update speeds (for 
the Walk and Jog commands). Of course, the Quit button exits the debugger. 

Stopping the Debugger 
This is a short program, so it is easy to step through it. However, this is not always the case. 
Many times, the area of your program you want to examine will be buried in the middle of a 
long program. Perhaps that piece of code only runs when an external event triggers it, or after 
a time delay. In this case, you’ll want to set a breakpoint.  
 
Simply put, a breakpoint is a stop sign in your program. When the SX tries to execute the line 
of code the breakpoint is on, the debugger takes control and the programs pauses execution. 
You can resume execution using the Debug remote control, either running the program or 
stepping through it.  
 
The debugger supports one breakpoint at a time. To set a breakpoint, just click on the line you 
want to stop at (either in the Register or Code windows). The line will turn red. Now if you 
press Run (be sure to press Reset first if you’ve already run the program) the program 
execution will halt at the breakpoint. Setting a new break point clears any existing ones. If you 
want to clear all breakpoints, just click on the red line that already has a breakpoint. 
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You can also add a breakpoint in your assembly language program so that you’ll always have a 
breakpoint set when you start debugging. You do this by adding a BREAK directive in your 
program like this: 
 

mov !rb,#0 
  break 
  mov rb,#$FF 
 
By the way, if you try to set a BREAK before a sleep instruction it won’t work. If you have to 
do this, just use a NOP instruction after the break. NOP stands for no operation and the 
instruction does absolutely nothing but waste time. You may have to use this same trick when 
debugging code that loops to the same address using jmp. 
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Summary 
So far you’ve read about four instructions, mov, sleep, nop, and jmp. There is more to learn 
about the mov instruction, but even then it is obvious you need more instructions to write any 
sort of useful programs. Still, even this small set of instructions allows us to control the output 
bits of the SX. In the next unit, you’ll learn more about jumps and labels and build more 
functions into this simple program. 

Exercises 
1. Since each bit in the direction register stands for a different pin, it makes sense to specify 
the value for the direction register (and often for the port register itself) in binary. Rewrite the 
first example program in this unit to use binary numbers instead of hexadecimal numbers. 
 
2. The JMP instruction transfers control to a different address. Can you replace the SLEEP 
instruction with a JMP back to the top of the program? Predict how this will affect the LEDs. 
 
3. The problem with the program in this unit is that the LEDs change so fast, you can’t see 
them without the debugger. Can you reduce the speed of the SX so you can visualize the LEDs 
when running without the debugger? 
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Answers 
1. Change #0 to #%00000000 and #$AA to #%10101010 
 
2. Change the sleep command to this: 
 

  jmp start_point 
 
The LEDs now change rapidly over and over. You can’t really see the lights change, but you’ll 
notice that the lights that turn off appear somewhat dimmer than the ones that are on at all 
times. 
 
3. Using Run|Clock, you can reduce the clock speed to 400 kHz. However, this is still not slow 
enough to see the LEDs change. Probably the best way to see what the program is doing is to 
use the Jog or Walk commands in the debugger. 
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Unit 3: Simple Flow Control 
 
In the previous unit, you wrote and debugged a simple program. This program started at 
address 0, executed a simple set of instructions, and then went to sleep. While this was good 
to start with, it is clear that most microcontrollers don’t execute a few commands and then 
stop – they run all the time, monitoring inputs and manipulating outputs. 
 
In this unit, you’ll extend the simple program from last time so that it does more interesting 
things. Along the way, you’ll read about a few more simple SX instructions. 

Running? 
As you ran the last unit’s program in the debugger, you may have notice that the PC register 
changed every time you executed a step. If you noticed a little more, you might have realized 
that the number in PC matched the address of the current machine language instruction. 
That’s because PC is the program counter. This is a special register that tells the SX which 
instruction it will execute next. 
 
Do you remember the first instruction you saw in the debugger? It was a JMP that the 
assembler automatically put in at the default reset address so that our program could start 
where we wanted it to. Of course, you can also write your own JMP instructions to control the 
flow of execution in your own program. This is like using a goto statement in BASIC or C. 
 
In the last unit’s exercises, you changed the sleep instruction to a JMP to cause the program 
to restart at the beginning instead of stopping. However, the obvious solution isn’t as efficient 
as it could be. Here’s the entire solution: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 3.1 
;======================================================================= 
 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000    ; 50 MHz 
 
 
  org 0 
 
start_point mov !rb,#0     ; make all of port b outputs 
  mov rb,#0      ; make all port b outputs = 0 
             mov     rb,#$AA    ; change port b outputs 
           jmp start_point 
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What’s wrong here? Nothing is actually wrong. However, the code as written keeps storing 0 
in the direction register (!rb). There is no reason to do this. Once the direction register is set, 
there is no reason to keep setting it again. It doesn’t hurt anything to reset it, but it wastes 
time that you could use to do something else. 
 
The solution is simple. Just add another label to the line following start_point. Call it again. 
Then you can jump to again instead of start_point. So: 
 
start_point   mov  !rb,#0  ; make all of port b outputs 
again  mov    rb,#0   ; make all port b outputs = 0 

mov    rb,#$AA   ; change port b outputs 
jmp again 

 
Another way to make the program a bit more readable is to use the CLR instruction. The CLR 
instruction can set any normal register or the W register to 0. You can’t use it with the !rb 
register though. This is also more efficient since using MOV to clear a normal register requires 
two instructions as opposed to a single instruction for CLR (remember, the MOV instruction 
may generate more than one instruction word, and in this case it generates two). Here is the 
code: 
 
start_point mov !rb,#0    ; make all of port b outputs 
again  clr rb  ; make all port b outputs = 0 

mov rb,#$AA   ; change port b outputs 
jmp again 

More Interesting? 
To make the program more interesting, you’ll need a few more instructions. Consider the INC 
(increment) instruction. The INC instruction adds 1 to a register. Since the port B pins look 
like a register (the rb register), you can increment it just like any other register. 
 
Change your code to look like this: 
 
start_point mov !rb,#0  ; make all of port b outputs 
again  clr rb 

inc rb         ; change port b outputs 
jmp again 

 
In addition, change the freq line to read: 
 

freq 500000  ; 500 kHz 
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Normally, changing the frequency would also require changing the oschs3 clause 
in the DEVICE statement. However, in this case, the SX-Key provides the clock, so 
it is not necessary to change oschs3 to oscxt1. 

 
What should this do? You’d like the program to cycle the lights in a binary pattern. So first all 
lights are on, then the LED on pin 0 turns off. Then it turns back on and the LED on pin 1 
turns off. Just like counting in binary where on LEDs represent a 0. 
 
That’s what you’d like the code to do, but it won’t work. Try it. When you run the code, the 
LEDs seem to stay on all the time. If you single step through the code, you’ll see something a 
bit different. Use the debugger to determine what’s wrong with the program (even if you’ve 
already figured it out) and then read the next section. 

What’s Wrong? 
As you probably realized, the problem is that jumping to again makes the program reset the 
rb register to 0. If you didn’t figure this out, go back and look at the program again. It is 
sometimes helpful to pretend you are the SX chip and execute the instructions in the order the 
processor does. In this case, you clear rb, increment it, and then immediately clear it again. 
So the increment has virtually no effect. 
 
To fix this problem, move the again label to the next line like this: 
 
start_point mov !rb,#0  ; make all of port b outputs 
again  clr rb 

inc rb  ; change port b outputs 
jmp again 

 
Now the program works as you’d expect. If you have an oscilloscope, you might find it 
interesting to watch the port B pins. Bit 0 of port B will generate pulses of a certain width 
based on the system clock, as shown in Figure 3-1.  
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Figure 3-1:  Output Pulses  
 
Bit 1 will emit pulses twice as long. Bit 2 will create pulses 4 times as long, and so on. Using 
the timings for each instruction provided in the SX data sheets, you can actually calculate 
these times. The inc instruction requires 1 clock cycle (2 µs at 50 MHz) and the jmp requires 
3 cycles (6 µs at 50 MHz). So the pin will change every 8 µs. The total period is 16 µs, and the 
frequency should be 62.5 kHz. For practical purposes, you’ve created a square wave oscillator 
and a divider – all in software. 
 
It is worth noting that the SX has two ways it can execute instructions: compatibility mode, 
and turbo mode. In compatibility mode, the SX requires more time to execute each instruction. 
For example, in compatibility mode, an inc requires 4 clock cycles. This make the SX 
compatible with programs written for other microcontrollers that may require a slower 
execution rate. All the programs in this tutorial use the turbo clause in the device statement, 
and therefore require about a quarter of the time to execute as they do in compatibility mode. 
For new programs you’ll always want to enable turbo mode so you can get the best possible 
performance. 
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When programming microcontrollers, it is often necessary to compute the number of 
instructions that will execute so you can precisely set times. Sometimes you want to do this to 
set a time delay. Other times you’ll be setting a frequency, as in this case. When you are fine-
tuning your delays, you might find the nop instruction – an instruction that does nothing – 
useful. This instruction (nop stands for no operation) simply wastes 1 clock cycle (in turbo 
mode). 
 
In PBASIC, by the way, you’d use a program similar to this: 
 

DIRL=%11111111   'all outputs 
OUTL=b1 
 
DO   
  b1 = b1+1 
  OUTL = b1 
LOOP 

 
One thing to consider is what happens when some of the pins in port B are inputs (which they 
are not in this case). That could pose a problem since the increment instruction reads the port, 
increments the value it finds, and then writes the new value back to the port. When some pins 
are inputs, the instruction will read the input pins correctly and they will reflect the external 
stimulus placed on the SX chip. When you increment that, you may or may not get what you 
expect. 
 
As an example, suppose that bit 7 was an input. When you write 0 to the port, that has no 
effect on bit 7. If port B’s pin 7 has a logic low applied to it, the first INC instruction will work 
as you’d expect. It would read a 0 and write a 1 to the output. However, if the pin were high, 
the INC instruction would read a %10000000 and write %10000001. This probably wouldn’t 
hurt anything, but there are cases where this is a problem. Always be wary of using 
instructions that read, modify, and write on I/O port registers. 

Other Forms of JMP  
The jmp instruction, by the way, has two other forms that you can use. First, you can use the 
W register (the accumulator) as the destination address. Just write: 
 

JMP W 
 
This is useful when you want to use a calculation to determine where to jump. The other form 
of JMP isn’t a JMP at all. The ADD instruction allows you to add the W register to the PC 
register. This causes a jump over a certain number of instructions. Of course, the ADD 
instruction really just adds the W register to any other register. It just so happens that 
changing PC causes a jump. For example, consider this: 
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CLR 8  ; clear register 8 
MOV W,#2 
ADD PC,W 
INC 8 
INC 8 
INC 8 
BREAK        ; what is in reg 8 now? 
INC 8 

  
When the debugger hits the breakpoint, register 8 contains 1 because changing PC causes the 
first two INC instructions to not execute. The assembler allows you to write this instruction as 
JMP PC+W to make your program easier to read. 
 

 

Since the 2 in this example is a constant, you really could use a regular JMP 
instruction to skip these two instructions. One way, of course, would be to label 
the target of the JMP. However, you can also use the special label $ which means 
the current address. So you could write jmp $+3 instead. Why +3 instead of +2? 
Since $ refers to the current address, you have to add 1 just to get to the next 
instruction. Adding 2 would only skip 1 instruction. 
 
The real value to using ADD to perform a jump is when you compute the offset at 
run time. This allows you to create data and jump tables as you’ll see later in this 
tutorial. 

 
In this example, using 8 as a register number is confusing. Remember, it isn’t a constant 
because it didn’t start with a #. However, it is much nicer to name your variables in a 
meaningful way. The assembler provides you a couple of ways to do this that you’ll read about 
in the next unit. 
 
Of course, sometimes you want to jump only if some condition is true of false. For example, 
you might want to jump only when the user presses a button, or when a sensor reads a 
certain value. You’ll find out how to do that in Unit 5. 

Local Labels 
One challenge when you are programming is coming up with new names for every label. The 
SX-Key assembler lets you create local labels that begin with a colon. These labels are only 
valid in between normal (or global) labels. Because the local labels are only valid within global 
labels, you can define the same label more than once without confusion. Consider this: 
 
top  mov w,#0 ; top is a global label 
:loop      .   ; the first loop 
      . 
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      . 
  jmp   :loop ; goes to first loop 
ok  mov w,#9 ; ok is a global label 
:loop      .   ; the second loop 
      . 
      . 
  jmp  :loop ; jumps to second loop 
 
 
You never have to use local labels. However, using them can make your life easier and your 
code more readable. The alternative is to generate unique labels for every address of interest 
in your program.  

Another Way to INC 
Sometimes you’d like to increment the value in a register, but you don’t want to return the 
value to that register. In this case you can use a special form of the mov instruction: 
 
  mov  w,++8 
 
This leaves the result in the W register and does not change register 8. This allows you to use 
the register in other calculations without disturbing it. 
 
In general, math operations always have these two forms. For example, the opposite of 
incrementing is decrementing (dec). This instruction subtracts one from a register. You can 
write it as: 
 
  dec  8 
or: 
  mov  w,--8 
 
The first form subtracts one from register 8 updating the value. The second form does the 
subtraction but leaves the result in W without changing the original value. 
 

 

BASIC has no exact analog to inc and dec (other than x=x+1 or x=x-1). However, 
if you are a C or Java programmer, you can think of inc and dec as the ++ and – 
operators, respectively. 

Stopping the Processor 
In the early examples, the program used the sleep instruction to halt the processor. This 
might not seem very practical, but there are a few places where it can come in handy. For 
example, imagine a microcontroller that dials an emergency phone number. The signal to 
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begin could be applying power to the circuit. The program would dial the number and then go 
to sleep, waiting for another power cycle to run again. 
 
However, the main reason you’ll use the sleep instruction is to put the processor in low-power 
mode until some external event occurs or some time period elapses. External events usually 
take the form of interrupts, a topic that will wait until Unit 7. However, you can wake up at a 
predetermined time by using the watchdog timer. 
The main purpose of the watchdog timer is to reset the processor in the case of a malfunction. 
However, you can also use it as a timer to set a wake up time. 

About the Watchdog 
To enable the watchdog, add the watchdog setting to the device statements near the 
beginning of the program. Notice that turning on the watchdog will prevent the debugger from 
operating correctly, however. The idea behind the watchdog is that your program should use 
the clr instruction to zero the !WDT register periodically. This indicates that the program is 
working. If you fail to clear this register after a certain period of time, the processor resets. 
 

 

The usual purpose of the watchdog timer is to reset the processor in case of a 
failure. It is usually best to have a single point in your program that clears the 
watchdog timer (!WDT). That way the chances of your program crashing and still 
clearing the timer are remote. If your program stops behaving correctly, the 
watchdog timer will restart it. 

 
How long is that period? The SX has an internal oscillator for the watchdog that nominally runs 
at 14 kHz and the watchdog times out after 256 counts. So the timeout period is about 18 ms. 
So if you issue a CLR !WDT instruction at least once every 18 ms, you won’t get a watchdog 
reset. 
 
For timing purposes, this might not be long enough, however. The SX allows you to further 
scale the watchdog timer by setting bits in the !OPTION register.  In particular, bit 3 of this 
register is set to 1 if you want to use the prescaler with the watchdog timer. Bits 2, 1, and 0 
set the divide rate (see Table 3-1). The highest divide rate is 1:128 so the maximum time out 
is about 2.3 seconds. 
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Table 3-1: Watchdog Timer Prescale Values 
Bit 2 Bit 1 Bit 0 Divide Rate 
0 0 0 1:1 
0 0 1 1:2 
0 1 0 1:4 
0 1 1 1:8 
1 0 0 1:16 
1 0 1 1:32 
1 1 0 1:64 
1 1 1 1:128  

 
How can you set a single bit in a register? You can use SETB to set a bit to 1 and CLRB to 
clear a bit to 0. So to turn on the watchdog prescaler and set the divide rate to 1:32 you could 
write: 
  setb  !option.3 
  setb  !option.2 
  clrb  !option.1 
  setb  !option.0 
 
The advantage to doing this is that you don’t disturb the rest of the register. However, it is 
also possible to observe that the defaults for the remaining bits of the !option register should 
be 1’s. So if you knew you wanted 1’s in the other positions, you could write: 
 
  mov  !option,#$FD 
 
The !option register defaults to all 1’s anyway, so if you want the maximum time out value, 
you don’t need to do anything but enable the watchdog timer. Consider this program: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 3.2 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx, watchdog 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 500000    ; 500 kHz 
 
 
  org 0 
start_point    mov    !rb,#0   ; make all of port b outputs  
again    mov w,#$FF 
         xor 8,w        ; invert bits 
               mov   rb,8 
             sleep 
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This program will cause the LEDs to flicker so that you can actually see them. The only 
problem is that you don’t know which LEDs will be on and which will be off initially. The 
program uses the xor instruction to exclusive-or the contents of register 8 with the constant 
$FF. You’ll read more about xor in the next unit, but for now just realize that these two 
instructions will flip all the bits in register 8. That is to say that all 0s in register 8 will become 
1s and all 1s will become 0s. You can, by the way, replace the mov and xor instructions with 
the not instruction which also flips the register bits and takes less time to execute. For now, 
however, leave the code as it is because the next unit will use the $FF constant to 
demonstrate some important ideas. 
 
The last thing the program does is to store register 8’s contents into port B.  Since the code 
just flipped all the bits, all the LEDs that were on will turn off and all the ones that were off 
will turn on. Then the SX goes to sleep. However, since the watchdog is on (notice the 
watchdog clause in the second device line) the processor will reset in about 2.3 seconds. 
This will then flip the bits in register 8 again, reversing the state of the LEDs. Don’t forget that 
you can’t debug this program because it uses the watchdog. You’ll have to use the Run | Run 
command to see the program work. 
 
Earlier, you read that programs that use the watchdog must use clr !wdt to reset the timer. 
This program, however, doesn’t clear the watchdog. Why? Because this program deliberately 
wants the watchdog timer to reset – that is how the program delays long enough for the LEDs 
to blink. 
 
Of course, it would be nice to know that the reset was from the watchdog timer. You can do 
this by examining the bits in the status register. In particular, bit 4 will be 0 if the watchdog 
triggered a reset. If bit 3 is a 0, then a sleep instruction was active at the time. If you knew 
how to test these bits (a topic coming up shortly) you could initialize register 8 to a known 
value when a real reset occurred and not initialize it when a watchdog reset occurred. 
 
Using the watchdog for timing is a bit unusual, but perfectly legitimate. In later units you’ll find 
two other ways to make time delays: programmed loops and using the real time clock. These 
will be easier, because you’ll be able to use the debugger when you employ these methods. 
Another advantage: when the processor resets, there is a brief time that all pins return to the 
input state until your program sets the direction register. The other methods for generating a 
time delay allow your program to stay in control of the processor at all times. 
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Summary 
This unit covers a lot of instructions including:  
 

• jmp – Jumps to a new program location 
• sleep – Stops the processor 
• inc – Adds 1 to a register (also use mov w, ++r to put result in w) 
• dec – Subtracts 1 from a register (or use mov w, --r) 
• nop – Does nothing for 1 clock cycle 
• setb – Sets a bit in a register 
• clrb – Clears a bit in a register 
• clr – Sets a register, w, or the watchdog timer to zero 
• not – Inverts bits in a register  
• xor – Exclusive-ors the bits in a register (more in the next unit) 
• add – Adds w to a register (more in the next unit) 

 
You also read about the PC register, and parts of the !option and status register. In the next 
unit, you’ll find out even more about arithmetic and variables, paving the way for more 
powerful programs. 

Exercises 
1. If you have access to an oscilloscope, add some nop instructions to the programs that blink 
the LEDs and examine the results. 
 
2. Modify the watchdog program so that the LEDs blink at one half of the original rate (about 
1.15 seconds). 
 
3. What if you wanted to stop the watchdog LED program without using sleep and without 
triggering a watchdog reset? Modify the code so that it halts and does not reset. This will 
result in a steady pattern of LEDs lighting. 
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Answers 
1. Here is a possible solution: 
 
start_point mov    !rb,#0  ; make all of port b outputs 
again  clr rb 

inc rb         ; change port b outputs 
nop                ; add more nops if you want 
jmp again 

 
2. To modify the rate of blinking, you’ll change the watchdog timer prescaler value. One way 
to do this is to place mov !option, #$FC near the beginning of the program. You can also 
use setb and clrb to set and clear the individual bits in the !option register. 
 
3. Replace the sleep instruction with: 
 
halting  clr !wdt 
         jmp halting 
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Unit 4: Variables and Math 
 
The SX uses its registers as data storage. In the examples from previous units, we have simply 
referred to registers by their numbers. Remember, the first seven or eight registers 
(depending on the exact processor type) have special names (like rb, status, or !option) and 
functions. 
 
The special names of these registers help you remember what they do. How can you use 
meaningful names for registers that your program uses for its own purposes? 
 
Suppose you want to use register 8 as a variable in your program. There are several ways you 
can do so. First, you can set up an equate in one of two ways. Near the top of the program 
you could write: 
 
Myvar  EQU  8 
 
Or: 
 
Myvar   =  8 
 
Now you can replace all the occurrences of 8 with Myvar. You can use this method to define 
any constant even if it is not a register number. The assembler simply replaces every 
occurrence of Myvar with 8. 
 
The other way to define a variable is by reserving space for it using the DS directive. The DS 
directive usually has a label in front of it, and has the number of bytes to reserve following it. 
So to replace the above equates with a DS directive you could write: 
 

org  8 
Myvar   ds  1 
 
The confusing part about this is that the org directive can refer to the data space or the 
program space, depending on the context. In this case, the 8 refers to the data memory. 
Before you start writing program steps, you'll want to write another org directive to set the 
beginning of your program (often location 0). 
 
It is perfectly normal to specify several variables one after another. For example, consider this 
code that declares a byte variable named Abyte and two bytes named Tbytes: 
 
  org  8 
Abyte   ds  1 
Tbytes  ds  2 
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When you use a variable name in your program, the name of a multi-byte variable refers to 
the first byte of the variable. So consider this statement: 
 

mov w, Tbytes 
 
This loads the first byte of the variable into w. On the other hand, look at this line: 
 

mov  w, Tbytes+1 
 
This line of code will access the second byte. Is this any different than the following program 
snippet? 
 
  org  8 
Abyte  ds  1 
Tbytes  ds  1 
Tbyte1  ds  1 
 
No. There is no difference except that using this form, you can use Tbyte1 instead of 
Tbytes+1. Of course, you can still use Tbytes+1; the assembler does not care since either 
expression will result in a final value of 10 (decimal). 

An Example 
Remember the blinker programs in the last unit? Here it is again: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 4.1 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx, watchdog 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 500000   ; 500 kHz 
 
 
  org 0 
start_point    mov !rb,#0     ; make all of port b outputs  
agn            mov w,#$FF 
         xor 8,w        ; invert bits 
               mov rb,8 
            sleep 
 
 
Here is the same program using symbolic variable names: 
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;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 4.2 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx, watchdog 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 500000   ; 500 kHz 
 
 
  org 8          ; data start 
outval      ds 1 
 
ledport  =  rb 
flipmask equ $FF 
 

org 0      ; code start 
 
start_point    mov !ledport,#0    ; make all of port b outputs 
     ; changed to use single  
     ; instruction to xor with  
     ; constant 
agn             xor     outval,#flipmask 
                mov     ledport,outval 
                sleep 

 
This program uses both = and EQU. This is often a matter of personal choice. However, once 
you define a symbol with EQU you can’t change it later during assembly. Defining a symbol 
with = allows you to change it later. In this program, like most simple programs, the symbol 
values don’t change at all, so you can use either method. 
 

 

When you define a symbol for a constant (like flipmask) it still requires the # 
character to precede it. Without it, the assembler will think you are defining a 
register number. 

 
Another way to use an equate is to define a name for a particular bit. You can specify bits in 
SX assembly language using a period after the name of the register and then the bit position. 
For example, the least-significant bit in register rb is rb.0. The most significant bit is rb.7. 
Using an equate you can define a meaningful name to a bit: 
 
LEDpin  equ rb.0 
 
Using names for the registers and constants make the program much more readable. It also 
allows you to easily change things if you want. For example, it would be simple to change this 
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program to blink LEDs on port A instead of B. It would also be no trouble to change the 
register from register 8 to another register, if you wanted to do so. 
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Assignment 
In BASIC or C, you can assign one variable to another. The SX can do this too using the mov 
instruction. For example: 
 
  org 8 
byte1  ds 1 
byte2  ds 1 
 
  org 0 
  mov byte1,#$AA 
  mov byte2,byte1 
 
This piece of code will put $AA in byte1 and then put the contents of byte1 into byte2. 
 

 

The SX machine language does not really have an instruction that moves one 
register to another. That means the assembler generates a two-part instruction 
for the second mov instruction in this program. The two instructions are actually: 
 
 mov w,byte1 
 mov byte2,w 
 
So this one line of code does destroy the w register. This can also lead to 
inefficiencies. For example, consider this: 
 
 mov      byte2, byte1 
 mov      byte3, byte1 
 
This code unnecessarily loads the w register twice. A better way to do this would 
be: 
 
 mov      byte2, byte1 
 mov      byte3, w 
 
Or: 
 mov      w, byte1 
 mov      byte2, w 
 mov      byte3, w 
 
Both of these take 3 instructions (instead of 4) and execute more quickly than the 
first example. 
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The only problem is with multi-byte variables. The SX only deals with bytes. That means that if 
you want to work with larger quantities, you’ll have to break up the operations byte by byte. 
For example, you’d need two mov instructions to copy a two-byte variable to another two-
byte variable. 
 
For now, stick to bytes. However, bytes can only store numbers ranging from 0 to 255 (or –
128 to 127). So if you need numbers larger than this, you’ll have no choice but to resort to 
larger variables.  

Performing Math 
In the last unit, you saw that the add instruction can add the w register and another register. 
You can leave the result in w or in any register you like. You can also add a literal to a 
register, or add two registers together. However, these are two instruction sequences that 
destroy the w register in the process. Here are some examples: 
 

org  8 
avar  ds  1 
bvar  ds  1 
 
  org  0 
 . 
 . 
 . 
  add  w,avar  ; w=w+avar 
  add  avar,w  ; avar=w+avar 
  add  avar,#10 ; avar=avar+10 (w destroyed) 
  add  avar,bvar ; avar=avar+bvar (w destroyed) 
  add  bvar,avar ; bvar=avar+bvar (w destroyed) 
 
The byte-size of these operations can lead to a problem. What happens if the answer is larger 
than 8 bits? For example, if w contains $FF and you add w to a register that contains $10, 
what happens? The answer is that the SX truncates the result. However, to let you know that 
this has happened, it sets the carry flag (bit 0) in the status register. This is true regardless of 
the destination of the answer. Another bit in the status register (bit 2) is set whenever the 
answer is zero. You can use status.0 and status.2 to refer to the carry and zero flags, or to 
make your programs more readable you can use the symbolic names, status.C and status.Z. 
 
Later in this unit, you’ll learn how to examine these flag bits and use them to perform multi-
byte math. You should be aware that not all operations affect these flag bits in the same way. 
For example, the inc and dec instructions (covered in the last unit) add or subtract 1 from a 
register. However, they do not set the carry flag. They do set the zero flag. The SX data sheet 
tells you which flags each instruction affects. 
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The opposite of adding, of course, is subtracting. The sub instruction can subtract w from any 
register. The result remains in the register. If you want to put the result in w, you can use this 
form of the mov instruction (where R is the register you want to use): 
 

mov  w,R-w  ; w=R-w 
 
You can also subtract two registers or a literal from a register. However, both of these are 
really two machine language instructions and destroy W. So: 
 

sub  avar,W 
sub  avar,#100 ; avar=avar-100 (w destroyed) 
sub  avar,bvar ; avar=avar-bvar (w destroyed) 

 
The carry flag (bit 0 of status) has reversed meaning for sub. Suppose you subtract 100 from 
30. The carry flag will be clear to indicate that the subtraction underflowed. However, if you 
subtract 30 from 100, carry will be set indicating that the subtraction yielded the correct 
result. Subtracting also affects the zero flag. 
 
If you can add and subtract, you might wonder about multiplying and dividing. Simple 
microcontrollers like the SX can only add and subtract. However, using some techniques you’ll 
see in the next unit, you can decompose multiplication and subtraction into multiple additions 
and subtractions. 

Two’s Compliment Numbers 
If the carry flag is clear after subtraction, does that mean that the answer is incorrect? Not 
necessarily. Any microcontroller, including the SX, can handle negative numbers by using two’s 
compliment arithmetic. The idea is simple. Treat the topmost bit (bit 7, in this case) as a sign 
bit. If the bit is 0, then the number is positive. If the bit is 1, then the number is negative. To 
represent a negative number, invert the magnitude of the number and add 1. Obviously, to 
find out the value of a negative number, you’d subtract 1, and invert it again. 
 
Consider what happens if you subtract 60 from 40. The correct answer, of course, is negative 
20. The SX, however, returns %11101100 ($EC). If you invert this number (%00010011) and 
add 1 (%00010100) you’ll find the result is in fact 20. You can also make up new negative 
numbers. Suppose you want to add –5 to 10. First, find the binary representation of 5 
(%00000101) and invert it (%11111010). Next add 1 to get %11111011 ($FB or 251). If you 
add 10 to 251, you get 261. But the SX does not get 261! It truncates the result to 5 (the 
bottom 8 bits of $105). Of course, 10 + -5 is 5, so the answer is correct. 
 
These operations, by the way, are easy to perform on the SX. The not instruction will invert 
bits and inc or dec will add or subtract 1. So handling these negative numbers is not very 
difficult, even at run time. 
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The downside to two’s compliment math? It limits the numbers you can represent. For a byte, 
the numbers between 0 and $7F represent 0 to 127 and the numbers from $80 to $FF 
represent –128 to –1. So although you usually think of a byte’s limit as 255, when using 
signed math, the maximum number is really 127. 

More Carry Tricks 
Suppose you need larger numbers, say 0 to 999. You’ll need to use more than 1 byte. A two-
byte number can hold from 0 to 65535, plenty of room for this job. The problem is, how do 
you do math with these larger numbers. 
 
The addb and subb instructions will add or subtract a bit – which could be the carry bit – 
from a register. Consider this simple program: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 4.3 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 500000    ; 500 kHz 
 
  org 8  ; data start 
counter  ds 2 
 
  org 0      ; code start 
 
start_point clr counter 
  clr counter+1 ; clear both bytes 
again 
     ; do a 16-bit add  
  add counter,#1 
  addb counter+1,status.0 
  jmp again 

 
Here, the code is adding 1 to the 16-bit variable counter. It also adds the carry bit to the top 
8 bits of the counter. Since the carry bit will only be set when the counter overflows, the count 
will be correct. You can do the same thing with subtraction by using subb instead of addb. 
 
By using more registers and more addb or subb instructions, you can manipulate numbers of 
arbitrary size. A 24-bit number (3 bytes) can hold up to around 16 million. A 32-bit number 
(the same size the Pentium PC uses; 4 bytes) can hold numbers of around 4 billion in value. 
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Try It! 
Enter the code above and step through it. You’ll quickly get tired of watching register 8 cycle 
endlessly upwards. The Jog command helps, but it still takes a while to get to the interesting 
part of the code. This is a good time to learn a few extra features of the debugger. First you 
can click on the box for register 8 and change the value of the register. So if you plug in $FE 
(or %11111110) in the register 8 box, you’ll be much closer to seeing the roll over! This works 
for all of the registers visible in the debugger. 
 
Another annoyance is that you have to know that the counter variable is actually in registers 8 
and 9. An easier way to observe the contents of memory is to use a watch directive. This is a 
statement in your program that tells the debugger to display a piece of memory with a name, 
and to format it so that it is meaningful. You specify the memory location, the size of the 
variable, and the format you want. For this program, try adding this line anywhere in your file: 
 

watch counter,16,UDEC 
 
This will show the 16-bit variable at location counter as an unsigned decimal number. You 
can find a list of all the format codes in Table 4-1. 
 

Table 4-1: Watch Format Codes 
Format Code Appearance 
UDEC Unsigned decimal 
SDEC Signed decimal 
UHEX Unsigned hex 
SHEX Signed hex 
UBIN Unsigned binary 
SBIN Signed binary 
PSTR Fixed-length string of ASCII characters 
ZSTR String of ASCII characters terminated with a zero  

 
 
 

 

ASCII (American Standard Code for Information Interchange) is a way to 
represent text characters as a 7 or 8 bit number. For example, in ASCII, an A is 
$41, a blank is $20, etc.). 

A Few More Functions 
You’ll often use the carry bit for a variety of functions. Earlier in this tutorial, you read that you 
can use setb and clrb to set and reset a bit. Since the carry bit is just a bit in the status 
register, you can use these instructions to affect the carry. 
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However, this is a frequently used function, so the assembler provides other instructions to do 
it so you can type less. In particular, clc clears the carry (clz clears the zero flag) and stc sets 
the carry (stz sets the zero flag).  
 
The real trick is to control your program’s flow based on these flags. There are several ways to 
do this. First of all, the generic jb (jump on bit) instruction will execute a jump if the specified 
bit is set. So to jump to lbl1 if the carry flag is set, you could write: 
 

jb status.0,lbl1  ; or jb status.C,lbl1 
 
Of course, using jb you can specify any bit. However, the carry and zero bits are very common 
bits to test, so the assembler also allows you to use the jc and jz instructions to test for the 
carry or zero conditions. You can also use jnb (jump no bit) to jump when the bit is clear 
instead of set. For zero and carry, you can use jnz  and jnc, respectively. 
 
By performing a subtraction and then testing the carry and zero flags, you can easily write 
programs that can tell if one number is greater than, less than, or equal to another number. 
For example, suppose you wanted to know if variable x was greater than variable y: 
 

mov  w,x 
mov  w,y-w 
jnc  x_greaterthan_y 

 
This works because subtracting x from y will only be negative (that is, cause an underflow) if 
x is greater than y. Remember that carry is clear on an underflow when subtracting. 
 

 

You might consider computing x-y and changing the jnc to jc. That would also 
work, but it would jump if x were greater than or equal to y. To see why, work 
out the case where x is equal to y. Of course, you can use jz to test for equality 
and jnz to test for inequalities. See Table 4-2 for a summary of possible results 
when subtracting two numbers. 

 
 

Table 4-2: Results When Computing a-b
Carry Zero Meaning 
0 0 a<b 
X (don’t care) 1 a=b 
1 0 a>=b  

 
Testing for equality with zero is a very common operation, so the assembler lets you write it in 
a special way. You can use test. The test instruction sets the zero flag based on any register 
(including the w register). 
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Another common function relating to zero testing is to increment or decrement a register and 
jump if the result is zero. You can use djnz (to decrement) or ijnz (to increment) for this 
purpose. 
 
Here is another LED flasher that uses djnz to blink the LEDs a total of ten times: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 4.4 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 500000  ; 500 kHz 
 
  org 8  ; data start 
counter  ds 1 
pattern  ds 1 
  watch  counter,8,udec 
  watch  pattern,8,ubin 
 
  org 0  ; code start 
 
start_point  mov !rb,0  ; all outputs 
  clr rb  ; all low 
  mov counter,#10 ; 10 times 
again 
  mov rb,pattern 
  not pattern 
  djnz counter,again 
  sleep   

 
Notice that the blinking code executes 10 times because the counter variable starts with 10, 
and reduces by 1 until it reaches zero. This is a powerful idea and often used in computer 
programs. Code like this is known as a loop because it executes in a loop as often as you 
need. 
 
In BASIC or C, you’d do something like this with a for statement. In BASIC, for example, I 
might write a loop as: 
 

FOR counter = 10 to 1 step –1   
' Do the work 

NEXT 
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Of course, you’d usually see this reversed, with counter ranging from 1 to 10. You could do 
this too, but it takes a few more assembly language instructions: 
 

inc counter ; assume counter was  
; set to 0 at beginning 

mov  w,#10 
sub  w,counter-w 
jnz  again 

 
In the next unit, you’ll see a series of compare instructions that can perform this type of logic 
in one assembly language instruction (but they just write the same sort of code you see 
above). 

Programmed Delays 
Another important use of loops is in developing programmed delays. In the previous unit, you 
saw how to use the watchdog timer as a crude timing device. However, this is not the ideal 
way to generate a time delay. The watchdog timer makes it hard to debug your program since 
the SX-Key can’t debug your code with the watchdog set. Also, the watchdog can’t generate 
arbitrary delays, and you lose control of the program while waiting for the delay. 
 
However, if you know your clock speed, and the number of cycles each instruction takes, you 
can compute loops that will cause the appropriate delay. For example, suppose you wanted to 
generate a 1 kHz tone. A 1 kHz tone cycles every 1 ms (1/1000 = .001) so to make a 1 kHz 
square wave, the SX needs to turn a pin on, wait for 500 µs (half of 1 ms), turn the pin off, 
wait another 500 µs, and then start over. 
 
Assume you have a piezoelectric speaker connected to pin 7 of port B (a piezo speaker has a 
high-impedance and you can drive it directly from the SX’s output pins). If you could toggle 
pin 7 at this rate, you’d hear a 1 kHz tone coming from the speaker. 
 
The problem is that 500 µs is an eternity for the SX. At 50 MHz, each instruction cycle (in 
turbo mode) takes 20 ns. So to pause 500 µs you’ll need 25000 instructions cycles! Consider 
this simple loop: 
 

clr delay 
wloop  djnz delay,wloop 
 
Studying the SX data sheet, you can find that the djnz instruction takes 4 cycles every time it 
has to jump, and 2 cycles if it doesn’t have to jump. The clr instruction takes 1 cycle. So the 
total number of cycles in this loop is 256 * 4 + 3 or 1027, a far cry from the 25000 you need. 
Of course, you could use a 16-bit delay, but this is hard to calculate since the total time 
through the loop varies depending on the carry flag’s status. Instead, it is usually simpler to 
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place this loop inside another loop. Dividing 25000 by 1027 you’ll find you need about 24 
repeats of this loop to get to 25000. So: 
 

mov delay1,#24 
oloop  clr delay 
wloop  djnz delay,wloop 

djnz delay1,oloop 
 
Of course 24 * 1027 = 24648, not exactly the right answer. However, the outer loop adds 95 
cycles to the total loop (see if you can calculate that number). That brings the total delay to 
24743 (a 1.02% error). For many purposes, this is not a problem. If you needed a more exact 
figure, you could reduce the number of cycles in the inner loop and increase the count in the 
outer loop until you get as close as necessary. You can also adjust the timing of the loops by 
adding nop instructions inside the loop to stretch it out. 

Logical Functions 
Since microcontrollers and other computers work with binary, it isn’t surprising that they 
contain many operations designed to operate on the bits of word. Like other operations, these 
work on the w register and an arbitrary register with the result going to the register of your 
choice. You can also use a register and a constant, or two registers, but if you do, you will 
generate more than one machine language instruction and destroy the w register in the 
process. The main logical functions include and, or, and xor.  
 
What do these functions do? They simply examine the two values you supply bit by bit and 
generate an output bit base on the corresponding input bits. Take and, for example. If you 
use and on %10101010 and %11110000, the result is %10100000. Why? Because and only 
outputs a 1 if both input bits are 1. The or instruction outputs a 1 if either input bit is 1. The 
xor instruction outputs a 1 if either input is a 1, but not if both inputs are a 1. You can find a 
summary of these operations in Table 4-3. 
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Table 4-3: Logical Instructions 
Truth Table Instruction 
Input Input Output 

Move to W Form 

0 0 0 
0 1 0 
1 0 0 

And 

1 1 1 

and w,R 

0 0 0 
0 1 1 
1 0 1 

Or 

1 1 1 

or w,R 

0 0 0 
0 1 1 
1 0 1 

Xor (exclusive or) 

1 1 0 

xor w,R 

0 1 Not 
1 0 

mov w,/R 

RL (rotate left) n/a mov w,<<R 

 
You’ve already seen that you can use not to invert the bits in a register (including the w 
register). You can also rotate or shift bits left or right by using rl (left) and rr (right). Unlike 
the other logical instructions, these commands operate on a single register (or the w register 
in the case of not). When you shift a register left, each bit is replaced by the bit prior to it. So 
bit 7 gets the value of bit 6, bit 6 gets the value of bit 5, and so on. Bit 0 gets the value of the 
carry flag and the carry flag’s value gets set to the original value of bit 7. Shifting right is the 
reverse process, where bit 7 gets the carry flag value, and bit 0 shifts into the carry flag. 
 

 

When you shift left, you multiply the number by 2. Shifting right is the same as 
dividing by 2. 

 
By combining shifts and addition you can perform many multiplications in an efficient way. For 
example, suppose you want to multiply a number by 10 (not an uncommon thing to do). One 
way would be to add the number to itself 10 times in a loop. While that would work, a more 
efficient way would be to realize that multiplying by 10 is the same as multiplying by 8 and 
then multiplying by 2. Since 8 and 2 are both powers of 2, you can do those multiplications 
using shifts. 
 
Here is an example of both styles of multiplication: 
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;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 4.5 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000 ; 50 MHz 
 
 
  org 8  ; data start 
value  ds 1 
result  ds 1 
result2  ds 1 
counter  ds 1 
  watch  value,8,udec 
  watch result,8,udec 
  watch result2,8,udec 
val   =  21 
 
  org 0  ; code start 
start_point    ; multiply by 10 2 different ways 
  mov value,#val 
; first a loop 
  mov counter,#10 
  clr result 
  mov w,value 
mloop  add result,w 
  djnz counter,mloop 
; ok answer is in result 
  nop 
  mov value,#val 
; now do shift add 
  clc 
  rl value  ; value = value *2 
  mov result2,value 
  clc 
  rl value 
  clc 
  rl value    ; value = value *8 
  add result2,value 
; same answer in result2 
 
  sleep  
 

 

Don’t forget to clear the carry before rotating if you are using rotation for a 
multiply or divide. The carry bit shifts into the word which can throw off your 
results if you don’t clear it first. 
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When debugging this program, don’t forget that you can’t directly set a 
breakpoint on a sleep instruction. 

 
Of course, if you can’t decompose your multiplication into something you can do with rotates, 
you’ll have to look at the techniques covered in the next unit. Unfortunately, there is no easy 
way to combine divisions. You can divide by 2, 4, 8, or any power of two (by shifting right 
instead of left), but there isn’t an easy way to divide by 10 or other arbitrary numbers. 
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Summary 
Wow! This unit covers a lot of ground. You learned about ADD, SUB, ADDB, SUBB, lots of 
bit operations, and even some conditional jumps. Using these instructions you can do lots of 
different things including simple math, controlling the number of times a piece of code 
executes, and comparing numbers. These are the building blocks that allow your 
microcontroller to make decisions. 
 
Remember in Unit 1 you read that a computer reads inputs, does processing, and generates 
outputs. The instructions in this chapter are the core that you will use to do the processing 
portions of your program. 

Exercises 
1. Change the counter program to use inc instead of add. Do you still need addb? If you do, 
which bit should you add? 
 
2. Change the counter to use a 32-bit count instead of two bytes. Test your changes using the 
debugger. 
 
3. Write the program that generates a 1 kHz tone on a speaker connected on pin 7 of port B. 
Note: don’t hook a regular speaker directly to the SX output pins. Instead, use a piezoelectric 
speaker designed for direct IC drive. If possible, measure the output with an oscilloscope or 
frequency counter. 
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Answers 
1. You can use inc, but remember that inc does not set the carry flag. However, it does set 
the zero flag. If you increment a number and get a zero, then it stands to reason that an 
overflow occurred. The correct code would look like this: 
 

inc  counter 
addb  counter+1,status.2  ; status.2 is zero flag 

 
2. This is just a matter of changing the ds statement to reserve 4 bytes instead of 2 and 
adding two more addb instructions immediately following the one that is there: 
 
  add counter,#1 
  addb counter+1,status.0 
  addb counter+2,status.0 
  addb counter+3,status.0 
 
Here is one possible solution: 
  
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 4.6 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000 ; 50 MHz 
  org 8  ; data start 
delay  ds 1 
delay1  ds 1 
  org 0  ; code start 
start_point 
  mov !rb,#$7F ; speaker output only 
loop  not rb  ; toggle bits 
  mov delay1,#24 
oloop  clr delay 
wloop  djnz delay,wloop 
  djnz delay1,oloop 
  jmp  loop 
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Unit 5: Advanced Flow Control 
 
In the last unit, you learned how to control the flow of execution based on conditions. 
Instructions like jz, jc, and djnz allow you to jump when some condition is met. There are 
other ways that you can control the flow of your program, however, and you’ll read about 
these in this unit. In addition, you’ll read about ways to perform integer multiplication and 
division using several techniques. 
 

Skipping 
All of the jump instructions you read about in the last unit are not really machine language 
instructions. Instead, they are multi-instruction constructs that the assembler provides for your 
convenience. The SX actually only performs conditional tests as skips. The idea is to execute 
an instruction that, depending on the condition, will either execute the next instruction or skip 
it. It the next instruction is a jmp then you have an equivalent of the jump instructions you 
found in the last unit. 
 
There are two things to consider here. First, the skipped instruction need not be a jmp. This 
can lead to faster, more efficient code in some cases. The second issue, however, is that skips 
only skip one machine language instruction. Many of the instructions you use are really 
composite instructions and they consist of more than one machine language instruction (see 
Table 5-1). 
 
For example, some mov instructions require two words. Consider this bit of code: 
 

skip 
mov  8,#100 

 
The skip instruction is supposed to cause the SX to skip the next instruction no matter what. 
However, it causes the program to skip the next machine language instruction. There is no 
machine language instruction that corresponds to a mov of a constant (or literal) to a register 
(other than w). So the assembler really generates: 
 

skip 
mov  w,#100 
mov  8,w 

 
The net result is that the program moves w – whatever happens to be in it – to register 8 
without loading 100 into it first. Not what you expected. For this reason, you must be very 
careful when using skips. 
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You won’t have much call to use the unconditional skip instruction. What you usually want is 
an instruction that skips on some condition. There are six skip instructions of this sort. The sb 
and snb instructions skip if a specified bit is set or clear. The assembler also provides special 
shorthand instructions for testing the carry (sc and snc), and the zero flag (sz and snz). 
 

Table 5-1: Multi-word Instructions 
Instruction  Words 
ADD (without W) 2 
ADDB 2 
AND (without W) 2 
CJA 4 
CJAE 4 
CJB 4 
CJBE 4 
CJE 4 
CJNE 4 
CSA 3 
CSAE 3 
CSB 3 
CSBE 3 
CSE 3 
CSNE 3 
DJNZ 2 
IJNZ 2 
JB 2 
JC 2 
JNB 2 
JNC 2 
JNZ 2 
JZ 2 
LCALL 1-4 
LJMP 1-4 
LSET 0-3 
MOV (some forms) 2 
MOVB 4 
OR (without W) 2 
RETW (with multiple values) varies 
SUB (without W) 2 
SUBB 2 
XOR (without W) 2  
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Comparing 
Of course, a very common thing to do is to test two values and based on the result jump to 
some location. You saw this in the last unit done with a subtraction and a jump instruction. 
The assembler allows you to use special multi-instruction compares as a shorthand notation 
for doing this operation. You can find a list of these in Table 5-2. These instructions require 
three pieces of information: a register, a register or a constant, and a jump address. 
 

Table 5-2: Compare Instructions 
Instruction Use BASIC Equivalent Skip Form 
CJA A,B,LBL Jump if above if A>B then LBL CSA 
CJAE A,B,LBL Jump if above or equal If A>=B then LBL CSAE 
CJB A,B,LBL Jump if below If A<B then LBL CSB 
CJBE A,B,LBL Jump if below or equal If A<=B then LBL CSBE 
CJE A,B,LBL Jump if equal If A=B then LBL CSE 
CJNE A,B,LBL Jump if not equal If A<>B then LBL CSNE  

 
These compare instructions are very similar to a BASIC or C IF command. The only difference 
is that the comparison can only be between two variables or a variable and a constant. You’ll 
find the equivalent BASIC syntax in Table 5-2.  
 
You can also do a compare and skip the next instruction if the comparison is true. Just like any 
skip instruction, however, you have to be careful not to try to skip a multi-word instruction 
(see Table 5-1). Table 5-2 shows the skip instructions that correspond to different conditional 
jumps. 

Using Call and Return 
You’ll often find yourself doing the same things several times in one program. For example, if 
you want to add two 16-bit numbers, it is a good bet that you need to do it in more than one 
place. 
 
The SX knows that you will want to write code that you can reuse and so it provides CALL and 
RET instructions. These instructions implement the same sort of functions that GOSUB 
provides in BASIC (or functions in C). 
 
In the previous unit, there is a program that generates a 1 kHz tone from a speaker connected 
to pin 7 of port B. But suppose you needed a program that did the following: 
1. Make a 1 second beep on the speaker 
2. Wait for you to push a button connected to port B, pin 0 
3. Beep for 1 second again 
4. Return to step #2 
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You can find the circuit required for this example in Figure 5-1. The code in the last unit that 
made the 1 kHz tone looks like this: 
 
loop  not rb  ; toggle bits 
  mov delay1,#24 
oloop  clr delay 
wloop  djnz delay,wloop 

djnz delay1,oloop 
jmp  loop 

 
Since each loop requires about 500 µs, you will need to execute the loop 2000 times to 
generate a 1 second tone. That simply requires another loop. However, it seems a waste to 
have to duplicate this code in two different parts of the program. That is where the call 
instruction is useful. You can make a subroutine out of the beep code and then call it from 
different parts of your program. 
 
To create a subroutine, you simply assign the code a label. Other parts of your program will 
use this label (along with call) to execute the subroutine. When the subroutine code executes 
a ret (return) instruction, execution resumes with the instruction after the call. Consider the 
tone code rewritten as a subroutine: 
 
beep  mov second,#$DO ; 2000 is $7D0 

mov second+1,#$07 
   
loop  not rb  ; toggle bits 

mov delay1,#24 
oloop  clr delay 
wloop  djnz delay,wloop 

djnz delay1,oloop 
; repeat 2000 times 

djnz second,loop 
djnz second+1,loop 
ret   ; go back to wherever 

 
Now the main part of the code can simply use call beep anywhere it wants a one second 
beep to occur. It is perfectly acceptable to have more than one entry point into the 
subroutine. For example, if you wanted to set the second variable in your main program, you 
could call loop instead of beep (although you’d probably want to give it a better name). You 
could also get a half beep like this: 
 
  mov second,#$E8 ; 3E8 

mov second+1,#$03 
jmp loop 
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Subroutines can call other subroutines, but the SX can only handle 8 levels of nesting 
subroutines. That is, if subroutine A calls subroutine B, and subroutine B calls subroutine C, 
and so on, the SX will get confused when subroutine H calls subroutine I. 
 

 

This in no way limits the number of subroutines you can have in a program. It 
simply limits the number of subroutines you can have active at one time. 

 
To help you understand the idea of nested subroutines and the limit on nesting, think about 
an elevator that can hold 8 people. Each time you execute a call instruction, you are putting 
someone else on the elevator. Each time a ret instruction (or a retw instruction; see below) 
executes, someone gets off the elevator. If you execute 8 call instructions in a row without 
returning, the elevator becomes full and you can’t add any more people until someone gets 
out of the elevator. However, over the course of the day many people might ride the elevator 
(some more than once, even). As long as no more than 8 at a time ride, everything works. 
 

 

Figure 5-1:  A Speaker and Switch Connected to the SX  
 
 
Here is the tone program: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 5.1 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000    ; 50 MHz 
 
  org 8 
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second  ds 2     ; counter for 1 second tone 
delay  ds 1 
delay1  ds 1 
 
 
  org 0 
start_point mov !rb,#$7F ; make speaker output 
  call beep 
; wait for input button 
bwait  jb rb.0,bwait 
  call beep 
  jmp bwait 
 
; subroutine 
 
beep  mov second,#$d0   ; 2000 is $7D0 
  mov second+1,#$07 
  
loop  not rb      ; toggle bits 
  mov delay1,#24 
oloop  clr delay 
wloop  djnz delay,wloop 
  djnz delay1,oloop 
; repeat 2000 times 
  djnz second,loop 
  djnz second+1,loop 
  ret   ; go back to wherever 

 

 

What if you wanted to use this subroutine in a program that already used labels 
like oloop, loop, and wloop? To prevent conflicts, try to use local labels (like 
:oloop, :loop, and :wloop) in your subroutines. 

 
A few notes about this program are in order. For one thing, this is the first program in this 
tutorial that reads some input. The switch is connected in such a way that bit 0 of port B will 
read a 0 when you push the switch. The jb instruction tests for this – if the bit is a 1, it just 
loops to bwait. 
 
Buttons are mechanical devices, and as such they exhibit bounce. That means that when you 
press the switch, the SX may see the switch open and close many times for a few 
microseconds until the switch firmly closes. The same thing happens when you release the 
switch – the button seems to turn on and off rapidly until it finally settles in the off position. In 
this program, this is no big deal because the tone forces a one second wait before the SX 
reads the switch again. However, if you were rapidly reading the button, you’d need to take 
this mechanical bounce into account. 
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If you run this program and hold the button down, the tone will continue until you release the 
button. That’s because the program does not wait for you to release the button before 
continuing. 
 
Often subroutines want to return some data (perhaps a status code) in the w register. To 
accommodate this common task, the SX provides the retw instruction. The retw instruction 
returns a constant in the W register. So: 
 

retw #$FF 
 
is the same as: 
 

mov w,#$FF 
  ret 
 
Of course, retw is only a single instruction so it executes faster and requires less space. 

Tables 
One important use of retw is to generate tables. Suppose you wanted to find the square of a 
number between 0 and 10. You know that multiplication is difficult to do, so it makes sense to 
simply store the values in a table and read them out instead of doing the actual calculations. 
Here is a subroutine that does this: 
 
; square a number from 0 to 10 in the W register 
; return result in the W register 
square  jmp PC+W 
  retw #0 
  retw #1 
  retw #4 
  retw #9 
  retw #16 
  retw #25 
  retw #36 
  retw #49 
  retw #64 
  retw #81 
  retw #100 
 
When the main program calls the square routine, it jumps to a different return instruction 
depending on the value in W. The retw instruction loads the correct value into W and returns 
to the caller. This is simple, efficient, and very fast. It is also so common, that the assembler 
lets you write multiple values on the same line. So you could replace the square routine with 
two lines of assembly: 
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square jmp PC+W 
  retw 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 
 
The generated machine language code is exactly the same in either case, so there is no 
difference in using either method. It is a matter of personal preference.  
 

Indirection 
When you access the SX’s registers, you need to know the address you want to use. Early in 
this tutorial, you used numeric addresses (like 8 or 9), but soon you saw the advantage to 
using symbolic names (like status or counter). However, sometimes you don’t know the 
exact address you want to access when you are writing your program. For example, suppose 
you wanted to clear all the user memory in the SX. You could write: 
 

clr 8 
  clr 9 
  clr 10 
  clr 11 
  . 
  . 
  . 
 
 
However, that seems wasteful. It would be nice if you could use a loop to index through the 
different registers. That is the purpose of the special FSR (File Select Register) and IND 
(Indirect) registers. The IND register is not an ordinary register. Instead it is an alias for 
another register somewhere in the SX. Where? Whichever register number is currently in FSR. 
 
Here is a simple example: 
 
R1  EQU 10  ; register 10 is R1 
R2  EQU 11  ; register 11 is R2 
  mov R1,#100 
  mov R2,#200 
  mov FSR,#10   ; store address 10 in FSR 
  mov w,IND 
; W now contains 100 
  inc FSR   ; go to next address 
  mov w,IND 
; W now contains 200 
  mov FSR,#R1 
  mov w,IND 



 Unit 5: Advanced Flow Control 

 Beginning Assembly Language for the SX Microcontroller • Page 67 

; W contains 100 again 
  clr IND  ; R1 is now 0! 
 
Notice that you can write to IND as well as read from it. IND is a complete alias for whatever 
register number you store in FSR. 
 

 

You’ll usually want to load a constant number into FSR. In the previous example, 
for instance, if you used: mov FSR,R1 this would load the contents of R1 (100) 
into FSR – probably not what you meant. However, you can use the syntax mov 
FSR,#R1. 

 
Here is a bit of code that will clear all the user registers (up to register $1F) in a loop: 
 

mov  FSR,#8 
 :loop clr ind 
  inc  FSR 
  jnb  FSR.5,:loop 
 
This takes advantage of the fact that when FSR reaches $20 (that is, bit 5 is set for the first 
time) the looping is done. You could just as easily compare FSR with $20 or use some other 
scheme to break out of the loop. 
 
This technique is not just for clearing memory. When programming, you’ll often want an array 
of data (for example, the last 4 samples from a sensor, or the last 8 bytes read from a serial 
port). Using indirection is the way to efficiently code arrays, lists, and other data structures. 

Math Functions 
Armed with the ability to loop and test, you can tackle arbitrary multiplication and division 
problems with ease. A simple-minded approach to multiply, for example, 9 by 7 is to add 9 to 
itself 7 times. However, with a little knowledge of binary numbers, you can write a smarter 
algorithm. 
 
Remember how you learned to multiply in grade school? You’d write your problem out and 
multiply the results digit by digit, moving to the left with each digit. Then you’d add all the 
partial results up to find the correct answer. The computer can do this too. As a bonus, the SX 
uses binary so each partial result can only be the original number shifted to the left some 
number of places or 0. Think about multiplying %1001 by %101 (9 by 5).  
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     1001 
X      101 
---------------- 
   001001 
   000000 
+   100100 
---------------- 
   101101 = 32 + 8 + 4 + 1 = 45 
 
Performing multiplication in this fashion is known as Booth’s algorithm (an algorithm is just a 
fancy name for a set of program steps). Here is a bit of SX code that will multiply the byte in 
register V1 by the byte in register V2: 
 
  clr  V3  ; zero result 
  mov  ctr,#8  ; 8 bits 
mloop  rr  V2  ; load bit 0 of V2 into carry bit 
  jnc  noadd  ; skip on no carry 
  add  V3,V1  ; add to result 
noadd  rl  V1  ; shift V1 over 1 place 
  djnz  ctr,mloop  ; go 8 times 
 
Of course, the result (V3) is a byte, so you can’t multiply numbers that will require an answer 
larger than 255. You can easily extend this algorithm to handle more bits.  
 

Division 
You can use a similar algorithm to do division. If you remember your high-school math, 
dividing requires a divisor, a dividend, and produces a quotient. So when computing 20 divided 
by 5, 20 is the dividend and 5 is the divisor. The result, 4, is the quotient. Since 5 goes into 20 
evenly, there is a remainder of 0. 
 
When you perform division on paper, you reduce it to a series of subtractions. You also have 
to shift your position to keep track of what digit you are examining. The SX can do the same 
thing in binary. Since binary only has 1s and 0s, it is easy to tell if one number will “go into” 
another; simply see if the first number is smaller or equal to the second number. 
 

1. Consider these program steps (or algorithm, if you prefer): 
2. Set the quotient to 0 
3. Shift the divisor to the left until the topmost bit is a 1 
4. Remember how many shifts you performed in step 2 and add 1 to this count 
5. Shift the quotient to the left (multiply by 2) 
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6. Compare the dividend and the divisor; if the dividend is greater than or equal to the 
divisor, subtract the divisor from the dividend and add 1 to the quotient 

7. Shift the divisor to the right 
8. Subtract 1 from the count and if not zero, return to step 4 

 
Suppose you want to divide 20 by 5. After performing steps 1 to 3, you’ll have a divisor of 160 
and a count of 6. Table 5-3 is the looping part of the algorithm right after performing step 6: 
 

Table 5-3: Looping Portion of Division Algorithm 
Dividend Divisor Quotient Counter Comments 
20 160 0 6 Shifted out 5 zeros; no subtraction 
20 80 0 5 No subtraction 
20 40 0 4  
0 20 1 3 Subtracted 
0 10 2 2  
0 5 4 1   

 
What about a division with a remainder? If you replace 20 in Table 5-3 with, for example, 22 
you’ll find that the dividend column has a 2 in it after the subtraction. Since the divisor never 
goes below 2, the answer is the same. However, the dividend column winds up with the 
remainder (2). 
 
Here is a simple division program written for the SX: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 5.2 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000 ; 50 MHz 
 
  org 8 
dividend ds 1 
divisor  ds 1 
quotient ds 1 
counter  ds 1 
  watch  dividend,8,udec 
  watch  divisor,8,udec 
  watch  quotient,8,udec 
  watch  counter,8,udec 
 
  org 0 
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start_point  
  mov dividend,#20 
  mov divisor,#5 
  call divide 
  break 
  nop 
  sleep 
 
; subroutine 
 
divide  clr counter  ; assume not dividing by zero 
  clc 
:loop  rl divisor 
  inc counter 
  jnc :loop 
; restore divisor so top bit is 1 
  rr divisor   
; counter has number of bits in quotient 
  clr quotient 
:dloop 
  test counter 
  jz :done 
  clc 
  rl quotient 
  cjb dividend,divisor,:dloop1 
  sub dividend,divisor 
  inc quotient 
:dloop1   
  dec counter 
  clc 
  rr divisor 
  jmp :dloop 
:done 
  ret   ; go back to wherever 

 
One thing this program does not do is test for divide by zero, which is an error. It would be 
simple to add a test instruction to set the zero flag if divisor was zero and jump to an error 
routine. 
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Summary 
In this unit you’ve read about instructions that compare two values and make a decision based 
on the result. This type of flow control is crucial to implementing advanced multiplication and 
division algorithms (as well as for many other programming tasks). This unit also brought up 
subroutines (via the call and ret instructions) and ways to use subroutines to implement 
tables of constants. You can also create tables using the indirection registers (fsr and ind) 
that allow you to access registers without hard coding their addresses. 
 
At this point in the tutorial, you have all the tools necessary to write some powerful programs. 
In the next three units you’ll learn how to access all of the SX memory and how to further 
control the hardware. In addition, you’ll work with interrupts and virtual peripherals. 

Exercises 
1. The example program in this unit beeps when the button is pressed for a short time. 
However, if the button remains depressed, the tone continues. Alter the program so that after 
the tone, the program waits until you release the button. Be sure to take steps to combat 
bounce. 
 
2. Count the number of times the button is pressed. After 10 times, put the processor to sleep. 
 
3. In earlier units, there is a blinker program that uses sleep and the watchdog timer to pause 
in between flashes. However, this precluded initializing the LEDs to a known state because the 
program could not tell the difference between the first reset and a reset after the sleep 
instruction timed out. Recall that the status register’s bit 4 is 0 when a watchdog timeout 
occurs. Change the program to initialize port B to $AA in the event of a hard reset. The 
original program is below for your reference. 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 5.3 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 500000  ; 500 kHz 
 
 
  org 8 
pattern  ds 1 
 
  org 0 
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start_point mov !rb,#0  ; make all of port b outputs 
  xor pattern,#$FF 
  mov rb,pattern 
  sleep 

 
4. Connect buttons (as shown in Figure 5-1) to Port B pins 0, 1, 2, and 3. Connect a 
piezoelectric speaker to port B pin 7. Construct a program that plays a different tone for 500 
ms each time you press a button. With more buttons, this could be the basis for a child’s 
organ or a musical annunciator. 
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Answers 
1. Here is the main code: 
 
start_point mov !rb,#$7F ; make speaker output 
  call beep 
     ; wait for input button 
bwait  jb rb.0,bwait 
   call  beep 
bwait1  jnb rb.0,bwait1 

; wait for bounce to complete 
  clr delay 
:dwait  djnz delay,:dwait 
  jmp bwait 
 
The delay allows time for the button to quit bouncing – the time is arbitrary and might require 
adjustment depending on the kind of switch you use.  
 
2. Here is an excerpt from the solution: 
 

org 8 
second  ds 2     ; counter for 1 second tone 
delay  ds 1 
delay1  ds 1 
presses ds 1 
 
 
  org 0 
start_point mov !rb,#$7F ; make speaker output 
  call beep 
  clr presses 
     ; wait for input button 
bwait  jb rb.0,bwait 
  call beep 
  inc presses 
  cje presses,#10,halt 
bwait1  jnb rb.0,bwait1 

; wait for bounce to complete 
  clr delay 
:dwait  djnz delay,:dwait 
  jmp bwait 
 
halt  sleep 
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Of course, it would be just as legitimate to store 10 in the presses variable and decrement it. 
This would be somewhat more efficient because you could test the zero flag after 
decrementing the variable, thus saving a step. 
 
3. The solution is to simply test for the bit 4 being clear: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 5.4 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 500000    ; 500 kHz 
 
  org 8 
pattern  ds 1 
 
  org 0 
 
start_point mov !rb,#0  ; make all of port b outputs 
     ; check for real reset 
  jnb status.4,agn 
  mov pattern,#$AA 
agn  xor pattern,#$FF 
  mov rb,pattern 
  sleep 
 
You could make an argument for setting pattern to $55 instead of $AA since the very next 
instruction will invert the bits, but either way the result is acceptable. 
 
4. There are several ways you could complete this exercise, depending on your personal 
preferences. The tricky part is realizing that since each tone takes a different amount of time, 
you have to adjust the number of cycles to get 500 ms. For example, a 1 kHz tone has 500 µs 
cycles, so you need 1000 cycles to get 500 ms. However, a 2 kHz tone has 250 µs cycles and 
therefore requires 2000 cycles to maintain the same duration. Here is one solution: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 5.5 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000    ; 50 MHz 
  org 8 
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second  ds 2  ; counter for 1 second tone 
delay  ds 1 
delay1  ds 1 
tone  ds 1     ; tone constant 
  org 0 
start_point mov     !rb,#$7F ; make speaker output 
; wait for input button 
bwait  jnb rb.0,bp0 
  jnb rb.1,bp1 
  jnb rb.2,bp2 
  jb rb.3,bwait 
; tone 3 
  mov  tone,#48 
  mov second,#$01 
  mov second+1,#$01 
 
bp  call beep 
  jmp bwait 
 
bp2  mov tone,#24 
  mov second,#$FD   
  mov second+1,#$01 
  jmp bp 
 
bp1  mov tone,#12 
  mov second,#$FA 
  mov second+1,#$03 
  jmp bp 
 
bp0  mov tone,#6 
  mov second,#$F4 
  mov second+1,#$07 
  jmp  bp 
 
; subroutine 
beep   
loop  not rb      ; toggle bits 
  mov delay1,tone 
oloop  clr delay 
wloop  djnz delay,wloop 
  djnz delay1,oloop 
  djnz second,loop 
  djnz second+1,loop 
  ret   ; go back to wherever 
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Unit 6: Low-Level Programming 
 
In the previous units you’ve written programs that do simple input and output. However, the 
SX has many powerful I/O features that you can use if you know how they work. Besides input 
and output capabilities, the SX has more program and data storage than previous programs 
have used. To access this extra memory, you’ll need to understand a special technique called 
banking. 

Port Control 
The SX has three I/O ports: ports A, B, and C. Port A only has 4 pins. Ports B and C have 8 
bits each. You can read and write the pins on a port by accessing the corresponding data 
register (ra, rb, or rc). You’ve also seen that you can change the direction of each bit by 
changing the control register for the port (!ra, !rb, or !rc). 
 
However, the control register gives you many options in addition to the pin direction. Using 
the control register you can set other options including the threshold voltage for each pin and 
if the pin uses a Schmitt trigger input or a normal logic-level input. You can also elect to turn 
on an optional pull up resistor on each pin. 
 
How can a single control register have this much capability? It can’t. The trick is that the 
control register has multiple personalities determined by the M or mode register. By default, 
the M register (a 4-bit register) contains $F, which makes the control registers direction 
registers. When you write a 0 to the control register, it makes the corresponding bit an output, 
and a 1 makes the bit an input. 
 
If you set the mode register to $E, for example, the control register selects which pins have 
pull up resistors connected internally. Each bit that is a zero will set a pull up resistor on. Pull 
up resistors prevent input pins from assuming random states if there is no external circuitry 
driving the pin. You can set pull up resistors on any of the three ports, by setting M to $E and 
then clearing the corresponding bit (or bits if you want to turn on more than one) in the !ra, 
!rb, or !rc registers. 
 
You can use the mov instruction to load the M register with the contents of another register 
or a literal. You can also use the mode instruction to load a literal into M.  Table 6-1 shows 
the effects of the control registers for different values of M (note that this table does not show 
settings that pertain to interrupts, a topic covered in the next unit). 
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Table 6-1: Mode Settings 
Mode !ra !rb !rc SX Name 
$F Direction Direction Direction TRIS_ 
$E Pull up Pull up Pull up PLP_ 
$D Threshold Threshold Threshold LVL_ 
$C N/A Schmitt Schmitt ST_  

 
If you set a threshold bit to 0, the SX will read the input through a CMOS-compatible buffer. 
This buffer will treat levels below 30% of the supply voltage (say 1.5 V if the supply is 5 V) as 
a 0. Anything above 70% of the supply voltage (3.5 V) will be a 1. Voltages in between will 
result in an unpredictable bit, although practical experience shows that the threshold is about 
50% of the supply voltage (but Ubicom does not specify this). 
 
When the threshold bit is 1, the input uses a TTL-compatible buffer. Using a TTL compatible 
buffer treats a 0 as .8 V or less and a 1 as anything over 2 V. For most modern logic circuits, 
this is acceptable, but interfacing with certain devices may require one setting or the other. 
Also, when mixing analog circuitry with the processor, you might want to adjust the thresholds 
to read a particular voltage level. 
 
Ports B and C can use a Schmitt trigger input if you set a zero into the Schmitt register. A 
Schmitt trigger uses different thresholds depending on the situation. Imagine you are trying to 
set the temperature of your swimming pool to a particular temperature (say 25 degrees 
Celsius). You turn on your water heater, and watch the thermometer. When the temperature 
gets to 25, you turn the heater off. However, the pool loses heat quickly so almost 
immediately, the temperature drops again and you turn on the heater again. Soon you are 
turning the heater on and off every few seconds, never able to attain 25 degrees for more 
than a split second. 
 
A Schmitt trigger uses hysteresis to battle this sort of problem. The idea is that the Schmitt 
trigger will use one threshold to recognize 0 to 1 transitions and another threshold to identify 
1 to 0 transitions. A Schmitt trigger might see a voltage rising from .8 to .9 V and output a 
logic 1 (5 V). However, it might require that the voltage drop below .5 V before returning to 
the zero state. This prevents a noisy or slow rising signal from causing multiple changes on the 
output. The SX’s Schmitt triggers use 15% and 85% of the supply voltage as trip points. Once 
the signal rises above 85% of the supply voltage (4.25 V for a 5 V supply), the input reads a 
1. It will continue to read a 1 until the input drops below 15% (.75 V).  
 
This can be important when dealing with inputs from real-world sensors, or noisy inputs from 
long lines. You can also use it to “square up” a signal – for example, reading a digital input 
from a charging capacitor. Of course, using the Schmitt trigger option overrides the threshold 
settings for the pin. 
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Be sure you know the state of the M register before you use the control registers. 
A common mistake is to set the M register to some value other than $F, use the 
control register, and then later try to access the control register to set direction 
bits. The M register stays at the last value you set until a reset occurs.. 

Analog Capabilities 
The SX has one more special capability on port B. Pin 1 and 2 of port B can function as an 
analog comparator.  You can read the comparator’s output in software and you can cause pin 
0 of port B to reflect the comparator’s output as well. 
 
To enable the comparator, you simply set the M register to 8 and write a value to !rb. A value 
of $C0 will turn the comparator function off. To turn it on, write either $40 or $00 to !rb. If 
you use $00, the comparator will operate, and pin 0 will act as a comparator output. If you 
use $40, pin 0 will be free for normal I/O, but the comparator will still function (you’ll have to 
read the result in software). 
 
To read the state of the comparator, make sure M contains 8 and write to the !rb register. 
When you write to the comparator register (that is, M is equal to 8 and you perform a mov to 
!rb) the SX does a little trick behind your back. Instead of simply moving the data to the 
comparator register, it actually exchanges the W register with the comparator register. This is 
true even if you write: 
 

mov !rb,#0 
 
Because this is really the same as writing: 
 
  mov W,#0 

mov !rb,W 
 
So after writing to the comparator register, the W register contains the previous contents. You 
should only examine bit 0, the comparator status bit, after you’ve already enabled the 
comparator with another instruction. If bit 0 is high, then the voltage on B2 is higher than the 
voltage on B1. If it is low, then the opposite condition is true. 
 
Why would you want a comparator input? Maybe you want the SX to compare the voltage 
from a potentiometer and a thermocouple. Perhaps you want to divide down your battery 
voltage and compare it to a known reference so you can detect when your battery is low. 
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Register Banking 
Earlier, you read that the SX has over 100 registers. That might seem odd, because the SX 
instruction set only has room for 5 bits of data to specify a register. So how can 5 bits refer to 
over 100 registers? The answer is banking. 
 
Your program does have access to 136 memory locations (not including the special registers 
like ind, fsr, ra, etc.). However, it can only work with 32 registers at one time. The first 8 
registers (register 0 to 7) are the special registers and you can always access them. The 
registers from 8 to 15 ($8 to $F) are also always accessible – the SX doesn’t use them for 
anything, so you can do what you want with them. This accounts for 16 registers. The other 
16 (registers $10-$1F) are available for you to use as you wish. However, there are really 8 
sets of these registers. Which set of 16 you are using depends on the FSR register. So 
referring to register $10 may access a different memory location depending on the contents of 
FSR. 
 
Conceptually, the SX memory map consists of 8 32-byte pages. That is, each page 
has 32 registers in it. However, the first 16 are always the same. The last 16 vary 
depending on the bank selected. Each register has its own address (although in the 
case of the shared registers, the actual reference is always between $10 and $1F). 
You can see this arrangement graphically in Table 6-2.  
 
When you want to access a register, you have several choices. First, if you are using FSR 
anyway, just put the proper address into FSR before using IND to access the data. So if you 
want to access the last memory location, load FSR with $FF. Your other option is to set the 
top 3 bits of FSR before you access memory. The values you want to use are in the column 
headings of  Table 6-2. You can store a value in FSR, of course, with a mov instruction. 
However, this destroys the entire register and it also requires two machine language 
instructions if you are using a literal value. Since most programs will want to load literals into 
FSR, there is a bank instruction. This instruction loads the top 3 bits of a literal into the top 3 
bits of FSR with a single instruction. This is useful because you can just name the variable you 
want to access. For example: 
 

org $FF 
last  ds 1 

org 0 
  bank last 
  mov last,#0 
 
Notice that although you specified $FF as the argument to bank, the actual instruction only 
uses the topmost three bits ($E). 
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Table 6-2: SX Memory Map 
 FSR=$00 FSR=$20 FSR=$40 FSR=$60 FSR=$80 FSR=$A0 FSR=$C0 FSR=$E0 
$00 IND IND IND IND IND IND IND IND 
$01 RTCC RTCC RTCC RTCC RTCC RTCC RTCC RTCC 
$02 PC PC PC PC PC PC PC PC 
$03 STATUS STATUS STATUS STATUS STATUS STATUS STATUS STATUS 
$04 FSR FSR FSR FSR FSR FSR FSR FSR 
$05 PORTA PORTA PORTA PORTA PORTA PORTA PORTA PORTA 
$06 PORTB PORTB PORTB PORTB PORTB PORTB PORTB PORTB 
$07 PORTC PORTC PORTC PORTC PORTC PORTC PORTC PORTC 
$08 
$09 
$0A 
$0B 
$0C 
$0D 
$0E 
$0F 

 
8 registers addressable as $08-$0F, $38-$3F, $58-$5F, $78-$7F, $98-$9F, $B8-$BF, $D8-$DF, or $F8-$FF 

$10 $10 $30 $50 $70 $90 $B0 $D0 $F0 
$11 $11 $31 $51 $71 $91 $B1 $D1 $F1 
$12 $12 $32 $52 $72 $92 $B2 $D2 $F2 
$13 $13 $33 $53 $73 $93 $B3 $D3 $F3 
$14 $14 $34 $54 $74 $94 $B4 $D4 $F4 
$15 $15 $35 $55 $75 $95 $B5 $D5 $F5 
$16 $16 $36 $56 $76 $96 $B6 $D6 $F6 
$17 $17 $37 $57 $77 $97 $B7 $D7 $F7 
$18 $18 $38 $58 $78 $98 $B8 $D8 $F8 
$19 $19 $39 $59 $79 $99 $B9 $D9 $F9 
$1A $1A $3A $5A $7A $9A $BA $DA $FA 
$1B $1B $3B $5B $7B $9B $BB $DB $FB 
$1C $1C $3C $5C $7C $9C $BC $DC $FC 
$1D $1D $3D $5D $7D $9D $BD $DD $FD 
$1E $1E $3E $5E $7E $9E $BE $DE $FE 
$1F $1F $3F $5F $7F $9F $BF $DF $FF 
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When debugging, the current bank of registers shows up in a bright highlight compared to the 
inaccessible banks in the debugging window. 
 
 

 

If you organize your registers based on your usage of them, you can name your 
banks meaningfully. Not only does this make your code more readable, but it will 
often reduce the amount of switching necessary, as well. For example, suppose 
you reserve one bank of variables (bank $20) for math calculations and another 
for external communications (bank $40). You can define two symbols, math and 
extcomm, so you can write: 
 
 bank     math  ; switch to math bank 
 

Program Pages 
Another place where the SX hides extra memory is in the program space. Although none of 
your programs have needed it so far, the SX has 4 pages of program memory, and each page 
contains 512 instructions (remember, instructions on the SX are not bytes). So you can use up 
to 2 K (2048) instructions. 
 
However, using more than 512 instructions requires careful planning. Every jump instruction 
(except jmp w, jmp pc+w, and ljmp) only take 9 bits for an address. The extra bits 
required come from the top 3 bits of the status register. Instead of manually setting these 
bits, however, you can force the assembler to do it for you. Just put an “@” character before 
the address, like this: 
 

JMP @FarAwayPlace 
 
This actually produces the following instructions: 
 
  PAGE FarAwayPlace 
  JMP FarAwayPlace 
 
The page instruction sets the status register bits to match the target address. Since using the 
@ sign requires extra space, you should only use it in cases where the target address resides 
in a different page. 
 
To complicate things, calling a subroutine across page boundaries is even more difficult. The 
call instruction only takes 8 bits of address. The ninth bit is set to 0, and the remaining bits 
come from the status register just as with jmp. That means that a subroutine call can only 
occur to the first 256 instructions of a page. 
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This seems like a harsh restriction, but in reality, it is easy to overcome. If you can’t organize 
your subroutines so that they are all in the first half of a page, just place a jmp to the 
subroutine (a single instruction) in the bottom half of the page, and call that instead. Don’t 
forget that data tables (like the ones in Unit 5) are really subroutines so they have the same 
limitation – the jmp instruction that starts the table must be in the first half of the page so 
that other parts of the program can call into the table. 
 
It is worth noting that the program counter is 11 bits long, but the pc register contains only 
the bottom 8 bits. There is no way to directly read the top 3 bits. The only access you have to 
these bits is when they are loaded from the top 2 or 3 bits of the status register. 
 
When you call a subroutine in a different page, you need the processor to restore the full 11-
bit address to the program counter. It is also handy to have it set the status register to the 
caller’s page so that it can make more subroutine calls on its own page. That is the purpose of 
the retp instruction. It not only restores the full address so that the caller can continue 
executing, but it also sets the top 3 bits of the return address into the top 3 bits of the status 
register. 
 

 

The ret instruction and the retp instruction take the same amount of space and 
execute at the same speed. If there is any chance you might call a subroutine 
from across page boundaries, use retp. The only exception would be if you 
wanted the subroutine to deliberately modify the top bits of status. 

Reading Program Storage 
In the previous unit you saw how to use retw to form tables in program memory. There is 
another way you can access program memory – the iread instruction. This instruction takes 4 
cycles (unusual for an instruction that doesn’t jump or skip). It takes the M register and the W 
register as an 11-bit address, reads the 12-bit word at that address, and loads it into the M 
and W registers. 
 
How do you get arbitrary data into the program memory? Use DW as in: 
 

org 0 
start_point mov  m,#SomeData>>8  ; top part of address 
  mov  w,#SomeData&$FF ; bottom part of address 
  iread 
  nop 
  nop 
  break 
  nop 
  sleep 
 
SomeData dw  $1A5 
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If you debug this program, the W register will contain $A5 and the M register will contain $1 
at the breakpoint. 
 

 

Be careful if you access the port control registers after executing iread since the 
M register will not contain what you expect and that alters the control register’s 
function. 
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Summary 
The techniques in this unit are not that useful for the simple programs you’ve written up to 
this point. But in real life, 24 bytes of data storage and 512 instructions only go so far. The 
key to success with large programs is to carefully plan and organize. If you can keep related 
variables in the same bank, you’ll be much happier. Variables that you use in many parts of 
your program should be below $10  (the shared area). Of course, with only 8 bytes shared 
between banks, you have to be very frugal. 
 
Organization for code is important too. Related routines on the same page do not need long 
jumps. You also need to be mindful of placing subroutines in the second half of any bank, 
since you won’t be able to call them there. 
 
If it seems odd that the SX has all these odd ways to access memory, remember that it is all in 
the name of compatibility. The SX is backward compatible with other processors that do not 
have so much memory. The price of having extra resources is extra complexity. 

Exercises 
 
1. Write a program to clear all 8 register banks. Be careful not to clear the first 8 registers 
(which are the special function registers like pc and ind). Also, don’t clear the shared bank 
more than once. Can you make the clear loop a subroutine? 
 
2. Use org $200 to place the clearing subroutine in the above program in the first program 
bank. Single step through the execution. 
 
3. Write a program to convert Celsius temperature to Fahrenheit, using a lookup table 
accessed with iread. Assume the input ranges from 0 to 29 degrees. The formula for 
conversion, by the way, is F=1.8C+32. 
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Answers 
1. Here is one possible solution: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 6.1 
;======================================================================= 
  device  sx28l,oschs3 
  device  turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000    ; 50 Mhz 
 
  org 0 
start_point mov fsr,#8      ; shared bank 
  call clear 
  mov fsr,#$10 
zloop  call clear 
  add fsr,#$11 
  jnc zloop 
  nop 
  break 
  nop 
  sleep 
 
; subroutine clears from FSR until FSR AND $F is 0 
 
clear  clr ind 
  inc fsr 
  mov w,#$F 
  and w,fsr 
  jnz clear 
  dec fsr     ; back up 
  ret 

 
2. Moving the subroutine requires you to: 1) place org $200 in front of the clear routine; 2) 
change each call to clear with one to @clear; and 3) change the ret instruction to a retp. 
Try performing each of these steps in sequence and debugging the code before making the 
next change. 
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3. Here is a simple implementation: 
 
  org 8 
tempm  ds 1      ; place to hold M 
value  ds 1      ; value to convert 
 
 
  org 0 
start_point mov value,#11   ; 11 degrees C 
  call @convert 
  nop 
  break 
  nop 
  sleep 
convert mov    tempm,m 
  mov    m,#table>>8 
  mov    w,#table & $FF 
  add    w,value 
  iread 
  ; don't need M 
  mov    value,w 
  mov    m,tempm  ; restore M 
  ret 
 
table  dw 32,34,36,37,39,41 ; 0-5 
  dw 43,45,46,48,50      ; 6-10 
  dw 52,54,55,57,59     ; 11-15 
  dw 61,63,64,66,68      ; 16-20 
  dw 70,72,73,75,77      ; 21-25 
  dw 79,81,82,84  ; 26-29 
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Unit 7: Interrupts 
 
One of the great strengths of modern computers is that they can do more than one thing at a 
time, right? With a Windows PC, you can surf the Web, work on an e-mail, and touch up a 
photo from your digital camera, all at the same time. This sounds great except for one thing: 
most computers (including your Windows PC) only do one thing at a time. 
 
How is this possible? While it is true that most computers can only do one thing at a time, they 
can do one thing very rapidly. Modern operating systems allocate small chunks of time to each 
active task. In this way, each task appears to run at the same time. Also, modern computers 
can respond to external events – for example, a keystroke or a mouse movement. This also 
helps with the illusion that the computer is performing many tasks since the computer can 
handle events as they occur instead of waiting for them. 
 
To get this sort of capability, a computer needs a way to track time and it also needs a way to 
stop what it is doing in favor of another task. The SX has two features that work together in 
this area: the real time clock counter (RTCC register) and interrupts. The RTCC register does 
just what its name implies: it increments on a precise predetermined interval regardless of 
what else the processor is doing. It can also increment in response to an external pulse input. 
Interrupts allow an external event or a time period to trigger a piece of your program. 
Whatever the SX was doing before the event is put on hold until the event code (an interrupt 
service routine or isr) completes. 
 
In assembly language programming, interrupts have a reputation as being difficult to use. It is 
true that interrupts require careful planning. However, the SX has several features that make 
dealing with interrupts less troublesome than with many other similar processors. 
 
What constitutes an event? One common event is when the RTCC register rolls over (that is, 
changes from $FF to $00). You can also configure interrupts to occur on rising or falling edges 
on any (or all) port B pins. To use interrupts, you must configure them first – by default no 
interrupts occur. 

The Real Time Clock Counter 
One of the most common sources of interrupts is when the RTCC register’s value changes 
from $FF to $00. This indicates that 256 time periods have elapsed or 256 external events 
occurred. Using this interrupt, you can receive interrupts at a regular time interval which is 
useful for keeping time, measuring pulse widths, generating pulses, and other time-sensitive 
operations. 
 
What causes the RTCC register to increment depends on bit 5 of the !option register (RTS). 
If this bit is 0, the counter increases with each instruction cycle. If the bit is 1, then RTCC 
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increments each time it detects a pulse on the RTCC pin. By using the RTE bit (bit 4 of 
!option) you can determine if the counter responds to rising edges (0) or falling edges (1). 
 
By default, the RTCC register increments on each instruction cycle or external event. At 50 
MHz, then, the RTCC requires 20 ns * 256 = 5.12 µs to roll over when counting instruction 
cycles. This time is too short for most purposes (as you’ll see shortly), so you’ll often want to 
divide the clock cycle by some factor. You can do this by assigning the prescaler to RTCC. 
This is the same prescaler the watchdog timer uses, so you have to assign it to one use or the 
other. You can’t scale the RTCC count and the watchdog timer at the same time. 
 
To assign the prescaler to RTCC, clear bit 3 of the !option register (PSA). The last 3 bits in 
the !option register determine the division rate (see Table 7-1). The maximum ratio is 1:256 
which at 50 MHz works out to 1.3 ms (.0013 s). Of course, if you are using a different clock 
frequency all of these times will be different as well. Obviously, if you are using an external 
source to drive the RTCC pin, the time between rollovers depends on the external source. 
 

 

Notice that Table 7-1 does not contain a 1:1 setting. That is because a 1:1 setting 
is what you get when the prescaler is working for the watchdog timer. 

 
Table 7-1: Prescaler Settings 

PS2 PS1 PS0 Ratio Roll overTime at 50 MHz 
0 0 0 1:2 10.24 µs 
0 0 1 1:4 20.48 µs 
0 1 0 1:8 40.96 µs 
0 1 1 1:16 81.92 µs 
1 0 0 1:32 163.84 µs 
1 0 1 1:64 327.67 µs 
1 1 0 1:128 655.35 µs 
1 1 1 1:256 1310.72 µs (1.31 ms)  
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RTCC Delays 
Even without interrupts, the RTCC register can be useful. In previous units, programs used a 
programmed delay to pause for a particular interval. If the RTCC is incrementing with the 
instruction clock, you can use it to time your delays easily. Take a look at this subroutine: 
 
; assume prescaler is 1:256 
delay1_3ms mov rtcc,#1 
 
; testing for zero is ok because the 256 prescaler is on 
:wait  mov w,rtcc 
  jnz :wait 
  ret 
 
The subroutine sets rtcc to 1 (which also, incidentally, clears the prescaler). It then waits for 
rtcc to equal zero. This will require 255 counts and each count requires 256 instruction cycles. 
Therefore, at 50 MHz, the total delay is 256*255*20 ns = 1.3 ms. 
 
Don’t forget that writing to rtcc clears the prescaler. This can lead to subtle side effects. For 
example, you might be tempted to use the test instruction to test the prescaler for a zero 
value. This won’t work because using test is the same as moving a register into itself. While 
this does test for zero, it also clears the prescaler so that the rtcc register never increments. 
 
Another pitfall is testing for equality. If the prescaler is not set, rtcc increments on each 
instruction cycle. Then it would be dangerous to test for a single value of the prescaler. Why? 
Because rtcc might assume that value while you are executing another instruction. For 
example, suppose the subroutine above loads w with $FF at the :wait label. With prescaling 
off, the next time through the loop the counter will be 3 – it was zero during the jnz 
instruction! 

RTCC Interrupts 
To enable RTCC rollover interrupts, clear the RTI bit (bit 6) in the !option register. Once this 
bit is clear, the processor will stop whatever it is doing when RTCC rolls over and execute the 
code starting at location 0. Of course, up until now, your program started at location 0, but 
that is only because the reset directive pointed there. You can start your program further up 
in memory to allow for interrupt processing. 
 
When an interrupt occurs, the SX disables further interrupts. It also saves status, fsr, and w. 
The SX then clears the top 3 bits of the status register (these bits form the top portion of 
jump addresses) and jumps to address 0. All of this work is necessary so that the interrupt 
service routine (ISR) does not interfere with the execution of the main program. Once the ISR 
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is finished, it uses the reti instruction to restore control to the main program. This also 
enables future interrupts. 
 

 

Unlike many other processors, the SX automatically stores its context (the w, fsr, 
and status registers) in special temporary areas, not the stack. However, the 
chip does not service interrupts if they occur while still processing a previous 
interrupt. 

 
Perhaps the simplest way to use the rtcc interrupt is to simulate a wider real time clock. 
Remember that even with the maximum prescaling in effect, rtcc rolls over every 1.3 ms or so 
(at 50 MHz). What if you wanted to delay 100 ms? Sure you could call the 1.3 ms delay nearly 
100 times. But if you had a 16-bit rtcc register you could simply wait for the count to exceed 
19531 (each count is worth about 5 µs when the prescaler is at 1:256). 
 
Here is a simple 100 ms LED flasher based on these ideas: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 7.1 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000 ; 50 MHz 
  org 8 
rtcc1  ds 1 
 
  org 0 
isr  inc rtcc1  ; interrupt handler 
  reti 
 
start_point 
  mov    !rb,#$80     ; 7 outputs, 1 input 
 
; set RTCC to internal clock 1:256 ratio 
  mov !option,#$87 
loop  xor rb,#$FF 
  call delay100ms 
  jmp loop 
 
 
delay100ms clr rtcc 
  clr rtcc1 
:wait  mov w,#$4c    ; $4c4b is 19531 
  mov w,rtcc1-w 
  jnz :wait 
:wait0 mov  w,#$4b 
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  mov w,rtcc-w 
  jnz :wait0 
  ret 

 

Periodic Interrupts 
In the previous examples, the main program blinks an LED and controls the delay between 
flashes of the lamp. However, the real power to interrupts is allowing the ISR to perform a 
task, seemingly while the main routine is executing. Look at this program: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 7.2 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000     ; 50 MHz 
  org 8 
rtcc1  ds 1 
 
  org 0 
isr  inc rtcc1 
  cjne rtcc1,#$4D,iout ; blink every $4D00 periods 
  xor  rb,#$FF 
; reset time 
  clr rtcc  
  clr rtcc1 
iout 
  reti 
 
start_point 
  mov    !rb,#$80      ; 7 outputs 
 
; set RTCC to internal clock 1:256 ratio 
  mov !option,#$87 
loop 
  jmp loop 
 
The main program sets !rb, !option, and then does a simple jmp instruction to loop forever 
doing nothing. All the work occurs in the ISR. It is interesting to note that the ISR resets the 
rtcc register so that the interrupt will occur periodically. This isn’t unusual when you want the 
interrupt to repeat at a regular interval.  
 
There is one problem with this, however. A complex ISR may take a different amount of time 
to execute depending on the current situation. This can lead to timing errors intolerable in 
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precise applications. For example, in the above piece of code, the reti instruction adds a slight 
delay to the total time although for this application it is negligible. 
 
A better answer is to use the retiw instruction to end the ISR – especially if the prescaler is 
off. This instruction adds the w register’s contents to rtcc. Say the processor is set so that 
rtcc will cause an interrupt when it rolls over and that the prescaler is assigned to the 
watchdog timer. Each count of the rtcc represents 20 ns (assuming, as always, a 50 MHz 
clock). When the interrupt begins the rtcc has already counted to 3. As the ISR continues, the 
rtcc continues to increase. To accurately set the time, you have to take into consideration 
how much time has already elapsed. Luckily, there is a simple answer – the rtcc register 
already has this information! If you subtract the number of cycles you want between each 
interrupt from the number of cycles already elapsed, you are left with the exact number of 
cycles required. 
 
For example, say you want an interrupt to occur every 50 cycles (1 µs). You can simply use 
the following two lines of code at the end of your ISR: 
 

mov w,#-50 
  retiw 
 
The only catch is that your ISR, including the 3 cycle interrupt latency, must not exceed 46 
cycles. If it does, you’ll either miss the next interrupt, or you will return to the main program 
only to have an interrupt occur immediately. Because of the interrupt latency you must always 
allow 3 cycles plus at least enough time for one instruction to execute in the main program – 
figure a total of 6 cycles. However, even then your main program will not execute very often – 
you should allow a more generous time slice between interrupts in most cases. 

A Clock Example 
A computer that knows what time it is can be very useful. You might want to count down a 
model rocket launch, or time stamp readings from a sensor. With an accurate interrupt it is 
easy to keep the time. The hard part is translating the rapid stream of interrupts into numbers 
more meaningful to humans. Here is a simple program that uses a 50 MHz clock to the rtcc 
register. The ISR adds –50 to rtcc so that it generates a periodic interrupt every 1µs. The ISR 
maintains two 16-bit counters to count microseconds and milliseconds. 
 
Of course, every 1000 milliseconds constitutes a second, every 60 seconds is a minute, and 60 
minutes make an hour. You could easily extend this to track days if you wanted to do so. The 
main program in this case doesn’t do anything, but you could easily add whatever code you 
wanted. 
 
This is a hard program to debug because single stepping it doesn’t show the correct time. You 
can run the program at full speed in the debugger and press the Poll button to see the time 



 Unit 7: Interrupts 

 Beginning Assembly Language for the SX Microcontroller • Page 95 

change. You’ll also see LEDs on port B blink and, if you connect a piezo speaker to one of the 
port B pins, you’ll hear your SX clock ticking. 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 7.3 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000  ; 50 MHz 
  org 8 
microlow ds 1 
microhi  ds 1 
millilow ds 1 
millihi  ds 1 
seconds  ds 1 
minutes  ds 1 
hours  ds 1 
  watch hours,8,udec 
  watch minutes,8,udec 
  watch seconds,8,udec 
 
  org 0 
isr  inc microlow 
  snz 
  inc microhi 
  cjne microhi,#$03,iout ; blink every $03e8 periods 
  cjne microlow,#$e8,iout 
; 1000 uS already! 
  clr microlow 
  clr microhi 
  inc millilow 
  snz 
  inc millihi 
  cjne millihi,#$03,iout 
  cjne millilow,#$e8,iout 
; 1000 ms! 
  clr millihi 
  clr millilow 
  xor  rb,#$FF    ; toggle LEDs 
  inc seconds 
  cjne seconds,#60,iout 
; seconds roll over 
  clr seconds 
  inc minutes 
  cjne minutes,#60,iout 
; minutes roll over 
  clr minutes 
  inc hours 



Unit 7: Interrupts 
 

Page 96 • Beginning Assembly Language for the SX Microcontroller 

  cjne hours,#24,iout 
; hour roll over 
  clr hours 
; could track days if we wanted to 
   
; reset time 
iout 
  mov w,#-50     ; interrupt every 1uS 
  retiw 
 
start_point 
  mov    !rb,#$00      ; all outputs 
  clr microhi 
  clr microlow 
  clr seconds 
  clr hours 
  clr minutes 
; set RTCC to internal clock 1:1 ratio 
  mov !option,#$88    ; no prescale 
loop 
  jmp loop 

External Interrupts via RTCC 
When you think of using the RTCC pin to monitor external events, you usually think of 
counting pulses. You can certainly do this, of course. When you set bit 4 of !option (the RTS 
bit), the pin monitors pulses and uses them to increment RTCC. If the RTE bit (bit 4 of 
!option) is clear, the count occurs on rising edges, otherwise the SX detects falling edges. 
The prescaler is still available, so you can divide the input down if you like. 
 
However, what if you want a single external interrupt? At first glance, it would seem that you 
can’t do this with RTCC. After all, even with the prescaler assigned to the watchdog timer, you 
still need 256 pulses to get a single interrupt, right? 
 
While that seems true, there is a trick you can use to make RTCC simulate an external 
interrupt. Simply load the RTCC register with $FF. Assuming the prescaler is off and the RTS 
bit is set, the next input pulse will cause an interrupt. A simple but effective technique. Of 
course, the ISR will then need to reset RTCC to $FF before issuing a reti instruction so the 
interrupt will be ”armed” for the next event. 

Port B Multi Input Wakeup 
In addition to the RTCC trick, you can configure any (or all) of port B’s pins as external 
interrupts. Port B has two special registers that allow it to detect input edges. These register 
work at all times, not just when interrupts are enabled. That means you can detect input 
edges with or without using interrupts. 
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Like other special port registers, you access these by using !rb while the M register is set to a 
special value. If M is $A, you can select which edge each pin monitors. A 1 bit in this register 
makes the SX detect falling edges (that is, 1 to 0 transitions) on the corresponding pin. A 0 bit 
detects 0 to 1 transitions or rising edges. When the selected edge appears on a pin, the SX 
sets the corresponding bit in the multi-input wake up (MIWU) pending register (!rb with M = 
$9). The SX never clears this register. When your program writes the W register into !rb and 
M is $9, the SX actually swaps the two values. So you can read the pending bits and clear 
them at the same time. 
 
This processing occurs at all times. Most programs just ignore this feature. However, you can 
use it to detect when an edge occurred even when you aren’t using the port B interrupts. If 
you connect the circuit in Figure 7-1 to several port B pins, you can try this program: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 7.4 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000     ; 50 MHz 
  org 8 
microlow ds 1 
microhi  ds 1 
millilow ds 1 
millihi  ds 1 
seconds  ds 1 
minutes  ds 1 
hours  ds 1 
edges  ds 1 
 
  watch hours,8,udec 
  watch minutes,8,udec 
  watch seconds,8,udec 
 
  org 0 
isr  inc microlow 
  snz 
  inc microhi 
  cjne microhi,#$03,iout   ; blink every $03e8 periods 
  cjne microlow,#$e8,iout 
; 1000 uS already! 
  clr microlow 
  clr microhi 
  inc millilow 
  snz 
  inc millihi 
  cjne millihi,#$03,iout 
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  cjne millilow,#$e8,iout 
; 1000 ms! 
  clr millihi 
  clr millilow 
  inc seconds 
  cjne seconds,#60,iout 
; seconds roll over 
  clr seconds 
  inc minutes 
  cjne minutes,#60,iout 
; minutes roll over 
  clr minutes 
  inc hours 
  cjne hours,#24,iout 
; hour roll over 
  clr hours 
; could track days if we wanted to 
   
; reset time 
iout 
  mov w,#-50     ; interrupt every 1uS 
  retiw 
 
start_point 
  mov     !rb,#$FF     
areset  clr microhi 
  clr microlow 
  clr seconds 
  clr hours 
  clr minutes 
; set RTCC to internal clock 1:1 ratio 
  mov !option,#$88    ; no prescale 
 
; Turn on port B pull up resistors 
  mode    $E 
  mov !rb,#$00 
; set port B pin 0 to interrupt on falling edge 
  mode $A     ; select edge 
  mov !rb,#$FF 
  mode $9     ; enable interrupts 
  mov !rb,#%0    ; clear pending 
; wait for 10 seconds 
wait10  cjne seconds,#10,wait10 
  mov !rb,#%0    ; read pending and clear 
  mov edges,w 
; important: reset mode register 
  mode $F 
  mov !rb,#0     ; set to outputs 
; flip sense of edge bits 
  not edges 
  mov rb,edges 
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loop 
; active wait so ticking will occur 
  jmp loop 
 
This is more or less the same program as before, but it doesn’t produce the blinking lights and 
ticking effect. Instead, it waits 10 seconds (easy to do with the clock interrupt routine) and 
then turns on lights that correspond to the buttons you pushed during that 10 seconds. This is 
trivially easy using the MIWU feature. Since the LEDs turn on when the port outputs a 0, the 
program uses the not instruction to invert the pending bits. 
 

 

This program initially sets the direction register so that all port B pins are inputs. 
Then, after the pause, it sets all pins to outputs. An easy mistake to make here is 
to forget to set the M register back to $F before switching to outputs. The edge 
detection code changes the M register, and you must change it back to $F before 
accessing the direction register. 

 

 
 

Figure 7-1: Switch/LED Circuit 

Port B Interrupts 
When the SX detects an edge, it can also generate an interrupt. You can select this behavior 
by clearing bits in the !rb register while M is equal to $B. When the SX detects an edge on the 
corresponding pin, it will generate an interrupt. It is up to the ISR to examine the pending 
register and clear it for further interrupts. This interrupt is exactly like an rtcc interrupt – it 
saves the SX context and starts at location 0. 
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It is possible to use port B interrupts and rtcc interrupts at the same time, but it can be tricky. 
For example, if a pulse occurs while the ISR executes, the SX will not generate interrupts after 
the ISR returns until a new event occurs. By the same token, if rtcc rolls over while the SX is 
processing a port B interrupt, you will miss the rtcc interrupt. In some cases, timing is not 
that critical, so losing a microsecond or two isn’t that important. However, if you require solid 
time accuracy you should consider only dealing with one interrupt source (port B or rtcc) in 
one program.  
 

 

If you need a real-time clock and edge detection, think about using the rtcc 
interrupt at a fast rate and simply examine the pending bits on each timer tick 
(this is often known as polling). For many applications, scanning the inputs 
quickly is good enough and this does not interfere with accurate timing of the 
rtcc interrupt. 

 
It is also possible to use the port B interrupt to wake up after a sleep instruction. If a port B 
interrupt occurs after a sleep instruction, an interrupt does not occur. Instead, the processor 
resets with bit 3 of the status register clear and bit 4 set. Although port B interrupts will 
interrupt the SX’s sleep, an rtcc interrupt will not. This is often used to put the processor to 
sleep (which conserves power) until a key is pressed, for example.  
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Summary 
Interrupts need not be difficult to use. This is especially true of the SX because the chip takes 
care of many details for you. Interrupts are essential when you need to process inputs while 
doing something else, keep track of time, or generate precise outputs while doing other tasks. 
 
Interrupts, coupled with the SX’s high speed, form the basis for the virtual peripheral strategy 
discussed in the next unit. Although interrupt handling requires a bit of careful design, and can 
be difficult to debug, they are well worth the price. 

Exercises 
1. Write a program that uses a timer interrupt to track (at least) seconds. Normally, the 
program does nothing. However, when you press a button connected to pin 0 of port B, the 
program should flash an LED (or click a piezo speaker) every second until you push the button 
again. Pushing the button a third time should resume LED flashing and so on. Use the rtcc 
interrupt for timing and poll the switch in the main program. 
 
2. Modify the above program so that the ISR samples the input switch using the MIWU 
capability but do not use the port B interrupts. 
 
3. Modify the program again so that you use both interrupts; the rtcc and the port B interrupt. 
4. Which of the three programs do you think uses the best approach? 
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Answers 
1. The solution is straightforward. Notice you can’t use the sleep instruction or else the 
program will just halt. 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 7.5 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000     ; 50 MHz 
  org 8 
microlow ds 1 
microhi  ds 1 
millilow ds 1 
millihi  ds 1 
seconds  ds 1 
ticker  ds 1 
tmp  ds 1 
 
 
  org 0 
isr  inc microlow 
  snz 
  inc microhi 
  cjne microhi,#$03,iout   ; blink every $03e8 periods 
  cjne microlow,#$e8,iout 
; 1000 uS already! 
  clr microlow 
  clr microhi 
  inc millilow 
  snz 
  inc millihi 
  cjne millihi,#$03,iout 
  cjne millilow,#$e8,iout 
; 1000 ms! 
  clr millihi 
  clr millilow 
  test ticker 
  jz notick 
  xor  rb,#$FF    ; toggle LEDs 
notick  inc seconds 
iout 
  mov w,#-50     ; interrupt every 1uS 
  retiw 
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start_point 
  mov    !rb,#$01      ; 7 outputs, 1 in 
areset  clr microhi 
  clr microlow 
  clr seconds 
  clr ticker 
; set RTCC to internal clock 1:1 ratio 
  mov !option,#$88    ; no prescale 
 
loop 
; active wait so ticking will occur 
  jb rb.0,loop 
; button pushed 
  not ticker 
; debounce delay (about 1 second) 
milloop0 test millihi     ; wait for millhi to go to 0 
  jnz milloop0 
milloop1 test millihi 
  jz milloop1    ; wait for nonzero 
milloop test  millihi 
  jz milloop     ; wait for zero again 
  jmp loop 
 
2. Compared to the last program, this one has a similar ISR, but a very different main program 
(all the work is in the ISR).  Notice that the ISR changes the M register, so it has to save and 
restore it to ensure the main program’s M register does not change (of course, in this case, 
the main program doesn’t care, but that will not usually be the case). To protect against 
bounce, the code examines the edge pending register every 1 ms. 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 7.6 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000     ; 50 MHz 
  org 8 
microlow ds 1 
microhi  ds 1 
millilow ds 1 
millihi  ds 1 
seconds  ds 1 
ticker  ds 1 
tmp  ds 1 
 
 
  org 0 
isr 
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  inc microlow 
  snz 
  inc microhi 
  cjne microhi,#$03,iout   ; blink every $03e8 periods 
  cjne microlow,#$e8,iout 
; 1000 uS already! 
  clr microlow 
  clr microhi 
 
; check for key every 1ms 
  mov tmp,M     ; save M register 
  mode $9 
  clr w 
  mov !rb,w   ; exchange w and pending 
  and w,#1   ; test low bit 
  sz   
  not ticker   ; invert ticker 
  mov M,tmp     ; restore M 
 
; roll millisecond 
 
  inc millilow 
  snz 
  inc millihi 
  cjne millihi,#$03,iout 
  cjne millilow,#$e8,iout 
; 1000 ms! 
  clr millihi 
  clr millilow 
  test ticker 
  jz notick 
  xor  rb,#$FF    ; toggle LEDs 
notick  inc seconds 
iout 
  mov w,#-50     ; interrupt every 1uS 
  retiw 
 
start_point 
  mov    !rb,#$01      ; 7 outputs 
areset  clr microhi 
  clr microlow 
  clr seconds 
  clr ticker 
; set RTCC to internal clock 1:1 ratio 
  mov !option,#$88    ; no prescale 
; set port B detect falling edge 
  mode $A     ; select edge 
  mov !rb,#$FF 
 
loop 
  jmp loop 
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3. This version is perhaps the least satisfactory of the three. It requires switches that don’t 
bounce much since it is difficult to filter multiple interrupts caused by bouncing. Also, if an 
rtcc event occurs during processing for a switch closure, the time becomes inaccurate. 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 7.7 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000     ; 50 MHz 
  org 8 
microlow ds 1 
microhi  ds 1 
millilow ds 1 
millihi  ds 1 
seconds  ds 1 
ticker  ds 1 
tmp  ds 1 
 
 
  org 0 
isr 
; check for pending key 
  mov tmp,M     ; save M register 
  mode $9 
  clr w 
  mov !rb,w   ; exchange w and pending 
  and w,#1   ; test low bit 
  jz rtccisr 
  not ticker   ; invert ticker 
  mov M,tmp     ; restore M 
iret 
 
rtccisr 
  mov M,tmp 
  inc microlow 
  snz 
  inc microhi 
  cjne microhi,#$03,iout   ; blink every $03e8 periods 
  cjne microlow,#$e8,iout 
; 1000 uS already! 
  clr microlow 
  clr microhi 
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; roll millisecond 
 
  inc millilow 
  snz 
  inc millihi 
  cjne millihi,#$03,iout 
  cjne millilow,#$e8,iout 
; 1000 ms! 
  clr millihi 
  clr millilow 
  test ticker 
  jz notick 
  xor  rb,#$FF    ; toggle LEDs 
notick  inc seconds 
iout 
  mov w,#-50    ; interrupt every 1uS 
  retiw 
start_point 
  mov    !rb,#$01     ; 7 outputs 
areset  clr microhi 
  clr microlow 
  clr seconds 
  clr ticker 
; set RTCC to internal clock 1:1 ratio 
  mov !option,#$88    ; no prescale 
; set port B detect falling edge 
  mode $A     ; select edge 
  mov !rb,#$FF 
  mode $B     ; enable interrupt on pin 0 
  mov !rb,#$FE 
 
loop 
  jmp loop 

 
4. It is fairly clear that program #3 would require a great deal of work to make it robust. 
Mixing two interrupt sources is a risky business. Of the other two techniques, it boils down to 
personal taste. The code in #1 has more portions of the program in the main loop where they 
will be easier to debug. However, #2 is quite clean and keeps the processing out of the way of 
the main program (presumably, you’d be doing something in the main program). 
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Unit 8: Virtual Peripherals 
 
Most (if not all) microcontrollers are valuable because they communicate with the outside 
world in some way. As a result, system designers spend a lot of time interfacing 
microcontrollers to the outside world. With old-fashioned processors, everything required 
additional electronic components. Want to read a voltage? Get an A/D (analog to digital) chip. 
What to talk to a PC? Get a UART (Universal Asynchronous Receiver and Transmitter) chip. 
 
In recent years, microcontroller manufacturers have been integrating common peripheral chips 
directly into the microcontroller. This allows for simpler system design and conserves the 
controller’s I/O capacity. The only problem is, no microcontroller can have every possible 
peripheral. For one project you might need a UART. The next project might require two A/D 
inputs. Still another project might require a single A/D but two UARTs. Obviously, no matter 
how clever the microcontroller designers are, you will never be able to have all peripherals 
built into the microcontroller. 
 
Another problem with this approach is that you have to have different microcontrollers for 
different tasks. You can’t take a microcontroller with a built-in A/D and use it in place of one 
that has a UART. This makes it complicated to control your inventory of microcontrollers. 
Ideally, you’d like to use the same part in all of your designs. At the least, you want the fewest 
number of different parts possible. 
 
The SX address this problem via Virtual Peripherals or VPs. VPs take advantage of the SX’s raw 
speed and interrupt capability to simulate traditional peripheral devices in software instead of 
hardware. This has many advantages: 
 

• Use one part for all designs 
• Add whatever devices you need for a particular project 
• Modify devices to meet your needs – not usually possible in hardware 

 
A VP is simply a code module (usually an interrupt service routine or ISR) that simulates an 
I/O device. You can download many VPs from the Parallax Web site. Other VPs may be 
available (for free or for a fee) from third parties. You can even write your own VPs for use in 
later projects or to sell to other programmers. Some VPs do require a few external 
components (usually a few resistors or capacitors). Others work completely in software. 

Using a Virtual Peripheral 
When you begin designing a project around the SX, you should first see if there are any 
standard VPs that would be of use to you. Here are a few of the more useful VPs that exist: 
 

• DTMF Generation – Generates TouchTones 
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• FSK Detection – Receives frequency shift keying data 
• FSK Generation – Generates frequency shift keying 
• I2C – Interface with IIC-bus chips (one VP for slave, another for master) 
• SPI – Interface with SPI-bus chips (one VP for slave, another for master) 
• UART – Serial I/O (up to 230.4 Kbaud) 
• Multi UART – 8 serial ports each running at 19.2 Kbaud 
• LCD – Drives a standard Hitachi LCD module (one VP for 4 bit, another for 8 bit) 
• LED – Drives seven segment LEDs 
• PWM – A variety of VPs allow you to generate pulse width modulation, useful for 

generating voltages, controlling motor speeds and similar tasks 
• ADC – You can actually use a few common parts to make an ADC almost completely 

in software 
• Stepper Motor – Control stepper motors 
• Timers – Common VPs can implement timers and real-time clocks 
• Input – VPs exist that can debounce buttons and scan keypads 

 

 
Be sure to check out the latest list on the Parallax Web site. 

 
Once you select a VP, you need to integrate it into your program. You might be tempted to 
use more than one VP. You can do this (see below), but for now just pick one. As an example, 
suppose you wanted to build a circuit that would dial the Parallax telephone number using 
TouchTones over a piezo speaker connected to Port C pin 6. 
 
If you look on the Parallax Web site, you’ll see that there is a document file that describes the 
DTMF generation VP and source code to an example program. One problem is that the 
example program invariably does things you’d rather not do, so you have to cut and paste the 
pieces you want into your program. 
 
The example program reads data from an RS-232 port and dials the number as instructed. For 
this example, you don’t need the serial I/O VP. However, a quick examination of the example’s 
ISR shows that it also contains PWM and timer VPs. Detailed examination reveals that both are 
necessary for the DTMF VP. 
 
In addition to the ISR, you also have to get the variables that the routines use and several 
subroutines that help you access the VP’s functions. The VP may also require specific 
initialization of port control registers, the !option register, or internal variables.  In the end 
you may have to resort to a bit of trial and error unless you are prepared to fully comprehend 
what the program is doing. 
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Once you think you have everything you need, you might want to use the Run | Assemble 
command to see if you get any assembly errors. If you don’t, then you probably have 
everything you need (although you may have extra things too if you are not careful). 
 
Often, the VP does not use the same port assignments as you’d like to use. Usually you can 
interchange the pin numbers with no ill effects. However, be careful. If the VP is using, for 
example, port B’s interrupt capabilities, you won’t be able to move pins to port A or C which do 
not have interrupts. Usually the VP will have an equate near the top that sets the I/O 
definitions (PWM_pin, in this case). This is misleading, however. In addition to changing the 
equate, you also have to find all the places where the VP references the ra, rb, rc, !ra, !rb, or 
!rc registers and correct these lines as well. 
 
With the VP in place, the main program is trivially simple: 
 
; load digits 
  clr i 
digloop call getdigit 
  mov byte,w 
  cje byte,#$FF,done 
  call @load_frequencies  ; VP routine 
  call @dial_it   ; VP routine 
inc  i 
  mov w,#20 
  call @delay_10n_ms 
  jmp digloop 
done 
  sleep 
 
 
To dial again, reset the processor. The load_frequencies, dial_it, and delay_10n_ms 
routines are all part of the VP (and they reside on different pages which explains the at sign 
prefix). The getdigit routine is a simple lookup table that returns the phone number digits 
(you’ll write this code in the exercises for this unit). 

Mixing Virtual Peripherals 
When you need to mix VPs, there are several areas you have to consider: 
 

• At what frequency must the ISRs run? 
• Port and variable conflicts 
• Conflicting uses of the !option register 
• Varying time paths through the ISR 
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Most of these issues are straightforward. Sometimes you can adjust parameters to resolve 
conflicts. For example, if you need a UART, you can adjust its timing so that it will work with 
other VPs that don’t use the same frequency. Sometimes it is more difficult and requires 
significant effort to rewrite the VPs code. 
 
Another issue is varying time paths through the ISR. Some VPs depend on an exact amount of 
time passing between interrupts. PWM generation, for instance, requires precise timing. If you 
merge a VP that requires an exact amount of time between interrupts with another VP, you 
should place the time-sensitive VP’s interrupt code before the other VP’s code. Reversing this 
order will upset the sensitive VP if the other VP’s ISR does not always require the same time to 
execute. A few VPs use special techniques to ensure that they always require the same 
amount of time to execute, but most can take varying times depending on conditions. 
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Summary 
Using VPs you can create powerful programs easily. However, it does take a bit of experience 
and effort to peel away the interesting parts of the VP examples and apply them to your 
program. The effort, however, is usually far less than it would take you to duplicate the VPs 
features in either hardware or software. 
 
You can mix VPs if you are careful. However, blending together VPs can often be taxing as you 
try to make peace between conflicting requirements for each module. 

Exercises 
1. Download the DTMF generation VP and remove the portions that are unnecessary for 
building an auto dial program that automatically dials a phone number when it starts.  
 
2. Move the DTMF output to Port C pin 6. 
 
3. Add your own code to dial a number of your choice each time the processor resets. Put the 
processor to sleep after dialing. To hear the tones, you can connect a piezo speaker to the 
port. However, this will probably be too rough and too weak to really dial a phone. If you want 
to really dial the phone, add an RC filter (see the instructions in the VP documentation; you’ll 
need a 600 Ω resistor and a capacitor around .2 µF). You can then use an amplified speaker or 
signal tracer to increase the volume to where it can really dial the phone. 
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Answers 
(All). Here is the listing that satisfies the three problems in this unit (note some of the VP code 
is in the second program bank – the main program is in the middle of the listing): 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 8.1 
;======================================================================= 
  device sx28l,stackx,optionx 
  device oschs3,turbo 
     
  freq 50_000_000 ; default run speed = 50 MHz 
  ID 'DIAL' 
 
  reset start  ; JUMP to start label on reset 
 
 
;*********************************************************************** 
; Equates for common data comm frequencies 
;*********************************************************************** 
f697_h  equ $012  ; DTMF Frequency 
f697_l  equ $09d 
 
f770_h  equ $014  ; DTMF Frequency 
f770_l  equ $090 
 
f852_h  equ $016  ; DTMF Frequency 
f852_l  equ $0c0 
 
f941_h  equ $019  ; DTMF Frequency 
f941_l  equ $021 
 
f1209_h  equ $020  ; DTMF Frequency 
f1209_l  equ $049 
 
f1336_h  equ $023  ; DTMF Frequency 
f1336_l  equ $0ad 
 
f1477_h  equ $027  ; DTMF Frequency 
f1477_l  equ $071 
 
f1633_h  equ $02b  ; DTMF Frequency 
f1633_l  equ $09c 
 
 
;*********************************************************************** 
; Pin Definitions 
;*********************************************************************** 
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;PWM_pin  equ  rb.7  ; DTMF output 
PWM_pin  equ rc.6  ; DTMF output 
 
;*********************************************************************** 
; Global Variables 
;*********************************************************************** 
  org $8  ; Global registers 
 
flags  ds 1 
dtmf_gen_en equ flags.1  ; Tells if DTMF output is enabled 
timer_flag equ flags.2  ; Flags a rollover of the timers. 
temp  ds 1  ; Temporary storage register 
byte  ds 1  ; a byte 
i  ds 1  ; loop counter 
 
;*********************************************************************** 
; Bank 0 Variables 
;*********************************************************************** 
  org $10 
 
sin_gen_bank = $ 
 
freq_acc_high ds 1  ;  
; 16-bit accumulator which decides when to increment the sine wave 
freq_acc_low ds 1  
freq_acc_high2 ds 1  ;  
; 16-bit accumulator which decides when to increment the sine wave 
freq_acc_low2 ds 1  
freq_count_high ds 1 ; freq_count = Frequency * 6.83671552 
freq_count_low ds 1  ; 16-bit counter  
;decides which frequency for the sine wave 
 
freq_count_high2 ds 1 ; freq_count = Frequency * 6.83671552 
freq_count_low2 ds 1 ; 16-bit counter which  
     ; decides which frequency  
     ; for the sine wave 
 
curr_sin ds 1  ; The current value of the sin wave 
sinvel  ds 1  ; The velocity of the sin wave 
 
curr_sin2 ds 1  ; The current value of the sin wave 
sinvel2  ds 1  ; The velocity of the sin wave 
 
sin2_temp ds 1  ; Used to do a temporary shift/add 
register 
 
PWM_bank = $ 
 
pwm0_acc ds 1  ; PWM accumulator 
pwm0  ds 1  ; current PWM output 
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;*********************************************************************** 
; Bank 1 Variables 
;*********************************************************************** 
  org     $30     ;bank3 variables 
timers  = $ 
timer_l  ds 1 
timer_h  ds 1 
 
;*********************************************************************** 
; Interrupt 
;  
; With a retiw value of -163 and an oscillator frequency of 50 MHz, this 
; code runs every 3.26us. 
;*********************************************************************** 
  org 0   
;*********************************************************************** 
PWM_OUTPUT 
; This outputs the current value of pwm0 to the PWM_pin.  This generates 
; an analog voltage at PWM_pin after filtering 
;*********************************************************************** 
  bank PWM_bank 
  add pwm0_acc,pwm0 ; add the PWM output to the acc 
  snc     
  jmp :carry  ; if there was no carry, then clear  
     ; the PWM_pin 
  clrb PWM_pin 
  jmp PWM_out     
:carry 
  setb PWM_pin  ; otherwise set the PWM_pin 
PWM_out 
;*********************************************************************** 
  jnb dtmf_gen_en,sine_gen_out 
  call @sine_generator1 
sine_gen_out 
 
 
;*********************************************************************** 
do_timers  
; The timer will tick at the interrupt rate (3.26us for 50 MHz.)  To set up 
; the timers, move in FFFFh - (value that corresponds to the time.)   
; Example: 
; for 1ms = 1ms/3.26us = 306 dec = 132 hex so move in $FFFF - $0132 =  
; $FECD 
;*********************************************************************** 
 
  bank timers  ; Switch to the timer bank 
  mov w,#1 
  add timer_l,w ; add 1 to timer_l 
  jnc :timer_out ; if it's not zero, then  
  add timer_h,w ; don't increment timer_h 
  snc 
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  setb timer_flag   
:timer_out 
;*********************************************************************** 
:ISR_DONE 
; This is the end of the interrupt service routine.   
; Now load 163 into w and 
; perform a retiw to interrupt 163 cycles from the start of this one.   
; (3.26us@50 MHz) 
;*********************************************************************** 
  break 
; interrupt 163 cycles after this interrupt 
  mov w,#-163   
  retiw   ; return from the interrupt 
;*********************************************************************** 
 
start  bank sin_gen_bank ; Program starts here on power up 
 
;***********************************************************************  
; Initialize ports and registers 
;*********************************************************************** 
; use these values for a wave which is 90 degrees out of phase. 
  mov curr_sin,#-4    
  mov sinvel,#-8 
; use these values for a wave which is 90 degrees out of phase. 
  mov curr_sin2,#-4 
  mov sinvel2,#-8 
  call @disable_o 
 
  mov !option,#%00011111 ; enable wreg and rtcc interrupt 
  mov !rc,#%10111111 
 
  mov m,#$D   ; make cmos-level 
  mov !rc,#%10111111 
  mov m,#$F 
 
; load digits 
  clr i 
digloop  call getdigit 
  mov byte,w 
  cje byte,#$FF,done 
  call @load_frequencies ; load the frequency registers 
  call @dial_it  ; dial the number for 60ms  
; and return. 
  inc i 
  mov w,#20 
  call @delay_10n_ms 
  jmp digloop 
done 
  sleep 
  
; get i'th digit to dial 
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getdigit mov w,i 
  jmp PC+W 
  retw 1,8,8,8,5,1,2,1,0,2,4,$FF 
 
 
 
 
org $200    ; Start this code on page 1 
;*********************************************************************** 
; Miscellaneous subroutines 
;*********************************************************************** 
delay_10n_ms 
; This subroutine delays 'w'*10 milliseconds.  
; This subroutine uses the TEMP register 
; INPUT  w - # of milliseconds to delay for. 
; OUTPUT Returns after n milliseconds. 
;*********************************************************************** 
  mov temp,w 
  bank timers 
:loop  clrb timer_flag ; This loop delays for 10ms 
  mov timer_h,#$0f4  
  mov timer_l,#$004 
  jnb timer_flag,$ 
  dec temp  ; do it w-1 times. 
  jnz :loop 
  clrb timer_flag 
  retp 
 
;*********************************************************************** 
; Subroutine - Disable the outputs 
; Load DC value into PWM and disable the output switch. 
;*********************************************************************** 
disable_o  
  bank PWM_bank ; input mode. 
  mov pwm0,#128 ; put 2.5V DC on PWM output pin 
  retp 
 
  org $400  ; This table is on page 2. 
; DTMF tone table 
_0_  dw f941_h,f941_l,f1336_h,f1336_l 
_1_  dw f697_h,f697_l,f1209_h,f1209_l 
_2_  dw f697_h,f697_l,f1336_h,f1336_l 
_3_  dw f697_h,f697_l,f1477_h,f1477_l 
_4_  dw f770_h,f770_l,f1209_h,f1209_l 
_5_  dw f770_h,f770_l,f1336_h,f1336_l 
_6_  dw f770_h,f770_l,f1477_h,f1477_l 
_7_  dw f852_h,f852_l,f1209_h,f1209_l 
_8_  dw f852_h,f852_l,f1336_h,f1336_l 
_9_  dw f852_h,f852_l,f1477_h,f1477_l 
_star_  dw f941_h,f941_l,f1209_h,f1209_l 
_pound_  dw f941_h,f941_l,f1477_h,f1477_l 
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  org $600  ; These subroutines are on page 3. 
;*********************************************************************** 
; DTMF transmit functions/subroutines 
;*********************************************************************** 
;*********************************************************************** 
load_frequencies 
; This subroutine loads the frequencies using a table lookup approach. 
; The index into the table is passed in the byte register.  The DTMF table 
; must be in the range of $400 to $500. 
;*********************************************************************** 
  cje byte,#$0FF,:end_load_it 
  clc 
  rl byte 
  rl byte  ; multiply byte by 4 to get offset 
  add byte,#_0_ ; add in the offset of the first digit 
  mov temp,#4 
  mov fsr,#freq_count_high 
 
:dtmf_load_loop  
  mov m,#4  ; mov 4 to m (table is in $400) 
  mov w,byte 
  IREAD   ; get the value from the table 
  bank sin_gen_bank ; and load it into the frequency  
  mov indf,w  ; register 
  inc byte 
  inc fsr 
  decsz temp 
  jmp :dtmf_load_loop ; when all 4 values have 
      ; been loaded, 
:end_load_it  retp    ; return 
;*********************************************************************** 
dial_it ; This subroutine puts out whatever frequencies were loaded 
 ; for 1000ms, and then stops outputting the frequencies. 
;*********************************************************************** 
  cje byte,#$0FF,end_dial_it 
  bank sin_gen_bank 
; use these values to start the wave at close to zero crossing. 
  mov curr_sin,#-4   
  mov sinvel,#-8 
; use these values to start the wave at close to zero crossing. 
  mov curr_sin2,#-4     
  mov sinvel2,#-8 
enable_o      ; enable the output 
  mov w,#3 
  call @delay_10n_ms  ; delay 30ms 
  setb dtmf_gen_en 
  mov w,#10 
  call @delay_10n_ms  ; delay 100ms 
  clrb dtmf_gen_en 
  call @disable_o  ; now disable the outputs 
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end_dial_it retp 
;*********************************************************************** 
sine_generator1   ;(Part of interrupt service routine) 
; This routine generates a synthetic sine wave with values ranging 
; from -32 to 32.  Frequency is specified by the counter.  To set the 
; frequency, put this value into the 16-bit freq_count register: 
; freq_count = FREQUENCY * 6.83671552 (@50 MHz) 
;*********************************************************************** 
  bank sin_gen_bank 
; advance sine at frequency 
  add freq_acc_low,freq_count_low;2    
  jnc :no_carry  ;2,4 ; if lower byte rolls over 
  inc freq_acc_high  ; carry over to upper byte 
  jnz :no_carry  ; if carry causes roll-over 
; then add freq counter to accumulator (which should be zero, 
; so move will work) 
  mov freq_acc_high,freq_count_high    
       ; and update sine wave 
  jmp :change_sin 
:no_carry 
; add the upper bytes of the accumulators 
  add freq_acc_high,freq_count_high  
  jnc :no_change 
:change_sin 
 
  mov w,++sinvel  ;1 ; if the sine wave 
  sb curr_sin.7  ;1 ; is positive, decelerate  
  mov w,--sinvel  ;1 ; it.  otherwise, 
       ; accelerate it. 
  mov sinvel,w  ;1  
  add curr_sin,w  ;1 ; add the velocity to sin 
 
 
:no_change 
 
;*********************************************************************** 
sine_generator2   ;(Part of interrupt service routine) 
; This routine generates a synthetic sine wave with values ranging 
; from -32 to 32.  Frequency is specified by the counter.  To set the 
; frequency, put this value into the 16-bit freq_count register: 
; freq_count = FREQUENCY * 6.83671552 (@50 MHz) 
;*********************************************************************** 
 
;advance sine at frequency 
  add freq_acc_low2,freq_count_low2 ;2  
  jnc :no_carry   ;2,4 ; if lower byte 
       ; rolls over 
  inc freq_acc_high2   ; carry over to upper byte 
  jnz :no_carry   ; if carry causes 
       ; roll-over 
; then add freq counter to accumulator (which should be zero, 
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  mov freq_acc_high2,freq_count_high2  
       ; so move will work) 
       ; and update sine wave 
  jmp :change_sin 
:no_carry 
; add the upper bytes of the accumulators 
 
  add freq_acc_high2,freq_count_high2    
  jnc :no_change 
:change_sin 
 
  mov w,++sinvel2 ;1  ; if the sine wave 
  sb curr_sin2.7 ;1  ; is positive,  
       ; decelerate it 
  mov w,--sinvel2 ;1  ; it.  Otherwise, 
       ; accelerate it. 
  mov sinvel2,w ;1  
  add curr_sin2,w ;1  ; add the velocity to sin 
 
 
:no_change 
  mov pwm0,curr_sin2   ; mov sin2 into pwm0 
  mov sin2_temp,w   
; mov the high_frequency sin wave's current value 
  clc     ; into a temporary 
       ; register 
 
; divide temporary register by four by shifting right 
  snb sin2_temp.7   
stc       ; (for result = (0.25)(sin2)) 
  rr sin2_temp 
  clc 
  snb sin2_temp.7 
  stc 
  mov w,>>sin2_temp 
; (1.25)(sin2) = sin2 + (0.25)(sin2) 
  add pwm0,w     
; add the value of SIN into the PWM output 
  add pwm0,curr_sin       
; for result = pwm0 = 1.25*sin2 + 1*sin 
; put pwm0 in the middle of the output range (get rid of negative values) 
  add pwm0,#128 
  retp    ; return with page bits intact 
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Unit 9: Simple Hardware I/O 
Enhancements 
 Introduction 
The SX has a variety of built in, programmable I/O enhancements that can be used 
in place of certain external circuits.  Options can be set to enable internal pull up 
resistors, configurable logic thresholds, and analog comparator functions.  These 
features were first discussed in chapter 6.  Although these features can be used to 
reduce the overall parts count in many designs, they are for use with specific 
current and voltage limits.  Three of the most common situations where the 
demands of a peripheral device exceed these limits are when: 
 

 The device requires more current the SX I/O pin can supply. 
 The device requires more than 5 V at its input. 
 The device outputs above 5 V or below 0 V. 

 
This chapter introduces some simple hardware solutions for these situations.  These solutions 
can be used to make the SX light lamps, energize relays or coils, and control motors, or even 
pumps.  Hardware solutions for RS232 voltages are also discussed because many applications 
make use of this standard, such as the serial port on a PC. 
 
Specialized interfaces, such as liquid crystal display (LCD) drivers, or computer I/O ports, use a 
variety of different hardware connection schemes.  Most of these devices also use one of 
several established communication protocols for exchanging data.  These protocols are 
discussed, and an example of a hardware/software interface with a common parallel LCD is 
included.  This will help introduce some basic I/O and register management techniques, 
setting the groundwork for methods used in later chapters. 

Driving Loads 
Compared to many chips, an SX I/O pin set to output can sink or source significant amounts of 
current (30 mA). This is plenty for driving an LED as well as most IC inputs.  However, for 
many relays, lamps, and other loads, 30 mA is not nearly enough. Attempting to use an SX I/O 
pin to drive a high current load can damage the chip. 
 
Fortunately, the SX chip’s output capacity can be extended using simple external parts.  The 
next few figures show three circuits that can be used to significantly boost the SX chip’s output 
capacity.  Figure 9-1 shows a circuit built around a common 2N2222 transistor.  This circuit 
draws minimal current from the SX, but can sink nearly a half of an ampere when heat sinking 
is used on the transistor. 
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Figure 9-1: Switching a High-Current Relay  
 

This configuration is ideal for loads that require ground to be switched on and off.  When the 
SX switches its output high, the voltage at the transistor's base, VBE, rises to 0.7 V.  The 
current through the resistor connected to the transistor’s base is (5 – 0.7)/1000 = 4.3 mA.  
This is ample current to force the transistor into saturation without demanding too much 
current from the SX I/O pin. 
 
Because the transistor is saturated, the collector will be in the neighborhood of 0.2 V above 
the emitter.  For practical purposes, this is as good as ground. When the SX outputs 0 volts, or 
any voltage too low to bring VBE above 0.7 V, the transistor switches off.  Although a very 
small amount of current is still conducted, it is insignificant as far as the coil is concerned.   
 

 

Notice the diode across the relay coil in Figure 9-1. This is useful when driving 
inductive loads.  When the current in any inductor changes, it can cause large 
voltage spikes, which can destroy the transistor.  The diode shorts out negative 
voltage to prevent damage to the transistor.  A relatively low inductance load, 
such as a light bulb, does not require the diode. 

 
Most of the time, switching the ground lead of a load on and off works fine.  However, some 
jobs require a positive voltage to be switched. For example, suppose an EPROM programmer 
requires a 14 V supply to be switched on and off.  The circuit in Figure 9-2 can be used for his 
application. 
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Figure 9-2: Circuit for Switching a Positive Voltage.  
 
The NPN transistor works as before, making a ground connection when the SX outputs a 1. 
This causes the voltage across the base of the PNP transistor to turn it on because the 
magnitude of VBE will be greater than 0.7 V.  As with the previous circuit, the magnitude of VCE 
can be neglected. When the NPN transistor does not conduct, minimal base current will flow in 
the PNP transistor’s base circuit, and therefore, virtually no collector current will flow (that is, 
the load will not receive current). 
 
The circuit in Figure 9-3 uses a power MOSFET.  A MOSFET offers almost complete isolation 
between the processor and load.  Modern MOSFETs can also handle relatively heavy current 
loads, and the device shown here can conduct up to 4A.  Another MOSFET advantage is that it 
has a very low series resistance, in the neighborhood of 0.54 Ω, when switched on.   
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Figure 9-3: Using a MOSFET  
 
The circuits just introduced will serve in a variety of situations, all of which are aimed at 
switching DC loads on and off.  However, many designs call for something other than on/off 
values. 

Analog I/O 
Many practical sensors generate analog signals, and there are several strategies for reading 
analog values with a digital device like the SX.  A common external hardware solution is to use 
specialized ICs that can convert analog to digital and vice versa.  A device that converts 
numeric quantities to analog is called a Digital to Analog converter (DAC or D/A).  The 
opposite function is performed by an Analog to Digital converter (ADC or A/D).  These are 
available from many vendors with varying capabilities and price tags.  SX software A/D and 
D/A solutions also exist, and you’ll read more about them in Units 11, 13, and 14.  In some 
cases, A/D conversion is overkill, because the voltage can be “trimmed” to a more appropriate 
level . 

Analog Level Conversion 
For an example of a trimming circuit, consider a battery monitor. Assume a battery's nominal 
voltage is 9 V, and the circuit will operate at voltages as low as 7.2 V.  Your design goal is to 
detect when the voltage drops to 7.5 V, perhaps to light a low voltage indicator. 
 
Using an A/D converter for this job would be a waste of money and resources.  Taking 
advantage of an SX I/O pin’s logic threshold is a much simpler, less expensive solution.  When 
an SX I/O pin is set to CMOS input mode, it reads signals above 2.5 V as 1 and below 2.5 V as 
0.  A voltage divider can convert the 7.5 V target voltage to 2.5 V.  A voltage divider is shown 
in Figure 9-4, and the voltage divider equation is given by: 
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Resistor values should be selected to make Vo = 2.5 V when Vi = 7.5 V.  A 10 kΩ and 20 kΩ 
resistor would do the job.  However, the total current consumed will be 9/30000 or 300 µA. 
This is plenty of current to drive the SX inputs. The resistor values could also be increased to 
100 kΩ and 200 kΩ to reduce current consumption to 30 µA.  
 

 
 

Figure 9-4: Detecting a Low Battery  
 
 
When the battery is at full charge, the input pin will be 3 V, which is enough voltage for the SX 
to register a 1.  At 7.5 V the pin drops to 2.5 V, which is right at the logic threshold.  Any 
further drop is read by the SX as a zero.  Compared to either software or hardware A/D 
conversion, this technique greatly simplifies both the programming and hardware used in the 
design. 

Grouping Digital I/O – LCD Example 
When using an individual SX I/O pin for switching and sensing, a single bit in a given port 
register is addressed.  However, peripheral devices connected to microcontrollers have 
traditionally used parallel interfaces.  These devices can be accommodated using the SX, but 
it’s not necessarily the best use of the SX chip’s limited number of I/O pins. 
 
When reading and writing to parallel devices, each I/O port can be treated as a group of bits.  
For example, instead of treating rb.1 through rb.7 as individual bits, the RB register can be 
can be addressed as a group of 8-bits.  In the SX28 chip, RA is a 4-bit wide register, and RB 
and RC are each 8-bits wide.  Keep in mind that if the data bus connected to the SX is not 4 
or 8-bits, the program must be adapted to handle the data correctly.   



Unit 9: Simple Hardware I/O Enhancements 

Page 126 • Beginning Assembly Language for the SX Microcontroller 

 
Consider a typical liquid crystal display (LCD).  Common LCDs use an on-board LCD driver IC 
such as the Hitachi (now Renesas) HD44780 or a compatible device.  Larger LCDs use a 44780 
plus some additional parts, but the programming turns out to be essentially the same.   

LCD Hardware 
The 14 pins on the LCD are likely arranged in the standard configuration given in Table 9-1. 
 

Table 9-1: Pin Functions and Descriptions for Common LCDs  
with Hitachi or Compatible Driver 

Pin Function Description Pin Function Description 
1 GND Ground 8 DB1 Data Bit 1 
2 +5 + 5 V Power 9 DB2 Data Bit 2 
3 C Contrast voltage 10 DB3 Data Bit 1 
4 RS Reg. Select 11 DB4 Data Bit 4 
5 R/W Read/Write 12 DB5 Data Bit 5 
6 E Enable 13 DB6 Data Bit 6 
7 DB0 Data Bit 0 14 DB7 Data Bit 7  

 
Some LCDs have 14-pin male single inline package (SIP) headers, and they can be plugged 
directly into a breadboard.  Other LCDs have these pins arranged with a piece of ribbon cable 
that ends in a dual-row header.  This isn't very handy for breadboarding.  In this case, jumper 
wires can be used to connect the header pins/sockets to the breadboard.  Figure 9-5 shows a 
connection diagram for operating a 14 pin LCD in 4-bit mode. 
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Figure 9-5: LCD Connection Diagram  
 
The LCD data sheet shows a signal sequence that can be sent to the LCD to reset it and force 
it into 4-bit mode. Once in 4-bit mode, RS can be asserted, then ASCII characters can be sent.  
In 4-bit mode, the four most significant bits are sent first, followed by the lower four bits.  RS 
is brought low when sending command codes.  Each 4-bit transfer occurs when the program 
pulses the E pin. 
 
If the LCD doesn’t appear to work, try varying the contrast voltage on pin 3 of the LCD’s 14-
pin connector.  Adjust the potentiometer connected to pin 3 until faint boxes or characters 
become visible.  Note: A very few LCDs require negative voltages to set the contrast. If you 
encounter one of these displays, it may appear dead until you provide a negative contrast 
voltage. Fortunately, these displays are not very common. 

Program Listing – LCD Interface 
The next program is for an LCD interface, using the techniques just discussed.  The program 
displays a message you can change by changing the text in single quotes in the msg routine. 
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;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 9.1 
;4-bit LCD driver by Al Williams 
;======================================================================= 
 
  device SX28L,turbo,stackx,optionx,oscxt1,bor42 
  freq  4000000    ; Run at 4 MHz to simplify timing. 
  reset start    ; Go to 'start' on reset. 
  
  org     $0c 
dlyctr   ds  1     ; Main delay counter. 
dlymult  ds 1     ; Delay multiplier. 
tmp  ds 1  ; Temp storage. 
work  ds 1  ; More temp storage. 
i  ds 1  ; Loop counter. 
  
ebit  equ  ra.1   ; I/O: Enable and Register Select. 
  
rsbit  equ  ra.0  ; Assumes DB4 to DB7  
     ; connect to RB.0-RB.3. 
  
    org  0  
  
  
ldelay  mov dlymult,#5 ; Long delay (5x256).  
     ; Enter here if you want  
delaym   clr  dlyctr  ; to set your own dlymult. 
  
:delay   nop 
  djnz  dlyctr,:delay 
  djnz  dlymult,delaym 
    ret 
  
init  mov ra,#0  ; Call to init the LCD. 
  mov rb,#0  ; Set all bits to zero. 
  mov !rb,#%11110000 ; Set outputs. 
  mov !ra,#%00 
  call ldelay  ; Give LCD some time to catch up. 
  mov rb,#$3  ; Write a 3 out to the display 3 times. 
  
  call pulsee 
   call  pulsee 
  call  pulsee 
  
  mov  rb,#$2    ; Now go to 4-bit mode (twice). 
  call  pulsee 
  call pulsee 
  mov  rb,#$8  ; Set 2-line mode (remove next 2 lines if 
     ; display has 1 line). 
  call  pulsee 
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  mov  w,#14  ; Non blink cursor (use 15 for blinking). 
  call  lcdout 
  mov  w,#6     ; Activate the cursor. 
  call lcdout 
clear        ; Clear the screen (init falls  
     ; into this routine). 
    mov  w,#1     ; Send a command (clear falls  
     ; into this routine). 
cmd    clrb  rsbit 
    call  lcdout 
    setb  rsbit 
    ret 
  
lcdout   mov  tmp,w    ; Write to the LCD (4 bits at a time). 
  
    mov  work,w 
    rr  work     ; Get top 4 bits first. 
    rr  work 
    rr  work 
    rr  work 
    and  work,#$F 
    mov  rb,work 
    call  pulsee 
    mov  w,tmp    ; Then bottom 4 bits. 
    and  w,#$F  
    mov  rb,w 
pulsee   setb  ebit     ; Pulse the E bit  
     ;(lcdout falls into this). 
  
    call  ldelay 
    clrb  ebit 
    ret 
  
; Set the cursor to the specified pos note that all displays think that 
; line 2 starts at pos 40 even if they don't have 40 characters. 
  
setcursor mov work,w 
  mov w,#$80 
  add w,work 
  jmp cmd 
  
lookup  mov  w,i     ; Get a byte from the string to display. 
    jmp  pc+w 
msg    retw  'Assembly Language I/O ' 
    retw  'with the SX-Key',13 
    retw  'by Al Williams and Parallax',0 
  
start    call  init     ; Here is the main program. 
    call  ldelay 
    clr  i      ; Loop for each character. 
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ploop    call  lookup 
; exit if 0 
    test  w 
    jz  :loop 
    inc  i 
   
    mov  work,w    ; If 13 then go to line #2. 
    cje  work,#13,nl 
    mov  w,work   
  
    call  lcdout    ; Not 0 or 13 so print it. 
  
; this delay gives a "teletype" effectcomment the following 2 lines 
; for full speed. 
  
    clr  dlymult 
    call  delaym 
  
    jmp  ploop       ; Keep going. 
  
; This look waits for about 5 seconds or so and then starts the whole  
; thing over. 
  
:loop    mov  tmp,#64 
:loop1   clr  dlymult 
    call  delaym 
    djnz  tmp,:loop1 
    jmp  start   
  
nl   mov  w,#40    ; Move to line 2. 
    call  setcursor 
    jmp  ploop 
 

This program listing assumes no other part of the program uses ports A and B.  If the pins not 
used by the LCD are set to input, the program can write to the port bits, but no output occurs.  
On the other hand, if pins not used by the LCD are outputs, writing to the entire port will 
arbitrarily wipe out any output bits used by the other part of the program.  This would lead to 
spurious outputs each time the program sends information to the LCD.  One solution is to read 
the output bits already in use before writing back to the port.  In other words, instead of 
writing directly to a port using the command: 
 
  mov  rb,bits 
 
Substitute the code below: 
 
  and  bits,#$F 
  mov  w,rb 
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  and  w,#$F0 
  or  w,bits 
  mov  rb,w 
 
In this example, only the four least significant bits in RB change.  The hexadecimal value #$F 
is referred to as a mask.  Masks are used with logic commands to force certain bits high or low 
within registers.  For example, the first command: 
 
  and  bits,#$F  
 
forces the upper nibble (bits 4 through 7) in the bits register to zero while leaving the lower 
four bits unaffected.  RB is then copied to the w register, followed by applying a mask that 
sets only the lower four bits in the w register to zero.  The or command can then be used to 
copy the lower four bits in the bits variable into the w register.  The contents of w can then 
be copied to RB.  Although it seems like a roundabout way of doing things, it enables numeric 
control of groups of bits within a given I/O port. 

About Serial Data 
The LCD controller is a good example of a parallel interface with a peripheral device.  The 
interface uses a total of six I/O pins, four for data and two for control.  For a 28-pin SX this 
monopolizes nearly a third of the available I/O lines.  Parallel interfaces that use too many I/O 
lines are a common problem among microcontrollers.  Not surprisingly, a wide variety of 
devices that use serial protocols to communicate have been developed.  
 
Serial communication can be done over a single wire, although two, three, and four-wire 
interfaces are also common.  The protocols used can be broadly characterized as synchronous 
and asynchronous.  A synchronous protocol uses some type of clock to synchronize the 
transmitter and receiver.  Synchronous systems include Serial Peripheral Interface (SPI) and 
Inter-Integrated Circuit (IIC).  In contrast, asynchronous protocols synchronize on some 
prearranged signal, typically a start bit.  Common RS-232 ports, like those on the back of a PC, 
use asynchronous data transmission.  

Synchronous Serial Data 
Typical synchronous protocols use at least two lines, one for data and one for the clock signal.  
The receiver reads the data at the rising or falling edge of a clock pulses it sends to the 
transmitter.  Often, the transmitting device clocks data in one pin and out another pin allowing 
an arbitrary number of devices to be daisy chained.  Synchronous protocols allow high data 
rates but require multiple wires to work. Still many devices like A/D converters, EEPROMs, and 
other peripherals utilize this type of protocol. 
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Asynchronous Serial Data 
Asynchronous serial data is the more common of the two arrangements.  The transmitter and 
receiver are set for the same transmission speed.  The receiver then watches for a “start bit” 
and uses it to synchronize with the transmitter.  As an example, suppose a serial data 
transmission consists of a start bit, 8 data bits, and one stop bit at 9600 bits per second (bps).  
To squeeze 9600 bits into a second, each bit can only be transmitted for: 
 

µs104
bps9600

1Tbit ==
      (2) 

 
The transmitter and receiver must also agree on the signal that gets transmitted between 
bytes, the idle state.  The start bit begins when the transmitter switches its signal out of the 
idle state.  For example, if 1 is the idle state, as soon as the transmitter switches to 0, the 104 
µs start bit has begun.  When the receiver senses the start bit, it knows that 104 µs later the 
first bit of data will be transmitted.  So, the receiver checks the state of the signal after 104 µs 
and records the value of the first bit.  It repeats this sampling process eight more times, once 
for each of the eight data bits. (Real systems often sample several times during the interval to 
improve noise rejection, but that’s not important to this discussion.) The stop bit is somewhat 
of a misnomer since the state of the stop bit is the same as the line’s idle state.  The stop bit 
is actually the minimum idle time before the next byte can be transmitted.  Modern systems 
often use 1 stop bit, that is, 1 bit period between bytes.  Some older systems required 1.5 or 
even 2 stop bits. 
 
RS-232C is by far the most common asynchronous serial protocol.  Personal computer serial 
ports use this scheme.  In fact, connecting a microcontroller to a PC is a common use for RS-
232.  Other devices, including specialized serial LCDs, PWM coprocessors, and PS/2 keyboard 
interfaces also use RS-232.   
 
A typical RS-232 setup requires one line for each transmitter and one for each receiver.  Some 
systems will share a single line for both transmitting and receiving.  Additional lines used for 
flow control are also common.  Flow control lines allow the receiver to send a signal that 
indicates when to send the next byte.  Commonly referred to as handshaking, the receiver has 
to signal its willingness to receive before the transmitter can send. 

RS-232 Practical Considerations 
RS-232 is more than just an arrangement of bits.  The standard also calls for particular 
connectors and voltage levels.  This can be a problem for designs incorporating 
microcontrollers because the RS-232 signal varies between –12 V to transmit a 1 and +12 V to 
transmit a 0.   Microcontrollers, of course, use the standard TTL/CMOS 0 and 5 V signals. 
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A variety of techniques can be used to convert from TTL to RS232 voltages and visa versa.  
Peripheral integrated circuits that make these conversions are often added to the design.  The 
classic chips to do this are the 1488 and 1489 line drivers and receivers.  However, these 
require a +/- 12 V power supply, common in computers, but not so common is smaller 
electronic designs.  
 
In many cases, the only reason to have +/-12 V is for RS-232.  If this is true, the need for +/- 
12 V can be eliminated all together with a MAX232 or MAX233 IC from Maxim.  These clever 
chips convert TTL to RS232 using only a single 5 V supply.  The MAX232 and 233 generate 
their own 12 V supplies using internal “charge pumps”.  The actual voltage won’t be exactly 
+/- 12 V, but it will be well within the RS-232 specification. The MAX232 uses a few external 
capacitors, but the MAX233 requires no external capacitors. 
  
It is possible to connect a TTL output directly to an RS-232 input.  It works most of the time, 
but it’s only recommended for lab and prototyping situations, not for production designs.  The 
only thing to keep in mind is that 5 V is interpreted as a 0 while 0 V is interpreted as a 1.  An 
RS-232 output can also be connected to an SX input, so long as a current limiting resistor is 
used.  A 22 kΩ resistor, for example, can be placed in series between the RS-232 output and 
the SX input.  The SX has internal diode protection that clamps voltages above 5 V and below 
0 V.  The resistor prevents possible circuit damage that can occur when these diodes conduct 
excessive current in an attempt to keep the voltage clamped.  Keep in mind that the same 
logic inversion that occurs when sending serial RS232 data without a line driver also occurs 
when receiving without a line driver. 

Summary 
A variety of designs feature devices with voltage or current requirements that are higher than 
the SX chip can supply.  External transistors can be selected to drive these loads, and then the 
SX can be used to switch the transistors on and off.  Input voltages can also exceed the 0 to 5 
V range.  For the sake of sensing when a voltage passes a particular threshold, a voltage 
divider can be used to trim the measured input so that it crosses an SX I/O pin’s logic 
threshold.   
 
When using the SX to communicate with a parallel device, such as the LCD with assembly 
code example introduced in this unit, masking may be necessary to make sure that outputs 
not used by the parallel device are unaffected.  Serial devices are a common solution for 
reducing the overall number of microcontroller I/O pins dedicated to each peripheral device.  
Synchronous and asynchronous serial communications are the two most common timing 
schemes used for serial communication.   
 
RS232 is a common standard for asynchronous serial communication, and it uses +/- 12 V.  
Although the SX can send TTL signals directly to an RS232 input and receive RS232 signals via 
a series resistor, this connection scheme is only recommended for experimentation.  
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Specialized RS232 line driver, receiver, and transceiver ICs can be used for much more 
foolproof communication between the SX and RS232 I/O. 

Exercises 
1. Which of the following is a characteristic of asynchronous communications? 

(a) An external clock signal 
(b) Bits take a variable amount of time 
(c) Each byte begins with a start bit 
(d) The transmitter sends 1, 1.5, or 2 bits at once 

 
2. A sensor emits 0 V when off and 3 V when on. What techniques could you use to read it 
with an SX? (Select all that apply) 
 (a) Read the value directly with CMOS input thresholds 
 (b) Use a 2N2222 transistor to switch on when the signal is present 
 (c) Use a voltage divider with two resistors 
 (d) Use an external A/D converter 
 
3. Which of the following is a characteristic of RS-232? 

(a) RS-232 uses the same line for transmitting and receiving 
(b) RS-232 does not require transmitter and receiver to agree on speed 
(c) All bits in an RS-232 byte require the same amount of time to send 
(d) Real-world RS-232 devices use positive and negative voltages to indicate 0s and 
1s 
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Answers 
1. (c) is the correct answer. Each byte begins with a start bit used to synchronize the receiver. 
 
2. (a) and (b) are correct. Although you might argue that (d) would do the job, there is no 
need to measure the precise voltage of the sensor; only two voltages are required. Directly 
connecting the sensor to an SX pin would work, although the circuit will be more prone to 
noise errors than if you use method (b). 
 
3. (d) is the correct answer. Although most bits require the same time to send, stop bits may 
be longer than 1 bit, so (c) is not correct. 
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Unit 10: A Software UART – The 
Transmitter 
 
Asynchronous serial data is very popular in the real world. Modems, terminals, mice, and 
printers can all use RS-232 ports to communicate with a variety of computers. Because of this 
popularity, single ICs that can handle RS-232 communications arrived on the scene even 
before microcontrollers became popular. These chips were called UARTs (for Universal 
Asynchronous Receiver and Transmitter). 
 
In this course, you’ll build a variety of software-only UARTs using the SX’s speed to simulate a 
UART and still leave time for your actual program. In this unit, you’ll examine the transmitter 
portion only. To avoid confusion, I’ll continue to refer to a UART, even though in this unit the 
code only transmits. 
 
Sometimes transmitting is all you need. For example, suppose you have a remote weather 
station that should send the temperature, wind speed, and wind direction to a remote 
receiver. This system may not require a receiver. It simply broadcasts its data to whoever is 
listening on the other end. 

UART Transmission Logic 
There are a few things you need to think about when designing a serial transmitter: 
 

• What state is the line in while idle? 
• How long should each bit last? 
• How many bits are transmitted? 
• Does the least-significant bit appear first or last? 
• How long is the minimum idle between characters (the stop bit)? 

 
For RS-232 many of these things can’t change. For example, you send bits least-significant 
first. The baud rate corresponds to the number of bits per second, and therefore, the length of 
each bit is the reciprocal of the baud rate. So at 9600 baud, for example, each bit’s period is 
1/9600 or about 104 microseconds. The receiver and the transmitter agree on the minimum 
length of the stop bit and this is usually the same as the bit period. 
 
The only remaining question then is what state is the line in while idle? This varies depending 
on the hardware design. If you are connecting to the TTL side of an inverting line driver (like a 
MAX232), the line should be high when idle. If you are connecting directly to an RS-232 
receiver (which, as mentioned earlier, is not always going to work) the line should be low 
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when idle. Figure 10-1 is an RS-232 transmission of an ASCII “A” character (%01000001). 
Notice the bits are inverted and the least-significant bit is first. 
 

 
 

Figure 10-1: RS-232 Transmission  
 

Creating the Code 
The Parallax Web site contains several UART routines. Actually, one of these implements 8 
19.2 K UARTs! Another example allows you to configure the UART to operate between 2400 
and 230.4 K baud. 
That's a bit of overkill for this application. However, there is no shortage of examples to study. 
 
One approach would be to use part of your ordinary program to directly manipulate the output 
port. This would work, but it would also tie up your program for the entire duration of the byte 
you wanted to send. It would also prevent you from sending characters while anything else 
was happening. 
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A better idea is to send the bits from within an interrupt service routine (ISR). You can set up 
a periodic interrupt that is faster than the bit rate and do all the work during the ISR. This 
makes even more sense when you consider that to receive serial data (the next logical step) 
you’ll almost have to use interrupts unless you plan to do nothing but wait for the input’s start 
bit. 
 
You can find a simple UART transmitter in the section at the end of this unit entitled The 
Transmitter Code. This UART is fixed at a rate of 19.2Kbaud (19,200 baud) and directly drives 
an RS-232 receiver with 8 bits and no stop bit. 
 
When the main program wants to send a character, it calls send_byte with the character in 
the w register. This routine loads the character into the top 8 bits of the 16-bit transmit 
register (tx_high and tx_low). In reality, the code only uses 10 bits of the register since only 
tx_low.7 and tx_low.6 make any difference. The send_byte routine clears the top bit (bit 
7) of tx_low – this corresponds to the start bit. The ISR will invert the bits, so a 0 will 
represent a high start bit. 
 
Finally, send_byte sets the tx_count variable to 10. This is the bit count; 8 bits + 1 start bit 
+ 1 stop bit. The routine, by the way, waits for tx_count to be zero to prevent overwriting an 
output byte in progress. 
 
All the real work occurs in the interrupt routine. The first section examines tx_count. If this 
variable is zero, no transmission is pending, and there is no reason to do any further 
processing. 
 
The second section simply decrements a counter (tx_divide) by 1 and if the counter is not 
zero, the ISR returns immediately. This has the effect of dividing the interrupt rate by 16. Of 
course, you could program the interrupt to occur once per bit period, but this method allows 
you to easily change the baud rate. For example, setting the division rate (txdivisor) to 32 
will result in a 9600 baud speed. If you need 4800 baud you could set txdivisor to 64. You’ll 
read more about baud rate calculations in the next section. Also, when receiving characters 
you’ll need multiple interrupts per bit time anyway, as you’ll see in a later unit. 
 
If it is time for a new bit, the ISR shifts the 16-bit transmit register to the right one place. 
Before it does this, it sets the carry bit. This will ensure that the final bit (or bits) will be high – 
just what you need for the stop bit (since the output is inverted). The output bit, represented 
by tx_low.6, is written out (inverted) to the I/O port. The tx_count variable, of course, is 
decremented. Shifting right means the least-significant bits go out first, as required by RS232. 
 
Once the bit is written, the ISR is done, so it exits, scheduling itself to run again 163 clock 
cycles after the last interrupt. The main code spends most of its time waiting for tx_count to 
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drop to zero (in the send_byte routine) so that it can send the next byte. Of course, a real 
program would probably have much more work to do while the ISR is sending data. 

Calculating Baud Rates 
Calculating the baud rate can sometimes seem like a black art, but with a little thought, it isn’t 
too difficult. The SX, in this case, is running at 50 Mhz, which corresponds to 1/50000000, or 
20 ns per clock cycle. The ISR will execute every 163 clock cycles or 3.26 µs. Finally, the ISR 
only executes every 16 interrupts, so the code runs every 52.16 µs. The desired baud rate is 
19200 bits per second, which is 1/19200 or 52.08 µs. The 52.16 µs period is only off by 0.15% 
-- close enough for practical purposes. 
 
Obviously, you can alter this equation to suit your needs. Suppose you want to run the SX at 
10 MHz instead of 50 MHz and work at 9600 baud? This lower clock frequency would reduce 
power consumption, but it will also require you to recalculate the interrupt rates.  
 
Each clock cycle in this case is 100 ns. The total bit time is about 104.2 µs. Dividing 104.2 µs 
by 100 ns tells you that each bit will require 1042 clock cycles. Of course, you can only 
program the timer with an 8 bit number, so you can’t program the timer to directly interrupt 
every 1042 clock cycles. 
 
If you select a timer rate of 50 cycles, the interrupt will occur every 5 µs (handy for later 
generating a real-time clock). The interrupt divisor can then be 21. This, of course, is not 
exactly correct (it should be 20.84). Is this too far off? 
 
To determine this, reverse the calculations to find out the true bit time: 21 x 5 µs is 105 µs, an 
error of only 0.77%. This is well within the tolerance of any real-world device. 
 
When selecting these values, you need to consider how many clock cycles your ISR requires to 
execute. In this example, the interrupt will occur every 50 clock cycles. If the ISR requires 50 
clock cycles or more to execute, you’ll have a problem. Even if the ISR approaches 50 clock 
cycles, you may not be able to use the numbers you calculate. Why? Suppose the ISR requires 
40 cycles. This leaves only 10 cycles out of 50 to process your main program! So in 5 µs, the 
ISR will use up 4 µs, and the main code can execute for 1 µs. 
 
If you run into this problem, you can adjust the clock period up and the divisor value down. 
For example, 75 cycles in the last example results in a 7.5 µs interrupt time. With a divisor 
value of 14 this leads to a 105 µs bit period (off by less than 1%). 
 
The simple transmitter code only requires 21 cycles (maximum) so in this case 50 cycles 
between interrupts is plenty. Remember that 21 cycles is the worst case. Most of the time the 
ISR only require 9 or 11 cycles so there is plenty of time left over for the main program. 
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Configuration 
The program at the end of this unit simply transmits “ABC” repeatedly as fast as possible. The 
data bit is inverted so you can just directly connect the output pin (RA.3) to a PC’s serial 
input. If you are using a DB9 connector, attach the DB9’s pin 2 to the SX’s RA.3 pin. You’ll 
also need to connect the DB9’s pin 5 to a common ground (Vss) on your SX-Tech board. 
 
What if you wanted to use a serial line driver (like a MAX232, for example)? You’d need to 
stop inverting the data output. The actual output operation occurs in this line of code (found 
just above the noisr label): 
 
  movb tx_pin,/tx_low.6 ; output next bit 
 
The slash character (/) indicates that the SX should invert the bit before writing it to tx_pin. 
You’ll notice that near the top of the program, tx_pin is set to equal ra.3. This allows you to 
easily configure the program to use a different pin. Of course, if you change the port 
assignment, you’d need to change the initialization of the port registers too. For example, if 
you wanted to use ra.0, you’d also need to change the initialization code from: 
 
reset_entry mov ra,#%0000  ;init ra 
  mov !ra,#%0111 
 
to: 
reset_entry mov ra,#%0000  ;init ra 
  mov !ra,#%1110 
 
Naturally if you wanted to use a pin on port B or C you’d have even more changes to make. 
 
If you wanted to handle a line driver, you could remove the slash on the movb command so 
that it read: 
  movb tx_pin,tx_low.6 ; output next bit 
 
You’d also want to change the initialization code to: 
 
reset_entry mov ra,#%1000  ;init ra 
  mov !ra,#%0111 
 
Since the idle state of the line is high when using a driver. 
 
Obviously, making changes involves a lot of trouble. This is where the SX-Key’s macro 
capabilities can be very handy. 
 
For example, consider the inverted bit change. You could define a single symbol near the top 
of the program that controls the inversion: 



Unit 10: A Software UART – The Transmitter 

Page 142 • Beginning Assembly Language for the SX Microcontroller 

 
linedriver equ 0   ;1 if using line driver 
 
Then in the remainder of the code, you can use IF to selectively assemble different code. For 
example: 
 
IF linedriver=0 
  movb  tx_pin,/tx_low.6 ; output next bit 
   ELSE 
 movb tx_pin,tx_low.6 ; output next bit 
ENDIF 
 
Of course, you’d have to wrap each change with an IF statement. Keep in mind that this does 
not perform the logic at run time. It makes the comparison during the assembly process. This 
causes the assembler to only process one statement or the other. In this case, there is only 
one statement, but you can place as many statements as you like between the IF and the 
ELSE and the ELSE and the ENDIF. You don’t have to use the ELSE statement if you don’t 
want an alternative block of code. You can even nest one IF inside another: 
 
IF someoption = 1 
     mov  w,#100 
    IF anotheroption = 1 
 mov  avar,w 
    ELSE 
 mov  var,w 
    ENDIF 
ENDIF 
 
Another way to use IF is to use IFDEF and IFNDEF. Using these instead of IF allow you to 
test if a symbol is defined (or not defined in the case of IFNDEF). 
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You may have noticed that when a program sets a symbol value, it might use the 
equ directive, or it might use an equal sign (=). For example: 
 
somevalue    equ    100 
 
or: 
 
somevalue    =       100 
 
These statements do the same thing, with one important difference. Once you 
use equ you can’t change the value of the symbol later. When you use the equal 
sign, you can decide to change the value later. For the purpose of these 
programs, equ is probably the best bet, but it doesn’t make much difference. 
However, when you construct macros, you might want to change the value of the 
symbol as part of macro processing. Then you’d avoid using equ. 

Testing the Transmitter 
If you enter the code listed under The Transmitter Code at the end of this unit, you should be 
able to run it with the SX-Key’s Run command. Connect RA.3 to pin 2 of a DB9 connector and 
Vss to pin 5 of the connector. Then use a normal 9-pin serial cable to connect the DB9 
connector to a free serial port on your PC. You should use a serial port that is not otherwise in 
use. Also, on many PCs, you can’t use COM1 and COM3 or COM2 and COM4 at the same time. 
 
You can use any terminal program to see the results. If you are using Microsoft Windows, you 
can use the Hyperterminal program. Simply create a new connection that uses the serial port 
you’ve used to connect to the SX. Make sure to select 19200 baud, 8 bits, 1 stop bit, no parity, 
and no handshaking, as in Figure 10-2. 
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Figure 10-2:  HyperTerminal Setup 
 
You should observe the characters on the terminal window’s screen. Troubleshooting serial 
problems is always tricky, but here are a few things to look for: 
 

• If the terminal program complains that there is an error, you have no hope of 
anything working. You’ll first need to find a free port, or close software using the port 
already. 

• You should use a straight cable (or connect to DB9 pin 3 if the cable is crossed). You 
can determine if the cable is straight by measuring the pins with an ohmmeter. A 
straight cable connects pin 2 on one side to pin 2 on the other side (and the same for 
pin 3). A crossed cable will connect pin 2 on one side with pin 3 on the other side 
(and vice versa). 

• As mentioned before, the baud rate and other parameters must match exactly. 
• Make sure the DB9’s ground pin (pin 5) is connected to the same ground as the SX-

Tech board. 
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• It is possible that the PC you are using will not accept RS-232 levels of 0 and 5 V. If 
this is the case, try another PC if possible. You can also use a line driver like the 
Maxim MAX232. Virtually all modern desktop computers will work without a line 
driver. Laptops seem more questionable, but even then, many will work. 

Debugging ISRs 
Once you have the code running you might be tempted to use the SX’s debugging capability. 
You can do this of course, but there are a few things you should know. First, the ISR will not 
work properly while debugging. After all, the whole premise that the serial transmitter 
operates on is that an interrupt will occur at a regular period. When you stop at a breakpoint, 
this upsets that assumption. 
 
If you let the SX run at full speed under the debugger, the transmitter will work. Then you 
can’t really peek into its execution very well. If you are trying to see what happens inside the 
ISR, the best idea is to place a breakpoint in the ISR code and let the processor run. Of 
course, the ISR’s timing will be thrown off, but you can reliably see the flow of execution. 
 
If you are stepping through non-interrupt code, don’t be surprised if you suddenly find 
yourself inside the ISR (this happens when an interrupt occurs). If you don’t want to step 
through each line of the ISR, simply place a breakpoint on the RETIW instruction and then 
step from there. Either way, the timing of the interrupt routine will be affected. 
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Summary 
A serial transmitter, while useful in its own right, is only half of the story. While some devices 
only transmit, most will want to transmit and receive. In the next unit, you’ll examine a case 
where transmitting data is sufficient. Later, you’ll see how to handle serial data reception and 
then marry the two pieces to create a true software UART. 

The Transmitter Code 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 10.1 
;19.2K RS232 transmitter 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  freq  50000000 
  reset reset_entry 
; 
; 
; I/O definition 
; 
tx_pin  = ra.3 
; 
; 
; Variables 
; 
  org 8 
 
temp  ds 1 
 
 
  org 10h    
serial  = $ 
 
tx_high ds 1    
tx_low ds 1 
tx_count ds 1 
tx_divide ds 1 
txdivisor equ 16     ; 16 periods per bit 
 
  org 0 
; 
; 
; Interrupt routine - UART 
; 
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interrupt  
  bank serial    
  test tx_count ; busy? 
  jz  noisr  ; no byte being sent 
  dec tx_divide 
  jnz    noisr 
  mov tx_divide,#txdivisor    ; ready for next 
  
  stc                           ; ready stop bit 
  rr tx_high   ; go to next bit 
  rr tx_low    
  dec tx_count  ; count-1 
  movb tx_pin,/tx_low.6 ; output next bit 
noisr 
  mov w,#-163  ;interrupt every 163 clocks 
  retiw     
; 
 
;*********************************************************************** 
; 
; 
; Send byte via serial port 
; 
send_byte bank serial 
 
:wait  test tx_count ;wait for not busy 
  jnz :wait 
 
  mov tx_high,w 
  clrb   tx_low.7    ; set start bit 
  mov tx_count,#10 ;1 start + 8 data + 1 stop bit 
  ret 
 
reset_entry mov ra,#%0000 ;init ra 
  mov !ra,#%0111 
 
  clr fsr  ;reset all ram banks 
:loop  setb fsr.4 
  clr ind 
  ijnz fsr,:loop 
  mov tx_divide,txdivisor 
  mov !option,#%10011111 
 
; **** Your code goes here **** 
xloop 
        mov  w,#'A' 
  call  send_byte 
  mov  w,#'B' 
  call  send_byte 
  mov  w,#'C' 
  call  send_byte 
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  mov  w,#13 
  call  send_byte 
  mov  w,#10 
  call  send_byte 
  jmp  xloop 

Exercises 
 
1. After you have the transmitter code working, alter it so that it operates at 20 MHz and 
works at 9600 baud. Calculate the error your code will have compared to the ideal as a 
percentage. 
 
2. Use equates to set the interrupt period so you can easily change it from its default value of 
-163. 
 
3. Use equates and the IF directive to allow you to select the baud rate using a line like this: 
  
baudrate  = 9600 
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Answers 
1. There are many possible answers to this question. Changing the interrupt divisor from 16 to 
13 would work (without changing the –163 in the ISR). This results in a bit period of 105.95 
µs, and error of about 1.4% -- a bit high but probably acceptable for most devices. Changing 
the –163 to –80 and setting the interrupt divisor to 26 results in 104 µs, an error of less than 
0.5%. Your answer should use an interrupt period high enough to allow processing and less 
than 255.   
 
2. Simply add this line near the top of the file (after the txdivisor value is set is a good spot): 
 
isrperiod  equ  –163 
 
Then you also have to modify the line before the iretw statement to read: 
 
  mov  w,#isrperiod 
 
3. There are several ways you could do this. Here is one example (assuming a 50 MHz clock): 
 
baudrate = 9600 
 IF  baudrate = 19200 
isrperiod equ -163 
txdivisor equ 16 
 ENDIF 
 
 IF baudrate = 9600 
isrperiod equ -163 
txdivisor equ 32 
 ENDIF 
 
 . 
 . 
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Unit 11: Analog Input 
 
The SX is, of course, a digital device. The classic way to interface an analog input to a digital 
device is to use an Analog to Digital converter (ADC or A/D). This is certainly possible with the 
SX. Many vendors make suitable ADCs that connect using some type of serial connection. 
There are also many ADCs that use parallel connections, but these take many pins and are 
usually less suitable for use with the SX. 
 
However, because of the SX’s speed and special features, you can perform analog input using 
just two resistors and a capacitor. Does that seem to good to be true? Well, there are some 
limitations to this technique, but in general you can make the SX read an analog voltage in this 
way. 

The Simple ADC 
Figure 11-1 is the circuitry required to form the simple ADC: 
 

 
 

Figure 11-1: The Simple ADC Circuit 
 
You can use a potentiometer to provide the analog input, or use a variable power supply. If 
you use a potentiometer, simply wire it as a voltage divider – place +5 V at one end, ground 
at the other end, and connect the center (the wiper) to the analog input pin.  You could 
consider this technique one way to measure the position of a potentiometer, although it is 
really reading the voltage level developed at the junction of the resistors and the capacitor. 
 
At first glance this doesn’t seem likely to make an ADC. How does it work? The answer lies in 
two features of the SX. First, the SX can select a CMOS input threshold mode for input pins. In 
this mode, the input sees 2.5 V as a 1 and anything below that to be a 0. The second feature 
this scheme relies on is sheer speed. In the schematic, RB0 is an output and RB1 is an input. 
The SX, via a periodic interrupt, modulates the output pin so that the input (RB1) hovers 
around the 2.5 V threshold. Along the way the program counts how often the capacitor has 
charged up past 2.5 V and required a discharge. After 255 cycles, this count will be 
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proportional to the voltage (as a percentage of 5 V). So a 5 V input will read 255 counts. A 2.5 
V input should read 128 counts. 
 
Here is the basic logic written in pseudo code: 
 

• Read the input bit 
• Invert the input bit 
• Write the inverted input to the output 
• If the output was 0 (capacitor discharge), add 1 to the voltage count 
• Add 1 to the cycle count 
• If 256 cycles have elapsed (the cycle count is 0), copy the result, set a flag, and zero 

the voltage count 
 
The code does not explicitly repeat because it executes during a periodic interrupt (much as 
the UART did in the last unit). 
 
If you take a minute to study the code in this easy-to-understand form, you can discern its 
operating principle. The processor tries to reverse the state of the input on each cycle. The 
number of discharge reversals is proportional to the input voltage. Consider the two extreme 
cases. If the input is stuck at 0 V, the SX will never charge the capacitor, and will never need 
to discharge it. Therefore, the count should be 0. If the input is at 5 V, the SX will never 
successfully discharge the capacitor and will try on each cycle leading to a count of 255. If the 
input is 2.5 V, you’d expect it to alternate between charging and discharging leading to a 
count of 128 since the code will only count up on alternate cycles. 
 
In real life, the result will not be the same each time. The last bit or two will tend to shift back 
and forth and small imprecisions in the circuit elements will create small variations in the 
result. Still, for such a simple circuit the accuracy isn’t bad and the value is quite useful for 
many applications.  

Writing the Code 
Implementing the A/D in software isn’t that hard once you have the idea. Of course, during 
initialization you must set one pin to an input and the other to output. You also have to set the 
input threshold to CMOS by manipulating the I/O port option register. Assuming you want to 
use RB0 and RB1 for the A/D (and you don’t care about the rest of port B) you could use this 
code: 
 
  clr rb   ;init rb 
  mov !rb,#%00000010 
  mov m,#$D   ;set cmos input levels 
  mov !rb,#0 
  mov m,#$F 
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You can find the complete code at the end of this unit. Setting the m register to $D allows you 
to set the threshold options (this is not the case on an SX48/52, which requires a $10 and $1F, 
respectively). Clearing !rb sets the CMOS input level. Setting m back to $F is a good idea so 
you don’t forget later in your program that the !rb register doesn’t have its usual properties. 
 
The interrupt routine follows the outline of the pseudo code: 
   
bank analog    
 
; shifting moves the input bit to the output bit 
  mov w,>>rb   ; read capacitor level  
  not w   ; invert 
  and w,#%00000001  ; write to output 
  mov port_buff,w 
  mov rb,w   ; and update pins 
 
  sb port_buff.0   
  incsz adc0_acc  ; if it was high, inc acc 
  inc adc0_acc 
  dec adc0_acc  ;inc/inc/decprevents rollover 
  inc adc_count  ; done (8 bits)? 
  jnz adc_out 
; Done so store result 
  mov adc0,adc0_acc 
  setb complete.0  ; set complete flag 
; clear for next pass 
  clr adc0_acc 
; standard UART transmit 
 . 
 . 
 . 
 
The interrupt routine continuously measures the input. When it completes 256 cycles 
(indicated by the adc_count variable) it sets the complete flag and copies the result (in 
adc0_acc) to adc0. This allows the interrupt routine to continue with the next calculation 
while the main program reads the previous value. Here is an excerpt from the main program: 
 
:wait  jnb complete.0,:wait    ; wait for data ready 
  mov    w,adc0 
  clrb   complete.0  ; set up to wait again 
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Mixing Interrupt Routines 
The example program reads the analog input value and converts the raw hexadecimal value to 
2 ASCII characters. It then uses the UART transmitter from the last unit to send this value to a 
PC. Each measurement ends with a carriage return. You can view the output with any terminal 
program (for example, Hyperterminal as used in the last unit). Of course, if you can write PC 
programs you could also write a custom program to post process and store the data. 
 
This example uses the interrupt routine for analog conversion along with the UART transmitter 
routine. When you mix routines you have to consider several important factors: 
 

• Can the routines share an interrupt period? 
• Does either of the routines take a constant time to execute? 
• Does one or more routines need a precise period? 
• What is the total execution time of the two routines? 

 
If you can adjust the routines to use the same interrupt period, you’ll have less trouble. 
However, this isn’t always possible. Sometimes you can set the interrupt period to a fast time 
and use counters to divide the time for the routines that need it. For example, suppose one 
interrupt routine needs to execute every 300 µs and the other needs to execute every 500 µs. 
You might consider setting the interrupt period to 100 µs and use a counter to allow the first 
routine to execute on every third interrupt and the second routine to execute on every fifth 
interrupt. 
 
The other concern is how precise do you need the timing for each routine? Suppose you set 
the interrupt to occur every 200 µs. The first routine takes somewhere between 300 ns and 
700 ns to execute. Then the second routine will not necessarily run every 200 µs.  
 
As an example, try using some numbers that are easier to work with (although unrealistic). 
Suppose your interrupt occurs every 10 seconds. Further suppose that routine A usually takes 
1 second to execute. However, every third interrupt, routine A requires 3 seconds. Routine B 
always takes 1 second to execute. Finally, imagine that the first interrupt occurs when your 
mental stopwatch begins (T=0). Table 11-1 how your imaginary system would work: 
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Table 11-1: Interrupts 
T Action Elapsed Time 
0 Routine A N/A 
1 Routine B N/A 
10 Routine A 10 
11 Routine B 10 
20 Routine A 10 
23 Routine B 12 
30 Routine A 10 
31 Routine B 8 
40 Routine A 10 
41 Routine B 10  

 
You can see that routine B will not run every 10 seconds as you’d expect. Since your program 
normally sees errors in the micro or nanosecond range (not in seconds), this may not be a 
problem. The program for this unit, for example, can easily tolerate a small error in the RS-232 
bit rate. However, the A/D code is less accurate if the time period is inexact. That’s why the 
A/D code appears first in the interrupt handler. 
 
Sometimes you can write your code so that it takes a constant amount of time to execute. For 
example, consider this code: 
 
  jz intb 
  inc ctr1 
intb 
 
If the jump is not taken, this code requires 3 cycles to execute. If the jump is taken, it 
requires 4. You could compensate for this by rewriting the code: 
 
  jz intb 
  inc ctr1 
  nop 
intb 
 
Now the code requires the same amount of time to execute no matter what. The nop 
instruction just wastes an instruction cycle. If you need to waste three cycles, you can save 
some space by using jmp $+1. This instruction effectively does nothing but wastes three 
cycles instead of just one. 
 
If you need to write lots of nops you can use the REPT directive. This is an instruction to the 
assembler that allows you to repeat a sequence of instructions. For example: 
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  REPT  10 
  NOP 
  ENDR 
 
This inserts 10 nop instructions into your code. You can use the per cent character (%) to 
return the current repeat number (starting with 1). So to insert a table with the numbers 1 
through 5 in it you could write: 
 
table5 
  dw 1 
  dw 2 
  dw 3 
  dw 4 
  dw 5 
 
Or you could write: 
 
table5  REPT 5 
   dw % 
  ENDR 
 
If you wanted the numbers 0 to 4 instead, you’d use dw %-1 in the middle of the REPT 
block. 
 
The REPT block is one place where you have to be careful with labels. Suppose you wanted to 
repeat a 3 cycle nop. You might write: 
 
  REPT  10 
  jmp  here 
here 
  ENDR 
 
This makes sense, but it fails because it defines the here label 10 times. Even local labels 
won’t work. Instead, use $ to reference the current location: 
 
  REPT  10 
  jmp  $+1 
  ENDR 
 
You could also use this form, but it isn’t as elegant: 
 
here  ; must be on a separate line 
  REPT  10 
  jmp  here+% 
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  ENDR 
 

Hex Conversion 
The hex conversion routine might need a little study before it becomes clear. The send_hex 
routine stores the number in number_low so it can retrieve the value later. Notice this 
instruction:    
  mov w,<>number_low  ;send first digit 
 
This swaps the two four-bit halves of number_low and stores the result in w. So if the 
original number was $A1, w now contains $1A. The program then calls :digit which isolates 
the bottom four bits and converts it to ASCII (more on that routine later). 
 
Once :digit is complete, the program reloads w from number_low and then just drops into 
the :digit routine. This is a special form of a technique known as the hidden return. It makes 
your code somewhat harder to read, but it saves valuable program space. 
 
In your program, you can use the hidden return by spotting places where you have code that 
looks like this: 
 
  call  b 
  ret 
 
Since routine b must end in a ret instruction, you can replace these two lines with a single 
jmp b instruction. The hex conversion routine takes this idea one step further. By positioning 
the  b routine at this spot in the program, you can eliminate both lines of code. Any other part 
of the program that calls b doesn’t really care where it is located. Don’t forget that the SX call 
instruction does require you to keep your subroutines in the first half of each page, however. 
 

 

If you want to document this hidden return, you can put the missing instructions 
in as a comment. For example, you might write: 
 
 jmp       b        ; call b 
 ;ret 
 
Or, if you’ve deleted everything, you could write: 
 
 ; call      b 
 ;ret 
b mov      x,100. 
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Table Lookup 
The :digit routine uses the iread instruction to lookup the correct ASCII character. The iread 
instruction retrieves a value from the SX’s program memory. The SX has enough memory 
space that a single byte can’t address it all, so the iread instruction forms an address using 
the M register and the w register. So if you want to read location $200, you’d set M to 2 and 
w to 0. Of course, it is a good idea to restore M to its default value when you are done. 
 
The M register is 4 bits wide, so you can form a 12-bit address. The resulting word is also 12-
bits wide and iread returns the result in the M and w registers. In this case, the program is 
only interested in the byte result, so it discards what is in M.  
 
The iread instruction is somewhat expensive (4 cycles in turbo mode). There is another way 
you can create a table – using the retw command. Suppose you want to construct a table 
that has the square of a number between 0 and 3. You could write a subroutine like this: 
 
lookup2 jmp PC+W 
  retw 0 
  retw 1 
  retw 4 
  retw 9 
 
You could extend this to any number of entries less than 255. Now when you call lookup2, 
the value in the w register causes a jump to the correct return statement. The assembler will 
also let you put the values together as in: 
 
  retw 0,1,4,9 

A Word about Input Impedance 
If you do some serious measurements with the A/D converter presented in this unit, you will 
find that the results may not match what you expect. The problem is that the input resistors 
set the circuit’s input impedance, which is relatively low (for practical purposes, 11 kΩ  – the 
value of both resistors in parallel). You can combat this somewhat with higher-value resistors, 
but at some point, it becomes too difficult to charge and discharge the capacitor, so accuracy 
suffers again. 
 
If all you care about is measuring the position of a potentiometer or a relative voltage, you 
probably don’t care. For serious work, however, you’d want to use an op-amp buffer. Any 
general-purpose op-amp (for example, a 741 or a 324) could be connected as a non-inverting 
amplifier and would present a very high input impedance to the circuit. This would improve 
accuracy considerably. Just remember that many op-amp circuits require positive and negative 
voltages higher than the voltages they have to handle (for example, + and – 12 V supplies are 
common). 
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The Complete A/D  

Converter Code 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 11.1 
;Simple A/D Converter 
;======================================================================= 
; Device 
; 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset reset_entry 
; 
; 
; Equates 
; 
tx_pin  = ra.3 
adc0_out_pin = rb.0 
adc0_in_pin = rb.1 
; 
; 
; Variables 
; 
  org 8 
 
temp  ds 1 
number_low ds 1 
complete ds 1      ; bit 0 = 1 when complete 
; holding for voltages 
v0  ds 1 
 
 
  org 10h    
serial  = $ 
 
tx_high  ds 1   ;tx 
tx_low  ds 1 
tx_count ds 1 
tx_divide ds 1 
txdivisor = 16      ; 16 periods per bit 
 
  org 30h 
analog  = $ 
 
port_buff ds 1   ;buffer - used by all 
 
adc0  ds 1   ;adc0 
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adc0_acc ds 1 
 
adc_count ds 1   ; count for both ADCs 
 
 
  org 0 
; 
; 
; Interrupt routine - ADC + UART 
; 
interrupt  
  bank analog    
 
; shifting moves the input bit to the output bit 
  mov w,>>rb   ; read capacitor level  
  not w   ; invert 
  and w,#%00000001  ; write to output 
  mov port_buff,w 
  mov rb,w   ; and update pins 
 
  sb port_buff.0  ; adc0 
  incsz adc0_acc  ; if it was high, inc acc 
  inc adc0_acc 
  dec adc0_acc  ; inc/inc/dec prevents rollover 
  inc adc_count  ; done (8 bits)? 
  jnz adc_out 
; Done so store result 
  mov adc0,adc0_acc 
  setb complete.0  ; set complete flag 
; clear for next pass 
  clr adc0_acc 
; standard UART transmit 
adc_out 
  bank serial    
  dec tx_divide 
  jnz    noisr 
  mov tx_divide,#txdivisor    ; ready for next 
   
  test tx_count         ; busy? 
  jz  noisr          ; no byte being sent 
  stc    ; ready stop bit 
  rr tx_high    
  rr tx_low    
  dec tx_count   
  movb tx_pin,/tx_low.6    ;output next bit 
noisr 
  mov w,#-163    ;interrupt every 163 clocks 
  retiw     
; 
 
; required to output HEX numbers 
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_hex  dw '0123456789ABCDEF' 
; 
; 
;*********************************************************************** 
;* Subroutines * 
 
; Send hex byte (2 digits) 
; 
send_hex 
  mov number_low,w  ; save W 
  mov w,<>number_low  ; send first digit 
  call :digit 
 
  mov w,number_low  ; send second digit 
 
:digit  and w,#$F   ; read hex chr 
  mov temp,w 
  mov w,#_hex 
  clc    ; just in case +c is enabled 
  add w,temp 
  mov m,#0 
  iread               ; read from program mem! 
  mov m,#$F 
 
; fall into send byte 
 
;*********************************************************************** 
; 
; 
; Send byte via serial port 
; 
send_byte bank serial 
 
:wait  test tx_count  ;wait for not busy 
  jnz :wait 
 
  mov tx_high,w 
  clrb   tx_low.7     ; set start bit 
 
 
  mov tx_count,#10  ;1 start + 8 data + 1 stop bit 
  ret 
reset_entry mov ra,#%1000  ;init ra 
  mov !ra,#%0111 
  clr rb   ;init rb 
  mov !rb,#%00000010 
  mov m,#$D   ;set cmos input levels 
  mov !rb,#0 
  mov m,#$F 
 
  clr fsr   ;reset all ram banks 
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:loop  setb fsr.4 
  clr ind 
  ijnz fsr,:loop 
  mov tx_divide,txdivisor 
  mov !option,#%10011111 
 
; **** Your code goes here **** 
top      ; main loop 
  bank analog 
:wait  jnb complete.0,:wait    ; wait for data ready 
  mov w,adc0 
  clrb complete.0      ; get ready to wait again 
  call send_hex        ; write out 
  mov w,#13      ; send cr  
  call send_byte 
  jmp top 
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Summary 
Although the SX is primarily a digital device, its speed allows it to handle certain analog 
quantities. Under the right circumstances, employing techniques like this can save money by 
eliminating the need for an inventory of special processors or dedicated A/D chips. 
 
Along with analog conversion, this unit explored the REPT directive and some interesting ways 
to handle table lookups. The programs are getting more complicated and you’ll find directives 
like REPT more useful as you build more sophisticated programs. 

Exercises 
1. Add a second A/D channel using port B2 and B3. Have the program send both values then a 
carriage return. 
 
2. Set the baudrate to 300 baud by changing its interrupt period to 10432 clocks, but keep the 
A/D running at the same rate (163 clock cycles).  
 
3. Optional: If you are familiar with a PC programming language, write a program that reads 
the values from the program, calculates the voltage and displays it. The solution uses QBASIC 
under MSDOS. 
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Answers 
(All). You must modify the code in several places to accomplish this task. First, you must set 
the correct pattern of I/O pins during initialization: 
 
  mov !rb,#%00001010 
 
You’ll also have to add corresponding lines to the interrupt routine: 
 
  mov w,>>rb   ; read capacitor level  
  not w   ; invert 
  and w,#%00000101  ; write to output  
  mov port_buff,w 
  mov rb,w   ; and update pins 
 
  sb port_buff.0  ; adc0 
  incsz adc0_acc  ; if it was high, inc acc 
  inc adc0_acc 
  dec adc0_acc  ;inc/inc/dec prevents 
      ; rollover 
  sb port_buff.2  ; adc1     
  incsz adc1_acc  ; if it was high, inc acc  
  inc adc1_acc 
  dec adc1_acc  ;inc/inc/dec prevents 
      ; rollover 
  inc adc_count  ; done (8 bits)? 
  jnz adc_out 
; Done so store result 
  mov adc0,adc0_acc 
  mov adc1,adc1_acc       
  setb complete.0  ; set complete flag 
; clear for next pass 
  clr adc0_acc 
  clr adc1_acc      
  
 
The lines with underlines beneath them are changes to the existing code. Of course, you also 
have to define the adc1_acc, and adc1 variables. Finally, you can modify the main program: 
 
top      ; main loop 
  bank analog 
:wait  jnb complete.0,:wait    ; wait for data ready 
  mov v1,adc1     ; hold temporary v1  
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  mov    w,adc0 
  clrb   complete.0      ; get ready to wait again 
  call send_hex        ; write out 
  mov w,v1        
  call send_hex       
  mov w,#13      ; send cr  
  call send_byte 
  jmp top 
 
It is important to store the value in a temporary variable (the new v1 variable) so that the two 
values are from the same measurement time. Without this new variable, it would be possible 
for the channel 1 value to change while you were writing out the value for channel 0. In this 
example, it doesn’t make much difference. In real life, you’d probably want the two values to 
correspond to each other. 
 
1. The easiest way to accomplish this is to put a 64x divider in front of the UART code using 
a new variable: 
 
adc_out 
        inc x64           
  jnb x64.6,noisr          
  clr x64       
  bank serial 
 
This allows the A/D code to continue running at a 163 clock cycle period, but effectively only 
runs the UART transmitter every 10432 clock cycles. Since 19200 baud is 64 times 300 baud, 
the txdivisor value need not change. If the question had asked to move to, for example, 
9600 baud, you could simply adjust the txdivisor value, but in this case the speed difference 
was too great to be held in a single byte. 
 
2. Your solution to this problem will vary depending on what languages you have at your 
disposal. The following program uses QBASIC (this BASIC comes with many versions of 
MSDOS and Windows – you can also find it in the Windows Resource Kit). It assumes the SX is 
attached to COM1 and is operating at 300 baud. 
 
' Simple program to read a voltage 
DIM c AS STRING 
DIM v AS STRING 
DIM eu AS SINGLE 
COM(1) ON 
ON COM(1) GOSUB ComHandler  ' go here when characters available 
start: 
' open com1 no handshaking, 32k buffer 
OPEN "COM1:300,n,8,1,CD0,CS0,DS0,OP0,RS,RB32768" FOR INPUT AS #1 
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top: 
  WHILE INKEY$ = "": WEND 
  END 
 
ComHandler: 
  c = INPUT$(1, 1)    ' read character 
  IF ASC(c) = 13 THEN     ' end of packet? 
    IF LEN(v) <> 2 THEN   ' not a full packet? 
      v = "" 
      RETURN 
    ELSE 
' got a full packet so interpret it 
     eu = VAL("&H" + v) * 5 / 256 
     PRINT eu 
     v = "" 
     RETURN 
    END IF 
  END IF 
  v = v + c   ' build up packet 
  RETURN 
 
 
This program uses a special feature of QBASIC that allows the ComHandler routine to gain 
control whenever serial data is available (similar to an interrupt). Note that QBASIC is not fast 
enough to reliably handle high baud rates. 
 
When a character arrives, the program assembles it into a packet (this program assumes 1 
byte per packet). When a correctly formed packet arrives (2 characters followed by a carriage 
return), the program performs this calculation: 
 
eu   =  VAL("&H" + v) * 5 / 256 
 
Here the eu variable (short for engineering units) receives a floating point value that 
corresponds to the estimated input voltage. The VAL function converts a string to a number 
(the &H prefix tells QBASIC this is a hexadecimal number). Each count from the SX is worth 
5/256 V (roughly 19.5m V). 
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Unit 12: A Software UART – The 
Receiver 
 
In Units 10 and 11, you worked with a software serial transmitter. This is half of a UART 
(Universal Asynchronous Receiver Transmitter). The next obvious step is to design and build a 
receiver. The transmitter is somewhat simpler than a receiver. Why? Consider that when 
transmitting you don’t have to synchronize with anyone else – it is the receiver’s job to 
synchronize with you. 
 
Receiving is a bit more difficult. Instead of generating pulses of a specific width, you have to 
measure pulses. This wouldn’t be so hard, except you must synchronize with the transmitter’s 
start bit. This leads to some special considerations that are not necessary for the transmitter. 

Fast Enough? 
Each bit in a 9600 baud data stream occupies 104 µs. So if you sample an input every 104 µs, 
you can detect each bit, right? No! The problem is that timing on both sides of the system are 
not precise. If you sample right at the leading or trailing edge of a start bit, you are in danger 
of looking at the very edges of the bits and you might read one a shade too early or too late. 
 
Ideally, you’d find the rising edge of the start bit and then delay 52 µs. This would be 
approximately in the center of the start bit. Now the code can safely sample every 104 µs (a 
total delay of 156 µs for the first bit) with reasonable certainly that each bit will be stable. 
With interrupts you can wait for the start bit in this way, but the SX’s interrupt structure makes 
it challenging to handle multiple interrupt sources. You’ll eventually want to integrate the 
transmitter and the receiver (among other things) and it would be handy if you could use one 
periodic interrupt as a basis for both. 
 
When you sample at a regular interval, the Nyquist sampling theorem rears its head. This 
staple of signal processing theory states (among other things) that you have to sample twice 
as fast as the fastest signal you want to measure. So to find a 104 µs pulse, you’ll need to 
measure the input at least every 52 µs. Even this isn’t enough if you are planning to delay 52 
µs to center the timing. You might catch the center of the pulse and then skid past the end 
after the delay. To be safe, you should sample much faster, say 26 µs or less. 
 

Basic Logic 
The receiver will use several variables. The rx_count byte tracks the number of bits to read 
(including the stop bit). When the receiver is idle, this variable will be zero. Another byte, 
rx_divide, counts the number of interrupt periods that correspond to a bit. The received byte 
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is in rx_byte and a single bit, rx_bit, is set when the byte is ready. The receiver’s logic on 
each interrupt is: 
 

1. Read the input bit 
2. If no byte is in progress, check for a start bit 
3. If a start bit is present, load rx_count with 9 and rx_divide with 1.5 bit periods 
4. If a byte is in progress, decrement rx_divide; if not zero, exit 
5. Reset rx_divide to 1 bit period 
6. Decrement rx_count; if zero (indicating a stop bit) set the rx_flag bit; if not zero, shift 

rx_byte to the right and merge the sampled input bit from step 1 into the least-
significant bit 

 
Here is the complete ISR: 
 
  bank serial 
  movb c,/rx_pin  ;serial receive 
  test rx_count                 
  jnz :rxbit   ;if not, :bit 
  mov w,#9   ;in case start, ready 9 
  sc    ;if start, set rx_count 
  mov rx_count,w               
  mov rx_divide,#baud15 ;ready 1.5 bit periods 
:rxbit  djnz rx_divide,rxdone ;8th time through? 
  mov rx_divide,#baud 
  dec rx_count  ;last bit? 
  sz    ;if not, save bit 
  rr rx_byte                  
  snz    ;if so, set flag 
  setb rx_flag                  
rxdone 
 
This small bit of code performs the 6 steps (try and match each step with the corresponding 
code). Since the rx_divide counter is only really used once the receiver is synchronized, the 
code is searching for a start bit at the raw interrupt rate. If the ISR is using –163 as an 
argument to iretw, then this code searches for a start bit every 3.26 µs. This is twice as fast 
as a 150 KBaud input signal and four times as fast as a 75 K Baud input. 
 
If your main program wants to read a byte, it first tests rx_flag. Then it can read the byte. Of 
course, it must read characters fast enough to prevent character overruns. Here is a simple 
subroutine that reads a single character: 
 
get_byte 
  bank serial 
  jnb rx_flag,$  ;wait till byte is received 
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  mov byte,rx_byte        ;store byte (copy using W) 
  clrb rx_flag             ;reset the receive flag 
  ret 

Selecting the Baud Rate 
For the code above to work, you need definitions for baud and baud15. These represent the 
number of interrupt cycles for a bit, and for 1.5 bits. If the interrupt period is 163 clock cycles 
at 50 MHz, then each interrupt cycle is 3.26 µs. For 9600 baud the bit period is about 104.2 
µs. Since 104.2/3.26 is 31.96 you could use a count of 32 and be close enough. The baud15 
symbol, of course would be 48. 
 
One way to get the receiver working at 9600 baud would be to use the following statements: 
 
baud  equ 32 
baud15  equ 48 
 
It would be clever to base baud15 on baud so that it would always be correct: 
 
baud  equ 32 
baud15  equ 3*baud/2 
 
You can do math like this as long as the computation uses all constants so the assembler can 
compute the result. In this case 3, 2, and baud all have known values during assembly. You 
have to be careful, because the assembler only deals with integer math. It also evaluates 
expressions from left to right (not the usual order of operations). So writing 3*baud/2 works 
but writing 3/2*baud will not work. That’s because the assembler computes 3/2 first and 
finds the result is 1! You can use parenthesis if you like to make the order clear: 
 
baud15  equ (3*baud)/2 
 
It would be even better to select the baud rate in an intuitive way: 
 
baudrate equ 9600 
 
IF baudrate = 9600 
baud  equ 32 
ENDIF 
 
IF baudrate  = 1 9200 
baud  equ 16 
ENDIF 
 
baud15  equ 3*baud/2 
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Of course, you’d have to add IF cases for every baud rate you wanted to support. You might 
be tempted to write the entire calculation in the assembler. For example: 
osc = 50_000_000  ; the assembler allows _ to separate numbers 
icycle = 163 
baudrate = 9600 
 
baud   =  osc/(icycle * baudrate) 
 
This is technically acceptable, but because of the integer math, the answer is not precise. The 
correct result for baud is 32 (because the real answer is 31.9). With integer math, the result 
is simply 31. This error will result in a baud rate of 9895, an error of 3%. This might be 
acceptable, but you can do better with 32 (about 0.15% error).  
 

Buffering 
Your program may have more to do than just process characters. It is often useful to store 
characters away in a buffer for later use. Usually such a buffer is a circular buffer. A circular 
buffer is constructed so you place characters in one end of the buffer and retrieve them from 
the other end. As long as you read the characters before the other end of the buffer catches 
up, the buffer can always accept more characters. 
 
To implement a circular buffer, you’ll decide on the total number of characters you can hold at 
once. You’ll usually pick a power of two (16 is a handy number for the SX since you have 
access to 16 registers in each bank). You’ll then use one pointer to point to the head of the 
buffer (where input characters go) and another to point to the tail of the buffer. Programs 
read characters from the tail. When the tail and the head are equal, the buffer is empty. 
 
Each time you increment one of the pointers, you limit its value by anding it with, in this case, 
$F. This has the effect that the pointers wrap around. The head pointer moves in the 
sequence: 0, 1, 2, . . ., 14, 15, 0, 1, 2…  
 
The head pointer always points to the next empty slot. Unless the buffer is empty, the tail 
points to the next character waiting to be read. If the head pointer is just behind the tail 
pointer, the buffer is full. That means with 16 bytes, the total number of characters you can 
store is really 15, since the full condition wastes one byte. 
 
You could modify the ISR to store the character in such a circular buffer. Assume that 
rx_byte is in bank 0 (remember, bank 0 is available no matter what other bank is active). 
Also suppose that there is a head and tail variable in bank 0. An entire bank (any empty bank 
will do) will server as the 16-byte buffer. 
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You could replace the setb rx_flag statement in the ISR with code to place characters in the 
buffer. The changed program could look something like this: 
 
  mov fsr,#buffer 
  add fsr,head 
  mov ind,rx_byte 
  inc head 
  and head,#$F 
  ret 
 
Don’t forget: the ind register really isn’t a register at all. It contains the value of the memory 
location pointed to by fsr. This simple code doesn’t check for overflow – if you overflow the 
buffer, you’ll just lose characters. Don’t forget that loading fsr changes the bank, so any 
statements that depend on a special bank will need to reload fsr or issue a bank command. 
 
Now the get_byte routine looks different: 
 
get_byte 
   
  mov  w,head              ;wait till byte is received 
  mov  w,tail-w 
  jz  get_byte 
  mov  fsr,#buffer 
  add  fsr,tail 
  mov     byte,ind         
  inc  tail 
  and  tail,#$F 
  ret 
 
This version of get_byte waits until the buffer contains at least one character and then loads 
it into the byte variable. Notice again that changing fsr changes the bank, so this code 
assumes byte is in bank 0.  

A Simple Macro 
In the ISR and in get_byte there is code that increments a pointer and masks it with $F (that 
is, it applies the logical and function to the pointer and $F). This code is necessary to cause 
the pointers to wrap around from the end of the buffer back to the beginning. However, it is 
easy to forget to perform the and command every time you increment the pointer. This is a 
good place to use a macro. A macro is like a user-defined instruction. Consider this macro: 
 



Unit 12: A Software UART – The Receiver 

Page 172 • Beginning Assembly Language for the SX Microcontroller 

circinc macro 1 
  inc \1 
  and \1,#$F 
  endm 
 
The first line names the macro. You’ll use this name (circinc) to refer to the macro. The 1 at 
the end of the line signifies that the macro takes 1 parameter (or argument, if you prefer). 
The next two lines are straightforward assembly except for \1 which signifies the parameter. 
The endm keyword ends the macro. So if you write: 
 
circinc tail 
 
The assembler generates: 
 
  inc tail 
  and tail,#$F 
 
Of course, you can also write circinc head to do the same operation on the head variable. 
This is a very simple macro. You’ll often see macros that are more complex. You can combine 
macros with repeat blocks, conditional assembly, and local labels to make very complicated 
pseudo instructions. 

Connections 
Good design practice dictates connecting the SX to an RS-232 transmitter via a buffer (for 
example, a Maxim MAX232 IC). However, you can take advantage of the SX’s overvoltage 
protection diodes to prevent the +/- 12 V signals from damaging the SX. However, the diodes 
will short the transmitter to ground and could damage it, unless you use a series resistor. In 
practice, a 22 kΩ  resistor between the RS-232 transmitter (pin 3 on a DB9 connector) and the 
SX pin will work fine. 
 

 

If you elect to use a buffer IC, it will most likely invert the data. That means 
you’d have to change the UART code to sense an incoming 1 as a 0 and vice 
versa. 
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Summary 
This unit shows the inner workings of a software UART receiver. In the exercises, you’ll have a 
chance to implement this receiver and make it do something useful. Along the way you’ve 
learned about assembler math expressions and about simple macros. 
 
The receiver gives the SX the ability to listen to a PC or other serial device. Obviously, the 
ultimate goal is to marry the receiver and the transmitter. For now, however, we’ll only use 
one or the other. 

Exercises 
1. Consider these lines of code: 
 
val  = 33 
junk  = 1000/12*val 
 
What is the value of junk? 

a) 2.5 
b) 2 
c) 2739 
d) 2750 

 
2. In the last unit, you used a rept directive to generate a number of nop instructions. 
Encapsulate the rept inside a macro named nop_n that takes a single argument to indicate 
how many cycles to waste. Bonus: Can you make the macro use a combination of jmp and 
nop instructions? (Hint: You need the remainder from division operator //). 
 
3. Hook LEDs in the usual way (using a 470 Ω resistor) to ports RA0 and RA1. Use a 22 kΩ  
resistor to connect pin 3 of a DB-9 connector to RB2. Be sure to ground pin 5 of the DB-9 to 
the common Vss pin on the SX-Tech board. Write a program so that when a PC sends an 
upper case “A” it lights the LED on RA0. Sending a lower case “a” turns the LED off. “B” and 
“b” can operate the LED on RA1. 
 
4. Write a program that joins the serial transmitter and serial receiver together. For a main 
program, you can read characters from a PC, convert them to upper case, and echo them back 
to the PC all at 9600 baud. Hint: To shift a lower case “a” to an upper case “A”, clear bit 5. Be 
sure to test that the letter is really a lower case letter before making the change. 
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Answers 
1. C is the correct answer. 
 
2. The simple solution is: 
 
nop_n     macro 1 
  rept \1 
  nop 
  endr 
  endm 
 
To do the bonus part of this question, you had to perform a little math. The idea is to use 
\1/3 to determine how many jmp $+1 instructions are required and \1//3 to determine 
how many nop instructions are necessary. However, it is possible that either of these numbers 
could be zero. Therefore each rept block is protected with an IF statement since rept does 
not accept zero as an argument.  
 
nop_n    macro 1 
  IF \1/3<>0  
        rept \1/3 
      jmp $+1 
      endr 
  ENDIF 
  IF \1//3<>0  
       rept \1//3 
      nop 
      endr 
  ENDIF 
  endm 
 
Try using these macros and press Control+L in the SX-Key environment to see how the code 
expands for different cases. 
 
3. There are several ways you could write this program. Here is one possible solution 
(assuming that a low on the output pin turns the LED on): 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 12.1 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
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  reset start_point 
  freq 50000000  ; 50 Mhz 
 
BAUDRATE EQU 9600   ; baud rate to stamp 
; Port Assignment: Bit variables 
; 
rx_pin  EQU rb.2   ; PC input 
  org 8 
; Head/tail pointer  
head  ds 1  
tail  ds 1 
byte         ds 1  ;temporary UART byte 
rx_byte      ds 1     ;buffer for incoming byte 
 
  org 10h                      
serial          =  $   ;UART bank 
 
rx_count        ds 1   ;number of bits remaining 
rx_divide       ds 1  ;receive timing counter 
 
IF BAUDRATE=9600 
baud            = 32             
baud15          = 48             
ENDIF 
 
int_period      = 163  
bufmod  equ $F 
 
 
; circular buffer is at $50 
  org $50 
scan  ds 1  ; buffer 
 
 
  org 0 
; Interrupt service routine 
isr  bank serial  ;switch to serial register bank 
 
:receive    
  movb c,/rx_pin         
  test rx_count ;waiting?                 
  jnz :rxbit  ;if not,  
  mov w,#9  ;in case start, ready 9 
  sc   ;if start, set rx_count 
  mov rx_count,w            
  mov rx_divide,#baud15 ;ready 1.5 bit periods 
:rxbit  djnz rx_divide,rxdone ;8th time through? 
  mov rx_divide,#baud 
  dec rx_count  ;last bit? 
  sz    ;if not, save bit 
  rr rx_byte               
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  snz    ;if so, put in circbuff 
  call bufferin 
rxdone 
 
;interrupt every 'int_period' clocks 
end_int  mov w,#-int_period           
  retiw    ;exit interrupt 
 
 
; put character in circular buffer 
bufferin   
  mov fsr,#scan 
  add fsr,head 
  mov ind,rx_byte 
  inc head 
  and head,#bufmod 
  ret 
 
start_point 
  mov ra,#%0011  ;initialize port RA 
  mov !ra,#%0000  ;Set RA in/out directions 
  mov rb,#%00001010 
  mov !rb,#%11110101 
 
  CLR FSR   ;reset all ram starting at 08h 
:zero_ram SB FSR.4   ;are we on low half of bank? 
  SETB FSR.3   ;If so, don't touch regs 0-7 
  CLR IND   ;clear using indirect addressing 
  IJNZ FSR,:zero_ram  ;repeat until done 
 
  mov !option,#%10011111 ;enable rtcc interrupt 
  clr rb 
 
; Here is where the action is! 
mainloop 
  call get_byte 
  cje byte,#'A',Aon 
  cje byte,#'a',Aoff 
  cje byte,#'B',Bon 
  cje byte,#'b',Boff 
  jmp mainloop 
  
  
Aon 
  clrb ra.0 
  jmp mainloop 
Aoff 
  setb ra.0 
  jmp mainloop 
Bon 
  clrb ra.1 
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  jmp mainloop 
Boff 
  setb ra.1 
  jmp mainloop 
 
 
 
; Subroutine - Get byte via serial port 
; 
get_byte   
  mov w,head   ;wait till byte is received 
  mov w,tail-w 
  jz get_byte 
  mov fsr,#scan 
  add fsr,tail 
  mov byte,ind         
  inc tail 
  and tail,#$F 
  ret 

 
 
 
4. Again, there are many possible answers to this question. Here is one solution: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 12.2 
;======================================================================= 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000  ; 50 Mhz 
 
BAUDRATE EQU 9600   ; baud rate to stamp 
; Port Assignment: Bit variables 
; 
rx_pin         EQU rb.2                     
tx_pin  EQU rb.3 
 
  org 8 
; Head/tail pointer  
head  ds 1  
tail  ds 1 
byte  ds 1    ;temporary UART byte 
rx_byte  ds 1   ;buffer for incoming byte 
 
  org 10h                      
serial = $                  ;UART bank 
; 
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rx_count ds 1                 ;number of bits left 
rx_divide ds 1                 ;receive timing counter 
tx_high      ds 1   ;tx 
tx_low     ds 1 
tx_count ds 1 
tx_divide ds 1 
 
IF  BAUDRATE  =  9600 
txdivisor = 32    
baud        =     32             
baud15  =     48             
ENDIF 
 
int_period      = 163  
bufmod  equ $F 
 
 
; circular buffer is at $50 
  org $50 
scan  ds 1       ; buffer 
 
 
  org 0 
  
; Interrupt service routine 
isr  bank    serial   ;switch to serial register bank 
 
:receive    
  movb c,/rx_pin              ;serial receive 
  test rx_count  ;waiting 
  jnz :rxbit   ; no? 
  mov     w,#9   ;in case start, ready 9 
  sc    ;if start, set rx_count 
  mov rx_count,w             
  mov  rx_divide,#baud15 ;ready 1.5 bit periods 
:rxbit  djnz rx_divide,rxdone ;8th time through? 
  mov rx_divide,#baud 
  dec rx_count  ;last bit? 
  sz    ;if not, save bit 
  rr  rx_byte                
  snz    ;if so, set flag 
  call bufferin 
rxdone 
; transmitter 
  bank serial 
  dec tx_divide 
  jnz end_int 
  mov tx_divide,#txdivisor  ; ready for next  
  
  test tx_count  ; busy? 
  jz  end_int   ; no byte being sent 
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  stc    ; ready stop bit 
  rr tx_high    
  rr tx_low    
  dec tx_count   
  movb tx_pin,/tx_low.6 ;output next bit 
 
 
 
 
end_int  mov     w,#-int_period       
  retiw    ;exit interrupt 
 
 
; add to circular buffer 
bufferin   
  mov fsr,#scan 
  add fsr,head 
  mov ind,rx_byte 
  inc head 
  and head,#bufmod 
  ret 
 
start_point 
  mov    ra,#%0011            ;initialize port RA 
  mov    !ra,#%0000           ;Set RA in/out directions 
  mov rb,#%11110111 
  mov !rb,#%11110111 
 
  CLR FSR                 ;reset all ram starting at 08h 
:zero_ram SB FSR.4   ;are we on low half of bank? 
  SETB FSR.3               ;If so, don't touch regs 0-7 
  CLR IND                 ;clear using indirect addressing 
  IJNZ FSR,:zero_ram       ;repeat until done 
 
  mov !option,#%10011111  ;enable rtcc interrupt 
  clr  rb 
 
; Here is where the action is! 
mainloop 
  call  get_byte 
  cjb  byte,#'a',noshift 
  cja  byte,#'z',noshift 
  clrb  byte.5 
noshift 
  mov   w,byte 
  call  send_byte 
  jmp  mainloop 
  
 
 
; Subroutine - Get byte via serial port 



Unit 12: A Software UART – The Receiver 

Page 180 • Beginning Assembly Language for the SX Microcontroller 

; 
get_byte   
           mov w,head               ;wait till byte is received 
  mov w,tail-w 
  jz get_byte 
  mov fsr,#scan 
  add fsr,tail 
  mov byte,ind         
  inc tail 
  and tail,#$F 
  ret 
 
send_byte bank serial 
 
:wait  test tx_count  ;wait for not busy 
  jnz :wait 
 
  mov tx_high,w 
  clrb tx_low.7     ; set start bit 
 
 
  mov tx_count,#10  ;1 start + 8 data + 1 stop bit 
 
  ret 
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Unit 13: Pulse I/O 
 
When I was in high school I had a math teacher who used to say, “You have to use what you 
know to find out what you don’t know.” This is often the case with microcontrollers. 
Computers are very good at measuring certain things (like digital levels). Computers are not 
very good at measuring other things like analog quantities (at least without additional 
hardware). 
 
So to paraphrase my math teacher, if you could convert something that is hard to measure 
into something that is easy to measure, you could more easily read it. Consider a 
potentiometer. Sure, you can read it using an A/D converter (see Unit 11). However, what if 
you could connect the potentiometer so that the SX could measure time and determine the 
position? The SX is excellent at measuring time. All that you need is a circuit that will allow the 
potentiometer to control the width of a pulse. The SX can measure the pulse width and 
deduce the potentiometer’s position. 
 
What about other types of input? Many real-world sensors look like variable resistors. Ideally, 
you could treat them just like potentiometers and use the SX to read temperature, humidity, 
light intensity or any of the other things you can measure with a resistive sensor. 
 
The same idea holds true for analog output. If you could convert time into voltage, you’d have 
a D/A (digital to analog) conversion scheme that the SX could handle. Converting back and 
forth between analog values and times requires a capacitor and the ability for the SX to create 
and measure pulses.   

Capacitor Fundamentals 
Capacitors have many uses in electronic circuits. For the purposes of this unit, we will use 
them as energy storage devices. Suppose you have a capacitor with one lead grounded. 
Initially, the capacitor has 0 V across it. Then you apply 5 V to the other lead of the capacitor 
via a resistor. At first, the capacitor looks like a dead short and the voltage across it remains 0 
V. But the capacitor charges so the voltage increases until the final voltage is practically 5 V. 
 
Of course, the capacitor doesn’t charge instantaneously. It takes a finite amount of time for 
the capacitor’s voltage to change from one value to another. The speed that the capacitor’s 
voltage ramps up depends on the value of the resistor (R) and the value of the capacitor (C). 
The voltage V at time t with a 5 V supply will be: 
 
 V = 5(1-e -t/RC) 
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So if R=100000 (100 kΩ) and C = .00001 Farads (10 µF), you’d find the voltage on the 
capacitor would look like Figure 13-1. 
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Figure 13-1: Capacitor Charging Curve  

 
A good rule of thumb is that after RC seconds, the voltage will be 63% of the charging 
voltage. You can verify this on the above chart. The charging voltage is 5 V so 63% is 3.15 V. 
The curve is just above 3 V at 1 second (100000 times .00001 is equal to 1). 
 
Notice that changing the resistance value or the capacitor’s value will change the amount of 
time it takes the curve to get to any particular voltage. Using the 63% rule, how long would it 
take to reach 3.15 V if you doubled the resistance? The answer is 2 seconds. So by charging a 
capacitor you can convert a resistance to a time – just what the SX needs. Of course, you 
could use a fixed-value resistor and vary the capacitance, too. It works just as well either way. 
 
The same thing happens if you charge the capacitor up and then discharge it through a 
resistor. It will take RC seconds to reach 37% of the initial voltage. 
 
What can you do with this idea? Obviously you could read a potentiometer. Perhaps you want 
the SX to dim a light or control a motor speed as the user moves a knob. However, many 
sensors provide a resistive or capacitive reading. For example, a thermistor changes resistance 
in response to temperature. A strain gauge varies its resistance with weight. A cadmium 
sulfide cell changes resistance in response to light. You could read any of these sensors using 
this technique. 
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Of course, theory and practice are often two different things. Real capacitors don’t store 
energy perfectly. There is leakage resistance and other factors that can throw things off 
slightly. Most capacitors are temperature sensitive themselves. However, in practice these 
issues are not problems in most cases. Still, be aware that real-world capacitors are notorious 
for not matching their ideal characteristics. 

Thresholds 
To measure an unknown resistance, you can discharge the constant-value capacitor and 
compute how much time it takes to charge back to a logic 1 level. Alternately, you could 
charge the capacitor to 5 V and compute how much time it takes to fall to a logic 0. This is an 
excellent place to use the SX’s special I/O functions. 
 
Each input pin on the SX has several control registers. You can use these control registers to 
set different options. One of these options is to use a CMOS input threshold. When this mode 
is active, any input over 0.5 Vdd (nominally 2.5 V) is considered a logic 1. If the CMOS mode is 
not set, the threshold voltage is about 1.4 to 1.5  V. You can set each pin individually. 
 
To set the threshold voltage for a port, you first set the M (mode) register to $D ($10 on the 
SX48/52). Then you can store configuration bits in the !ra, !rb, and !rc registers. A zero in 
these registers makes the corresponding bit use the CMOS threshold. A one sets the pin for 
1.4 V (TTL) threshold. It is a good idea to set the M register back to the default value ($F, or 
$1F on the SX48/52) when you are finished. You could, in theory, use this feature to 
determine what part of the capacitor voltage curve you will detect. 
 
In real life, however, neither choice is the best one. To see why, think about the types of 
signals an input pin normally sees. A typical logic signal moves from 0 to 5 V very quickly 
(ideally, instantaneously although that isn’t really possible). You think of these signals as 
“square” – the transitions are very steep. If you look at the above chart, you’ll see that the 
capacitor’s voltage is not steep at all. That means the circuit will slowly pass through the SX’s 
threshold voltage. Right at the threshold, the SX may detect more than one change in the 
input’s state. Power supply fluctuations and circuit noise can make a signal right at the 
threshold appear to be a 1 on one reading, a 0 on the next, and then later read to be a 1 
again. 
 
To combat this, it is common to use a special gate called a Schmitt trigger. This is simply a 
logic gate that reads a logic 1 when the input voltage rises above (approximately) 62% of Vdd 
(3.1 V with a 5 V supply). However, it will not read the pin as a logic 0, until the voltage falls 
below about 28% of Vdd (1.4 V). This electronic inertia is known as hysteresis. Consider Table 
13-1: 
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Table 13-1: Hysteresis Example 
Time Input voltage Input state 
0 0.0 V 0 
1 3.0 V 0 
2 3.5 V 1 
3 3.0 V 1 
4 2.0 V 1 
5 0.5 V 0 
6 2.0 V 0 
7 3.0 V 0 
8 3.5 V 1  

 
You can buy ICs that perform the Schmitt trigger function, but luckily, the SX already has 
these triggers built in if you want them. To set Schmitt trigger mode, you set the M register to 
$C ($1C on the SX48/52) and then set the !ra, !rb, or !rc registers. Placing a zero in a bit 
makes the corresponding input a Schmitt trigger. 

Measuring Time 
The SX, of course, can keep time in a variety of ways. The trick is to select a method that 
provides adequate resolution for the task at hand without using such a high resolution that 
you’ll need large counters to handle the time periods of interest. For example, suppose you 
have a 10 kΩ potentiometer and a .1 µF capacitor wired as shown in Figure 13-2. 
 

 
 

Figure 13-2: Reading a Potentiometer 
 
The RC constant for this circuit is .001. That means that in 1 ms, the capacitor will charge to 
about 3.15 V. This is right around the threshold for a Schmitt trigger (3.1 V). This sets an 
upper bound on the time you need to measure. Of course, the Schmitt level is not precise, and 
the components involved are not precise either. To be safe, you’d like to be able to measure at 
least 2 ms. 
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There are many ways you could perform these measurements. A simple counter would work. 
However, if you write the following code: 
 
loop  inc  counter 
  jnb  oop  
 
You’ll find that the total execution time per loop is 5 clock cycles. At 50 MHz that is only 100 
ns per count. You have to count to 20,000 to measure 2 ms. That means you can’t use a 
single byte counter. Two bytes can contain up to 65535 so you could write: 
 
loop  jb  done 
  inc  count0 
  snz 
  inc  count1 
  jmp  loop 
 
This takes 8 cycles per loop (ignoring the final loop) so each count represents 160 ns. When 
count0 overflows, the code increments count1. This forms a 16-bit counter. 
 

 

Be sure to use snz and not snc. Using inc does not affect the carry flag. It does 
affect the zero flag.. 

 
This method leaves a little to be desired. The count will vary a bit because interrupts occur 
and steal cycles from the loop counter. You could disable interrupts, but that would affect the 
serial I/O code or any other ISRs that might be running. 
 
A better way is to use the ISR to perform the timing for you. Suppose you made the ISR 
increment a 16-bit counter on each pass. You could use this counter to measure the number 
of interrupt periods that elapsed between two events. If you use the same ISR we’ve used 
throughout this course, you’d get a count every 3.26 µs. A 2 ms count would be around 613 or 
614 – you’d still need two bytes for the counter. 
 
This method is also somewhat inaccurate in practice. The serial transmitter and receiver code 
take a varying amount of time to execute. This can lead to small inaccuracies in the timing. 
However, for this purpose the timing is more than adequate. 
 
Another idea would be to use the ISR to perform all the timing. Then the main program can 
simply read the count that the ISR generates. For the purposes of timing an RC network, any 
of these methods will work. 

Program Details 
Here is the basic way that the program will work: 
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Change RB.0 to an output and pull it low 
Pause a few ms to allow the capacitor to fully discharge 
Restore RB.0 to an input 
Time how long it takes for RB.0 to rise to a logic 1 
 
The difference, of course, is how you measure the time. Here is a simple version: 
 
read_rc 
  clrb  rb.0 
  mov  !rb,#%11110110 ; bit 0 to input 
  call  pause   ; discharge time 
  mov  dly,#$FF  ; reset timer 
  mov  dly1,#$FF 
:zwait 
  test  dly   ; sync with ISR 
  jnz  :dwait 
  mov  !rb,#%11110111 ; back to input 
captest 
  jnb  rb.0,captest 
  mov  vallow,dly 
  mov  valhigh,dly1 
  ret 
 
This requires a bit of support. Obviously, you need a pause routine. The exact time is not 
important, but it does need to be a long enough delay to allow the capacitor to fully discharge. 
The other part of the code that isn’t clear here is how dly (and dly1) change. This, of course, 
is part of the ISR. The very first lines of the ISR are now: 
 
  bank  delaybank 
  inc  dly 
  snz 
  inc  dly1 
 
The read_rc code doesn’t change banks, because the pause routine also uses dly and it sets 
the bank. The pause routine is just five calls to pausems. The pausems routine delays 
about 1 ms. Here is the code: 
 
pausems 
  bank  delaybank 
  mov  dly1,#$FE 
  mov  dly,#$CD 
:p1  mov  w,dly1 
  or  w,dly 
  jnz  :p1 
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  ret 
 
This bears some explanation. The routine takes advantage of the fact that the ISR will 
increment the 16-bit dly variable every 3.26 µs. To pause 1 ms (1000 µs), the code needs to 
wait for 307 counts. Expressed in hex, 307 is $133. Rather than clear the dly variable and wait 
for $133, the code instead loads negative $133 and waits for the variable to reach 0 (a cleaner 
test). To negate $133 write it as binary, invert the bits and add 1. So: 
 
%0000 0001 0011 0011 -> %1111 1110 1100 1100+1 = %1111 1110 1100 1101 = $FECD 

 
Of course, other factors contribute, so the delay is not precise, but it doesn’t need to be. 
Anything close to 1 ms will be good enough in this case. 

Pulse Output 
It should be obvious that if you can measure precise times, you can also create pulses. You 
simply set an output bit’s state, wait for a particular interval, and then reset the bit’s state. In 
the next unit you’ll see how a train of pulses combined with a capacitor can generate an 
analog output using a method known as pulse width modulation (PWM). 
 
PWM is useful for other reasons as well. For example, you can control an LED or lamp’s 
brightness. You can also use PWM to control the speed of a motor. Some external systems 
require pulses to operate. For example, servo motors (common in radio control hobbies) use a 
pulse to determine the shaft’s position. These motors typically don’t rotate 360 degrees. 
Instead they will move over a certain arc. With a narrow pulse, the motor will position the 
shaft to one extreme of the travel range. The wider the pulse, the further away the shaft 
moves (until it reaches the other extreme). 
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Summary 
Converting an analog value like a resistance or capacitance into a measurable time is a 
powerful idea. With some additional circuitry you could even do the same thing with a voltage. 
For example, a 555 IC can generate pulses that vary in width depending on an applied 
voltage. There are also specific ICs that convert voltage to frequency. An oscillator with a 
varactor in its resonator can also change frequency (and hence, pulse width) with an applied 
voltage. 
 
Using sensors like thermistors or light-dependent resistors allows you to adapt this technique 
to make the SX read a variety of real-world parameters. Accepting this type of input is an 
essential component to creating control or data acquisition systems. 

Exercises 
1. Connect a 10 kΩ potentiometer and LED as in Figure 13-3. Write a program that allows you 
to test the threshold voltages for TTL, CMOS, and Schmitt trigger inputs by transferring the 
state of the input pin to the output LED. You can measure the input pin’s voltage with a 
common voltmeter. 
 

 
 

Figure 13-3: Threshold Test Circuit 
 
 

2. Build the circuit shown in Figure 13-2. Create a program that reads the 16-bit count that 
shows the potentiometer’s position and verify your code’s operation using the SX-Key 
debugger.  
 
3. Modify the above program to display the result on an RS-232 terminal. Hint: Write a 
carriage return (13) and disable the terminal’s auto linefeed mode (if any) to see a pleasing 
display. 
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Answers 
 
1. Here is a possible solution: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 13.1 
;======================================================================= 
 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000     ; 50 Mhz 
 
  org 0 
start_point 
  mov ra,#%1111 
  mov !ra,#%1110 
 
 
; set threshold here $C = Schmitt $D = CMOS 
    mov  m,#$C 
  mov  !rb,#%11111110 
  mov  m,#$F 
 
 
; Here is where the action is! 
mainloop 
  movb  ra.0,/rb.0 
  jmp  mainloop 
  
 
 
Notice that in TTL or CMOS mode, the LED may light dimly. This is because without Schmitt 
trigger hysteresis, the SX is reading the pin as a 1 sometimes and a 0 at other times right at 
the threshold voltage. 
 
2. See the answer for exercise 3. This is the same code but without the serial transmitter 
code. 
 
3. There is no need for the serial receiver in this code although if you included it, there is no 
harm in it: 
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;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 13.2 
;======================================================================= 
 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 50000000     ; 50 Mhz 
 
BAUDRATE EQU 9600     ; baud rate to stamp 
; Port Assignment: Bit variables 
; 
tx_pin  EQU rb.3 
 
  org 8 
; Head/tail pointer  
byte ds      1                        ;temporary UART byte 
vallow      ds 1 
valhigh      ds 1 
number_low ds 1 
temp  ds 1 
 
 
 
  org     10h                      
serial          =       $   ;UART bank 
; 
tx_high ds 1    ;tx 
tx_low ds 1 
tx_count ds 1 
tx_divide ds 1 
 
IF BAUDRATE=9600 
txdivisor = 32    
ENDIF 
 
int_period      = 163  
 
 
  org  $30 
delaybank equ $   
dly  ds 1 
dly1  ds 1 
 
  watch  dly,16,uhex 
 
 
 
  org 0 
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; Interrupt service routine 
isr   
  bank   delaybank 
  inc dly 
  snz 
  inc dly1 
 
  bank    serial                   
 
; transmitter 
  bank serial 
  dec tx_divide 
  jnz     end_int 
  mov tx_divide,#txdivisor  ; ready for next  
  test tx_count   ; busy? 
  jz  end_int    ; no byte being sent 
  stc                            ; ready stop bit 
  rr tx_high    
  rr tx_low    
  dec tx_count   
  movb tx_pin,/tx_low.6  ; output next bit 
 
 
 
 
end_int 
  mov     w,#-int_period         
  retiw                            ; exit interrupt 
 
 
 
 
start_point 
  mov     ra,#%0011  ; initialize port RA 
  mov     !ra,#%0000  ; Set RA in/out directions 
  mov rb,#%11110111 
  mov !rb,#%11110111 
 
  CLR     FSR                ; reset all ram starting at 08h 
:zero_ram       SB      FSR.4   ; are we on low half of bank? 
  SETB    FSR.3              ; If so, don't touch regs 0-7 
  CLR     IND                ; clear using indirect addressing 
  IJNZ    FSR,:zero_ram  ; repeat until done 
 
  mov     !option,#%10011111 ; enable rtcc interrupt 
  clr  rb 
 
; Set Schmitt trigger input 
    mov  m,#$C 
  mov  !rb,#%11111110 
  mov  m,#$F 
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; Here is where the action is! 
mainloop 
  call  read_rc 
  mov  w,valhigh 
  call  send_hex 
  mov  w,vallow 
  call  send_hex 
  mov  w,#$D 
  call  send_byte 
  jmp  mainloop 
  
 
read_rc  
  clrb  rb.0 
  mov  !rb,#%11110110   ; bit 0 to output 
; pause a bit to let capacitor discharge 
  call  pause 
  mov  dly,#$FF 
  mov  dly1,#$FF 
:zwait 
  test  dly      ; synchronize with ISR 
  jnz  :zwait 
  mov  !rb,#%11110111   ; back to input 
captest 
  jnb   rb.0,captest 
  break 
  mov  vallow,dly 
  mov  valhigh,dly1  
  ret 
 
pause  
:p1 
  rept  5 
  call  pausems 
  endr 
  
  ret 
 
; pause about 1mS 
; (each int tick is 3.26uS 
; 1000uS/3.26=307 
; 307=$133 and -$133 = $FECD 
pausems 
  bank  delaybank 
  mov  dly1,#$FE 
  mov  dly,#$CD 
:p1  mov  w,dly1 
  or   w,dly 
  jnz  :p1 
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  ret 
 
 
; required to output HEX numbers 
_hex            dw      '0123456789ABCDEF' 
; 
; 
 
;* Subroutines * 
 
; Send hex byte (2 digits) 
; 
send_hex 
                mov     number_low,w  ; save W 
                mov     w,<>number_low  ;send first digit 
                call    :digit 
 
                mov     w,number_low  ; send second digit 
 
:digit  and     w,#$F                    ; read hex chr 
                mov     temp,w 
                mov     w,#_hex 
                clc 
                add     w,temp 
                mov     m,#0 
                iread               ; read from program mem! 
                mov     m,#$F 
 
; fall into send byte 
 
send_byte bank serial 
 
:wait  test tx_count  ; wait for not busy 
  jnz :wait 
 
  mov tx_high,w 
  clrb    tx_low.7     ; set start bit 
 
 
  mov tx_count,#10  ; 1 start + 8 data + 1 stop bit 
 
  ret 
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Unit 14: Pusle Width Modulation 
 
In the last unit you looked at measuring pulse widths. Of course, if you can measure an 
interval, you can also create pulses. However, using pulses can have a few nuances that you 
should understand. In particular, you can use pulses, in combination with a handy capacitor, 
to generate a voltage from 0 to 5 V – if you know all the right tricks. 

PWM Theory 
The most interesting use of pulses with a microcontroller is to use a string of pulses to 
generate an arbitrary analog voltage. These analog signals might be useful as control voltages 
or even audio outputs. Using pulses this way is known as Pulse Width Modulation (PWM). 
 
To generate a voltage with PWM, you’ll use our favorite energy storage device: the capacitor. 
The best way to understand the process is to look at the two extreme cases first. Suppose you 
have an SX output pin connected to a capacitor. If you bring the output pin low, the capacitor 
will discharge and it is easy to see that the capacitor’s voltage will be 0 V. Similarly, if you 
bring the output high, the voltage will charge the capacitor and you will soon have 5 V across 
the capacitor. 
 
What happens, however, if you bring the output pin high for 1 ms and then low for 1 ms and 
keep repeating this sequence? When the pin is high, the capacitor will charge up. When the 
pin is low, the capacitor will discharge. Since the 1 ms time is the same for both conditions, 
the average voltage across the capacitor will be 2.5 V (one half of the 5 V output). If you keep 
the pin high for 1 ms and then low for 4mS, the output will be 1 V.  
 
In general, the output voltage will be 5 V times the percentage of time the pulse is high. In 
theory, it doesn’t matter how long the pulses are, as long as the percentage is correct. If the 
high and low periods were 100 µs and 400 µs, the output would still be 1 V. The percentage of 
time the signal is high is known as its duty cycle. In this example, the duty cycle is 20%. 
 
Figure 14-1 shows a practical circuit. The resistor prevents excessive current draw from the 
SX.  
 

 
 

Figure 14-1: PWM Output Circuit  
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Selecting a resistor and capacitor value can make a big difference in a PWM 
circuit. The smaller the capacitor, the quicker it will charge to the final desired 
value. On the other hand, smaller capacitors discharge quicker as well. The 
resistor, of course, also affects the timing. Lower values will reduce the amount 
of time required to charge the capacitor to its final value. 

Practical Pulses 
If you wanted to write a PWM output routine, you might be tempted to select a time period 
and divide it into, say, 100 slots. Then you could turn the output on, for the number of slots 
you wanted. For example, if each slot was 2 µs and you wanted a 50% duty cycle, you’d turn 
the output high for 50 time periods (100 µs) and then off for the next 50. 
 
This would work, but it is less than optimal. Why? This scheme increases the amount of time it 
takes for the capacitor to charge and discharge. Ideally, the pulses should be as short as 
practical. One way to do this is to make the pulses proportional. For example, a 50% duty 
cycle with a 2 µs timebase would have one 2 µs high followed by a 2 µs low. A 33% duty cycle 
would be 2 µs on and 4 µs off.  
 
At first glance this would seem to be difficult to compute. However, a clever trick makes it 
quite simple. Suppose you use a byte to define 256 duty cycles. With this scheme, $FF is 
nearly 100%, $80 is 50% and, of course, 0 is 0%. Each unit is then roughly 0.4%.  
 
Suppose you have an interrupt service routine that runs every 2 µs and a duty cycle stored in 
the pwm variable. You can use an accumulator (pwm_acc) to easily handle the PWM 
algorithm. Here are the steps: 
 

• Set pwm_acc equal to pwm_acc plus pwm 
• If a carry results from the addition, set the output bit 
• If a carry did not result, clear the output bit. 

 
The ISR is probably the simplest ISR you can imagine: 
 
  add  pwm_acc,pwm 
  movb  rb.0,c 
  mov  w,#-100   ; every 2uS 
  retiw 
 
Why does this work? Look at the values in Table 14-1: 
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Table 14-1: PWM Accumulator  
pwm(duty)=$FF pwm(duty)=$80 Time 

µS pwm_acc output pwm_acc output 
0 0 0 0 0 
2 $FF 0 $80 0 
4 $FE 1 $00 1 
6 $FD 1 $80 0 
8 $FC 1 $00 1  

 
If you follow this sequence you’ll see that this in fact works as promised. Of course, at a duty 
cycle of 1 (0.4%) you still have 2 µs on and 511 µs off, but this is the extreme case. Using a 
more straightforward algorithm results in this being the case for all values. 

Limitations and Enhancements 
There are several practical issues to consider with this type of circuit. First, the capacitor 
charges through a resistor. The larger the capacitor, the more time it takes to charge and 
discharge. On the other hand, holds it charge poorly as the PWM rate slows down. 
 
If you really expect to draw any significant current from the PWM pin, you should consider 
using some sort of buffer amplifier (like an op-amp or an emitter follower amplifier). However, 
if you are drawing modest amounts of current (for example, a comparator or op-amp input) 
you can just use the PWM output directly. 
 
You can also drive an LED using this type of PWM. You don’t need a capacitor because your 
eye will integrate the flashes from the rapidly blinking LED. PWM (properly buffered) can also 
vary motor speeds. 
 
In general, the faster the PWM rate, the smoother the PWM appears. With such a short ISR, 
you can easily reduce the rate by adjusting the ISR’s period. For example, changing the ISR so 
that it loads w with 50 instead of 100 would drop the rate to 1 µs. The entire ISR only 
requires 10 clock cycles, so you could reduce the number even further (as long as you don’t 
add code to the ISR). Setting the ISR rate to 20, for example, drops the period to 400 ns!  
 
If you want finer-grain control, you could use larger PWM accumulators (and duty cycles). For 
example, a 10-bit set up would allow you to step the voltage about 0.1% per step (about 5 
mV). In this case you wouldn’t use the carry bit to control the PWM, you’d use bit 9 of a 16-bit 
variable. Of course, at some point your step size will be smaller than the accuracy possible 
because of the component tolerances. 
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Summary 
Generating pulses is both easy and extremely useful. Pulse trains can control motors, dim 
lights, and generate voltages with a minimum of external components. 
 
PWM is not your only choice when it comes to analog output. There are readily available chips 
that will produce analog outputs. These D/A or DAC (Digital to Analog Converters) come in a 
bewildering array of styles and features. If you want to use a chip-level DAC, be sure to find 
one that accepts serial data so you conserve the SX’s pins. 

Exercises 
1. Figure 14-2 is a view of two PWM outputs. What is the duty cycle of each expressed as a 
percentage? If the PWM generator uses 8 bits to express the duty cycle, what number is used 
to create each output? 
 

 
 

Figure 14-2: Two PWM Output Signals  
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2. Set up a PWM circuit as shown and create code that varies the pwm duty cycle by 1 bit 
about every 250 ms (or more). Using a voltmeter (or even better, an oscilloscope) verify that 
the change in voltage is near the expected 19.5 mV. What would happen if you changed the 
pwm counter to use 9 bits instead of 8? Verify your answer. 
 
3. Using your PWM circuit, devise a program that will find the input threshold voltage of 
another I/O pin automatically. You can do this by connecting the PWM output to another input 
and slowly ramping the output voltage until you find a 1 input. You can either verify your 
results with the debugger or with a voltmeter. 
 
4. Look at the triangle waveform in Figure 14-3. Can you simulate this with PWM? Write a 
program to generate this waveform. You can observe your results with an LED, or even better 
an oscilloscope, if available. Hint: The exact timing or voltage levels are not important. 
 

 
 

Figure 14-3: Triangle Wave   
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Answers 
 
1. The upper trace is high for 2 µs of every 4 µs and is therefore at 50% or duty cycle 128. 
The lower trace is high for 2 µs of every 10 µs – a 20% or 51 duty cycle. 

 
2. Here is a possible 8 bit solution: 
 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 14.1 
;======================================================================= 
 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset reset_entry 
  freq 50_000_000 
 
 
pwm_pin  = rb.0 
 
  org 8 
 
temp  ds 1 
pwm  ds 1   ;pwm0 
pwm_acc  ds 1 
dly  ds 1 
dly1  ds 1 
 
 
  org 0 
; 
; 
 
; 
interrupt  
  inc dly 
  snz 
  inc dly1 
 
  add pwm_acc,pwm 
  movb pwm_pin,c 
 
  mov     w,#-100 
  retiw  
;*********************************************************************** 
;* Main * 



Unit 14: PWM 

Page 202 • Beginning Assembly Language for the SX Microcontroller 

;*********************************************************************** 
; 
; 
; Reset entry 
; 
reset_entry  
 
  mov rb,#%00000000  ;init rb 
  mov !rb,#%11111110 
  clr fsr   ;reset all ram banks 
:loop  setb fsr.4 
  clr ind 
  ijnz fsr,:loop 
 
  mov !option,#%10011111 ;enable rtcc interrupt 
; 
; 
;  - main loop 
; 
 
mainloop 
 
 
 
  inc  pwm 
  call  pause 
  jmp  mainloop 
 
 
pause 
:p0  mov  temp,#250 
:p1  call  pausems 
  djnz  temp,:p1 
  ret 
 
; pause about 1ms 
pausems 
  mov  dly1,#$FE 
  mov  dly,#$0C  ; FE0C = -500 
:p1  mov  w,dly1 
  or   w,dly 
  jnz  :p1 
  ret 

 
To change the code to 9 bits, you’d change the ISR to look like this: 
 
interrupt  
  inc dly 
  snz 
  inc dly1 
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  add pwm_acc,pwm 
  addb pwm_acc1,c 
  add pwm_acc1,pwm1 
  movb pwm_pin,pwm_acc1.1 
  clrb pwm_acc1.1 
 
  mov w,#-100 
  retiw  
 
Of course, you’ll have to add the pwm_acc1 and pwm1 variables. Your main loop might look 
something like this: 
 
  inc  pwm 
  snz 
  inc  pwm1 
 
  call  pause 
  jmp  ainloop 
 
The expected voltage shift per step for 9 bits is 1/512 V or about 2 mV. 
 
3. Here is a possible solution’s main loop (this assumes an 8 bit PWM ISR): 
 
mainloop 
  call  pause 
  jb   rb.1,found 
  inc  pwm 
  jnz  mainloop 
; hmmm... didn't find it 
  jmp  mainloop 
 
found  break 
  mov  w,pwm 
  jmp  $    ; stop but let PWM continue 
 
 
4. The length of the pause will determine the period of the triangle wave. Here is one possible 
way to generate the wave: 
mainloop 
  inc  pwm 
  jz   reverse 
  call  pause 
  jmp mainloop 
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reverse dec  pwm 
  jz  mainloop 
  call  pause 
  jmp  reverse 
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Unit 15: A Practical Design - The 
SSIB 
 
One of the things the SX excels at is producing custom I/O devices for other microcontrollers. 
The SX is fast and inexpensive – it is well suited to the task of making dedicated peripheral 
devices. In this unit, you’ll examine a serial communications buffer that uses an SX. This 
peripheral device can help other microcontrollers (like BASIC Stamp modules, for example) 
receive serial data from a PC or other device. 
 
Parallax’s BASIC Stamp modules have a microcontroller that you program using BASIC. These 
BASIC Stamp modules are perfect for quick and simple projects. Although BASIC Stamp 
modules excel at many jobs, they are inherently single-tasking. This single-tasking philosophy 
makes programming simpler, but it makes serial input tricky. 
 
The BASIC Stamp has a perfectly capable command for reading serial data (the SERIN 
command). The problem is that the BASIC Stamp can't issue a SERIN command and do 
something else at the same time. If a BASIC Stamp module performing a task when serial data 
arrives, the data is lost. 
 
To ameliorate this limitation, BASIC Stamp modules can employ a handshaking signal. This 
output line signals the transmitting device when the BASIC Stamp is ready to accept serial 
data. This works well if the sending device can stop transmission. Unfortunately, this isn't 
always possible or desirable. 
 
The best answer would be to insert a buffer between the sending device and the BASIC Stamp 
module. The buffer would hold any incoming data until the BASIC Stamp program reads it. 
This is a perfect application for an SX. The high speed of the SX allows you to service many 
serial channels simultaneously with no chance of data loss. This particular design uses an SX28 
– the project doesn’t even use all the pins available, and just ignore the extra pins. 
 
With any project, you should start with a design. Figure 15-1 shows the pin out for the buffer 
device (the BASIC Stamp Serial Input Buffer or SSIB). Notice that there are two input 
channels. The SSIB reads from these two channels and stores characters in a 16-byte buffer 
(each channel has its own buffer). 
 
Each channel has an associated handshaking line. If the buffer for a channel fills up the SSIB 
deasserts the handshaking line and reasserts it when the buffer has more room. Of course, if 
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you are sure the BASIC Stamp will empty the buffer faster than the device will fill it, you can 
ignore these handshaking lines. 
 
On the BASIC Stamp side the SSIB uses 3 pins. One pin receives data from the SSIB. The 
other two pins act as handshake lines. If the BASIC Stamp asserts CHANA, the SSIB sends 
data from channel A to the BASIC Stamp. CHANB selects data from the B channel. If neither 
line is active the SSIB sends no data to the BASIC Stamp. Of course, if you are only using one 
channel you can connect 2 pins to the SSIB instead of 3. 
In its default configuration, the SSIB uses 9600 baud communications on each channel. 
However, you can change a few configuration parameters to alter this for each port 
individually. See Table 15-1 for the available configuration options - you can change several 
parameters here including the polarity of each port. 
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Figure 15-1: The SSIB Pin-Out  

 
 

Inside the SSIB 
The SSIB code (see the Listings at the end of this unit) takes advantage of the SX's high clock 
speed. Although the SX in use can clock up to 50 MHz, this is overkill for this application. Even 
at 10 MHz, there is plenty of time to do all the tasks required. Running more slowly allows the 
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SX to draw less power. Remember, many processors divide their external clock, but the SX 
does not when in turbo mode. So an SX running at 10 MHz is comparable to some other 
processors running at 40 MHz! A processor that divides by 4 would have to run at 200 MHz to 
match a 50 MHz SX. Almost all of the code executes in response to a high-speed periodic 
interrupt that occurs every 13 µs. 
 
The first thing the interrupt service routine (ISR) does is transmits any pending serial bits. 
Next, the serial receivers execute (first channel A, then channel B). Notice that the receivers 
are essentially copies of each other, but each receiver has private variables. 
 
After servicing all 3 serial channels, the ISR turns its attention to managing the circular buffers 
for each channel. If a transmission is already in progress, the ISR simply exits. Otherwise, the 
ISR examines each channel's handshaking line. If the line is active, the code examines the 
corresponding circular buffer. If any characters are waiting, the ISR moves a waiting character 
into the transmit register so that on the next interrupt the character will be sent to the BASIC 
Stamp. 
 

Table 15-1: SSIB Configuration 
Parameter Description Default Value 
XBAUDRATE Baud rate to BASIC Stamp 19200 
BAUDRATE_A Baud rate to device A 9600 
BAUDRATE_B Baud rate to device B 9600 
INVSEND Use inverted mode to BASIC Stamp if 1 0 
INVRCVA Use inverted mode to device A if 1 0 
INVRCVB Use inverted mode to device B if 1 0 
BUFFERLIM Minimum free space before asserting 

handshake 
2 

 
 
Compared to the ISR, the main code (beginning at the start_point label) is anticlimactic. Of 
course, the first few lines initialize the program, setting up the I/O pins and the periodic 
interrupt. 
 
Once the chip is running, the main loop (at mainloop) simply waits for an incoming character, 
and moves it to the correct queue. The enqueue and get_byte routines (along with 
enqueue1 and get_byte1) handle the mechanics of reading each byte and placing it in the 
circular buffer. Previous examples did the buffering in the ISR. However, with two channels, I 
decided to move the buffering to the main program (which has practically nothing to do 
anyway). 
 
The queuing logic implements a 16-byte circular buffer that is more sophisticated than early 
versions you’ve examined. The tricky part of the code computes how much of the buffer is 
free. If this number is less than or equal to the BUFFERLIM constant, the SSIB turns off the 
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inbound handshaking line for that channel. If the device in question can respond to handshake 
requests quickly, you could set BUFFERLIM to 1. However, many devices can still send a 
character or two before they respond to a handshake. In that case, you can set BUFFERLIM 
to a higher value. 

Using the SSIB 
Using the SSIB is easy with the BASIC Stamp. You can find a summary of the SSIB’s pins in 
Table 15 -2.  
Figure 15-2 shows a sample test circuit. In this schematic, the BASIC Stamp at IC1 is receiving 
data from the BASIC Stamp at IC2 (which stands in for two external devices). IC3 is the SSIB.  
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Figure 15-2: Test Circuit for the SSIB   
 
The device connected to the SSIB’s RES1 and RES2 terminals is a 10 MHz ceramic resonator 
with capacitors. This three-terminal device has a ground lead in the center. The other two 
terminals are interchangeable. If you are simply testing the circuit you can use the SX-Key or 
SX-Blitz to generate the 10 MHz clock automatically (it senses the FREQ directive in the 
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program). You could also use a 10 MHz crystal with some extra capacitors, but a ceramic 
resonator is less expensive and just as good in this application. The SX data sheets show how 
to use a crystal if you want to try one. 
 
The listing at the end of this unit shows the code that reads data from the SSIB. Instead of 
actually performing other processing, the program does simulated work in the form of a 
SLEEP statement. Notice that the BASIC Stamp reads data from the same pin regardless of 
which channel it wants to read. However, the BASIC Stamp program’s SERIN command uses 
a different handshaking line to select the channel it wants. In this case, using pin 12 selects 
channel A and pin 13 selects channel B. Regardless, the BASIC Stamp reads the data from pin 
14. 
 
The simulator BASIC Stamp at IC2 (see the listings) just writes bytes out of each serial port 
periodically. Of course, the two BASIC Stamp modules won't be synchronized, so only the 
buffer allows this arrangement to work. If you set the first BASIC Stamp module to read more 
often than the simulator writes, the buffer should never overflow. If you send bytes more 
often than you read, the SSIB buffers will fill. In this case, the SSIB will use the outbound 
handshaking lines to hold off the simulator. 
 

Table 15 -2: SSIB Pinout 
Pin Name Function 
1 N/C Not connected 
2 Vdd +5 V 
3 N/C Not connected 
4 Vss Ground 
5 N/C Not connected 
6 READ_A Signal to read from channel A 
7 READ_B Signal to read from channel B 
8 N/C Not connected 
9 TX Transmit data to BASIC Stamp 
10 CHANNEL_B Input for channel B 
11 HANDSHAKE_A Optional handshake for device A 
12 CHANNEL_A Input for channel A 
13 HANDSHAKE_B Optional handshake for device B 
14-25 N/C Not connected 
26 OSC2 Connection to 10 MHz resonator 
27 OSC2 Connection to 10 MHz resonator 
28 RESET Pull low to reset; high for normal operation  
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About Inverted Mode 
The BASIC Stamp and the SSIB can perform serial I/O in standard mode, or in inverted mode. 
The mode selection affects the polarity of the signal line, of course, but it also changes the 
polarity of the handshaking lines. In standard mode, the handshake lines must go low to 
enable data transmission. This works well, because the SSIB has internal pull up resistors to 
hold the lines high in the absence of other input.  
 
If you use inverted mode, be aware that the handshake lines will be enabled until the BASIC 
Stamp program or other device wakes up and explicitly inhibits transmission. This can cause 
problems when the BASIC Stamp misses some characters at the beginning or receives an 
erroneous byte right after resetting. A sleeping BASIC Stamp module may also trigger data 
transmission since its I/O pins turn off every few seconds for a few milliseconds. 
 
When you have a choice, use standard mode. You can set each channel independently. 
Another partial solution would be to use an extra BASIC Stamp pin to reset the SSIB (by 
pulling RESET low) after the BASIC Stamp program has control. 

Customizing the Period 
If you want to modify the timing used to generate the baud rates, you’ll need to understand 
how the code handles different speeds. To ensure accuracy, the interrupt rate needs to be 
quite a bit faster than the period of a single bit. At 9600 baud, for example, a single bit is 
slightly longer than 104 µs. You need to interrupt at least 4 times faster (26 µs). Faster would 
be even better. If you don’t interrupt quickly enough, you can miss a start bit. The Nyquist 
theorem says you must sample twice as fast, but to make sure you have enough time to work 
with a detected start bit, you’ll want to go as fast as you can. 
 
By default the SSIB runs at 10 MHz. This causes the RTCC register to increment every 100 ns. 
Causing an interrupt every 130 cycles makes the sampling rate 100 ns*130 = 13 µs; fast 
enough to 4x oversample a 19200 baud rate signal (52 µs per bit). 
 
The transmit code assumes that the baud rate divider will be a power of two. The define for 
baud9600, for example, is 3 indicating that the divisor for 9600 baud is 2 to the 3rd power, or 
8. At 13 µs per cycle, this works out to 104 µs per bit – about 9615 baud. This is about 0.2% 
error – perfectly acceptable. 
 
You might want to adjust the clock frequency to take advantage of an existing oscillator, 
operate at higher baud rates, or accommodate more channels. There are three things to 
consider: 

1. The clock frequency 
2. The interrupt period 
3. The baud rate divider 
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Of these, the interrupt period is easiest to set incorrectly. Remember the RTCC keeps counting 
even after an interrupt occurs. The more often interrupts occur, the less time is available for 
the main program. If you interrupt too frequently, the main code can’t execute at all. As a 
practical consideration, you’ll want to keep the interrupt period greater than about 80. 
 
Suppose you wanted to use a 25 MHz clock. This makes each RTCC count worth 40 ns 
(1/25000000). If you want to sample a 9600 baud signal 8 times per bit, you need 13 µs 
interrupts (as calculated above; this is the same as 13000 ns). Therefore, the interrupt period 
is 13000/40 or 325. Unfortunately, it is difficult to program the single-byte RTCC register for 
325 counts. 
 
You might be able to work around this with prescaling or using a software prescaler. However, 
an easier method is simply to sample the signal more often. If you decide to check the bit 32 
times instead of 8, you need roughly 3.3 µs which requires an interrupt period of 3300/40 or 
about 82. 
 
So to use a 25 MHz clock, you can set the interrupt period to 82 and the baud rate number to 
5 (2 to the 5th power is 32). The actual time will be 40 * 82 * 32 = 104960 ns or 104.96 µs. 
Reversing the calculations, the actual bit period will be equivalent to 9527 baud; about 0.7% 
error. Using 81 shoots past the desired baud rate (9645 baud) but yields a smaller error 
(about 0.5%). In practice, either value will work. 
 
Since the baud rate divisor number is a power of 2, it is easy to figure other baud rates. In the 
above example, since 5 sets 9600 baud, 4 will be 19200, 6 sets 4800, and 7 would be 2400. 
Since the divisor is a bit number, you can’t exceed 7. To reach 1200 baud you’d need to 
change the clock or the interrupt period.  

Further Experiments 
Using this set up, you can try several other scenarios. For example, try setting the simulator to 
output at 2400 baud, but keep the BASIC Stamp channel at 9600. Then try reading one port at 
9600 and the other at 2400. 
 
You can change the periodic interrupt rate if you recalculate the baud rates. Just be careful to 
leave enough time in between interrupts to run the main program. Depending on the baud 
rates, clock speed, and interrupt period, you could accommodate more than just two input 
lines. 
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Summary 
Why design chips like the SSIB? Creating functional modules allows designers that don't have 
your tools and skills to still create powerful systems. With the low-cost of the SX chip there is 
no reason you can't add more than one to most designs. Even when designing with the SX, 
chips like the SSIB can let you distribute the workload among several processors for even 
more power. 
 

 The SSIB Code 
;======================================================================= 
;Beginning Assembly Language for the SX Microcontroller 
;Program 15.1 
;SSIB - by Al Williams, AWC http://www.al-williams.com/awce 
;v2.0 
;======================================================================= 
 
  device sx28l,oschs3 
  device turbo,stackx,optionx 
  IRC_CAL IRC_SLOW 
  reset start_point 
  freq 10000000    
 
; Port Assignment: Bit variables 
; 
int_period     EQU 130     
XBAUDRATE EQU 19200 ; baud rate to stamp 
BAUDRATE_A EQU 9600  ; Channel A baudrate 
BAUDRATE_B EQU 9600  ; Channel B baudrate 
 
; Non inverted modes are best because 
; the internal pull up resistors will stop all devices 
; from talking, setting any of the below to 1 
; makes the handshaking reverse which means 
; devices are free to send until the SSIB and/or 
; BASIC Stamp wakes up which may cause you problems 
 
INVSEND  EQU 0     ; inverted/true to BASIC Stamp 
INVRCVA  EQU 0     ; inverted/true to Chan A 
INVRCVB  EQU 0     ; inverted/true to Chan B 
BUFFERLIM EQU 2     ; space free in buffer before h/s off 
 
rx_pin   EQU    rb.2   ;UART receive input 
rx_pin1   EQU rb.0 
tx_pin    EQU    ra.3   ;UART transmit output 
enablepin equ ra.0 
enablepin1 equ ra.1 
rxen_pin equ rb.1     ; handshake for buffer A 
rxen_pin1 equ rb.3   ; handshake for buffer B 
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; 
  org 8 
head  ds 1 
head1  ds 1 
tail  ds 1 
tail1  ds 1 
byte         ds     1 
tmpvar  ds 1 
flags        DS     1  ;program flags register 
spare7  EQU flags.7    
rx_flag1 EQU flags.6   
rx_flag  EQU    flags.5  ;signals when byte is received 
spare4  EQU flags.4 
spare3  EQU flags.3 
spare2  EQU flags.2 
spare1  EQU flags.1 
spare0  EQU flags.0 
  watch  byte,8,uhex 
  watch  head,8,uhex 
  watch  tail,8,uhex 
  watch  rx_flag,1,uhex 
 
  org     10h  ;bank3 variables 
serial          =       $  ;UART bank 
; 
tx_high        ds 1  ;hi byte to transmit 
tx_low         ds 1  ;low byte to transmit 
tx_count       ds 1  ;number of bits sent 
tx_divide      ds 1  ;xmit timing (/16) counter 
rx_count       ds 1  ;number of bits received 
rx_divide      ds 1  ;receive timing counter 
rx_byte        ds     1  ;buffer for incoming byte 
rx_count1 ds 1 
rx_divide1 ds 1 
rx_byte1 ds 1 
 
; baud rate bit # 
baud2400  =  5 
baud9600  =  3 
baud19200  =  2  
; above 19.2K may not be reliable 
; without adjusting int speed (see text) 
 
IF XBAUDRATE=2400 
baud_bit        = baud2400 ;for 2400 baud 
start_delay     =       (1<<baud2400)+(1<<(baud2400-1))+1  
ENDIF 
 
IF BAUDRATE_A=2400 
bauda   = 1<<baud2400 
ENDIF 
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IF BAUDRATE_B=2400 
baudb   = 1<<baud2400 
ENDIF 
 
IF XBAUDRATE=9600 
baud_bit        = baud9600    
start_delay     =  (1<<baud9600)+(1<<(baud9600-1))+1   
ENDIF 
 
IF BAUDRATE_A=9600 
bauda  =     1<<baud9600             
ENDIF 
 
IF BAUDRATE_B=9600 
baudb  =  1<<baud9600 
ENDIF 
 
IF XBAUDRATE=19200 
baud_bit        = baud19200 
start_delay     =       (1<<baud19200)+(1<<(baud19200-1))+1 
ENDIF 
 
IF BAUDRATE_A=19200 
bauda   = 1<<baud19200 
ENDIF 
 
IF BAUDRATE_B=19200 
baudb   = 1<<baud19200 
ENDIF 
 
 
; bit and a half for receiver alignment 
baud15a  = 3*bauda/2 
baud15b  = 3*baudb/2 
 
  org $50 
scan  ds 1     ; buffer A 
bufmod  equ $F 
 
  org  $70        ; buffer B 
scan1  ds 1 
 
 
 
 
 
  org 0 
isr  bank    serial                   
:transmit    clrb    tx_divide.baud_bit       
     inc     tx_divide                
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     STZ                              
  SNB     tx_divide.baud_bit       
  test    tx_count             ; are we sending? 
  JZ      :receive             ; if not, go to :receive 
  clc                          ; yes, ready stop bit 
  rr      tx_high             ; and shift to next bit 
  rr      tx_low             ; 
  dec     tx_count             ; decrement bit counter 
IF INVSEND 
  movb tx_pin,tx_low.6 
ELSE 
  movb    tx_pin,/tx_low.6   ; output next bit 
ENDIF 
; 
:receive 
IF INVRCVA 
  movb c,/rx_pin 
ELSE 
  movb    c,rx_pin         ; serial receive 
ENDIF 
                test rx_count         ; waiting for stop bit? 
                jnz :rxbit            ; if not, :rxbit 
                mov w,#9              ; in case start, ready 9 
                sc                           ; if start, set rx_count 
                mov rx_count,w               
                mov rx_divide,#baud15a   ; ready 1.5 bit periods 
:rxbit          djnz rx_divide,rxdone     ; 8th time through? 
                mov  rx_divide,#bauda 
                dec rx_count             ; last bit? 
                sz                           ; if not, save bit 
                rr rx_byte                  
                snz                          ; if so, set flag 
                setb rx_flag                  
rxdone 
 
 
:receive1 
IF INVRCVB 
  movb c,/rx_pin1 
ELSE 
  movb    c,rx_pin1            ; serial receive (B) 
ENDIF 
  test    rx_count1            ; waiting for stop bit? 
  jnz     :rxbit1              ; if not, :rxbit1 
  mov     w,#9                 ; in case start, ready 9 
  sc                           ; if start, set rx_count 
  mov     rx_count1,w              
  mov     rx_divide1,#baud15b      ; ready 1.5 bit periods 
:rxbit1  djnz    rx_divide1,rxdone1       ; 8th time through? 
  mov  rx_divide1,#baudb 
  dec     rx_count1                ; last bit? 
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  sz                               ;if not, save bit 
  rr      rx_byte1                 
  snz                              ;if so, set flag 
  setb    rx_flag1                 
rxdone1 
 
 
; 
; check for circ buffer send 
  test tx_count          
  jnz end_int                ; busy? 
  cje head,tail,end_int1 ; nothing to send 
; are we allowed to send? 
IF INVSEND 
  jnb enablepin,end_int1 
ELSE 
  jb enablepin,end_int1 
ENDIF 
  mov fsr,tail 
  add fsr,#scan 
  mov w,ind 
;send byte 
  bank serial 
  not w                 ;ready bits (inverse logic) 
  mov tx_high,w         ; store data byte 
  setb tx_low.7          ; set up start bit 
  mov tx_count,#10      ;1 start + 8 data + 1 stop bit 
  inc tail 
  and tail,#bufmod  ; circularize 
IF INVRCVA 
  setb rxen_pin 
ELSE 
  clrb rxen_pin 
ENDIF 
; if transmitting why check alt channel? 
  jmp  end_int 
 
end_int1 
; are we allowed to send alt channel? 
IF INVSEND 
  jnb enablepin1,end_int 
ELSE 
  jb enablepin1,end_int 
ENDIF 
  mov fsr,tail1 
  add fsr,#scan1 
  mov w,ind 
;send byte 
  bank    serial 
  not     w                  ; ready bits (inverse logic) 
  mov     tx_high,w          ; store data byte 



 Unit 15: A Practical Design – The SSIB 

 Beginning Assembly Language for the SX Microcontroller • Page 217 

  setb tx_low.7           ; set up start bit 
  mov tx_count,#10       ; 1 start + 8 data + 1 stop bit 
 
  inc tail1 
  and tail1,#bufmod  ; circularize 
IF INVRCVB 
  setb rxen_pin1 
ElSE 
  clrb rxen_pin1 
ENDIF 
 
 
end_int  
  mov     w,#-int_period           
  retiw                           ;exit interrupt 
 
 
; ****** Main program begin 
 
start_point 
; want pull ups on all 
  mode $E 
  mov !ra,#0  ; pull ups on 
  mov !rb,#0  ; pull ups on 
  mov !rc,#0  ; pull ups on 
  mode $F 
IF INVSEND 
  mov ra,#%0011 
ELSE 
  mov ra,#%1011  ;initialize port RA 
ENDIF 
  mov !ra,#%0011  ;Set RA in/out directions 
  mov rb,#%00001010 
  mov !rb,#%00000101 
 
warmboot 
  CLR     FSR          ;reset all ram starting at 08h 
:zero_ram    SB      FSR.4        ;are we on low half of bank? 
  SETB    FSR.3        ;If so, don't touch regs 0-7 
  CLR     IND          ;clear using indirect addressing 
  IJNZ    FSR,:zero_ram   ;repeat until done 
 
  mov     !option,#%10011111    ;enable rtcc interrupt 
 
  clr  rb 
 
; Here is where the action is! 
mainloop 
  jnb rx_flag,:t1    
  call  get_byte       ; if char, copy to buffer 
  call enqueue 
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:t1 
  jnb rx_flag1,mainloop 
  call get_byte1  ; if char, copy to buffer 
  call enqueue1 
  jmp mainloop 
 
enqueue  
; check for buffer overrun! 
   mov  w,#1 
   add  w,head 
   and  w,#bufmod 
   mov  w,tail-w 
   jz  queuefull     ; if full too bad 
         mov  fsr,head 
   add  fsr,#scan 
   mov  ind,byte 
     inc head 
   and head,#bufmod    ; circular 
 
; calculate buffer limit 
    mov  tmpvar,tail          
    cjae  tail,head,:normal 
    add  tmpvar,#16 
:normal 
    mov  w,head 
    sub  tmpvar,w 
    jz  doret         ; buffer is empty? 
    add  tmpvar,#-BUFFERLIM 
    jz  :hshalt 
    jc  doret   
 
:hshalt        ; buffer full so... 
 
 
IF INVRCVA 
  clrb  rxen_pin 
ELSE 
        setb  rxen_pin 
ENDIF 
doret 
queuefull 
   ret 
 
 
enqueue1 
; check for buffer overrun! 
   mov  w,#1 
   add  w,head1 
   and  w,#bufmod 
   mov  w,tail1-w 
   jz  queuefull1     ; if full too bad 
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         mov  fsr,head1 
   add  fsr,#scan1 
   mov  ind,byte 
     inc head1 
   and head1,#bufmod   ; circular 
 
 
; calculate buffer limit 
    mov  tmpvar,tail          
    cjae  tail,head,:normal 
    add  tmpvar,#16 
:normal 
    mov  w,head 
    sub  tmpvar,w 
    jz  doret         ; buffer is empty? 
    add  tmpvar,#-BUFFERLIM 
    jz  :hshalt 
    jc  doret   
 
:hshalt       ; buffer full... 
 
 
IF INVRCVB 
  clrb  rxen_pin1 
ELSE 
        setb  rxen_pin1 
ENDIF 
queuefull1 
   ret 
 
; Subroutine - Get byte via serial port 
; 
get_byte 
  bank serial 
             jnb     rx_flag,$           ;wait till byte is received 
  mov     byte,rx_byte        ;store byte (copy using W) 
  clrb    rx_flag             ;reset the receive flag 
  ret 
 
get_byte1 
  bank serial 
             jnb     rx_flag1,$         ;wait till byte is received 
  mov     byte,rx_byte1      ;store byte (copy using W) 
  clrb    rx_flag1           ;reset the receive flag 
  ret 
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The SSIB Test Program 
 
' Beginning Assembly Language for the SX Microcontroller  
' TestSSIB.bs2 
' BASIC Stamp program to test SSIB 
 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
 
Baudrate CON 32 
 
' Use the next 2 lines when using inv mode serial 
' low 12 
' low 13 
 
' Use next 2 lines when using non inv mode serial 
HIGH 12 
HIGH 13 
 
' Read starting numbers 
DEBUG "sync A " 
SERIN 14\12,Baudrate,[DEC W3] 
DEBUG "B " 
SERIN 14\13,Baudrate,[DEC W4] 
DEBUG "Complete",CR 
 
 
Top: 
  W3=W3+1   ' calculate expected next numbers 
  W4=W4-1 
  PAUSE 1000   ' do some "work" (pause really) 
 
  ' read numbers 
  SERIN 14\12,Baudrate,[DEC W1] 
  SERIN 14\13,Baudrate,[DEC W2] 
  DEBUG "A:",DEC W1,CR 
  DEBUG "B:",DEC W2,CR 
 
  ' see if they met our expectations 
  IF (W1=W3) THEN TestB 
  DEBUG "Channel A mismatch. Expected ",DEC W3, " got ", DEC W1,CR 
  W3=W1 
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TestB: 
 IF (W2=W4) THEN Top 
 DEBUG "Channel B mismatch. Expected ",DEC W4, " got ", DEC W2,CR 
 W4=W2 
 GOTO Top 

Simulated Serial Devices for the SSIB 
 
' Beginning Assembly Language for the SX Microcontroller 
' DataStreamForSSIB.bs2 
 
' This BASIC Stamp program just writes out two 
' data streams to test the SSIB 
 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
 
W1=0 
W2=$FFFF 
 
DO 
  SEROUT 15\9,84,[DEC W1,","] 
  SEROUT 8\10,84,[DEC W2,","] 
  W1=W1+1 
  W2=W2-1 
  PAUSE 5 
LOOP 

 

Exercises 
 
1. If you wanted to add more serial channels to the SSIB, what points would you need to 
consider? 
 
2. Devise a scheme to buffer 32 characters instead of 16. Show code to increment and 
decrement the pointer to the buffer. 
 
3. Could you make the SSIB automatically detect the correct polarity of the input lines? What 
would be the plusses and minuses to doing this? 
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Answers 
1. Adding another channel to the SSIB would require more program memory and data memory 
for the circular buffer. Of course, you’d also need addition I/O pins. However, the biggest 
limitation to adding another channel would be placing more code in the ISR. Remember, if the 
ISR’s execution time exceeds the periodic interrupt rate, the code will not function properly. 
Also, as the ISR consumes more time it leaves less time for the remainder of the program. So 
if the ISR rate is, for example, 100 µS and the ISR requires 80 µs this leaves only 20 µs for the 
remainder of the program. 
 
Of course, with the 28-pin device, there are enough pins for more ports. The SSIB is not over 
taxing the part’s memory. You could solve any potential ISR problems by increasing the part’s 
speed so that you can execute more instructions in the same amount of time (of course, this 
increases current consumption). 
 
2. Buffering 32 characters is somewhat complex because of the SX’s banked architecture. 
Remember that the SX has 8 banks of 32 registers. However, the first 16 registers are the 
same in each bank. Of those 16 registers, 7 or 8 (depending on the device type) are reserved 
for system functions. The remaining 8 or 9 registers are usually used for variables that you 
have to frequently access so you can avoid bank switching. 
 
The current serial buffers are at addresses $50 and $70. If you try to grow these buffers 
arbitrarily you’ll run into trouble. For example, $50 + $10 = $60, but $60 is really the IND 
register (the same as location $00). 
 
Suppose you decided to store the buffer for the first channel in two parts, one at $50 and one 
at $70 (you can move the other buffer to another address). When you increment the head or 
tail variable you’ll have to take this into account: 
 
  inc  head 
  cjne  head,#$60,:nospan 
  mov  head,#$70 
:nospan 
  cjne  head,#$80,:doneinc 
  mov  head,#$50 
:doneinc 
 
To decrement, you’d need this code: 
 
  dec  head 
  cjne  head,#$4F,:nospand 
  mov  head,#$7F 
:nospand 
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  cjne  head,#$6F,:doned 
  mov  head,#$50 
:doned 
 
3. Detecting the state of the line would require you to sense the input lines at some point 
when they were idle. For example, on reset you could read the serial input lines and assume 
they are idle. Then you could invert or not invert your inputs as appropriate. The problem is: 
what happens if the lines are not idle? You could erroneously sample a start bit, for example, 
and then you’d pick the wrong polarity. 
 
When designing a general-purpose component, you need to take great care that your devices 
will work under a variety of conditions. Therefore, this method is probably not appropriate 
since it could fail in certain cases that are likely to occur, at least for some users. 
 
A better idea would be to reserve an otherwise unused input pin and sense it on reset. The 
designer using your chip could then tie the input high or low to set the chip’s polarity. This 
would be a must if you were not providing the source code with the part. Currently, the only 
way to change polarity is to recompile the source code. Some users won’t be able to do this, 
and you may be unwilling to release your source code anyway. 
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Appendix A: Instruction Summary 
 

Processor Control 
Instruction Words Turbo Cycles Description 
BANK x 1 1 Sets current register bank 
MODE x 1 1 Sets I/O mode 
NOP 1 1 No operation 
PAGE 1 1 Sets current code page 
SLEEP 1 1 Puts processor in low power sleep mode  

 



Appendix A: Instruction Summary 

Page 226 • Beginning Assembly Language for the SX Microcontroller 

Flow Control 
Instruction Words Turbo Cycles Description 
CALL 1 3 Call subroutine 
CJA 4 4,6 Compare jump above 
CJAE 4 4,6 Compare jump above or equal 
CJB 4 4,6 Compare jump below 
CJBE 4 4,6 Compare jump below or equal 
CJE 4 4,6 Compare jump equal 
CJNE 4 4,6 Compare jump not equal 
CSA 3 3,4 Compare skip above 
CSAE 3 3,4 Compare skip above or equal 
CSB 3 3,4 Compare skip below 
CSBE 3 3,4 Compare skip below or equal 
CSE 3 3,4 Compare skip equal 
CSNE 3 3,4 Compare skip not equal 
DECSZ 1 1,2 Decrement skip zero 
DJNZ 2 2,4 Decrement jump not zero 
INCSZ 1 1,2 Increment skip zero 
IJNZ 2 2,4 Increment jump not zero 
JB 2 2,4 Jump if bit set 
JC 2 2,4 Jump if carry set 
JMP 1 3 Jump 
JNB 2 2,4 Jump if bit not set 
JNC 2 2,4 Jump if no carry 
JNZ 2 2,4 Jump if no zero 
JZ 2 2,4 Jump if zero 
MOVSZ 1 1,2 Move (with optional inc/dec) skip on zero 
RET 1 3 Return from subroutine 
RETP 1 3 Return across page 
RETW 1 3 Return literal 
SKIP 1 2 Skip next instruction 
SNB 1 1,2 Skip if bit clear 
SNC 1 1,2 Skip if no carry 
SNZ 1 1,2 Skip if not zero 
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Math and Logic 
Instruction Words Turbo Cycles Description 
ADD 1 1 Add (register + W or W + register) 
ADD 2 2 Add (register + register or literal) 
ADDB 2 2 Add bit 
AND 1 1 And (register and W, W and register, W 

and literal) 
AND 2 2 And (register and literal or register and 

register) 
DEC 1 1 Decrement 
INC 1 1 Increment 
NOT 1 1 Invert 
OR 1 1 Or (register and W or W and register or 

W and literal) 
RL 1 1 Rotate left 
RR 1 1 Rotate right 
SUB 1 1 Subtract W from register 
SUB 2 2 Subtract register from register or literal 

from register 
XOR 1 1 Exclusive Or register and W or W and 

register 
XOR 2 2 Exclusive Or register and register or 

register and literal  
 
 
 

Interrupt Handling 
Instruction Words Turbo Cycles Description 
RETI 1 3 Return from interrupt 
RETIW 1 3 Return from interrupt and add W to rtcc  
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Bit Manipulation 
Instruction Words Turbo Cycles Description 
CLC 1 1 Clear carry 
CLRB 1 1 Clear bit 
CLZ 1 1 Clear zero 
MOVB 4 4 Move bit 
SETB 1 1 Set bit 
STC 1 1 Set carry 
STZ 1 1 Set zero  

 
 
 

Move/Clear/Test 
Instruction Words Turbo Cycles Description 
CLR 1 1 Clear register, W, or WDT 
MOV 1 1 Move W to register, register to W, literal 

to W 
MOV 2 2 Move register to register or literal to 

register 
TEST 1 1 Test W or register, set flags  

 
 
 

Miscellaneous 
Instruction Words Turbo Cycles Description 
IREAD 1 4 Reads program memory 
LCALL 1-4 3-6 Obsolete 
LJMP 1-4 3-6 Obsolete 
LSET 0-3 0-3 Obsolete  
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Appendix B: Hardware 
 
The projects in this tutorial are simple to build using common components. For the maximum 
flexibility, you'll want to use a solderless breadboard. If you use the Parallax SX-Tech board 
you can simply connect the circuits to the integrated breadboard. 
 
You can also use your own breadboard if you like. The SX chip simply requires a regulated 5 
volt supply (a bench supply will work fine) and a connection to the SX-Key programmer. If you 
are using an SX-Blitz, or you want to operate the circuit without the SX-Key, you’ll also need a 
50 MHz ceramic resonator (Murata CST50.00MXW040 or equivalent). Some of the circuits use 
slower clocks, and you’d need a resonator, crystal, or external oscillator if you didn’t want to 
change the speed of the example circuit. 
 
To successfully complete the tutorial exercises, you only need a few common parts: 
 

• LEDs (or 5 V LEDs with integrated resistors) 
• 470 Ω resistors (if not using 5 V LEDs) 
• Push button switches 
• Non-critical pull up resistors (10 kΩ  to 22 kΩ, 1/4W or 1/8W) 
• A piezo electric speaker 

Common Circuit 
All the circuits require the SX to be connected to the programmer and the chip’s support 
circuitry. Again, if you are using an SX-Tech board this is already done. If you are using the 
SX-Key, you only need to connect the chip to 5 V, ground, and the SX-Key. You can use an 
existing 5 V power supply if you have one (make sure it is regulated). If you want to build a 
simple 5 V supply, look at Figure B-1. This supply will handle about 100mA as shown, or can 
handle over 1A if you use a 7805 with a heat sink in place of the 78L05 specified. You can use 
an ordinary wall transformer to supply the unregulated DC input. 
 
To ensure proper operation, you should also connect the MCLR pin to 5 V either directly or 
through a pull up resistor. If you use a pull up resistor you’ll be able to short the MCLR pin to 
ground to reset the processor. For the ultimate convenience you could use a push button 
switch to make the ground connection. 
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Figure B-1: A Simple 5 V Supply 
 
To connect the programmer, you can use pins with .1 inch spacing. You usually buy these in 
strips that you can snap to the correct length with a pair of pliers or even your fingers. Insert 
one end into your breadboard and the SX-Key (or SX-Blitz) will plug into the other side. If one 
side of the pins is too short, you can usually slide the plastic insulator with a pair of pliers so 
that the pins on each side are of equal length. Table B-1 shows the pin connections necessary. 
 

Table B-1: SX28 Pin Connections 
5 V Ground OSC1 OSC2 MCLR 

15,16 5,6 18 17 4  

I/O Circuits 
Most of the projects in the tutorial require some input or output. The I/O usually takes the 
form of an LED, a push button, both an LED and a push button, or a piezo speaker. Figure B-2 
shows the common LED hookup. If you are using 5 V LEDs, you don’t need the resistor as it is 
built into the LED. Notice that the LED is polarized; refer to the LEDs specifications to identify 
which lead is which. With the LED wired as shown, you must bring the SX pin low to light the 
LED. 
 

 
Figure B-2: An LED Circuit 

 
In Unit 5, some exercises use a push button and a piezo speaker for I/O as in Figure B-3. The 
10 kΩ  resistor’s value is not overly critical. Anything from 10 kΩ  to 22 kΩ  (or even more) 
should work fine. If a project calls for more switches, you can duplicate the switch portion of 



 Appendix B: Hardware 

 Beginning Assembly Language for the SX Microcontroller • Page 231 

the circuit for other pins. Just use a pull up resistor on the pin and connect the switch to 
ground. 
 

 
 

Figure B-3: A Speaker and Switch Circuit 
 
Don’t connect an ordinary speaker directly to the SX pin as the load presented by such a 
speaker may damage the SX chip. Most ICs, including the SX, can directly drive a piezo 
speaker. 

Final Projects 
The first project is a TouchTone-style phone dialer. For demonstration purposes, you can hear 
the tones in a piezo speaker (although they may be quite low – you may have to put your ear 
right up to the speaker). If you want to really dial a phone, you’ll need two things: a filter and 
an amplifier. 
 
The Ubicom notes on the DTMF generation VP specifies the component values for the low pass 
filter. This filter prevents high-frequency noise (an unavoidable byproduct of using PWM to 
generate tones) from entering the phone lines. Connect a 620 Ω resistor to the SX output pin 
and a .22 µF capacitor from the other side of the resistor to ground (the Ubicom data calls for 
600 Ω resistor and .2 µF capacitors, but these values are close enough and easy to obtain). 
This will make the tones even weaker than before, however. Some sort of amplification is 
necessary if you plan to feed the tones into the phone. You can use any sort of amplified 
speaker, signal tracer, or build a small amplifier from an LM386 chip (see Figure B-4) and drive 
an ordinary 8 Ω speaker. 
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Figure B-4 : A Phone Dialer  
 
If you wish to perform these next projects, you’ll need a parallel LCD, a 10 kΩ  potentiometer, 
and a way to connect a PC serial port to a BASIC Stamp module. One way to do this is with a 
DB9 cable that has a female end to connect to the PC and bare wires on the other end. You 
can also solder a DB9 connector to wires and plug a standard cable into it. In either case, the 
wires would plug into your solderless breadboard. 
 
If you want to experiment with proper RS232 communications – which is usually not strictly 
necessary – you also need a MAX232 (along with the associated capacitors) or a MAX233 
(which requires no capacitors). The MAX232A requires 4 or 5 0.1 µF capacitors, while the 
regular MAX232 requires 4 or 5 1µF capacitors. 
 
If you do wish to connect a MAX232, you need the circuit shown in Figure B-5. Note that the 
capacitor between Vcc (pin 16) and ground is a decoupling capacitor and may not be 
necessary if your 5 V power already contains decoupling capacitors to handle other circuitry. 
Obviously, if you aren’t using polarized capacitors, you can disregard the plus signs on the 
schematic. 
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RS-232 Output

TTL/CMOS Output

+5V Input

RS-232 Input
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RS-232 Input
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T2OUT
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R1OUT

Vcc
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C1-

V+

R1IN

T1OUT

GND

R2IN R2OUT

1.0 µF

1.0 µF

1.0 µF

1.0 µF

1.0 µF
DIP/SO

 
 

Figure B-5: MAX232 Circuit  
 
The MAX233 doesn’t require external capacitors to operate (although decoupling capacitors 
are always a good idea). However, the chip is a bit more expensive (usually more expensive 
than the 4 capacitors you can eliminate). You can see an example schematic in Figure B-6. 
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Figure B-6: MAX233 Circuit  

 
 
 
 




